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Abstract
Unsupervised rationale extraction aims to ex-
tract text snippets to support model predic-
tions without explicit rationale annotation. Re-
searchers have made many efforts to solve this
task. Previous works often encode each aspect
independently, which may limit their ability
to capture meaningful internal correlations be-
tween aspects. While there has been significant
work on mitigating spurious correlations, our
approach focuses on leveraging the beneficial
internal correlations to improve multi-aspect
rationale extraction. In this paper, we propose
a Multi-Aspect Rationale Extractor (MARE) to
explain and predict multiple aspects simultane-
ously. Concretely, we propose a Multi-Aspect
Multi-Head Attention (MAMHA) mechanism
based on hard deletion to encode multiple text
chunks simultaneously. Furthermore, multiple
special tokens are prepended in front of the
text with each corresponding to one certain as-
pect. Finally, multi-task training is deployed to
reduce the training overhead. Experimental re-
sults on two unsupervised rationale extraction
benchmarks show that MARE achieves state-of-
the-art performance. Ablation studies further
demonstrate the effectiveness of our method.
Our codes have been available at https://
github.com/CSU-NLP-Group/MARE.

1 Introduction

Deep learning text classification systems have
achieved remarkable performance in recent
years (Kim, 2014; Devlin et al., 2019). However,
their black-box nature has been widely criticized.
Finding a sufficient approach to open the black box
is urgent and significant.

Unsupervised rationale extraction (Lei et al.,
2016) is an explanation approach that aims to ex-
tract text snippets from input text to support model
predictions without explicit rationale annotation.
Previous researchers (Liu et al., 2022; Jiang et al.,
2023) have made many efforts to improve the ratio-
nalization performance of their models. However,

Example
Appearance: Positive
Aroma: Positive
Palate: Positive
Text: thanks to bman1113vr for sharing this
bottle . pours a murky orangish-brown color
with a white head . the aroma is tart lemons .
the flavor is tart lemons with some oak-aged
character . the beer finishes very dry . medium
mouthfeel and medium carbonation .

Table 1: A multi-aspect example from the BeerAdvocate
dataset (McAuley et al., 2012). Blue, red, and cyan
represent the aspects of Appearance, Aroma, and Palate,
respectively.

as shown in Figure 1a, existing rationale extrac-
tion models are uni-aspect encoding models, which
can only predict and interpret one aspect of the
text at a time. In real-world scenarios, one text
often contains multiple aspects of an object. Ta-
ble 1 shows an example from the BeerAdvocate
dataset (McAuley et al., 2012), where blue, red, and
cyan represent the aspects of Appearance, Aroma,
and Palate, respectively. The highlighted segments
in the text are the rationales corresponding to each
aspect. For instance, "pours a murky orangish-
brown color with a white head ." explains why
the label for Appearance is Positive. In this case,
traditional uni-aspect rationale extraction models
would require three independently trained models
to predict and interpret all three aspects, which is
labor-intensive and time-consuming and limits their
downstream applications. Furthermore, uni-aspect
models encode each aspect independently ignoring
their internal correlation.

To address these problems, we propose the Multi-
Aspect Rationale Extractor (MARE). As shown in
Figure 1b, MARE can encode all aspects simul-
taneously by prepending multiple special tokens
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Figure 1: Comparison of our methods (MARE) with
previous typical uni-aspect encoding models.

to the input text, each corresponding to a specific
aspect. This approach enables multi-aspect encod-
ing in one model. Furthermore, MARE introduces
a Multi-Aspect Multi-Head Attention (MAMHA)
mechanism for collaborative encoding across as-
pects. This mechanism allows the model to capture
interactions and dependencies between different
aspects, leading to more accurate predictions and
rationales. Finally, inspired by multi-task learn-
ing, MARE iteratively accesses training data for
different aspects, reducing the overall training cost.

We validate the effectiveness of MARE on
two unsupervised rationale extraction benchmarks:
BeerAdvocate (McAuley et al., 2012) and Hotel
Review (Wang et al., 2010). Results show that
MARE outperforms existing state-of-the-art meth-
ods across multiple evaluation metrics. Ablation
studies further demonstrate the effectiveness of
MARE. Our main contributions are as follows:

• We introduce MARE, a Multi-Aspect Ratio-
nale Extractor that generates predictions and
rationales for multiple aspects simultaneously.

• We deploy the multi-task training to reduce
the training cost and expand the model appli-
cability. Compared to multi-aspect collabo-
rative training, it saves 17.9% and 25.2% of
memory usage and training time, respectively.

• Extensive experiments on BeerAdvocate and
Hotel Review datasets demonstrate MARE’s
superiority, with a notable 5.4% improvement
in token-level F1 score. Ablation studies fur-
ther validate the effectiveness of each compo-
nent in MARE.

2 Related Work

The rationalization framework, known as RNP (Lei
et al., 2016), assumes that any unselected input has

no contribution to the prediction and achieves re-
markable performance on this task. However, RNP
still has many weaknesses. Various approaches
have been proposed to improve RNP In different
dimensions.

