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Abstract

With the increasing capabilities of large lan-
guage models (LLMs), in-context learning
(ICL) has emerged as a new paradigm for nat-
ural language processing (NLP), where LL.Ms
make predictions based on contexts augmented
with a few examples. It has been a significant
trend to explore ICL to evaluate and extrap-
olate the ability of LLMs. In this paper, we
aim to survey and summarize the progress and
challenges of ICL. We first present a formal
definition of ICL and clarify its correlation to
related studies. Then, we organize and discuss
advanced techniques, including training strate-
gies, prompt designing strategies, and related
analysis. Additionally, we explore various ICL
application scenarios, such as data engineering
and knowledge updating. Finally, we address
the challenges of ICL and suggest potential di-
rections for further research. We hope that our
work can encourage more research on uncover-
ing how ICL works and improving ICL.

1 Introduction

With the scaling of model size and data size (Brown
etal., 2020; Chowdhery et al., 2023; OpenAl, 2023;
Touvron et al., 2023a,b), large language models
(LLMs) demonstrate the in-context learning (ICL)
ability, that is, learning from a few examples in
the context. Many studies have shown that LLMs
can perform a series of complex tasks through
ICL, such as solving mathematical reasoning prob-
lems (Wei et al., 2022c¢). These strong abilities
have been widely verified as emerging abilities for
large language models (Wei et al., 2022b).

The key idea of in-context learning is to learn
from analogy. Figure 1 gives an example that de-
scribes how language models make decisions via
ICL. First, ICL requires a few demonstration ex-
amples to form a prompt context. These examples
are usually written in natural language templates.
Then, ICL concatenates a query question and the
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Figure 1: Illustration of in-context learning. ICL re-
quires a prompt context containing a few demonstration
examples written in natural language templates. Taking
this prompt and a query as the input, large language
models are responsible for making predictions.

piece of prompt context together to form the input,
which is then fed into the language model for pre-
diction. Different from supervised learning, which
requires a training stage that uses backward gra-
dients to update model parameters, ICL does not
perform parameter updates. The model is expected
to learn the pattern hidden in the demonstration and
accordingly make the right prediction.

As a new paradigm, ICL has multiple attractive
advantages. First, since the demonstration is writ-
ten in natural language, it provides an interpretable
interface to communicate with LLMs (Brown et al.,
2020). This paradigm makes it much easier to in-
corporate human knowledge into LLMs by chang-
ing the demonstration and templates (Liu et al.,
2022; Lu et al., 2022; Wei et al., 2022¢; Wu et al.,
2023b). Second, in-context learning is similar to
the decision process of human beings by learning
from analogy (Winston, 1980). Third, compared
to supervised training, ICL is a training-free learn-
ing framework. This could not only greatly reduce
the computational costs for adapting the model
to new tasks, but also make language-model-as-a-
service (Sun et al., 2022) possible and can be easily
applied to large-scale real-world tasks.

Despite being promising, there are also interest-
ing questions and intriguing properties that require
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Figure 2: Taxonomy of in-context learning.

further investigation in ICL. Although a range of
vanilla GPT models show excellent ICL capability,
several studies have found that this capability can
be significantly improved through adaptation dur-
ing pretraining (Min et al., 2022b; Li et al., 2024c¢).
Moreover, the performance of ICL is sensitive to
specific settings, including the prompt template, the
selection and order of demonstration examples, and
other factors (Wang et al., 2023e; Liu et al., 2024b).
Additionally, optimizing the conciseness of demon-
stration examples and improving the computational
efficiency of ICL are critical areas of ongoing re-
search (Liu et al., 2024a). Furthermore, despite
preliminary explanations (Dai et al., 2023a; Jiang,
2023), the underlying working mechanism of ICL
remains unclear and requires further investigation.

With the rapid growth of studies in ICL, our sur-
vey aims to sensitize the community toward the
current progress. In the following sections, we

delve into an in-depth discussion of related studies,
and we summarize the taxonomy in Figure 2 and
the key findings in Appendix A. We highlight the
challenges and potential directions and hope our
work provide a useful roadmap for beginners inter-
ested in this area and shed light on future research.

2 Definition and Formulation

Following Brown et al. (2020), we here provide a
formal definition of in-context learning:

In-context learning is a paradigm that
allows language models to learn tasks
given only a few examples in the form of
demonstration.

Formally, given a query input text z and a set
of candidate answers Y = {y1,...,ym}, a pre-
trained language model M takes the candidate an-
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swer with the maximum score as the prediction,'
conditioned a demonstration set C. C contains
an optional task instruction I and £ demonstration
examples, thus C' = {I, s(z1,y1),...,s(Tk, Yk)}
or C = {s'(x1,y1,1),...,8 (xk, yr, )}, where
s'(x;,y;, I) is an example written in natural lan-
guage according to the task. Depending on whether
k and the demonstration examples belong to the
same task, it can be categorized as task-specific ICL
and cross-task ICL. In the latter, different examples
have their own instructions. The likelihood of a
candidate answer y; comes from a scoring function
f on the whole input sequence:

P(y; | z) & fml(y;, Cx) (D

The final predicted label ¢ is the candidate answer
with the highest probability:

) = P(y; | z). 2
§ = argmax P(y; | z) 2)

Yj

According to the definition, we can see that ICL
differs from related concepts as follows: (1) Prompt
Learning: prompts can be discrete templates or soft
parameters that encourage the model to predict the
desired output. ICL can be regarded as a subclass
of prompt tuning where the demonstration exam-
ples are part of the prompt. Liu et al. (2023c) made
a thorough survey on prompt learning, but ICL was
not included in their study. (2) Few-shot Learning:
few-shot learning is a general machine learning ap-
proach that involves adapting model parameters to
perform a task with a limited number of supervised
examples (Wang and Yao, 2019). In contrast, ICL
does not require parameter updates and is directly
performed on pretrained LLMs.

3 Model Training

Although LLMs have demonstrated promising ICL
capability directly, many studies revealed that these
ICL capabilities can be further enhanced through
specialized training before inference (Chen et al.,
2022; Gu et al., 2023; Shi et al., 2024).

3.1 Pretraining

One straightforward direction to boost the ICL ca-
pability of LLMs is through pretraining or con-
tinual pretraining. For instance, Gu et al. (2023)
and Shi et al. (2024) proposed to reorganize pre-
training corpora by aggregating related contexts,

'Y could be class labels or a set of free-text phrases.
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Figure 3: Illustration of model training methods to en-
hance ICL capabilities through two different stages: pre-
training and warmup.
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making models learn to reason across prior demon-
strations. Differently, Li et al. (2024c) introduced
a meta-distillation pretraining process, which al-
lows LLMs to reason with distilled demonstration
vectors, thereby enhancing ICL efficiency without
compromising its effectiveness.

3.2 Warmup

Another way to enhance ICL ability is adding a
continual training stage between pretraining and
ICL inference, which we call model warmup for
short. Warmup is an optional procedure for ICL,
which adjusts LLMs before inference by modifying
or adding parameters.

