Strengthening Structural Inductive Biases by
Pre-training to Perform Syntactic Transformations

Matthias Lindemann' and Alexander Koller’ and Ivan Titov'?
LILCC, University of Edinburgh, 2 LST, Saarland University, 3 ILLC, University of Amsterdam

m.m.lindemann@sms.ed.ac.uk, koller@coli.uni-saarland.de, ititov@inf.ed.ac.uk

Abstract

Models need appropriate inductive biases to ef-
fectively learn from small amounts of data and
generalize systematically outside of the train-
ing distribution. While Transformers are highly
versatile and powerful, they can still benefit
from enhanced structural inductive biases for
seq2seq tasks, especially those involving syn-
tactic transformations, such as converting ac-
tive to passive voice or semantic parsing. In this
paper, we propose to strengthen the structural
inductive bias of a Transformer by intermediate
pre-training to perform synthetically generated
syntactic transformations of dependency trees
given a description of the transformation. Our
experiments confirm that this helps with few-
shot learning of syntactic tasks such as chunk-
ing, and also improves structural generalization
for semantic parsing. Our analysis shows that
the intermediate pre-training leads to attention
heads that keep track of which syntactic trans-
formation needs to be applied to which token,
and that the model can leverage these attention
heads on downstream tasks.!

1 Introduction

Inductive biases play a critical role in NLP, par-
ticularly in learning from limited data and in sys-
tematic generalization beyond the training distri-
bution. While standard seq2seq models excel on
in-distribution data, they often lack structural induc-
tive biases and hence perform poorly on structural
generalization, i.e. generalization to unseen combi-
nations of known phrases (Keysers et al., 2020), ex-
trapolation to longer inputs (Lake and Baroni, 2018;
Hupkes et al., 2020) and deeper recursion (Kim and
Linzen, 2020; Li et al., 2023a). While pre-training
on large amounts of text improves structural gen-
eralization to a certain extent (Furrer et al., 2020),

"We release our code, data and model at

https://github.com/namednil/step.

it remains challenging (Yao and Koller, 2022; Li
et al., 2023a).

This seems to conflict with observations that
pre-training equips models with knowledge about
syntax (Tenney et al., 2019; Hewitt and Manning,
2019; Mueller et al., 2022), which should enable
structural generalizations. In this paper, we start
from the hypothesis that the lack of structural induc-
tive bias is partly due to limited knowledge of how
to use syntactic information for structural tasks.

Traditionally, NLP has heavily relied on syntac-
tic theories and has phrased many tasks as transfor-
mations of syntax trees, ranging from conversion
of a sentence from active to passive voice (Oliva,
1988) to constructing a semantic representation for
a sentence (Montague, 1970). Transformations of
syntax trees can address a task in a very generaliz-
able way by using the right abstractions. For exam-
ple, when constructing the semantic representation
of an NP, by the principle of compositionality, the
same transformations can be used for NPs whether
they serve as direct objects or as indirect objects.

Inspired by this perspective, we propose a new
method of strengthening the structural inductive
bias of a pre-trained model with an additional in-
termediate pre-training step to perform syntactic
transformations (see Fig. 1). We create a dataset of
automatically generated syntactic transformations
of English dependency trees. Given a description
of the transformation as a prefix and an input sen-
tence, the model is pre-trained to predict the output
of the transformation without access to the under-
lying dependency tree. This pre-training procedure
encourages the model to strengthen its represen-
tations of syntax and acquire reusable dynamics
of syntactic transformations that can be leveraged
for downstream tasks. During fine-tuning, gold-
standard descriptions of transformations are not
available, and we use a prefix of embeddings that
are fine-tuned with the rest of the model instead.
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Figure 1: Left: Intermediate pre-training of a Transformer to perform syntactic transformations specified in the
prefix; the syntax tree forms the basis of the transformation but is not given to the model. Right: fine-tuning the
Transformer and the prefix on a downstream task. Tunable parameters are represented in orange.

Contributions We demonstrate that our interme-
diate pre-training strengthens the structural induc-
tive bias of the model, resulting in a better few-shot
performance for syntax-dependent seq2seq tasks,
such as conversion from active to passive or chunk-
ing. Our method also improves structural general-
ization in the context of semantic parsing.
Analysis of the pre-trained model shows that it
uses attention heads to track what transformation
needs to be applied to which input token, and that
these heads tend to follow syntactic patterns. In ad-
dition, we find that fine-tuning re-uses these atten-
tion heads, suggesting that the model can leverage
the transformations acquired during pre-training.

2 Related Work

Pre-training with synthetic data Training on
synthetic data to shape the inductive bias of Trans-
formers has been explored in several recent works.
Papadimitriou and Jurafsky (2023) pre-train on a
synthetic language to investigate the impact on lan-
guage modelling of English. McCoy and Griffiths
(2023) pre-train on a distribution of tasks using
meta-learning (Finn et al., 2017) and show im-
provements for low-resource language modelling
of child-directed language.

Our work builds conceptually on SIP (Linde-
mann et al., 2023b), in which a Transformer is pre-
trained to simulate the behaviour of Finite State
Transducers (FSTs) to introduce a structural induc-

tive bias for FST-like behaviour. That is, given a
representation of an automatically generated FST
and an input string, a Transformer is pre-trained to
predict what the output of the FST is on the given
input. During fine-tuning, SIP uses a prefix of tun-
able embeddings in place of an FST description.
While SIP and this work share similar methodol-
ogy, i.e. pre-training a model with a description of
a transformation and fine-tuning the model with
a prefix of tunable embeddings, they address dif-
ferent problems: SIP focuses on the sequential in-
ductive bias of FSTs, whereas the present work
strengthens the inductive bias for transformations
of syntax trees. Another major difference is that
SIP’s pre-training task is fully deterministic and un-
ambiguous as there is only a single output for any
FST and input string. In contrast, here, performing
the transformation requires knowledge about the
underlying syntax tree, which is not provided to the
model. This forces the model to learn the syntax or
reuse its existing syntactic knowledge.