Gradient Flows The RNP framework utilizes
REINFORCE (Williams, 1992) to overcome the
non-differentiable problem, but this leads to train-
ing instability and poor performance. Hard-
Kuma (Bastings et al., 2019) introduces re-
parameterization tricks and replaces the Bernoulli
distribution with the rectified Kumaraswamy dis-
tribution, which stabilizes the training process. In
FR (Liu et al., 2022), the encoder’s parameter is
shared between the generator and predictor. This
ensures that the encoder’s gradient is more reason-
able because it can see both full texts and rationales.
3Players (Yu et al., 2019) forces the complemen-
tary rationale to be meaningless, resulting in more
meaningful generated rationales. Our research is
orthogonal with these methods.

Interlocking The interlocking problem was ini-
tially proposed by A2R (Yu et al., 2021). This
problem arises when the generator fails to identify
important tokens, leading to sub-optimal rationales
and consequently affecting the performance. Many
researchers have developed approaches to address
this issue (Huang et al., 2021; Yu et al., 2021; Liu
et al., 2023a). DMR (Huang et al., 2021) aimed
to align the distributions of rationales with the full
input text in the output space and feature space.
A2R (Yu et al., 2021) enhances the predictor’s un-
derstanding of the full text by introducing a soft
rationale. MGR (Liu et al., 2023a) involves multi-
ple generators with different initializations to allow
the predictor to see various rationales, alleviating
the interlocking problem. DR (Liu et al., 2023b)
limits the Lipschitz constant of the predictor, mak-
ing the whole system more robust. DAR (Liu
et al., 2024a) deploys a pre-trained discriminator to
align the selected rationale and the original input.
MCD (Liu et al., 2024b) proposes the minimum
conditional dependence criterion to overcome the
issues of the maximum mutual information (MMI)
criterion. YOFO (Jiang et al., 2023) eliminates
interlocking by simultaneously predicting and in-
terpreting. YOFO deploys pre-trained language
models as its backbone and uses token deletion
strategies between layers to erase unimportant to-
kens. the remaining tokens in the final layer are
seen as rationales.
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Figure 2: Attention mask visualization. left: attention
mask in Attention Mask Deletion. right: attention mask
in Hard Deletion.

In the domain of multi-aspect rationale ex-
traction, several approaches have been proposed.
MTM (Antognini et al., 2021) introduced a method
for a multi-aspect explanation of target variables
from documents, which bears some similarities
to our work. Their approach, like ours, aims to
provide explanations for multiple aspects simulta-
neously. However, there are key differences in the
model architecture and methodology. 1. Model
architecture: Unlike two-stage models that gener-
ate rationales and labels sequentially, MARE is
a single-stage model that generates both simul-
taneously. 2. Base model: While some exist-
ing approaches use LSTM or CNN architectures,
MARE leverages the power of pre-trained trans-
former models like BERT. 3. Aspect assignment:
Our method allows for a token to be assigned to
multiple aspects independently, whereas some ex-
isting methods normalize probabilities across as-
pects, limiting each token to a single aspect.

This paper focuses on the efficiency of the multi-
aspect scenarios. All the above models are uni-
aspect encoding models, where one model can only
encode one aspect of data. MARE is a multi-aspect
collaborative encoding model designed to encode
multiple aspects of data simultaneously.

3 Problem Definition

Existing uni-aspect encoding models extract ratio-
nales zi from the input x and predict the label
yi for the i-th aspect. Formally, they can be ex-
pressed as P (yi, zi | x; θi), where θi represents
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Figure 3: Overall model architecture. left: the overall
model architecture of MARE. right: the computational
graph of MAMHA.

the parameters of the model for the i-th aspect. To
obtain the rationales and predictions for all k as-
pects, k independently trained models are required:
{P (y1, z1 | x; θ1), · · · , P (yk, zk | x; θk)}. How-
ever, this approach is time-consuming and compu-
tationally expensive.

To address this issue, we propose a multi-
aspect rationale extraction task, where the ratio-
nales and predictions for all aspects can be gen-
erated simultaneously. This can be formalized as
P (y1, z1, · · · ,yk, zk | x; θ), where θ represents
the parameters of the multi-aspect rationale extrac-
tion model. By utilizing a single model to extract
rationales and make predictions for all aspects con-
currently, we aim to improve the efficiency and
reduce computational costs compared.

4 Method

This paper proposes a Multi-Aspect Rationale Ex-
tractor (MARE), which can simultaneously pre-
dict and interpret multiple aspects of text. As
shown in the left part of Figure 3, MARE is
based on an encoder-based pre-trained language
model and achieves multi-aspect collaborative en-
coding through a Multi-Aspect Multi-Head Atten-
tion (MAMHA) mechanism. Additionally, MARE
employs multi-task training during the training pro-
cess, significantly reducing the training cost.

4.1 Hard Deletion for Complete Token
Removal

Selecting rationales without explicit annotations
can be challenging. We follow the previous
work (Jiang et al., 2023) where unimportant tokens
are gradually erased. However, directly multiply-
ing hidden states by the token mask harms rational-
ization performance (Jiang et al., 2023). Attention
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Figure 4: A example for Multi-Aspect Controller. left:
The token mask for each aspect. "Good place" and
"bad service" stands for the rationales of location and
service aspect, respectively. right: The attention mask
is obtained by performing an outer product operation on
token masks.