As most pretraining data are not tailored for
ICL (Chen et al., 2022), researchers have intro-
duced various warmup strategies to bridge the
gap between pretraining and ICL inference. Both
Min et al. (2022b) and Wang et al. (2022b) pro-
posed to continually finetune LLMs on a broad
range of tasks with multiple demonstration exam-
ples, which boosts ICL abilities. To encourage
the model to learn input-label mappings from the
context, Wei et al. (2023a) proposed symbol tun-
ing, which substitutes natural language labels (e.g.,
“positive/negative sentiment”) with arbitrary sym-
bols (e.g., “foo/bar”). Chen et al. (2022) proposed
a self-supervised method to align raw text with
ICL formats in downstream tasks. Besides, mul-
tiple studies have indicated the potential value of
instructions (Mishra et al., 2021; Wei et al., 2022a).
Tuning the 137B LaMDA-PT (Thoppilan et al.,
2022) on over 60 datasets verbalized via natural
language instruction templates, FLAN (Wei et al.,
2022a) improves the ability of LLMs to follow in-
structions, boosting both the zero-shot and few-shot
ICL performance. Chung et al. (2022) and Wang
et al. (2022b) proposed to further scale up instruc-
tion tuning with more than 1000+ task instructions.
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4 Prompt Designing

In this section, we focus on the principles of ICL
during inference, including demonstration organi-
zation (§4.1) and instruction formatting (§4.2) .

4.1 Demonstration Organization

Many studies have shown that the performance of
ICL strongly relies on the demonstration surface,
including the selection, formatting, and ordering
of demonstration examples (Zhao et al., 2021; Lu
et al., 2022). In this subsection, we survey demon-
stration organization strategies and classify them
into three categories, as shown in Table 1.

4.1.1 Demonstration Selection

Demonstrations selection aims to answer a funda-
mental question: Which samples are good exam-
ples for ICL? We categorize the related studies into
two approaches: unsupervised methods based on
predefined metrics and supervised methods.

Unsupervised Method A straightforward ap-
proach to selecting ICL examples is to choose
the nearest neighbors of input instances based on
their similarities (Liu et al., 2022; Tanwar et al.,
2023; Qin et al., 2023). Distance metrics, such
as L2 distance or cosine similarity based on sen-
tence embeddings, are commonly used for this pur-
pose. For example, Liu et al. (2022) proposed
KATE, the first kNN-based unsupervised retriever
for selecting in-context examples. Similarly, k-NN
cross-lingual demonstrations can be retrieved for
multi-lingual ICL to strengthen source-target lan-
guage alignment (Tanwar et al., 2023). Su et al.
(2023) proposed to combine graphs and confidence
scores to select diverse and representative examples.
In addition to distance metrics, mutual informa-
tion (Sorensen et al., 2022) and perplexity (Gonen
et al., 2023) have proven valuable for prompt se-
lection without labeled examples or specific LLMs.
Furthermore, using output scores of LLMs as unsu-
pervised metrics has shown effectiveness in demon-
stration selection (Wu et al., 2023b; Nguyen and
Wong, 2023; Li and Qiu, 2023). Particularly, Wu
et al. (2023b) selected the best subset permutation
of kNN examples based on the code length for data
transmission to compress label y given z and C.
Li and Qiu (2023) used infoscore, i.e., the aver-
age of P(y|z;,v;, z)P(y|x) for all (z,y) pairs in
a validation set with a diversity regularization.

Supervised Method Though off-the-shelf re-
trievers offer convenient services for extensive NLP

tasks, they are heuristic and sub-optimal due to the
lack of task-specific supervision. To address this
issue, numerous supervised methods have been de-
veloped (Rubin et al., 2022; Ye et al., 2023; Wang
et al., 2023e; Zhang et al., 2022a). EPR (Rubin
et al., 2022) introduced a two-stage method to train
a dense retriever for demonstration selection. For a
specific input, it first utilized unsupervised methods
(e.g., BM25) to recall similar examples as candi-
dates and then used this data to build a supervised
dense retriever. Following EPR, Li et al. (2023d)
adopted a unified demonstration retriever to select
demonstrations across different tasks. Unlike prior
work that retrieves individual demonstrations, Ye
et al. (2023) proposed retrieving entire demonstra-
tion sets to model inter-relationships between ex-
amples. Additionally, Mavromatis et al. (2023)
introduced AdalCL, a model-adaptive method that
employs LLM to predict the unlabeled data set,
generating an uncertainty score for each instance.

Based on prompt tuning, Wang et al. (2023e)
viewed LLMs as topic models that can infer con-
cepts 6 from a few demonstrations and generate to-
kens based on these concepts. They represent latent
concepts with task-related concept tokens, which
are learned to maximize P(y|z,6). Demonstra-
tions are selected based on their likelihood to infer
the concept variable using P(0|x, y). Additionally,
reinforcement learning was introduced by Zhang
et al. (2022a) for example selection. They formu-
lated demonstration selection as a Markov decision
process (Bellman, 1957) and selected demonstra-
tions via Q-learning. The action is choosing an
example, and the reward is defined as the accuracy
of a labeled validation set.

In order to have a more intuitive comparison of
the performance of several unsupervised methods,
we select topk (Liu et al., 2022), votek (Su et al.,
2023), mdl (Wu et al., 2023b) to conduct experi-
ments. The result is shown in Table 2. The details
of the experiment can be found in Appendix B.

4.1.2 Demonstration Reformatting

In addition to directly selecting examples from
training data, another research trend involves utiliz-
ing LLMs to reformat the representation of exist-
ing demonstrations (Kim et al., 2022; Yang et al.,
2023a; Hao et al., 2022b; Yang et al., 2023b; Liu
et al., 2024a; Li et al., 2024a). For instance, Kim
et al. (2022) proposed generating demonstrations
directly from LLMs to reduce the reliance on exter-
nal demonstration data. Structured Prompting (Hao
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Category Methods Demonstration Acquisition LLMs Features
KATE (Liu et al., 2022) Human design GPT-3 KNN Selection
MI (Sorensen et al., 2022) Human design GPT-3 Mutual Information
Demonstration EPR (Rubin et al., 2022) Human design GPT-{J, 3}/CodeX Score-based Retrieval
Selection IDS (Qin et al., 2023) Human design GPT-3.5 Iterative Selection
AdalCL (Mavromatis et al., 2023) Human design GPT-{J, Neo} Selective Demonstration
UDR (Li et al., 2023d) Human design GPT-Neo-2.7B Unified Retrieval
SG-ICL (Kim et al., 2022) LM generated GPT-J Auto Demonstration Generation
Demonstration  AutoIlCL (Yang et al., 2023a) LM generated GPT-3.5-Turbo-0301 Reasoning Path Generation
Reformatting MSP (Yang et al., 2023b) Human design GPT series Adjusting Demonstration Weight
ICV (Liu et al., 2024a) Human design Falcon-7b / Llama-7b Demonstration Embedding
Demonstration GlobalE & LocalE (Lu et al., 2022) Human design GPT-{2, 3} Best Order Selection

Ordering ICCL (Liu et al., 2024b)

Human design

Llama2/Mixtral/Qwen Ordering from Simple to Complex

Table 1: Summary of representative demonstration designing methods.

Model Method SST5 SST2 CQA SNLI News Avg

topk 40.1 749 302 39.7 62.7 49.5

GPT2  votek 324 51.0 29.8 358 25.5 349
mdl 433 86.7 32.7 414 68.0 544
topk 469 84.6 584 60.7 69.1 63.9
GPT-J  votek 33.8 873 634 43.1 253 50.6
mdl 376 879 641 598 682 63.5
topk 54.1 833 763 68.2 649 69.4
Qwen2 votek 553 869 76.1 51.6 653 67.0
mdl 546 86.1 77.1 650 632 69.2
topk 53.0 903 76.1 64.0 74.0 71.5
Llama3 votek 549 889 72.6 57.7 783 70.5

mdl 544 89.1 765 599 74.6 70.9

Table 2: Fair comparison of demonstration selection
methods. CQA and News are abbreviations of Common-
sense QA and AG News, respectively. The best results
are bolded. Our experiments on topk (Liu et al., 2022),
votek (Su et al., 2023), mdl (Wu et al., 2023b) show that
the effectiveness of ICL example selection methods are
model-dependent. On GPT-2, the mdl method performs
the best, while on the other three models, topk performs
the best.

et al., 2022b) proposed to encode demonstration
examples separately with special positional embed-
dings, which are then provided to the test examples
using a rescaled attention mechanism. Diverging
from these methods, other approaches focus on
modifying the latent representation of demonstra-
tions (Liu et al., 2024a; Li et al., 2024a). Specifi-
cally, Liu et al. (2024a) developed In-Context Vec-
tors (ICVs) derived from the latent embeddings of
demonstration examples in LLMs. These ICVs are
used during inference to adjust the latent states of
the LLM, thereby enhancing the model’s ability to
follow the demonstrations more effectively.