Syntax-infused pre-training In recent years,
several works have explored injecting syntactic
knowledge through pre-training or multi-task learn-
ing. Most of these approaches have focused on
learning contextualized word representations with
task-specific layers on top and have shown that
syntactic knowledge can improve parsing (Zhou
et al., 2020), semantic role labelling (Swayamdipta
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et al., 2018; Zhou et al., 2020), coreference res-
olution (Swayamdipta et al., 2018), grammatical
error detection (Zhang et al., 2022) and relation
extraction (Bassignana et al., 2023). Because these
works focus on encoder-only models, they cannot
be directly applied to sequence-to-sequence tasks.

In the context of sequence-to-sequence models,
Xu et al. (2020) focus on broad-coverage semantic
parsing and explore pre-training on multiple tasks
including constituency parsing with linearized trees.
Finally, Mulligan et al. (2021) present proof-of-
concept experiments in which they show that multi-
task learning of syntactic transformations can pro-
vide a bias towards hierarchical generalizations
when data with a hierarchical structure is provided
for the auxiliary tasks. In contrast to our work, they
consider a setup with training from scratch using
multi-task learning rather than pre-training. They
only use three manually selected syntactic transfor-
mations and focus entirely on synthetic data.

To our knowledge, we are the first to explore
pre-training with a large space of synthetic trans-
formations of syntax trees. In addition, rather than
using an atomic and unstructured task id to distin-
guish different tasks (Johnson et al., 2017; Xu et al.,
2020; Mulligan et al., 2021), we provide the model
with an explicit description of the transformation.

Structural generalization Several different ap-
proaches have been taken in recent works to im-
prove the structural generalization of neural net-
work models. One major line of research (Liu
et al., 2021; Kim, 2021; Weillenhorn et al., 2022;
Cazzaro et al., 2023; Lindemann et al., 2023a; Petit
et al., 2023) has proposed a range of specialized
architectures that have structural inductive biases
by design. While very effective, these approaches
tend to be difficult to train if the ‘correct’ task-
specific syntactic analyses or alignments are not
available, necessitating often complex and com-
putationally expensive training algorithms. Since
these approaches are also typically tailored to one
or a few related tasks, architectures have to be re-
designed when a new kind of task is considered.
Other works have explored data augmentation to
improve structural generalization (Andreas, 2020;
Qiu et al., 2022; Yang et al., 2022; Li et al., 2023b;
Yao and Koller, 2024; Cazzaro et al., 2024). Be-
cause data augmentation is task-specific, it needs
to be repeated and potentially also adapted to ev-
ery new task. Data augmentation inherently risks
introducing errors and noise to the training data. In

contrast, our approach pre-trains a model once to
perform syntactic transformations and can then be
fine-tuned for different downstream tasks.

3 Strengthening Structural Inductive Bias

Standard pre-training objectives, e.g. with denois-
ing objectives (Raffel et al., 2020), encourage mod-
els to acquire syntactic knowledge but provide little
information about syntactic transformations, which
are central to many syntactic and semantic seq2seq
tasks. Our research hypothesis is that intermedi-
ate pre-training to perform transformations of syn-
tax trees encourages the model to (i) strengthen
its representations of the syntactic categories to
which transformations can be applied (e.g. sub-
jects, objects) and (ii) acquire reusable dynamics
of transformations that are useful for downstream
applications. By providing an explicit description
of the transformation as a prefix, different trans-
formations that the model has learned during pre-
training can be ‘activated’ by the right choice of
prefix. For this reason, we also fine-tune the model
with a prefix of tunable embeddings to make it easy
to leverage these transformations on downstream
tasks similar to SIP (Lindemann et al., 2023b).

In addition to learning about transformations
of trees, we also want the model to incorporate
knowledge about the syntax of the underlying lan-
guage (i.e. English, in this case). Hence, we do
not provide syntax trees to the model during train-
ing, which also enables us to perform inference and
fine-tuning without a parser.

3.1 Syntactic Transformations

Our goal in designing the transformations is to cre-
ate a family of syntactic transformations which
resemble a broad class of real downstream trans-
formations. We base our syntactic transformations
on Universal Dependency trees (de Marneffe et al.,
2021), and provide an overview in Fig. 2. Each
transformation is fully specified by a set of edge-
wise transformations that assign a binary string
operation (e.g. BRACKET) to a dependency relation
(e.g. NSUBJ).

Applying a syntactic transformation to a depen-
dency tree is a three-step process: First, we un-
fold the dependency tree into a binary ‘phrase-
structure’-like tree, where the dependency labels
act as labels of the internal nodes.? This is neces-

Related conversions from dependency to phrase structure
trees have been explored in Xia and Palmer (2001).
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Figure 2: Our procedure of applying a syntactic transformation specified as edgewise transformations (grey box):
(1) recursively unfolding a dependency tree into a binary tree where dependency labels serve as labels of internal
nodes, (2) annotation dependency relations with edgewise transformations, (3), recursive evaluation of the edgewise
transformations with partial results shown.