Mask Deletion (AMD) (Jiang et al., 2023) avoids
this problem by setting attention scores of masked
tokens to 0. Concretely, assuming mi ∈ [0, 1]L

represents the token mask in the i-th layer and
Aj

i ∈ RL×L is the attention score matrix of the
j-th head in the i-th layer, the final attention score
matrix is Ãj

i = Aj
i ·mi ∈ RL×L. Through AMD,

remaining tokens interact while deleted ones are
invisible.

However, AMD suffers from an "incomplete
deletion" problem, where deleted tokens can still
be partially represented by remaining ones due to
the broadcast operation. As shown in Figure 2a,
although "X1" and "X2" are masked, they can still
be indirectly represented by the weighted sum of
"[CLS]" and "X3". Although this allows the model
to retain more information, it hinders multi-aspect
collaborative encoding.

To address this issue, we propose Hard Dele-
tion, which uses an outer product operation to com-
pletely erase deleted tokens (Figure 2b). "X1" and
"X2" are represented by all-zero vectors, ensuring
complete removal.

4.2 Multi-Aspect Multi-Head Attention
Inspired by hard deletion, we propose the multi-
aspect multi-head attention (MAMHA) mechanism
to encode multiple text segments simultaneously.
As shown in the right part of Figure 3, MAMHA
consists of a Multi-Aspect Controller (MAC) and
the traditional multi-head attention (MHA) mecha-
nism.

4.2.1 Multi-Aspect Controller (MAC)
MAC assists MHA in separately encoding different
text segments by generating aspect-specific atten-
tion masks based on token masks for each aspect.
This allows tokens within the same aspect to inter-

act while isolating tokens from different aspects,
enabling MHA to achieve multi-aspect collabora-
tive encoding.

Figure 4 illustrates an example where "good
place" and "bad service" are rationales for the "loca-
tion" and "service" aspects, respectively. The final
attention mask, obtained through an outer product
operation, creates two separate segments. Words
within each segment interact, while words from
different segments remain independent. Special
classification tokens "[C1]" and "[C2]" collect in-
formation from their respective aspects, allowing
MHA to encode two aspects simultaneously.

This method can be extended to k aspects by
dividing the text into k segments and appending k
special tokens. Note that if MAC employs AMD,
tokens from different aspects cannot be fully iso-
lated, leading to confusion and hindering multi-
aspect collaborative encoding (further discussed in
Section 6.2.2).

4.2.2 Computation Process of MAC
The computation process of MAC is shown in the
right part of Figure 3. Assuming Hi represents the
hidden states of the i-th layer, its first k vectors
{h0

i , · · · ,hk−1
i } are representations of special to-

kens. For the j-th aspect, mapping functions gjquery
and gjkey map special and normal tokens to Q and
K, respectively. The similarity between special
and normal tokens is calculated, and the gumbel-
softmax technique determines the token’s aspect
assignment (Equations (1)-(4)).

Q = {g0query(h0
i ), · · · , gkquery(hk−1

i )} (1)

K = {g0key(Hi[k :]), · · · , gkkey(Hi[k :])} (2)

scores =
Q ·KT

√
d

(3)

m = gumbel_softmax(scores, dim = −1) (4)

, where d and L mean the vector’s dimension and
the text’s length, respectively. [·] represents slic-
ing operation, m ∈ {0, 1}k×L stands for the token
mask, and m[i, j] = 1 indicates that the j-th to-
ken is selected as the rationale of the i-th aspect.
The mask m evolves during training, starting as
a near-full 1 vector and gradually becoming more
selective. The Gumbel-Softmax output is binarized
to produce the final mask.

MAC adopts the outer product operation to
match the shape of the attention score matrix in
MHA (Equation 5). When M ′[i, j] ̸= 0, the token
is selected as a rationale in at least one aspect and
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should not be deleted (Equation (6)). The binariza-
tion operation in Equation (6) is non-differentiable,
so straight-through is used for gradient estima-
tion. Finally, the mask is multiplied by the atten-
tion score matrix to perform token deletion (Equa-
tions (7)-(9)).

M′ = mT ·m ∈ Z ∩ [0, k]L×L (5)

M̃ [i, j] =

{
0, If M ′[i, j] = 0

1, Otherwise
(6)

M = M̃+M′ − StopGrad(M′) ∈ [0, 1]L×L

(7)

Ãh
i = Ah

i ⊙M, for h in 1, 2, ...,H (8)

Hi = PLMi(Hi−1; Ãi), for i in 1, 2, ..., N (9)

, where StopGrad(X) represents stopping the X’s
gradient calculation. Ah

i and Ãh
i represent the

initial and final attention score matrices of the h-th
attention header in the i-th layer, respectively. Hi

represents the hidden layer representation of the
i-th layer.

4.3 Multi-Task Training

Using labels from various aspects simultaneously
during training may not be feasible, as datasets like
Hotel Review (Wang et al., 2010) only have annota-
tions for one aspect per sample. Multi-task training
allows MARE to focus on the aspect corresponding
to the current batch, avoiding the need to encode as-
pects with missing labels. If the batch comes from
the j-th aspect, only the corresponding mapping
functions gjq and gjk are used (Equations (10)-(11)).

Q = gjquery(Hi[j − 1 : j]) (10)

K = gjkey(Hi[k :]) (11)

At inference time, we do not explicitly control the
sparsity level. Instead, the trained mapping func-
tions gq and gk directly select tokens they identify
as explanations. This means that the proportion of
selected tokens for each aspect in a single sample is
not strictly fixed. It can vary based on the content,
and may even be 0% if the model determines there
is no relevant description for a particular aspect.