4.1.3 Demonstration Ordering

Ordering the selected demonstration examples is
also an important aspect of demonstration organi-
zation. Lu et al. (2022) have proven that order sen-
sitivity is a common problem and always exists for
various models. To handle this problem, previous
studies have proposed several training-free meth-
ods for sorting demonstration examples. Particu-
larly, Liu et al. (2022) arranged examples based on
their proximity to the input, positioning the closest
example as the rightmost demonstration. Lu et al.
(2022) introduced global and local entropy metrics,
finding a positive correlation between these metrics
and the ICL performance. Consequently, they uti-
lized the entropy metric to determine the optimal
demonstration ordering. Additionally, ICCL (Liu
et al., 2024b) suggested ranking demonstrations
from simple to complex, thereby gradually increas-
ing the complexity of demonstration examples dur-
ing the inference process.

4.2 Instruction Formatting

A common way to format demonstrations is con-
catenating examples (z1,v1), ..., (T, yx) With a
template 7 directly. However, in some tasks that
need complex reasoning (e.g., math word prob-
lems and commonsense reasoning), it is not easy
to learn the mapping from z; to y; with only &
demonstrations. Although template engineering
has been studied in prompting (Liu et al., 2023c),
some researchers aim to design a better format of
demonstrations for ICL by describing tasks with
the instruction /. Honovich et al. (2023) found that
given several demonstration examples, LLMs can
generate task instructions themselves. Consider-
ing the generation abilities of LLMs, Zhou et al.
(2023c¢) proposed an Automatic Prompt Engineer
for automatic instruction generation and selection.
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Method ‘ Target ‘ Efficiency Coverage Stability
Direct | M(y; | C,x) +++ + +
PPL PPL(S;) + +++ +
Channel | M(z | C,y;) + + ++

Table 3: Summary of different scoring functions. Cov-
erage refers to task coverage. The qualitative results
for ‘Efficiency’ and ‘Stability’ metrics are elaborated in
Table 4 and Table 5, respectively.

To further improve the quality of the automatically
generated instructions, several strategies have pro-
posed using LLMs to bootstrap off its own genera-
tions (Wang et al., 2023f; Chen et al., 2024). Addi-
tionally, chain-of-thought (CoT) (Wei et al., 2022c)
introduces intermediate reasoning steps between
inputs and outputs to enhance problem-solving and
comprehension. Recent advancements have also
emphasized the process of enhancing step-by-step
reasoning in models (Zhang et al., 2023c; Wang
et al., 2022a; Zhou et al., 2023a).

4.3 Scoring Function

The scoring function determines how to transform
the predictions of a language model into an estima-
tion of the likelihood of a specific answer. The Di-
rect method uses the conditional probability of can-
didate answers represented by tokens in the model’s
vocabulary (Brown et al., 2020). The answer with
the highest probability is selected as the final an-
swer, but this method restricts template design by
requiring answer tokens to be at the end of input
sequences. Perplexity (PPL) is another commonly
used metric that computes the sentence perplexity
of the entire input sequence S; = {C, s(x,y;, 1)},
which includes tokens from demonstration exam-
ples C, the input query x, and the candidate la-
bel y;. PPL evaluates the probability of the sen-
tence, eliminating token position limitations but
requiring additional computation time. Min et al.
(2022a) proposed using channel models (Channel)
to compute the conditional probability in reverse,
estimating the likelihood of the input query given
the label. This approach requires language models
to generate every token in the input, potentially
boosting performance under imbalanced training
data. We summarize all three scoring functions in
Table 3. Note that in Table 3, ‘Efficiency’ refers
to the language model inference latency; ‘Cover-
age’ reflects whether the method utilizes the output
probability of the local or all token positions in the
input sequence; and ‘Stability’ indicates whether

the in-context learning ability is easily affected by
changes in the demonstration examples.

5 Analysis

To understand ICL, recent studies attempt to inves-
tigate what influence ICL performance (Shin et al.,
2022; Yoo et al., 2022; Kossen et al., 2023) and
why ICL works (Dai et al., 2023a; Irie et al., 2022).
In this section, we present a detailed elaboration
of influencing factors (§5.1) and learning mecha-
nisms (§5.2) of ICL, as illustrated in Figure 4.

5.1 Influencing Factors

We discuss relevant research addressing what influ-
ences ICL performance, including factors both in
the pretraining stage and in the inference stage.

5.1.1 Pretraining Stage

We first introduce factors that influence the pre-
training stage. The diversity of pretraining cor-
pora significantly impacts ICL performance (Shin
et al., 2022; Yadlowsky et al., 2023; Raventos et al.,
2023). In particular, Shin et al. (2022) found that
the source domain is more important than the cor-
pus size, suggesting that combining multiple cor-
pora may lead to the emergence of ICL ability.
Similarly, Raventds et al. (2023) empirically identi-
fied a task diversity threshold beyond which LLMs
exhibit strong ICL capabilities in unseen tasks. An-
other line of research investigates the impact of data
distribution on ICL (Chan et al., 2022; Wies et al.,
2023). For instance, Chan et al. (2022) demon-
strated that ICL capability emerges when the train-
ing data exhibits specific distributional properties,
such as burstiness, wherein items appear in clusters
rather than being uniformly distributed over time.

Beyond these works, several studies have investi-
gated the impact of model architecture and training
process on ICL performance (Wei et al., 2022b;
Brown et al., 2020; Ding et al., 2024). Wei et al.
(2022b) investigated the emergent abilities of many
large-scale models on multiple tasks. They sug-
gested that a pretrained model acquires some emer-
gent ICL abilities when it reaches a large scale
of pretraining steps or model parameters. Ding
et al. (2024) pointed out that the in-context sam-
ples should attend to each other during inference,
indicating that current causal LLMs may lead to
suboptimal ICL performance.
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Figure 4: Summary of factors that have a relatively strong correlation to ICL performance and different perspectives

to explain why ICL works.

5.1.2 Inference Stage

During inference, there are also multiple proper-
ties of demonstration examples that influence ICL
performance. Min et al. (2022c¢) proved that input-
label settings such as the pairing format, the expo-
sure of label space, and the input distribution con-
tribute substantially to ICL performance. However,
contrary to the conclusion in Min et al. (2022c)
that input-label mapping matters little to ICL, latter
studies showed that the accurate mapping influence
ICL performance significantly (Yoo et al., 2022;
Pan et al., 2023a; Tang et al., 2023a). Wei et al.
(2023b) further pointed that flipped or semantically-
unrelated input-label mapping also can be learned.