Name Definition ‘ Example

CONCAT LEFT CHILD RIGHT CHILD Mary saw a cat

REV RIGHT CHILD LEFT CHILD acat Mary saw

BRACKET HEAD ( LABEL DEP ) Mary saw ( obj acat )
BR-INVERT DEP ( LABEL by HEAD ) acat ( obj by Mary saw )
BRACKET-2  ( HEAD LABEL DEP ) ( Mary saw obj acat )

TRIPLE HEAD ( HEAD.LEMMA LABEL DEP.LEMMA ) DEP | Mary saw ( see obj cat ) acat
IGNORE-DEP  HEAD Mary saw

Table 1: General overview of the operations we use. We show an example transformation for the sentence Mary saw
a cat where HEAD = Mary saw and DEP =a cat . HEAD.LEMMA (DEP.LEMMA) refers to the lemma of the head

(dependent) that the node in question was unfolded from (in the example: saw % cat). See Table A.1 for a full list

of operations, including variants of those shown here.

l
R N
c1 c2 h — h

Figure 3: Unfolding a head h and its children.

sary because all our operations are binary and we
need a binary tree along which we can evaluate the
operations. Second, we annotate the dependency
labels with the corresponding operations according
to the edge-wise transformations. Finally, we re-
cursively evaluate each operation in the resulting
expression tree, yielding a single output string.
Unfolding replaces a head and its dependents
with a binarized tree, as shown in Fig. 3. This
procedure is applied bottom-up to all nodes in the
tree. For example, the dependency subtree of ‘a
cat’ unfolds to the tree DET(a, cat), after which

‘saw’ is unfolded, leading to the final unfolded re-
sult in Fig. 2. Unfolding a node without children
(e.g. ‘Mary’) simply retains that node.

In order to have a wide range of syntactic trans-
formations, we design an inventory of 14 opera-
tions to cover many potentially useful transforma-
tions for downstream tasks (see Table 1 for a gen-
eral overview, and Table A.1 for the full list). Note
that assigning the CONCAT operation to all depen-
dency relations results in an output that is identical
to the input if the dependency tree is projective.

Our syntactic transformations could in princi-
ple also be implemented with synchronous gram-
mars (Lewis and Stearns, 1968; Chiang, 2007). In
contrast to our transformations, the rules of syn-
chronous grammars generate not only the output
but also the input. As a result, synchronous gram-
mars would yield a much more verbose represen-
tation with rules that apply to specific words only,
potentially harming generality of the representa-
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tions learned by the model.

3.2 Intermediate pre-training

During intermediate pre-training, the model is
given a sentence and a set of edgewise transfor-
mations that determine the overall transformation.
The objective is to predict what the transformation
does to the parse tree of the sentence. The input
to the Transformer is a sequence of vectors from
R?, which consist of a prefix that represents the
edgewise transformations and a suffix comprised
of the embeddings of the input tokens:

hy hy, ... hy, X1, %20, %y

Transformation Sentence
Each h; encodes an edge-wise transformation R >

f by simple addition of embeddings:

hz' = EMBEDLabel<R) + EMBEDTranSformation(f)

The training objective is the log likelihood of the
correct output of the transformation, and we start
from T5-base (Raffel et al., 2020) that has already
been pretrained. Note that the dependency tree is
not provided to the model to encourage it to reuse
and strengthen its syntactic knowledge.

We also want to preserve the existing (syntac-
tic) knowledge of the pre-trained TS5 model, e.g. to
make it easy to insert the right auxiliary verb form
when transforming a sentence from active to pas-
sive (see Fig. 1). To help preserve this, our second
pre-training objective is the span-denoising objec-
tive that TS was originally pre-trained with. We
train the model by alternating between gradient
descent steps on the two objectives.

Data generation We construct random syntac-
tic transformations for a small fraction of the C4
corpus, which TS5 was originally pre-trained on.
We tag, parse and lemmatize 2.1 million sentences
with a total of around 39 million word forms using
trankit (Nguyen et al., 2021). We create two ran-
dom transformations per parsed sentence, resulting
in approximately 4.2 million pre-training instances.

To construct a random syntactic transformation
for a given sentence, we sample dependency rela-
tions present in that sentence and some additional
dependency relations that are not present in the
sentence to a maximum total of 20 relations. We
uniformly sample an operation for each relation
to create edgewise transformations. Relations that
are not chosen by sampling are implicitly assigned
the operation CONCAT. While the relations that
are not present in the sentence have no bearing on

the output of the transformation, we include them
in the description to expose the model to a more
general description that applies to a broader range
of sentences.

3.3 Fine-tuning

After pre-training, we apply our model to different
downstream tasks via fine-tuning. Mirroring the
pre-training, we replace the transformation encod-
ing with a sequence of tunable embeddings. That
is, the input to the model is a sequence of vectors:

/ /

/
1hy, oo hy x,x0 . L L %y,

Tunable embeddings Sentence

where x1, X2 . .., X, are the embeddings of the in-
put tokens, h! € R? are the tunable embeddings
and k is a hyperparameter. The embeddings h/, are
initialized to the average of the encoding of mul-
tiple transformations from the pre-training phase.
Because the tuneable embeddings are trained on
the downstream task, they can be used to ‘activate’
transformations that help with the particular down-
stream task. We fine-tune all model parameters and
use a higher learning rate for the prefix.

4 Evaluation

We evaluate on syntactic and semantic tasks for
which a structural inductive bias should be help-
ful. Specifically, we consider learning from a small
amount of task-specific data (few-shot learning)
and structural generalization outside of the train-
ing distribution to unseen combinations of known
phrases, novel syntactic phenomena and deeper
recursion than seen during training.

4.1 Baselines

For a fair comparison, we compare our method
(STEP, for Syntactic Transformation Enhanced
Pre-training) with fine-tuning other seq2seq models
based on T5-base (Raffel et al., 2020) that were fur-
ther pre-trained on the parsed corpus (Section 3.2)
in different ways:

T5+Dep Parse is pre-trained to predict a lin-
earized dependency tree of the input, e.g. Mary
saw a cat — ( saw nsubj Mary obj ( cat det
a ) ). Hence, this model incorporates syntactic
information about English dependency trees but
has limited exposure to how this information can
be used other than to produce a parse tree.