4.4 Overall Loss

Our loss function consists of three compo-
nents: cross-entropy loss (LCE), sparsity penalty
(Lsparse), and contiguous penalty (Lcont). The full

loss function is:

L = LCE + βLsparse + γLcont (12)

LCE =
1

C

C∑

i=1

yi log pi (13)

Lsparse =
1

N

N∑

i=1

| 1
L

L∑

j=1

mj
i − li| (14)

Lcont =

∑N
i=1

∑L
j=1 |m

j+1
i −mj

i |
N(L− 1)

(15)

, where s is a predefined sparsity level, β and γ
are hyperparameters that balance these terms. We
employ a Cliff decay strategy as illustrated in Ap-
pendix B, where token deletion begins after a spec-
ified layer in the network.

5 Experiments

5.1 Experimental Setup

Datasets We performed experiments on two
commonly used unsupervised rationale extraction
datasets: BeerAdvocate (McAuley et al., 2012) and
the Hotel Review dataset (Wang et al., 2010).

The BeerAdvocate dataset (McAuley et al.,
2012) is a multi-aspect sentiment prediction dataset.
It consists of texts along with corresponding aspect
scores ranging from 0 to 1, including aspects such
as appearance, aroma, and palate. The training
and validation sets do not have labeled rationales,
but the test set contains 994 samples with ratio-
nale annotations for all aspects. Notably, the scores
across different aspects within the same sample
exhibit high correlation, resulting in highly spuri-
ous correlations. For the BeerAdvocate dataset, we
conducted experiments on the decorrelated version
proposed by Lei et al.. We binarized the dataset into
binary classification tasks using a positive thresh-
old of 0.6 and a negative threshold of 0.4 (Bao
et al., 2018). We run our model, MARE, on two
sparsity levels: high-sparse and low-sparse. In the
high-sparse decorrelated dataset, the sparsity level
approximates the sparsity for golden rationales in
the test set. In the low-sparse decorrelated dataset,
the sparsity level is comparatively lower but allows
for convenient comparisons with previous works.

The Hotel Review dataset (Wang et al., 2010) is
another widely used dataset for multi-aspect sen-
timent classification and rationale extraction. It
includes texts along with three aspect labels: lo-
cation, service, and cleanliness. In addition to the
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Methods
Appearance Aroma Palate Avg

S ACC P R F1 S ACC P R F1 S ACC P R F1 F1
RNP(Lei et al., 2016) 18.7 84.0 72.0 72.7 72.3 15.1 85.2 59.0 57.2 58.1 13.4 90.0 63.1 68.2 65.5 65.6
DMR(Huang et al., 2021) 18.2 - 71.1 70.2 70.7 15.4 - 59.8 58.9 59.3 11.9 - 53.2 50.9 52.0 60.7
A2R(Yu et al., 2021) 18.4 83.9 72.7 72.3 72.5 15.4 86.3 63.6 62.9 63.2 12.4 81.2 57.4 57.3 57.4 64.5
FR(Liu et al., 2022) 18.4 87.2 82.9 82.6 82.8 15.0 88.6 74.7 72.1 73.4 12.1 89.7 67.8 66.2 67.0 74.4
MGR(Liu et al., 2023a) 18.4 86.1 83.9 83.5 83.7 15.6 86.6 76.6 76.5 76.5 12.4 85.1 66.6 66.6 66.6 75.6
DR(Liu et al., 2023b) 18.6 85.3 84.3 84.8 84.5 15.6 87.2 77.2 77.5 77.3 13.3 85.7 65.1 69.8 67.4 76.4
YOFO (Jiang et al., 2023) 18.1 85.6 91.3 87.1 89.2 15.4 86.8 94.3 87.9 91.0 13.2 88.4 79.5 79.0 79.2 86.5
MARE (ours) 17.3 85.6 95.4 89.7 92.5 15.4 86.0 93.9 90.2 92.0 12.7 88.0 82.2 81.9 82.0 88.8

Table 2: Results of different methods on the high-sparse decorrelated BeerAdvocate dataset.

Methods
Appearance Aroma Palate Avg

S ACC P R F1 S ACC P R F1 S ACC P R F1 F1
RNP(Lei et al., 2016) 11.9 - 72.0 46.1 56.2 10.7 - 70.5 48.3 57.3 10.0 - 53.1 42.8 47.5 53.7
CAR(Chang et al., 2019) 11.9 - 76.2 49.3 59.9 10.3 - 50.3 33.3 40.1 10.2 - 56.6 46.2 50.9 50.3
DMR(Huang et al., 2021) 11.7 - 83.6 52.8 64.7 11.7 - 63.1 47.6 54.3 10.7 - 55.8 48.1 51.7 56.9
FR(Liu et al., 2022) 12.7 83.9 77.6 53.3 63.2 10.8 87.6 82.9 57.9 68.2 10.0 84.5 69.3 55.8 61.8 64.4
MGR(Liu et al., 2023a) 13.2 82.6 75.2 53.5 62.6 12.3 84.7 80.8 63.7 71.2 10.8 80.1 51.6 44.7 47.9 60.6
DR(Liu et al., 2023b) 11.9 81.4 86.8 55.9 68.0 11.2 80.5 70.8 57.1 63.2 10.5 81.4 71.2 60.2 65.3 65.5
YOFO (Jiang et al., 2023) 13.1 87.0 97.1 66.9 79.2 12.1 86.3 94.1 68.9 79.5 10.9 87.8 88.5 72.7 79.8 79.5
MARE (ours) 13.8 86.3 98.7 74.0 84.6 12.2 85.9 97.5 74.4 84.3 10.9 88.2 87.4 74.6 80.5 83.1