From the perspective of demonstration construc-
tion, recent literature focuses on the diversity and
simplicity of demonstrations (An et al., 2023), the
order of samples (Lu et al., 2022; Zhang et al.,
2022b; Liu et al., 2023b), and the similarity be-
tween demonstrations and queries (Liu et al., 2022).
For example, Liu et al. (2022) found that demon-
stration samples with embeddings closer to those
of the query samples typically yield better perfor-
mance than those with more distant embeddings.
Notably, despite efforts to refine demonstrations to
optimize the performance, there still remain clear
feature biases during ICL inference (Si et al., 2023).
Overcoming strong prior biases and ensuring the
model gives equal weight to all contextual informa-
tion remain challenges (Kossen et al., 2023).

5.2 Learning Mechanism

From a learning mechanism perspective, we delve
into the research addressing why ICL is effective.

5.2.1 Functional Modules

The ICL capability is intimately connected to spe-
cific functional modules within Transformers. As
one of the core components, the attention module

is a focal point in the study of ICL mechanism (Ols-
son et al., 2022; Bietti et al., 2023; Dai et al., 2023a;
Irie et al., 2022; Li et al., 2023c; Gao et al., 2023;
Zhang et al., 2023b). Particularly, Olsson et al.
(2022) identified specific attention heads, referred
to as “induction heads”, that can replicate previous
patterns for next-token prediction, thus progres-
sively developing ICL capabilities. Additionally,
Wang et al. (2023b) focused on the information
flow in Transformers and found that during the
ICL process, demonstration label words serve as
anchors, which aggregate and distribute key infor-
mation for the final prediction.

5.2.2 Theoretical Interpretation

In this subsection, we introduce the theoretical in-
terpretations of ICL from different views.

Bayesian View In the Bayesian framework, ICL
is explained as implicit Bayesian inference, where
models perform ICL by identifying a shared latent
concept among examples (Xie et al., 2022; Wies
et al., 2023; Ahuja et al., 2023; Jiang, 2023; Wang
et al., 2023e). Additional perspectives suggest that
LLMs encode the Bayesian Model Averaging al-
gorithm via the attention mechanism (Zhang et al.,
2023b). As the number of in-context examples in-
creases, implicit Bayesian inference becomes anal-
ogous to kernel regression (Han et al., 2023a).

Gradient Descent View Gradient descent offers
another valuable lens for understanding ICL. Dai
et al. (2023a) identified a dual form between Trans-
former attention and gradient descent, finding that
GPT-based ICL behaves similarly to explicit fine-
tuning from multiple perspectives. Other studies
have attempted to establish connections between
ICL and gradient descent in simplified regression
settings (von Oswald et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023; Li et al., 2023c). For in-
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stance, von Oswald et al. (2023) showed that linear
attention-only Transformers with manually con-
structed parameters are closely related to models
learned by gradient descent. Li et al. (2023c) found
that self-attention-only Transformers exhibit sim-
ilarities with models trained via gradient descent.
However, the simplified settings used in these stud-
ies have led to debates about the direct applicability
of these connections in real-world contexts (Shen
et al., 2024). Fu et al. (2023) argued that Trans-
formers perform ICL on linear regression using
higher-order optimization techniques rather than
gradient descent.

Other Views Beyond connecting ICL with a sin-
gle algorithm, researchers have analyzed it from
various perspectives, including ability decoupling,
algorithmic learning, and information theory. Pan
et al. (2023b) decoupled ICL capabilities into task
recognition ability and task learning ability, each
manifesting under different conditions. Another
typical theory abstracts ICL as an algorithmic learn-
ing problem (Akyiirek et al., 2023; Garg et al.,
2022; Li et al., 2023e; Bai et al., 2023b), where
Transformers dynamically select algorithms, such
as gradient descent and ridge regression, tailored to
different ICL instances. Moreover, Hahn and Goyal
(2023) utilized information theory to show an er-
ror bound for ICL under linguistically motivated
assumptions, explaining how next-token prediction
can bring about the ICL ability.

These analytical studies have taken an essen-
tial step to explain ICL. However, most of them
focused on simple tasks and small models. Extend-
ing analysis on extensive tasks and large models
may be the next step to be considered.

6 Application

Given its user-friendly interface and lightweight
prompting method, ICL has broad applications on
traditional NLP tasks (Kim et al., 2022; Min et al.,
2022b; Zhu et al., 2023b). Particularly, by using
demonstrations that explicitly guide the reasoning
process, ICL manifests remarkable effects on tasks
requiring complex reasoning (Wei et al., 2022¢; Li
et al., 2023b; Zhou et al., 2022) and compositional
generalization (Zhou et al., 2023a).

We explore several emerging and prevalent
applications of ICL, including data engineering,
model augmentation, and knowledge updating. 1)
Data Engineering: Unlike traditional methods
such as human annotation and noisy automatic

annotation, ICL generates relatively high-quality
data at a lower cost, leading to improved perfor-
mance. (Wang et al., 2021; Khorashadizadeh et al.,
2023; Ding et al., 2023). 2) Model Augmentation:
The context-flexible nature of ICL shows promise
in model augmentation. It can enhance retrieval-
augmented methods by prepending grounding doc-
uments to the input (Ram et al., 2023). Addition-
ally, ICL for retrieval demonstrates potential in
steering models toward safer outputs (Panda et al.,
2023; Meade et al., 2023). 3) Knowledge Up-
dating: LLLMs often contain outdated or incorrect
knowledge (Dong et al., 2023). ICL has demon-
strated efficacy in revising such knowledge through
carefully crafted demonstrations, yielding higher
success rates compared to gradient-based meth-
ods (De Cao et al., 2021).

As mentioned above, ICL has yielded significant
benefits on both traditional and emergent NLP ap-
plications. The tremendous success of ICL in NLP
has inspired researchers to explore its potential in
various modalities beyond text (elaborated in Ap-
pendix D), including vision (Bar et al., 2022; Wang
et al., 2023c), vision-language (Tsimpoukelli et al.,
2021; Alayrac et al., 2022), as well as speech appli-
cations (Wang et al., 2023a; Zhang et al., 2023d).

7 Challenges and Future Directions

In this section, we review existing challenges and
discuss future directions for ICL.

Efficiency and Scalability The use of demonstra-
tions in ICL introduces two challenges: (1) higher
computational costs with an increasing number of
demonstrations (efficiency), and (2) fewer learn-
able samples due to the maximum input length of
LLMs (scalability). Prior research has attempted to
mitigate these issues by distilling lengthy demon-
strations into compact vectors (Li et al., 2024d,c) or
expediting LLM inference times (Liu et al., 2023d).
However, these methods often involve a trade-off in
performance or necessitate access to model param-
eters, which is impractical for closed-source mod-
els like ChatGPT and Claude (Zhou et al., 2023b).
Thus, enhancing the scalability and efficiency of
ICL with more demonstrations remains a signifi-
cant challenge.

Generalization ICL heavily relies on high-
quality demonstrations selected from annotated ex-
amples, which are often scarce in low-resource
languages and tasks. This scarcity poses a chal-
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lenge to the generalization ability of ICL (He et al.,
2024). Given that there is a substantial discrepancy
in the availability of annotated high-resource data
and low-resource data, the potential to leverage
high-resource data to address low-resource tasks is
highly appealing (Chatterjee et al., 2024; Tanwar
et al., 2023).

Long-context ICL. Recent advances in context-
extended LLLMs have spurred research into the
impact of ICL when using an increasing number
of demonstration examples (Agarwal et al., 2024;
Bertsch et al., 2024). However, researchers have
found that increasing the number of demonstrations
does not necessarily enhance performance and may
even be detrimental. These performance declines
indicate a need for further investigation. Addition-
ally, Li et al. (2024b) developed LongICLBench,
which includes diverse extreme-label classification
tasks, revealing further weaknesses of LLMs in
comprehending extended demonstrations.