Simple STEP is a simplified version of STEP,
where we always assign the same edgewise transfor-
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Task Model Acc T BLEU 1 TER |
TS 3.5 417 46.7

. T5+Dep Parse 3.3 40.1 482
Verbemphasis o | STEP 3.6 405  47.0
STEP 34 41.8 45.6

T5 7.3 47.6 383

. . T5+Dep Parse 7.7 458 404
Adj. emphasis & 1o STEP 9.8 483  37.5
STEP 10.9 52.3 335

T5 40.2 73.7 183

Passivization T5+Dep Parse 45.0 76.8 15.5
B Simple STEP  46.8 784 13.6
STEP 579 848 84

Table 2: Evaluation on 100-shot syntactic transfor-
mation tasks. We report averages of 10 draws of 100
training examples each.

mation to all dependency relations. Consequently,
the number of possible syntactic transformations
is exactly the number of binary string operations
we define (Table A.1). We remove IGNORE-DEP
because it would result in an output string with a
single token. We use a special token in the prefix to
indicate which transformation should be applied.
Analogously to STEP, the models above were
pre-trained with their specific pre-training objective
and the original span denoising objective of T5.

4.2 Syntactic Tasks

We first evaluate if our synthetic transformations
transfer to realistic syntactic transformations. In
particular, we focus on few-shot scenarios.

We evaluate on three structural transformations
that Lyu et al. (2021) identified as challenging be-
cause only several hundreds of training examples
are available: passivization (Fig. 1), emphasis of a
designated adjective® and emphasis of a designated
verb*. We consider a more challenging version of
this with only 100 training examples.

We report results in Table 2 using exact match
accuracy, BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006), a normalized edit distance.
Using dependency parsing as the intermediate pre-
training task (T5+Dep Parse) is already beneficial
for passivization but somewhat deteriorates per-
formance on adjective emphasis both in terms of
BLEU and TER. Simple STEP improves on this
with small gains on both adjective emphasis and

3The French analysis goes further — The analysis that
goes further is French

4corporate profits may also dip initially — the dipping of
corporate profits may also happen initially

Model Acc T F1t
TS 344108 874106
T5+Dep Parse  39.9-2.1  90.0+0.6
Simple STEP  45.34+20 90.6+0.6
STEP 53.8:21 93205

Table 3: Means and standard deviations on chunking
across 5 random draws of 100 training examples. Accu-
racy is exact match, i.e. predicting all chunks correctly.

small additional improvements for passivization.
STEP performs best, outperforming the baselines
by a sizable margin of 3.5 and 6 points BLEU
on the adjective emphasis and passivization tasks.
However, STEP and T5 perform similarly on the
verb emphasis task, and we hypothesize STEP has
difficulties reusing the transformations acquired
during pre-training (see also Section 5).

Chunking We also evaluate on chunking (Tjong
Kim Sang and Buchholz, 2000) phrased as a
seq2seq task. Different variants of chunking play
an important role in information extraction (Dong
et al., 2023), which often has to rely on small
domain-specific corpora (Bassignana and Plank,
2022). Few-shot learning of chunking is hence
relevant and particularly interesting in our setup
because it requires models to predict phrase cat-
egories (e.g. NPs) that do not exist in our pre-
training approach based on dependency trees.

We report results in Table 3. While using parsing
as intermediate pre-training is already helpful in
comparison to TS5, STEP improves accuracy even
further and outperforms TS5 by almost 20 percent-
age points for exact match accuracy. Simple STEP
also shows some improvements over T5+Dep Parse
but is again outperformed by STEP.

Overall, this shows that STEP strengthens the
inductive bias for realistic syntactic transforma-
tions. The improvements of STEP over T5 cannot
be attributed alone to the prediction of dependency
trees during pre-training as T5+Dep Parse performs
worse. Pre-training the model with a narrow set of
transformations (Simple STEP) is not as effective
as a large set of transformations with explicit de-
scriptions. We hypothesize that the improvements
of STEP can be attributed partly to the reusability
of the transformations during fine-tuning, which
we analyze in Section 5.

SThe chairman promised Mr. Stone a decision — (NP The
chairman) (VP promised) (NP Mr. Stone) (NP a decision)
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Model Modifiers Novel Gaps Wh-Questions Recursion | Overall
AM-Parser* 69.6 20.7 57.0 99.9 | 70.8+43
T5 79.5+25 81.4+6.2 82.4+23 T1.1+12 | 77.6+1.4
T5+Dep Parse 82.8+3.1 86.8:6.6 78.8+4.4 72.2:20 | 78.3+2.1
Simple STEP 88.6-0.4 44.8+126 84.2+2.1 79.0+16 | 78.8+1.9
STEP 87.5+0.4 47.6+14.1 84.8:12 79.8409 | 79.3+23

Table 4: Structural generalization on the variable-free meaning representation of SLOG based on 10 random
seeds. Specialized architectures are represented with italics. * The AM-Parser uses a semantically more expressive

meaning representation formalism based on graphs.

Model iid Length
Tag & Permute 76.6+-17 41.4+135
TS 855414 32.0+44
T5+Dep Parse  84.9+04  27.5420
Simple STEP ~ 82.9+10 30.4+15
STEP 84.2+17  38.4+07

Table 5: Means and standard deviations of model accu-
racy for semantic parsing on ATIS for 5 random seeds.