Table 3: Results of different methods on the low-sparse decorrelated BeerAdvocate dataset.

aspect labels, the test set of this dataset also pro-
vides rationale annotations for all three aspects,
with 200 samples. Since the original labels are on
a scale of 0 to 5 stars, we utilize the binarized ver-
sion proposed by Bao et al.. For the Hotel Review
dataset, we only conducted a low-sparse experi-
ment as the golden sparsity level is relatively low,
at around 10%.

The statistics of the BeerAdvocate (McAuley
et al., 2012) and Hotel Review dataset (Wang et al.,
2010) are shown in Table 4.

Datasets Train Validation Test
Pos Neg Pos Neg Pos Neg

Beer
Appearance 16891 16891 6628 2103 923 13

Aroma 15169 15169 6579 2218 848 29
Palate 13652 13652 6740 2000 785 20

Hotel
Location 7236 7236 906 906 104 96
Service 50742 50742 6344 6344 101 98

Cleanliness 75049 75049 9382 9382 97 99

Table 4: Statistics of the BeerAdvocate and Hotel Re-
view dataset.

Baselines We compared the performance of
MARE with several state-of-the-art baselines.
These baselines, including RNP (Lei et al., 2016),
CAR (Chang et al., 2019), DMR (Huang et al.,
2021), A2R (Yu et al., 2021), FR (Liu et al., 2022),
MGR (Liu et al., 2023a) DR (Liu et al., 2023b),
and YOFO (Jiang et al., 2023), were discussed
in Section 2. The performance of these baselines
are obtained from YOFO (Jiang et al., 2023). In
MARE, we use BERT for our backbone and the

balanced round-robin is equipped in the training
stage. All of our experiments are conducted on
NVIDIA Geforce RTX 3090 24GB. For more im-
plementation details, please refer to Appendix A.1.

Metrics Following previous works (Jiang et al.,
2023), we will use token-level F1 and accuracy for
the rationalization and downstream performance.
In our result tables, we define S as the sparsity level
of selected rationales, computed using the formula
S = #selected tokens

#tokens . P, R, and F1 represent preci-
sion, recall, and F1 score for rationale extraction,
respectively. ACC and Val ACC denote the accu-
racy of the test and validation sets, respectively.
The best performance is Bolded in the tables.

5.2 Main Results

5.2.1 Results on the BeerAdvocate Dataset
High-sparse Experimental results on the de-
correlated BeerAdvocate dataset in the high-sparse
scenario are shown in Table 2. MARE outperforms
YOFO by 3.3%, 1.0%, and 2.8% in the appearance,
aroma, and palate aspects, respectively. Mean-
while, MARE achieves the best average F1 scores
among all models, particularly 88.8%. This is be-
cause MARE is a multi-aspect collaborative en-
coding model that captures internal correlations
between all aspects and thus achieves the best per-
formance.

Low-sparse Experimental results on the de-
correlated BeerAdvocate dataset in the low-sparse
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Methods
Location Service Cleanliness Avg

S ACC P R F1 S ACC P R F1 S ACC P R F1 F1
RNP(Lei et al., 2016) 8.8 97.5 46.2 48.2 47.1 11.0 97.5 34.2 32.9 33.5 10.5 96.0 29.1 34.6 31.6 37.4
DMR(Huang et al., 2021) 10.7 - 47.5 60.1 53.1 11.6 - 43.0 43.6 43.3 10.3 - 31.4 36.4 33.7 43.4
A2R(Yu et al., 2021) 8.5 87.5 43.1 43.2 43.1 11.4 96.5 37.3 37.2 37.2 8.9 94.5 33.2 33.3 33.3 37.9
FR(Liu et al., 2022) 9.0 93.5 55.5 58.9 57.1 11.5 94.5 44.8 44.7 44.8 11.0 96.0 34.9 43.4 38.7 46.9
MGR(Liu et al., 2023a) 9.7 97.5 52.5 60.5 56.2 11.8 96.5 45.0 46.4 45.7 10.5 96.5 37.6 44.5 40.7 47.5
DR(Liu et al., 2023b) 9.6 96.5 53.6 60.9 57.0 11.5 96.0 47.1 47.4 47.2 10.0 97.0 39.3 44.3 41.8 48.9
YOFO (Jiang et al., 2023) 9.7 98.0 55.7 60.4 58.0 11.9 99.5 58.3 57.4 57.9 10.6 100.0 49.9 54.4 52.1 56.0
MARE (ours) 9.7 98.0 59.0 68.4 63.3 10.8 99.5 58.6 55.2 56.8 10.6 100.0 46.8 54.0 50.1 56.7

Table 5: Results of different methods on the Hotel Review dataset.