8 Conclusion

In this paper, we comprehensively review the ex-
isting literature on ICL, examining advanced tech-
niques, conducting analytical studies, discussing
relevant applications, and identifying critical chal-
lenges and potential directions for future research.
To our knowledge, this is the first comprehensive
survey dedicated to ICL. We aim to highlight the
current state of research in ICL and provide insights
to guide future work in this promising area.

Limitations

This paper offers a comprehensive examination and
summary of current methodologies and analyses in
the area of In-Context Learning (ICL). However,
given the extensive body of related work, partic-
ularly in demonstration design and the principle
analysis of ICL, we may have overlooked some
equally valuable contributions. Additionally, we
outline several future directions for research in ICL,
including long-context ICL, efficiency and scalabil-
ity in ICL, etc. We plan to leave these aspects for
future work. Furthermore, many papers covered by
this survey did not utilize the most up-to-date mod-
els while running experiments. We advocate for
more thorough and up-to-date research to provide
actionable insights for practitioners.

References

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd
Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, John D.
Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra
Faust, and Hugo Larochelle. 2024. Many-shot in-
context learning. Preprint, arXiv:2404.11018.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and
Suvrit Sra. 2023. Transformers learn to implement
preconditioned gradient descent for in-context learn-
ing. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Kabir Ahuja, Madhur Panwar, and Navin Goyal. 2023.
In-context learning through the bayesian prism.
CoRR, abs/2306.04891.

Al@Meta. 2024. Llama 3 model card. Technical report,
Meta.

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716-23736.

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning
Zheng, Jian-Guang Lou, and Dongmei Zhang. 2023.
How do in-context examples affect compositional
generalization? In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 11027-11052. Asso-
ciation for Computational Linguistics.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023a. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and
Song Mei. 2023b. Transformers as statisticians:
Provable in-context learning with in-context algo-
rithm selection. In Advances in Neural Information

1115


https://arxiv.org/abs/2404.11018
https://arxiv.org/abs/2404.11018
http://papers.nips.cc/paper_files/paper/2023/hash/8ed3d610ea4b68e7afb30ea7d01422c6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8ed3d610ea4b68e7afb30ea7d01422c6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8ed3d610ea4b68e7afb30ea7d01422c6-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2306.04891
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/pdf?id=0g0X4H8yN4I
https://openreview.net/pdf?id=0g0X4H8yN4I
https://openreview.net/pdf?id=0g0X4H8yN4I
https://doi.org/10.18653/V1/2023.ACL-LONG.618
https://doi.org/10.18653/V1/2023.ACL-LONG.618
http://papers.nips.cc/paper_files/paper/2023/hash/b2e63e36c57e153b9015fece2352a9f9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b2e63e36c57e153b9015fece2352a9f9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b2e63e36c57e153b9015fece2352a9f9-Abstract-Conference.html

Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir
Globerson, and Alexei Efros. 2022. Visual prompt-
ing via image inpainting. Advances in Neural Infor-
mation Processing Systems, 35:25005-25017.

Richard Bellman. 1957. A markovian decision process.
Journal of mathematics and mechanics, pages 679—

684.

Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant,
Matthew R. Gormley, and Graham Neubig. 2024.
In-context learning with long-context models: An
in-depth exploration. CoRR, abs/2405.00200.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt,
Hervé Jégou, and Léon Bottou. 2023. Birth of a
transformer: A memory viewpoint. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S.
Chen, Kathleen A. Creel, Jared Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Dur-
mus, Stefano Ermon, John Etchemendy, Kawin Etha-
yarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lau-
ren E. Gillespie, Karan Goel, Noah D. Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny
Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, O. Khat-
tab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna,
Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak,
Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent,
Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Ma-
lik, Christopher D. Manning, Suvir P. Mirchandani,
Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Benjamin Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Robert Re-
ich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani,
Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy
Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramer,
Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Ya-
sunaga, Jiaxuan You, Matei A. Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang,
Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021.
On the opportunities and risks of foundation models.
ArXiv.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632-642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Marc-Etienne Brunet, Ashton Anderson, and Richard S.
Zemel. 2023. ICL markup: Structuring in-
context learning using soft-token tags. CoRR,
abs/2312.07405.

Stephanie C. Y. Chan, Adam Santoro, Andrew K.
Lampinen, Jane X. Wang, Aaditya K. Singh, Pierre H.
Richemond, James L. McClelland, and Felix Hill.
2022. Data distributional properties drive emergent
in-context learning in transformers. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Anwoy Chatterjee, Eshaan Tanwar, Subhabrata Dutta,
and Tanmoy Chakraborty. 2024. Language models
can exploit cross-task in-context learning for data-
scarce novel tasks. CoRR, abs/2405.10548.

Ding Chen, Shichao Song, Qingchen Yu, Zhiyu Li, Wen-
jin Wang, Feiyu Xiong, and Bo Tang. 2024. Grimoire
is all you need for enhancing large language models.
CoRR, abs/2401.03385.

Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor
Mihaylov, Srini Iyer, Veselin Stoyanov, and Zor-
nitsa Kozareva. 2022. Improving in-context few-shot
learning via self-supervised training. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3558-3573,
Seattle, United States. Association for Computational
Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben

1116


https://doi.org/10.48550/ARXIV.2405.00200
https://doi.org/10.48550/ARXIV.2405.00200
http://papers.nips.cc/paper_files/paper/2023/hash/0561738a239a995c8cd2ef0e50cfa4fd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0561738a239a995c8cd2ef0e50cfa4fd-Abstract-Conference.html
https://crfm.stanford.edu/assets/report.pdf
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2312.07405
https://doi.org/10.48550/ARXIV.2312.07405
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2405.10548
https://doi.org/10.48550/ARXIV.2405.10548
https://doi.org/10.48550/ARXIV.2405.10548
https://doi.org/10.48550/ARXIV.2401.03385
https://doi.org/10.48550/ARXIV.2401.03385
https://aclanthology.org/2022.naacl-main.260
https://aclanthology.org/2022.naacl-main.260

Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1-
240:113.

Timothy Chu, Zhao Song, and Chiwun Yang. 2023.
Fine-tune language models to approximate unbiased
in-context learning. CoRR, abs/2310.03331.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023a. Why can
GPT learn in-context? language models secretly per-
form gradient descent as meta-optimizers. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
4005—4019. Association for Computational Linguis-
tics.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven C. H. Hoi.
2023b. Instructblip: Towards general-purpose vision-
language models with instruction tuning. In Ad-
vances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Proc.
of EMNLP, pages 6491-6506, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Bosheng Ding, Chengwei Qin, Linlin Liu, Yew Ken
Chia, Boyang Li, Shafiq Joty, and Lidong Bing. 2023.
Is GPT-3 a good data annotator? In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

ACL 2023, Toronto, Canada, July 9-14, 2023, pages
11173-11195. Association for Computational Lin-
guistics.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian
Goodman, and Radu Soricut. 2024. CausalLM is
not optimal for in-context learning. In The Tivelfth
International Conference on Learning Representa-
tions.

Qingxiu Dong, Jingjing Xu, Lingpeng Kong, Zhifang
Sui, and Lei Li. 2023. Statistical knowledge assess-
ment for large language models. In Advances in
Neural Information Processing Systems, volume 36,

pages 29812-29830. Curran Associates, Inc.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan.
2023. Transformers learn higher-order optimization
methods for in-context learning: A study with linear
models. CoRR, abs/2310.17086.