4.3 Semantic Tasks

Semantic parsing, i.e. constructing a logical form
from a sentence, can be seen as a particular trans-
formation of the syntactic structure (Montague,
1970). Hence, we expect an inductive bias for
syntactic transformations to be helpful for seman-
tic parsing, particularly for structural generaliza-
tion, i.e. extrapolation to unseen combinations of
phrases, longer examples and deeper recursion.

SLOG (Li et al., 2023a) is a synthetic bench-
mark that tests models on 17 different structural
generalizations grouped into 4 categories: using
modifiers in novel positions (e.g. PPs only modify
objects during training but modify subjects at test
time), novel gap positions (e.g. wh-question for an
indirect object, with the training data covering wh-
questions for subjects and objects), wh-questions
in novel syntactic contexts (e.g. wh-questions com-
bined with passive instead of active voice) and re-
cursion (e.g. deeper PP recursion).

We report aggregated results in Table 4 and re-
sults for all 17 generalization cases in Table B.2.
Overall, STEP performs best but performance on
the different categories varies considerably be-
tween the approaches. STEP and Simple STEP
outperform TS5 on all but one category, with consid-
erable margins for the novel modifier positions and
unseen recursion depths. However, they underper-
form in the case of the novel gap positions. T5+Dep

Parse performs more similarly to TS with typically
modest improvements across the categories.

We also compare with the AM-Parser
(Groschwitz et al., 2018; Weillenhorn et al., 2022),
a specialized approach for semantic parsing. It
performs worse than the seq2seq models on most
categories, except for recursion, where it achieves
close to perfect accuracy. Here, STEP reduces the
gap between the more general seq2seq models
and the specialized AM-Parser. Interestingly,
both STEP and Simple STEP improve over
TS5 on generalization to center embedding of
depth 5 or more by 8 and 14 percentage points
respectively even though there is no evidence of
center embedding of depth two or more in our
parsed corpus (Table B.2 and Fig. B.2).

ATIS (Dahl et al., 1994) is a semantic parsing
dataset with questions about a flight database an-
notated with executable logical forms. We follow
previous work in using the variable-free FunQL ver-
sion (Guo et al., 2020). However, we found that the
order of the conjuncts in the logical form tends to
be somewhat unsystematic and often does not cor-
respond to the linear order in the question. Hence,
we use a pre-processing step to re-order conjuncts
based on automatic alignments (see Appendix A.1).
We evaluate in two setups: (i) the standard iid split
and (ii) a length split, where a model is shown logi-
cal forms with up to three conjuncts during training
and has to generalize to sentences that require four
or more conjuncts in the logical form.

Results are shown in Table 5. Tag & Permute
(Lindemann et al., 2023a) is a specialized architec-
ture for semantic parsing and is currently state-of-
the-art on the length split. STEP performs best
among the non-specialized architectures on the
length split, narrowing the gap to the specialized
model. Interestingly, TS+Dep Parse and Simple
STEP perform somewhat worse than plain T5.
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5 Analysis

Our research hypothesis is that our intermedi-
ate pre-training encourages the model to acquire
reusable dynamics of syntactic transformations that
can be leveraged during fine-tuning. In this section,
we analyze the representations used by our model
after its intermediate pre-training, and to what de-
gree they are reused during fine-tuning.

5.1 Analysis of Pre-Trained Model

We first investigate how the model processes the
transformation encoded in the prefix. The model
has to attend to the prefix to gather information
about which edgewise transformation needs to be
applied to which input token. We call an attention
head a transformation look-up head if it consis-
tently attends to the prefix.

We find that some transformation look-up heads
are interpretable and follow syntactic patterns. For
example, when head 6 in layer 10 computes the
attention distribution for a token that is an object in
the sentence (i.e. cat in Fig. 1), it focuses the atten-
tion on the edgewise transformation that describes
how to process objects (i.e. OBJ — REV).

Identifying interpretable look-up heads We
consider each attention head H and dependency
relation R separately. For a sample of sentences
with corresponding transformations, we count how
many times the following conditions are true: (i)
the instance has an edgewise transformation involv-
ing R, (ii) a token x; has an incoming edge labelled
R and (iii) H focuses at least 50% of its attention
from x; on a single position j. If in over 70% of
cases, position j refers to the edgewise transforma-
tion of R then we call H a transformation look-up
head for the dependency relation R.

We find that there are often multiple transforma-
tion look-up heads per dependency relation. For
example, we identify 7 look-up heads for amod.
These interpretable heads are typically located in
the mid or higher layers (see Fig. B.3), which is
expected because the model first needs to identify
the syntactic role each token has.

Intervening on look-up heads Next, we verify
that the transformation look-up heads we identified
contribute to the model prediction with an interven-
tional analysis. We evaluate the role of the trans-
formation look-up heads separately for different
dependency relations: if the heads Hy, Ho, ... Hy
play an important role in performing transforma-
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Figure 4: Change in accuracy of predicting the output
of edgewise transformations when masking different at-
tention heads. We show accuracy relative to no masking.
The effect of masking random heads and random other
look-up heads tend to be very similar, leading to overlap
in the plot.

tions for dependency relation 2, then masking all
of them should drop accuracy for instances with an
edgewise transformation for R. As a comparison,
we also evaluate (i) masking n randomly chosen
heads, and (ii) masking n randomly chosen heads
that are transformation look-up heads, but not for
R. Since the look-up heads can also have other
functions within the model, we only mask out the
attention to the prefix. When masking randomly
selected attention heads, we ensure comparability
by masking a random subset of tokens equal to the
length of the prefix.