MARE (ours)
Location: Positive ✔
Service: Positive ?
Cleanliness: Positive ?
Text: arrived very apprehensively to the hotel after reading the negative remarks . we were happily suprised . staff very
pleasant , rooms and bathrooms spotlessly clean , although on the small side . our rooms had no natural light , but with
the lights on were ok . air conditioning worked ( was necessary in november ! ) , although noisy from the inside and
outside where the vents are . however , the hotel is in the middle of nyc and the noise did n ’ t bother us overmuch - the
situation is much more important , and the jolly was in a perfect location for shopping and tourism . breakfasted across
the road in the moonstruck deli ( opens at 7 am for the jet lagged ) . i would certainly go back there again !
Location: -
Service: Positive ✔
Cleanliness: -
Text: this is a very nice hotel with top - notch service and staff . you will pay for it , but if you want to avoid the touristy
hotels of branson , this is a beautiful place to stay and eat .

Table 6: Case studies on the Hotel Review dataset.

scenario are shown in Table 3. MARE still achieves
the best performance in all aspects, similar to the
high-sparsity scenario. In the low-sparsity sce-
nario, the performance gain obtained by MARE is
greater than in high-sparsity scenarios. Specifically,
MARE is 5.4%, 4.8%, and 0.7% higher than YOFO
in the appearance, aroma, and palate aspects, re-
spectively. Furthermore, MARE has a 3.6% aver-
age performance gain in token-level F1 compared
to YOFO. This further demonstrates the effective-
ness of MARE.

5.2.2 Results on the Hotel Review Dataset

Experimental results on the Hotel Review dataset
are shown in Table 3. Although MARE is slightly
inferior to YOFO in the service and cleanliness
aspects, it is far superior to YOFO in the location
aspect and its average token-level F1 score is higher
than YOFO. Specifically, MARE is 1.1% and 2.0%
lower than YOFO in the service and cleanliness
aspects, respectively, while it is 5.3% higher than
YOFO in the location aspect. Meanwhile, MARE
is 0.7% higher than YOFO in the average token-
level F1 score.

6 Analysis

In this section, we delve into a more comprehen-
sive analysis of our methodology. In Section 6.1,
we present a series of case studies derived from
the Hotel Review dataset to exemplify the practical
applications of our approach. In Section 6.2, we
conduct an ablation study to substantiate the effi-
cacy of our method by incrementally removing its
constituent elements.

6.1 Case Study

This section visualizes several samples on the Ho-
tel Review dataset as shown in Table 6. Blue, red,
and cyan represent the location, service, and clean-
liness aspects, respectively, and underline indicate
the annotated rationales.

In the Hotel Review test set, each sample only
has a uni-aspect annotation. As shown in the first
case, only the location aspect has been annotated.
However, in real scenarios, a review often describes
multiple aspects. MARE extracted snippets not
only about location but service and cleanliness
which are not annotated. "Staff very clean" and
"rooms and bathrooms spotless clean" demonstrate
that the service and cleanliness of the hotel are
excellent. In the second case, only the location as-
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Methods Memory Usage
(MB)

Training Time
(minutes/epoch)

Appearance Aroma Palate
ValAcc F1 ValAcc F1 ValAcc F1

multi-aspect collaborative training 24209 34.5 89.2 92.2 88.4 90.1 84.0 79.2
multi-task training 19877 25.8 89.2 92.5 89.1 92.0 84.7 82.0

Table 7: Ablation study on different training strategies.

pect appeared in the text. Correspondingly, MARE
did not select any rationale other than the location
aspect. This indicates that MARE benefits from
multi-aspect collaborative encoding and makes de-
cisions when there is clear evidence.

6.2 Ablation Studies
To verify the effectiveness of our model compo-
nents, we have conducted several ablation stud-
ies on the BeerAdvocate dataset (McAuley et al.,
2012).

6.2.1 multi-task training v.s. multi-aspect
collaborative training

To explore the impact of multi-task training on the
model as described in Section 4.3, this experiment
verifies the effectiveness of multi-task training by
comparing the performance, memory usage, and
time cost of multi-task training and multi-aspect
collaborative training.

The experimental result is shown in Table 7. The
performance of multi-task training is slightly bet-
ter than that of multi-aspect collaborative training.
This is because, in the early stages of training,
MARE cannot distinguish various aspects well, so
multi-aspect collaborative training may lead to in-
formation leakage between different aspects, re-
sulting in a performance drop. Meanwhile, multi-
aspect collaborative training requires mask calcu-
lation for all aspects, resulting in high memory
usage and long training time, reaching 24209MB
and 34.5 minutes respectively. By contrast, multi-
task training only requires encoding a single aspect
at a time, so it costs much lower in both mem-
ory and training time. It saves 17.9% and 25.2%
of memory usage and training time, respectively.
This indicates that models trained using multi-task
training can outperform those trained using multi-
aspect collaborative training with fewer computa-
tional resources, demonstrating the effectiveness of
multi-task training.

6.2.2 Hard Deletion v.s. Attention Mask
Deletion

To demonstrate the effectiveness of hard deletion,
this section contrastively employs AMD operations

in the MAC. Specifically, we will replace the Equa-
tion (5)-(8) with Equation (16)-(19):

m′ =
k−1∑

i=0

m[i] ∈ [0, k]L (16)

m̃[i] =

{
0, If m′[i] = 0

1, Otherwise
(17)

m̂ = m′ − StopGrad(m′) + m̃ ∈ {0, 1}L
(18)

Ãh
i = Ah

i ⊙ m̂, for h in 1, 2, ...,H (19)

, where k means the number of aspects, and m′

represents the mask vector with a span of closed in-
terval [0, k], m̂ indicates the calculated mask vector
to multiply with attention score matrix. Here, we
also use the Straight Through technique to bypass
the non-differentiable problem.