Yeqi Gao, Zhao Song, and Shenghao Xie. 2023. In-
context learning for attention scheme: from single
softmax regression to multiple softmax regression
via a tensor trick. CoRR, abs/2307.02419.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gre-
gory Valiant. 2022. What can transformers learn in-
context? A case study of simple function classes. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith,
and Luke Zettlemoyer. 2023. Demystifying prompts
in language models via perplexity estimation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 10136-10148. Association for Computa-
tional Linguistics.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2023.
Pre-training to learn in context. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages 4849—
4870. Association for Computational Linguistics.

Michael Hahn and Navin Goyal. 2023. A theory of
emergent in-context learning as implicit structure
induction. CoRR, abs/2303.07971.

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. 2023a.
Explaining emergent in-context learning as kernel
regression. Preprint, arXiv:2305.12766.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia
Tsvetkov, Asli Celikyilmaz, and Tianlu Wang. 2023b.
Understanding in-context learning via supportive pre-
training data. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 12660-12673. Asso-
ciation for Computational Linguistics.

1117


http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/ARXIV.2310.03331
https://doi.org/10.48550/ARXIV.2310.03331
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.247
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522
https://doi.org/10.18653/V1/2023.ACL-LONG.626
https://openreview.net/forum?id=guRNebwZBb
https://openreview.net/forum?id=guRNebwZBb
https://proceedings.neurips.cc/paper_files/paper/2023/file/5f0a4cd23e1c6eedd3edebba674ab877-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5f0a4cd23e1c6eedd3edebba674ab877-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2310.17086
https://doi.org/10.48550/ARXIV.2310.17086
https://doi.org/10.48550/ARXIV.2310.17086
https://doi.org/10.48550/ARXIV.2307.02419
https://doi.org/10.48550/ARXIV.2307.02419
https://doi.org/10.48550/ARXIV.2307.02419
https://doi.org/10.48550/ARXIV.2307.02419
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.679
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.679
https://doi.org/10.18653/V1/2023.ACL-LONG.267
https://doi.org/10.48550/arXiv.2303.07971
https://doi.org/10.48550/arXiv.2303.07971
https://doi.org/10.48550/arXiv.2303.07971
https://arxiv.org/abs/2305.12766
https://arxiv.org/abs/2305.12766
https://doi.org/10.18653/V1/2023.ACL-LONG.708
https://doi.org/10.18653/V1/2023.ACL-LONG.708

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,

Zewen Chi, Wenhui Wang, Shuming Ma, and Furu
Wei. 2022a. Language models are general-purpose
interfaces. arXiv preprint arXiv:2206.06336.

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian
Gu, and Furu Wei. 2022b. Structured prompting:
Scaling in-context learning to 1,000 examples. ArXiv
preprint, abs/2212.06713.

Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shuster,
Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li,
Brian O’Horo, Gabriel Pereyra, Jeff Wang, Christo-
pher Dewan, Asli Celikyilmaz, Luke Zettlemoyer,
and Ves Stoyanov. 2022. Opt-iml: Scaling language
model instruction meta learning through the lens of
generalization.

Hui Jiang. 2023. A latent space theory for emer-

Jiabang He, Lei Wang, Yi Hu, Ning Liu, Hui Liu, Xing
Xu, and Heng Tao Shen. 2023. ICL-D3IE: in-context
learning with diverse demonstrations updating for
document information extraction. In /EEE/CVF In-
ternational Conference on Computer Vision, ICCV
2023, Paris, France, October 1-6, 2023, pages 19428—
19437. IEEE.

Wei He, Shichun Liu, Jun Zhao, Yiwen Ding, Yi Lu,
Zhiheng Xi, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. Self-demos: Eliciting out-of-demonstration

generalizability in large language models. CoRR,
abs/2404.00884.

gent abilities in large language models. CoRR,
abs/2304.09960.

Hanieh Khorashadizadeh, Nandana Mihindukula-

sooriya, Sanju Tiwari, Jinghua Groppe, and Sven
Groppe. 2023. Exploring in-context learning capabil-
ities of foundation models for generating knowledge
graphs from text. arXiv preprint arXiv:2305.08804.

Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk

Kim, Kang Min Yoo, and Sang-goo Lee. 2022.
Self-generated in-context learning: Leveraging auto-
regressive language models as a demonstration gen-
erator. ArXiv preprint, abs/2206.08082.

Clyde Highmore. 2024. In-context learning in large  jannik Kossen, Tom Rainforth, and Yarin Gal. 2023.

language models: A comprehensive survey.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2023. Instruction induction: From few

In-context learning in large language models learns
label relationships but is not conventional learning.
CoRR, abs/2307.12375.

examples to natural language task descriptions. In  Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,

Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 1935-1952. Association for Computa-

Jingkang Yang, and Ziwei Liu. 2023a. Otter: A
multi-modal model with in-context instruction tuning.
arXiv preprint arXiv:2305.03726.

tional Linguistics. Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Krzmanc,
Daniel Zeng, Percy Liang, and Jure Leskovec. 2023a.

2023b. Towards enhancing in-context learning for
code generation. arXiv preprint arXiv:2303.17780.

PRODIGY: enabling in-context learning over graphs. ~ J1ahao Li, Quan Wang, Licheng Zhang, Guoging

In Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Or-
leans, LA, USA, December 10 - 16, 2023.

Jin, and Zhendong Mao. 2024a. Feature-adaptive
and data-scalable in-context learning. Preprint,
arXiv:2405.10738.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei
Cui, Owais Khan Mohammed, Barun Patra, Qiang

Zhou. 2023c. The closeness of in-context learning
and weight shifting for softmax regression. CoRR,
abs/2304.13276.

Liu, Kriti Aggarwal, Zewen Chl, Nils Johan Bertil Tianle Li. Ge Zhang Quy Duc Do Xiang Yue

Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song,
and Furu Wei. 2023b. Language is not all you need:
Aligning perception with language models. In Ad-
vances in Neural Information Processing Systems 36:

and Wenhu Chen. 2024b.  Long-context Ilms
struggle with long in-context learning.  ArXiv,
abs/2404.02060.

Annual Conference on Neural Information Process-  Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,

ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Kazuki Irie, Rébert Csordas, and Jiirgen Schmidhuber.
2022. The dual form of neural networks revisited:
Connecting test time predictions to training patterns
via spotlights of attention. In International Confer-
ence on Machine Learning, ICML 2022, 17-23 July

Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023d. Unified demonstration retriever for in-
context learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 4644—-4668. Associa-
tion for Computational Linguistics.

2022, Baltimore, Maryland, USA, volume 162 of  Xiaonan Li and Xipeng Qiu. 2023. Finding sup-

Proceedings of Machine Learning Research, pages
9639-9659. PMLR.