We show the results in Fig. 4. Masking transfor-
mation look-up heads reduces accuracy for many
dependency relations while masking other transfor-
mation look-up heads or random heads has very
little impact. This provides evidence that the identi-
fied heads play an important role within the model.
For some relations (e.g. punct, advcl, nmod), mask-
ing the respective look-up heads does not reduce
accuracy, suggesting that responsibility for these
relations is more spread out through the network.

5.2 Analysis of Fine-Tuned Models

How does a model pre-trained with STEP learn
during fine-tuning? We hypothesize that the pre-
training provides a scaffolding, which finetuning
can build upon. In particular, we expect that aspects
of the downstream task that can be expressed with
our transformations to be captured in the same way
as during pre-training, i.e. with the prefix and with
the transformation look-up heads.

Masking look-up heads after fine-tuning To
test this hypothesis, we create 10 new synthetic
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Figure 5: Effect of masking look-up heads of models
that have been fine-tuned on downstream syntactic tasks.
For each task, we show the distribution for the 10 fine-
tuned models from Section 4.2.

transformation tasks with 5 edgewise transforma-
tions each and fine-tune the model (Section 3.3).
Then, we take the attention heads we identified in
Section 5.1 and repeat the masking intervention,
i.e. we mask the attention to the prefix of all look-
up heads for the dependency relations involved in
the edgewise transformations.

Masking the look-up heads of the dependency
relations involved in the transformations leads to an
average drop in accuracy of 30 percentage points
(see also Fig. B.1), whereas masking random look-
up heads reduces accuracy by less than one point.

Reading off transformations from fine-tuned
prefix The strong impact of masking the look-
up heads in the fine-tuned model suggests that it
uses the tunable prefix to encode task-specific in-
formation about which edgewise transformation to
apply. To gain more insight into this, we try to ex-
tract edgewise transformations from the fine-tuned
prefix: For each vector h' in the prefix, we find
the edgewise transformation whose embedding is
closest to h’ in terms of cosine similarity. In this
manner, we can read off a candidate for the trans-
formation which the model might be using under
the hood and compare it to the correct transfor-
mation that generated the synthetic data. We find
that the edgewise transformations extracted in this
way agree with the gold edgewise transformations
with an average F-score of ~ 77. This provides
evidence for the hypothesis that the model re-uses
the transformations learned during pre-training and
‘activates’ them with the prefix.

Fine-tuning on realistic transformations Fi-
nally, we investigate the role of transformation
look-up heads in models fine-tuned on realistic syn-
tactic transformations outside of the pre-training
distribution (see Section 4.2). Since there are no

ground truth edgewise transformations in this case,
we mask the attention to the prefix of all transfor-
mation look-up heads and compare with masking
an equal number of random heads. Fig. 5 shows
that masking the transformation look-up heads de-
teriorates outputs more than masking random heads
for passivization and the adjective emphasis task.
However, results are comparable for verb empha-
sis. This is in line with our findings that STEP
improves over TS5 for passivization and adjective
emphasis but not for verb emphasis, and suggests
that the lack of improvement for the verb emphasis
task could be due to difficulties in reusing the trans-
formations seen during intermediate pre-training.

6 Conclusion

We propose a new method of strengthening the
structural inductive bias of a Transformer by pre-
training the model to perform syntactic transfor-
mations based on dependency trees. We show that
this results in a better few-shot performance for
syntax-dependent seq2seq tasks, and also improves
structural generalization for semantic parsing.
Analysis of the pre-trained model shows that it
uses attention heads to track what transformation
needs to be applied to which input token, and that
these heads tend to follow syntactic patterns. In ad-
dition, we find that fine-tuning re-uses these atten-
tion heads, suggesting that the model can leverage
the transformations acquired during pre-training.

Limitations

The structural inductive bias that is emphasized by
our intermediate pre-training depends on the inven-
tory of operations. Due to the computational cost
of pre-training, we did not systematically explore
which set of operations performs best, or which
operations do not provide much benefit and could
be omitted.

In this work, we focus on a moderately sized
encoder-decoder model (T5) and do not investigate
large decoder-only models. However, we conjec-
ture that the decoder-only architecture is compati-
ble with our approach. While larger models trained
on more data might have stronger syntactic capa-
bilities and therefore likely have less of a need to
address issues of syntactic generalization overall,
we think our approach could be helpful in address-
ing remaining issues with structural generalization.

Finally, our analysis focuses on the encoder on
the Transformer, and on the transformation look-up
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heads in particular. However, applying a transfor-
mation also requires appropriate mechanisms in the
decoder, and the picture of how this works inter-
nally remains much less clear.
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A Additional Details

A.1 Pre-processing

SLOG For SLOG, we remove nmod. from the
logical forms to shorten them and to avoid giving
models pre-trained with syntax trees a potential
advantage simply because the downstream logical
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form uses a similar token to a dependency label.
Hence, the logical form for ‘Isabella forwarded
a box on a tree to Emma.” becomes forward (
agent = Isabella , theme = box ( on = tree
) , recipient = Emma ) after pre-processing
with the original one being forward ( agent =
Isabella , theme = box ( nmod . on = tree
) , recipient = Emma ).

ATIS We train an IBM-1 alignment model on
the pairs of sentences and logical forms, and then
sort the conjuncts by their sum-total expected align-
ment: let A; ; be the posterior probability that the
input token at position ¢ is aligned to output the
output at position j. Let C' be the set of output
token positions belonging to a conjunct. We then
let A(C) = > ;e 2. Aiyj - i. We repeat this for
every conjunct and then sort them.

A.2 Experimental setup

Syntactic Transformations and Chunking We
evaluate in a few-shot scenario with only 100 train-
ing examples, and do not assume access to a de-
velopment set. For this reason, we don’t tune hy-
perparameters and fine-tune for a fixed number of
epochs. As performance can differ from check-
point to checkpoint, for each run, during the last
10 epochs, we evaluate on the test set and use the
average result as the performance of that run.