Experimental results are shown in Table 8.
While using AMD, the rationalization and down-
stream performance are very poor. On the con-
trary, MARE-hard performs very well. In three as-
pects, the validation accuracy of MARE-hard was
very close to BERT, and exceeded MARE-AMD by
3.5%, 4.8%, and 6.3%, respectively. Meanwhile,
MARE-hard leads MARE-AMD by 23.1%, 23.4%,
and 78.1% in rationalization performance, respec-
tively. The reason is that AMD fails to effectively
separate tokens corresponding to different aspects,
leading to information leakage and hindering accu-
rate rationale extraction. This indicates that AMD
is not suitable for multi-aspect collaborative cod-
ing, and also proves the necessity and effectiveness
of using hard deletion.

Methods
Appearance Aroma Palate

ValAcc F1 ValAcc F1 ValAcc F1
BERT 90.2 - 89.5 - 86.8 -
MARE-AMD 85.7 69.4 84.3 68.6 78.4 3.9
MARE-hard 89.2 92.5 89.1 92.0 84.7 82.0

Table 8: Ablation study on different delete methods.

6.2.3 Special Token Initialization
To evaluate the impact of different initialization
methods for special tokens on the model perfor-
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mance, this section explores three distinct initial-
ization approaches:

• random initialization: The first special token
is initialized by [CLS], while all other special
tokens are randomly initialized.

• CLS initialization: All the special tokens are
initialized by [CLS].

• sharing initialization: All the special tokens
are shared and initialized by [CLS].

The performance comparisons are shown in Ta-
ble 9. MARE-CLS is slightly better than MARE-
random and the MARE-share performs the worst.
We found that MARE share cannot distinguish
the differences in sparsity between different as-
pects. MARE-CLS achieves the best performance
because the special token [CLS] is a highly infor-
mative embedding after pre-training. By default,
MARE uses the CLS initialization.

Methods
Appearance Aroma Palate
ACC F1 ACC F1 ACC F1

MARE-random 85.7 87.1 85.4 90.7 87.0 80.9
MARE-share 85.7 85.1 84.3 88.1 87.1 79.0
MARE-CLS 85.6 92.5 86.0 92.0 88.0 82.0

Table 9: Ablation study on different initialization strate-
gies.

7 Conclusion

This paper proposed a Multi-Aspect Rationale Ex-
tractor to solve the limitations of traditional uni-
aspect encoding models. MARE can collabora-
tively predict and interpret multiple aspects of
text simultaneously. Additionally, MARE incorpo-
rated multi-task training, sequentially training on
data from each aspect, thereby significantly reduc-
ing training costs. Extensive experimental results
on two unsupervised rationale extraction datasets
have shown that the rationalization performance of
MARE is superior to all previous models. Ablation
studies further demonstrated the effectiveness of
our method.

Limitations

All of the above experiments have demonstrated
the effectiveness of our method, but there are some
limitations. MARE needs to prepend some spe-
cial tokens in front of the input, which increases
the computational overhead. Meanwhile, MARE

can only adapted in encoder-based pre-trained lan-
guage models. We are working hard to apply it to
decoder-only models so that MARE can explain
the predictions of LLMs. We will try to eliminate
these limitations in our future work.
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A Implementation Details

A.1 Main Experiments
In the experiment, we utilize the Pytorch (Paszke
et al., 2019) deep learning framework and the hug-
gingface transformers library (Wolf et al., 2019) to
implement MARE. BERT (Devlin et al., 2019) will
be deployed as the backbone in MARE. MARE
uses the AdamW optimizer (Loshchilov and Hut-
ter, 2017) to optimize parameters, with a learning
rate set to 3 × 10−5 and a weight decay set to
0.0. To control the sparsity and continuity of the
generated rationales, this paper applies the "Cliff"
deletion strategy, where the k is fixed at 9. In
addition, we use grid search to select the most suit-
able hyperparameters β and γ from the candidate
set {0.7, 1, 3, 5, 7}. We assume β = γ in our ex-
periments and select β = γ = [0.7, 3, 3] for the
BeerAdvocate dataset and Hotel Review dataset, re-
spectively. During the training process, we adopt a
balanced round-robin method to iteratively sample
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data from all aspects. Set the batch size to 64 and
limit the maximum sequence length to 256. For the
BeerAdvocate dataset, MARE was trained for 15
epochs. However, considering the large scale of the
Hotel Review dataset, the model only iteratively
trained 5 epochs.

A.2 Implementation Details of Token Deletion
After obtaining the mask M̃ and its binarized coun-
terpart M̃ shown in Equation 5 and 6, we indeed
multiply it with the attention score matrix to im-
plement the token deletion. Specifically, the imple-
mentation in PyTorch is as follows:

def multi_head_attention (..., M, M_):
...

att_score = Q @ K.transpose(-1, -2)
/ math.sqrt(d_head)

# for token deletion
M_grad = M + M_ - M_.detach ()
deleted_att_score = M_grad * torch.

softmax(att_score , dim=-1)

return deleted_att_score @ V

Listing 1: Token Deletion

This implementation achieves the following:

• The binary mask M̃ determines which token
pairs can interact (value 1) and which cannot
(value 0).