1118

porting examples for in-context learning. CoRR,
abs/2302.13539.


https://arxiv.org/abs/2212.06713
https://arxiv.org/abs/2212.06713
https://doi.org/10.1109/ICCV51070.2023.01785
https://doi.org/10.1109/ICCV51070.2023.01785
https://doi.org/10.1109/ICCV51070.2023.01785
https://doi.org/10.48550/ARXIV.2404.00884
https://doi.org/10.48550/ARXIV.2404.00884
https://doi.org/10.18653/V1/2023.ACL-LONG.108
https://doi.org/10.18653/V1/2023.ACL-LONG.108
http://papers.nips.cc/paper_files/paper/2023/hash/34dce0dc3121951dd0399ba02c0f0d06-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e425b75bac5742a008d643826428787c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e425b75bac5742a008d643826428787c-Abstract-Conference.html
https://proceedings.mlr.press/v162/irie22a.html
https://proceedings.mlr.press/v162/irie22a.html
https://proceedings.mlr.press/v162/irie22a.html
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2212.12017
https://doi.org/10.48550/ARXIV.2304.09960
https://doi.org/10.48550/ARXIV.2304.09960
https://arxiv.org/abs/2206.08082
https://arxiv.org/abs/2206.08082
https://arxiv.org/abs/2206.08082
https://doi.org/10.48550/ARXIV.2307.12375
https://doi.org/10.48550/ARXIV.2307.12375
https://arxiv.org/abs/2405.10738
https://arxiv.org/abs/2405.10738
https://doi.org/10.48550/arXiv.2304.13276
https://doi.org/10.48550/arXiv.2304.13276
https://api.semanticscholar.org/CorpusID:268857023
https://api.semanticscholar.org/CorpusID:268857023
https://doi.org/10.18653/V1/2023.ACL-LONG.256
https://doi.org/10.18653/V1/2023.ACL-LONG.256
https://doi.org/10.48550/ARXIV.2302.13539
https://doi.org/10.48550/ARXIV.2302.13539

Yichuan Li, Xiyao Ma, Sixing Lu, Kyumin Lee, Xi-
aohu Liu, and Chenlei Guo. 2024c. MEND: meta
demonstration distillation for efficient and effective
in-context learning. CoRR, abs/2403.06914.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Pa-
pailiopoulos, and Samet Oymak. 2023e. Transform-
ers as algorithms: Generalization and stability in
in-context learning. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19565-19594.
PMLR.

Yinheng Li. 2023. A practical survey on zero-shot
prompt design for in-context learning. arXiv preprint
arXiv:2309.13205.

Zhuowei Li, Zihao Xu, Ligong Han, Yunhe Gao, Song
Wen, Di Liu, Hao Wang, and Dimitris N. Metaxas.
2024d. Implicit in-context learning. Preprint,
arXiv:2405.14660.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning. arXiv preprint
arXiv:2304.08485.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for gpt-3? In Pro-
ceedings of Deep Learning Inside Out: The 3rd Work-
shop on Knowledge Extraction and Integration for
Deep Learning Architectures, Dee LIO@ACL 2022,
Dublin, Ireland and Online, May 27, 2022, pages
100-114. Association for Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023b. Lost in the middle: How language
models use long contexts. CoRR, abs/2307.03172.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023c. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1-195:35.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. 2024a.
In-context vectors: Making in context learning more
effective and controllable through latent space steer-
ing. Preprint, arXiv:2311.06668.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, and
Wei Lu. 2024b. Let’s learn step by step: Enhancing
in-context learning ability with curriculum learning.
Preprint, arXiv:2402.10738.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Ré, and Beidi Chen.
2023d. Deja vu: Contextual sparsity for efficient
Ilms at inference time. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 22137-22176.
PMLR.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 8086—
8098. Association for Computational Linguistics.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu
Ma. 2023. One step of gradient descent is provably
the optimal in-context learner with one layer of linear
self-attention. CoRR, abs/2307.03576.

Costas Mavromatis, Balasubramaniam Srinivasan,
Zhengyuan Shen, Jiani Zhang, Huzefa Rangwala,
Christos Faloutsos, and George Karypis. 2023.
Which examples to annotate for in-context learn-
ing? towards effective and efficient selection. CoRR,
abs/2310.20046.

Nicholas Meade, Spandana Gella, Devamanyu Hazarika,
Prakhar Gupta, Di Jin, Siva Reddy, Yang Liu, and
Dilek Hakkani-Tur. 2023. Using in-context learn-
ing to improve dialogue safety. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 11882—
11910. Association for Computational Linguistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022a. Noisy channel language
model prompting for few-shot text classification. In
Proc. of ACL, pages 5316-5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022b. MetalCL: Learning to learn
in context. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2791-2809, Seattle, United States.
Association for Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022c. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 11048-11064. Association for Computational
Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

In-context ex-
arXiv preprint

Tai Nguyen and Eric Wong. 2023.
ample selection with influences.
arXiv:2302.11042.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,

1119


https://doi.org/10.48550/ARXIV.2403.06914
https://doi.org/10.48550/ARXIV.2403.06914
https://doi.org/10.48550/ARXIV.2403.06914
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://arxiv.org/abs/2405.14660
https://doi.org/10.18653/V1/2022.DEELIO-1.10
https://doi.org/10.18653/V1/2022.DEELIO-1.10
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2402.10738
https://arxiv.org/abs/2402.10738
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
https://doi.org/10.18653/V1/2022.ACL-LONG.556
https://doi.org/10.18653/V1/2022.ACL-LONG.556
https://doi.org/10.18653/V1/2022.ACL-LONG.556
https://doi.org/10.48550/ARXIV.2307.03576
https://doi.org/10.48550/ARXIV.2307.03576
https://doi.org/10.48550/ARXIV.2307.03576
https://doi.org/10.48550/ARXIV.2310.20046
https://doi.org/10.48550/ARXIV.2310.20046
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.796
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.796
https://aclanthology.org/2022.acl-long.365
https://aclanthology.org/2022.acl-long.365
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.naacl-main.201
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759

Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. 2022. In-context learn-
ing and induction heads. CoRR, abs/2209.11895.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Jane Pan, Tianyu Gao, Howard Chen, and Dangi Chen.
2023a. What in-context learning "learns" in-context:
Disentangling task recognition and task learning. In
Annual Meeting of the Association for Computational
Linguistics.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023b. What in-context learning "learns" in-context:
Disentangling task recognition and task learning. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 8298-8319. Association for Computa-
tional Linguistics.

Ashwinee Panda, Tong Wu, Jiachen T. Wang, and Pra-
teek Mittal. 2023. Differentially private in-context
learning. CoRR, abs/2305.01639.

Chengwei Qin, Aston Zhang, Anirudh Dagar, and Wen-
ming Ye. 2023. In-context learning with iterative
demonstration selection. CoRR, abs/2310.09881.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAi.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 784—789. Association
for Computational Linguistics.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. CoRR, abs/2302.00083.

Allan Raventds, Mansheej Paul, Feng Chen, and Surya
Ganguli. 2023. Pretraining task diversity and the
emergence of non-bayesian in-context learning for
regression. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655-2671, Seattle, United States.
Association for Computational Linguistics.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi.
2024. Do pretrained transformers learn in-context by
gradient descent? Preprint, arXiv:2310.08540.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. ArXiv preprint, abs/2210.03057.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou,
Margaret Li, Xi Victoria Lin, Noah A. Smith, Luke
Zettlemoyer, Wen tau Yih, and Mike Lewis. 2024.
In-context pretraining: Language modeling beyond
document boundaries. In The Twelfth International
Conference on Learning Representations.

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong
Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun
Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha,
and Nako Sung. 2022. On the effect of pretraining
corpora on in-context learning by a large-scale lan-
guage model. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5168-5186, Seattle, United States.
Association for Computational Linguistics.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng,
Dangi Chen, and He He. 2023. Measuring induc-
tive biases of in-context learning with underspecified
demonstrations. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 11289-11310. Asso-
ciation for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013a. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631-1642. ACL.