For adjective emphasis, verb emphasis and pas-
sivization, we use all examples besides the 100
training examples as test set, i.e. 2635 test exam-
ples for passivization, 596 for adjective emphasis,
and 1101 for verb emphasis. For chunking, we use
the test set from Tjong Kim Sang and Buchholz
(2000).

ATIS We follow Lindemann et al. (2023a) in us-
ing the development set to select the best epoch
based on the accuracy metric, which is also used
on the test set (rather than loss).

SLOG SLOG does not have an out-of-
distribution development set, so we train for a
fixed number of epochs that was determined by the
hyperparameter search (see Appendix A.3).

Identifying look-up heads We use a sample of
1000 unseen sentences from the C4 corpus along
with randomly generated transformations as de-
scribed in Section 3.1 to identify interpretable look-
up heads.

Intervening on look-up heads Since we want to
evaluate the impact of look-up heads for particu-
lar dependency relations, we create a dataset with
1000 examples of transformations per dependency
relation. To avoid confounding factors, each in-
stance has only a single edgewise transformation
(for the specific dependency relation).

When we mask random attention heads or ran-
dom look-up heads, it is computationally too ex-
pensive to do this for all possible attention heads
and we approximate this with a Monte Carlo esti-
mate: we select random heads 20 times and take
the average of the results.

Analysis of fine-tuned models on synthetic data
When generating synthetic downstream tasks, we
exclude the CONCAT operation for edgewise trans-
formations. We take a sample of 5000 sentences
from our parsed corpus and randomly divide it into
an 80/20 train/test split. We use a prefix of tunable
embeddings of the same length as the ground truth,
i.e. we set it to a length of 5. When masking ran-
dom (look-up) heads, we repeat this 50 times to
estimate the expected change in accuracy.

A.3 Hyperparameters & Hardware

Pre-training When generating pre-training data
for STEP, we only use sentences with 90 or less to-
kens (in terms of the T5 tokenizer) and exclude any
instances with outputs of 180 TS5 tokens or more.
However, we do not impose a limit on the length
of the output for our baselines (T5+Dep Parse and
Simple STEP) because it would remove too much
of the pre-training data. We use Adafactor for our
intermediate pre-training with a learning rate of
3 x 10~ and without warm-up, and a batch size of
80 (for STEP), 30 (for Simple STEP) and 48 (for
T5+Dep Parse). We maintain separate optimizers
for the main objective (e.g. predicting the transfor-
mation) and the original span-denoising objective.
We train for a single epoch, except for T5+Dep
Parse, which we train for two epochs. This is be-
cause STEP and Simple STEP have two instances
with syntactic transformations per parsed sentence
but T5+Dep Parse only has a single one. For the
denoising objective, we impose a limit of 80 tokens
per instance (truncating longer instances) and use
a batch size of 50.

Fine-tuning During fine-tuning, the main hyper-
parameters are the learning rates. We use Adafactor
for fine-tuning using a learning rate of 1 x 1074,
For the prefix of STEP, we use a learning rate of
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Name Definition Example
CONCAT LEFT CHILD RIGHT CHILD Mary saw a cat
REV RIGHT CHILD LEFT CHILD acat Mary saw

CONCAT-REL LEFT CHILD LABEL RIGHT CHILD
REVL-REL RIGHT CHILD LABEL LEFT CHILD
BRACKET HEAD ( LABEL DEP )
BR-INVERT DEP ( LABEL by HEAD )
BRACKET-2 ( HEAD LABEL DEP )

BRACKET-2-INV|( DEP LABEL HEAD )

BRACKET-3 HEAD ( DEP )
BRACKET-4 HEAD LABEL ( DEP )
HEAD ( LABEL DEP ) if head has no other BRACKET-5 arguments
HEAD ( LABEL DEP if this is the first BRACKET-5 argument
BRACKET-5
HEAD , LABEL DEP ) if this is the last BRACKET-5 argument
HEAD , LABEL DEP else
TRIPLE HEAD ( HEAD.LEMMA LABEL DEP.LEMMA ) DEP
TRIPLE-INV HEAD ( DEP.LEMMA LABEL by HEAD.LEMMA ) DEP
IGNORE-DEP HEAD

Mary saw obj acat

acat obj Mary saw
Mary saw ( obj acat )
acat ( obj by Mary saw )
( Mary saw obj acat )
(acat obj Marysaw )
Mary saw ( acat )

Mary saw obj ( acat )

Mary saw ( obj acat )

Mary saw ( see obj cat ) acat
Mary saw ( cat obj by see ) acat
Mary saw

Table A.1: Full list of operations we use. We show an example transformation for the sentence Mary saw a cat where
HEAD =Mary saw and DEP =a cat . HEAD.LEMMA (DEP.LEMMA) refers to the lemma of the head (dependent)

that the edge in question was unfolded from (in the example: saw LN cat). BRACKET-5 essentially concatenates the
results of all other BRACKET-5 children together using a comma as joining element, and surrounds this with one
matching pair of brackets. If in the example, we had edgewise transformations NSUBJ — BRACKET-5 and OBJ —>
BRACKET-S5, the output would be saw ( nsubj Mary , obj a cat ), similar to our linearization of dependency
trees for T5+Dep Parse. Formally, we call a subtree an ¢ argument in the unfolded and annotated tree if it is a
non-head child that is dominated by a node that is annotated with operation ¢. For example, in Fig. 2, the subtree

corresponding to ‘a cat’ is a CONCAT argument.