• Multiplying M_grad with the attention score
matrix (att_score) effectively zeroes out at-
tention scores between tokens of different as-
pects.

• The resulting attention scores are then used to
compute the weighted sum of value vectors
(V).

This approach ensures that tokens within the same
aspect can interact through the attention mecha-
nism, while interactions between tokens of differ-
ent aspects are prevented. This aligns with our
goal of allowing aspect-specific information to be
aggregated separately.

B Cliff Decay

The Cliff decay strategy is defined as follows:

• For layers i < x: All tokens are retained.

• For layers i ≥ x: A proportion p of tokens are
deleted.

Here, x is the layer at which deletion begins, and p
is the deletion proportion. In our experiments, we
set x = 9, with p varying by aspect.

C Training Stability of MARE

We have conducted additional experiments with
different seeds to validate our training stability. Ta-
ble 10 shows the standard deviations of F1 scores
across 3 different seeds. As shown in the table,
MARE demonstrates good stability, particularly in
the Appearance and Aroma aspects. We believe
this stability is partly due to the multi-aspect nature
of our model, which allows it to leverage internal
correlations between different aspects.

Method Appearance Aroma Palate
MARE 0.4 0.3 1.3

Table 10: The F1 standard deviations of MARE across
3 different seeds.

D Experiments on the Correlated
BeerAdvocate Dataset

To evaluate the impact of spurious correlation on
model performance, we also conduct experiments
on the correlated BeerAdvocate dataset (McAuley
et al., 2012). The overall performance is shown in
Table 11. As we can see, MARE achieves state-
of-the-art performance and is better than existing
methods for a large margin. We attribute this to the
effectiveness of collaborative coding, demonstrat-
ing that internal correlations can suppress spurious
correlations.
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Methods S
Appearance Aroma Palate

ACC P R F1 ACC P R F1 ACC P R F1
RNP(Lei et al., 2016)

10

- 32.4 18.6 23.6 - 44.8 32.4 37.6 - 24.6 23.5 24.0
HardKuma(Bastings et al., 2019) - 53.6 28.7 37.4 - 29.3 25.9 27.3 - 7.7 6.0 6.8
INVRAT(Chang et al., 2020) - 42.6 31.5 36.2 - 41.2 39.1 40.1 - 34.9 45.6 39.5
Inter-RAT(Yue et al., 2023) - 66.0 46.5 54.6 - 55.4 47.5 51.1 - 34.6 48.2 40.2
MGR(Liu et al., 2023a) 80.5 87.5 51.7 65.0 89.7 78.7 52.2 62.8 86.0 65.6 57.1 61.1
YOFO (Jiang et al., 2023) 87.7 96.4 61.9 75.4 92.7 95.4 65.2 77.5 91.9 67.4 67.4 67.4
MARE(ours) 88.9 99.0 62.2 76.4 92.0 97.5 66.2 78.9 90.8 81.6 72.8 77.0
RNP(Lei et al., 2016)

20

- 39.4 44.9 42.0 - 37.5 51.9 43.5 - 21.6 38.9 27.8
HardKuma(Bastings et al., 2019) - 64.9 69.2 67.0 - 37.0 55.8 44.5 - 14.6 22.3 17.7
INVRAT(Chang et al., 2020) - 58.9 67.2 62.8 - 29.3 52.1 37.5 - 24.0 55.2 33.5
Inter-RAT(Yue et al., 2023) - 62.0 76.7 68.6 - 44.2 65.4 52.8 - 26.3 59.1 36.4
MGR(Liu et al., 2023a) 85.6 76.3 83.6 79.8 89.6 64.4 81.3 71.9 89.3 47.1 73.1 57.3
YOFO (Jiang et al., 2023) 88.4 77.5 87.6 82.2 91.9 78.7 92.8 85.2 91.3 44.6 75.4 56.0
MARE(ours) 90.6 81.4 92.4 86.6 92.1 74.0 95.0 83.2 91.9 47.3 88.0 61.5
RNP(Lei et al., 2016)

30

- 24.2 41.2 30.5 - 27.1 55.7 36.4 - 15.4 42.2 22.6
HardKuma(Bastings et al., 2019) - 42.1 82.4 55.7 - 24.6 57.7 34.5 - 21.7 49.7 30.2
INVRAT(Chang et al., 2020) - 41.5 74.8 53.4 - 22.8 65.1 33.8 - 20.9 71.6 32.3
Inter-RAT(Yue et al., 2023) - 48.1 82.7 60.8 - 37.9 72.0 49.6 - 21.8 66.1 32.8
MGR(Liu et al., 2023a) 88.5 57.2 93.9 71.1 91.6 45.8 87.4 60.1 89.3 27.3 66.5 38.7
YOFO (Jiang et al., 2023) 88.9 63.5 94.3 75.9 92.4 53.6 88.7 66.8 91.6 34.0 75.7 46.9
MARE(ours) 88.7 65.9 96.8 78.4 92.9 55.2 91.9 69.0 92.7 35.7 79.0 49.2

Table 11: The results of different methods on correlated BeerAdvocate Dataset (McAuley et al., 2012).
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