10. These hyperparameters apply to all experiments
and all models, except for SLOG, as described be-
low:

SLOG We found that accuracy on SLOG was
very sensitive to hyperparameters and used a hy-
perparameter selection strategy similar to that of
Conklin et al. (2021) for COGS: we draw a sample
of around 10% from the generalization data. We
fixed one random seed and ran 10 randomly sam-
pled hyperparameter configurations and selected
the one with the highest accuracy that was most
stable across the epochs. We then discarded that
random seed and used different ones for fine-tuning
the model. We sample the learning rate from
LogUniform[2 x 107%,1 x 107%] and the batch
size uniformly from [24,48,72,96,120]. STEP
also has an additional learning rate for the prefix,
which we sample from LogUniform[0.1, 10] dur-
ing the search. The chosen hyperparameters can be
found in Table A.2.

Hardware All our experiments were run on
Nvidia 2080TI or 1080TI GPUs. Pre-training
STEP took around 30 hours. Since we used longer

Model Epochs Batch size LR LR Prefix
T5 50 96 1.62E-05 -
T5+ Dep Parse 50 24 9.51E-05 -
Simple STEP 22 72 6.75E-05 -
STEP 15 48 1.30E-05 2.52

Table A.2: Hyperparameters used for SLOG. LR is
learning rate.

maximum sequence lengths for the baselines (see
above), and had to decrease the physical batch size,
training of the baselines took 50 (T5+Dep Parse)
and 95 hours (Simple STEP).

Number of parameters T5-base has 222 million
parameters. When we fine-tune STEP with a prefix
of tunable embeddings, this adds 7860 parameters
to that, which is an increase of 0.035 %o.

A.4 Evaluation metrics

We use SacreBLEU (Post, 2018) v2.3 to compute
BLEU and TER. For the experiments with ATIS,
we use the code of Lindemann et al. (2023a) for
computing accuracy.
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Task Model Acc T BLEUT TER |

STEP 10.9+10 52.3+0.7 33.5+06

Simple STEP  9.8+0.58 48.3+0.8 37.5

T5 7.3+08 47.6+08 38.3+

T5+Dep Parse 7.7+0s 45.8+0.9 40.4+1.

57.9+20 84.8+07 8.4+
(

Adj. emphasis

STEP 0.5

Passivization Simple STEP 46.8+2.2 78.4+08 136 0.6
T5 40.2+1.7 73.7+08 18.3+0.7
T5+Dep Parse 45.0-1.6 76.8+0.5 15.5-+0.
STEP 3.4+0.4 41.8+0.6 45.6+0.

. Simple STEP  3.6+0.7 40.5+0.6 47.0+0.6

Verb emphasis TS 3.5:04 41.7+05 46.7+0.4
TS5+Dep Parse  3.3+0.7 40.1+0.8 48.2+0.¢

Table B.1: Evaluation on 100-shot syntactic transfor-
mation tasks. We report averages of 10 draws of 100
training examples each. We also include standard devia-
tions on the results across the 10 runs.

SLOG Li et al. (2023a) argue for using seman-
tic equivalence for evaluation but they focus on
a variable-based formalism and use exact string
match for evaluating the variable-free representa-
tion. We take semantic equivalence into account,
in particular, the order of the children does not
matter because the roles are represented in the log-
ical form. Hence, offer ( theme = donut
, recipient = x turtle ) and offer (
recipient = x turtle , theme = donut ) are
equivalent. We achieve this by parsing the string
representation into a tree and instead of a list of
children we maintain a set of children, and then
compare trees to evaluate accuracy.

B Additional Results
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Figure B.1: Effect of masking look-up heads of models
fine-tuned on synthetic tasks. The boxplot shows the
distribution for 10 synthetic downstream tasks.
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In phrase structure terminology (e.g. on SLOG), xcomp
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Figure B.3: Distribution of location of the look-up heads
we identified per UD relation across the layers.
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Generalization STEP Simple STEP TS5 T5+Dep Parse
Deeper CP tail recursion 74.5+42 73.0484  42.5+4.4 50.9+9.4
Deeper PP recursion 87.3+25 78.5+44  75.0+45 70.845.9
Deeper center embedding 17.3+28 22.7+2.2 8.940.4 11.5421
Shallower CP tail recursion 100.0-0.0 100.0-00 100.0+0.0 100.0-+0.0
Shallower PP recursion 100.0-+0.0 100.0-00  99.9+02 100.0-+0.0
Shallower center embedding 100.0-+0.0 100.0--00 100.0+0.0 100.0-0.0
PP in indirect object NPs 99.5+0.4 99.8+0.1  100.0+0.0 99.7+0.1
PP in subject NPs 95.3+0.1 953101 74.5482 95.3+0.2
RC in indirect object NPs 65.7+0.8 70.7+08  73.0+08 67.1+1.2
RC in subject NPs 89.4+0.9 88.4+14  T70.4+26 69.1+123
Indirect object-extracted RC 16.5+13.0 11.7+139  62.9+123 73.8+132
Indirect object wh-questions 78.8+183 77.8+146  100.0-+0.1 99.8+0.2
Direct object wh-questions 83.4+145 91.0+45  99.2+06 83.8+18.0
Wh-questions long movement 55.8+125 46.2+75  40.4+8. 35.246.2
Wh-questions with modified NPs ~ 85.9+2.7 85.2+419  72.9+438 T7.7+2.8
Active subject wh-questions 100.0--0.1 99.1+18  99.6+03 97.1+56
Passive subject wh-questions 98.8+2.4 99.5+06  100.0+0.0 100.0-+0.0
Average 79.3+23 78.8+1.9  T7.6+14 78.342.1
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Table B.2: Full SLOG results.