Taylor Sorensen, Joshua Robinson, Christopher Ryt-
ting, Alexander Shaw, Kyle Rogers, Alexia Delorey,

1120


https://doi.org/10.48550/arXiv.2209.11895
https://doi.org/10.48550/arXiv.2209.11895
https://doi.org/10.48550/ARXIV.2303.08774
https://api.semanticscholar.org/CorpusID:258740972
https://api.semanticscholar.org/CorpusID:258740972
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.527
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.527
https://doi.org/10.48550/ARXIV.2305.01639
https://doi.org/10.48550/ARXIV.2305.01639
https://doi.org/10.48550/ARXIV.2310.09881
https://doi.org/10.48550/ARXIV.2310.09881
https://doi.org/10.18653/V1/P18-2124
https://doi.org/10.18653/V1/P18-2124
https://doi.org/10.48550/ARXIV.2302.00083
https://doi.org/10.48550/ARXIV.2302.00083
http://papers.nips.cc/paper_files/paper/2023/hash/2e10b2c2e1aa4f8083c37dfe269873f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2e10b2c2e1aa4f8083c37dfe269873f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2e10b2c2e1aa4f8083c37dfe269873f8-Abstract-Conference.html
https://aclanthology.org/2022.naacl-main.191
https://aclanthology.org/2022.naacl-main.191
https://openreview.net/pdf?id=qFVVBzXxR2V
https://openreview.net/pdf?id=qFVVBzXxR2V
https://openreview.net/pdf?id=qFVVBzXxR2V
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://openreview.net/forum?id=LXVswInHOo
https://openreview.net/forum?id=LXVswInHOo
https://aclanthology.org/2022.naacl-main.380
https://aclanthology.org/2022.naacl-main.380
https://aclanthology.org/2022.naacl-main.380
https://doi.org/10.18653/V1/2023.ACL-LONG.632
https://doi.org/10.18653/V1/2023.ACL-LONG.632
https://doi.org/10.18653/V1/2023.ACL-LONG.632
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/

Mahmoud Khalil, Nancy Fulda, and David Wingate.
2022. An information-theoretic approach to prompt
engineering without ground truth labels. In Proc. of
ACL, pages 819-862, Dublin, Ireland. Association
for Computational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, et al. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models. ArXiv preprint, abs/2206.04615.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023.
Selective annotation makes language models better
few-shot learners. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning
for language-model-as-a-service. ArXiv preprint,
abs/2201.03514.

Yanpeng Sun, Qiang Chen, Jian Wang, Jingdong Wang,
and Zechao Li. 2023. Exploring effective factors for
improving visual in-context learning. arXiv preprint
arXiv:2304.04748.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003—13051. Association for
Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41494158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ruixiang Tang, Dehan Kong, Longtao Huang, and Hui
Xue. 2023a. Large language models can be lazy
learners: Analyze shortcuts in in-context learning.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 4645—-4657. Association for Computa-
tional Linguistics.

Yuting Tang, Ratish Puduppully, Zhengyuan Liu, and
Nancy Chen. 2023b. In-context learning of large lan-
guage models for controlled dialogue summarization:
A holistic benchmark and empirical analysis. In Pro-
ceedings of the 4th New Frontiers in Summarization
Workshop, pages 56—67, Singapore. Association for
Computational Linguistics.

1121

Eshaan Tanwar, Subhabrata Dutta, Manish Borthakur,

and Tanmoy Chakraborty. 2023. Multilingual 1Ims
are better cross-lingual in-context learners with align-
ment. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 6292—-6307. Association for
Computational Linguistics.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,

Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang,
Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S.
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed H. Chi, and
Quoc Le. 2022. Lamda: Language models for dialog
applications. ArXiv preprint, abs/2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier

Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-

bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi,

S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. 2021.
Multimodal few-shot learning with frozen language


https://aclanthology.org/2022.acl-long.60
https://aclanthology.org/2022.acl-long.60
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://openreview.net/pdf?id=qY1hlv7gwg
https://openreview.net/pdf?id=qY1hlv7gwg
https://arxiv.org/abs/2201.03514
https://arxiv.org/abs/2201.03514
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.284
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.284
https://doi.org/10.18653/v1/2023.newsum-1.6
https://doi.org/10.18653/v1/2023.newsum-1.6
https://doi.org/10.18653/v1/2023.newsum-1.6
https://doi.org/10.18653/V1/2023.ACL-LONG.346
https://doi.org/10.18653/V1/2023.ACL-LONG.346
https://doi.org/10.18653/V1/2023.ACL-LONG.346
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2021/hash/01b7575c38dac42f3cfb7d500438b875-Abstract.html

models. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurlPS 2021,
December 6-14, 2021, virtual, pages 200-212.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for 1lms on plan-

ning and reasoning about change). ArXiv preprint,
abs/2206.10498.

Johannes von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, Jodo Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers learn in-context by gradient descent. In In-
ternational Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 35151-35174. PMLR.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261-3275.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Boshi Wang, Xiang Deng, and Huan Sun. 2022a. Itera-
tively prompt pre-trained language models for chain
of thought. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 2714-2730. Association
for Computational Linguistics.

Chengyi Wang, Sanyuan Chen, Yu Wu, Zigiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, et al. 2023a. Neural codec
language models are zero-shot text to speech synthe-
sizers. arXiv preprint arXiv:2301.02111.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023b. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 9840-9855. As-
sociation for Computational Linguistics.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce la-
beling cost? GPT-3 can help. In Findings of the
Association for Computational Linguistics: EMNLP
2021, Virtual Event / Punta Cana, Dominican Re-
public, 16-20 November, 2021, pages 4195-4205.
Association for Computational Linguistics.

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen,
and Tiejun Huang. 2023c. Images speak in images:
A generalist painter for in-context visual learning. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6830-
6839.

Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang,
Chunhua Shen, and Tiejun Huang. 2023d. Seg-
gpt: Towards segmenting everything in context. In
IEEE/CVF International Conference on Computer
Vision, ICCV 2023, Paris, France, October 1-6, 2023,
pages 1130-1140. IEEE.

Xinyi Wang, Wanrong Zhu, and William Yang Wang.
2023e. Large language models are implicitly
topic models: Explaining and finding good demon-
strations for in-context learning. arXiv preprint
arXiv:2301.11916.

Yaqging Wang and Quanming Yao. 2019. Few-shot learn-
ing: A survey. CoRR, abs/1904.05046.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023f. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484—-13508. Association for Computational
Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gi-
annis Karamanolakis, Haizhi Gary Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Kuntal Kumar Pal, Maitreya Pa-
tel, Mehrad Moradshahi, Mihir Parmar, Mirali Puro-
hit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra,
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and
Xudong Shen. 2022b. Super-naturalinstructions:
Generalization via declarative instructions on 1600+
NLP tasks. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 5085-5109. Association
for Computational Linguistics.

Zhendong Wang, Yifan Jiang, Yadong Lu, Yelong Shen,
Pengcheng He, Weizhu Chen, Zhangyang (Atlas)
Wang, and Mingyuan Zhou. 2023g. In-context learn-
ing unlocked for diffusion models. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned

1122


https://proceedings.neurips.cc/paper/2021/hash/01b7575c38dac42f3cfb7d500438b875-Abstract.html
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2206.10498
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.174
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.174
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.174
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.609
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.609
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.609
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.354
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.354
https://doi.org/10.1109/ICCV51070.2023.00110
https://doi.org/10.1109/ICCV51070.2023.00110
https://arxiv.org/abs/1904.05046
https://arxiv.org/abs/1904.05046
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
http://papers.nips.cc/paper_files/paper/2023/hash/1b3750390ca8b931fb9ca988647940cb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b3750390ca8b931fb9ca988647940cb-Abstract-Conference.html
https://openreview.net/forum?id=gEZrGCozdqR

language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022b. Emer-
gent abilities of large language models. Trans. Mach.
Learn. Res., 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022c. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Jerry W. Wei, Le Hou, Andrew K. Lampinen, Xiangning
Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu,
Denny Zhou, Tengyu Ma, and Quoc V. Le. 2023a.
Symbol tuning improves in-context learning in lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2023, Singapore, December 6-10,
2023, pages 968-979. Association for Computational
Linguistics.

Jerry W. Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and Tengyu Ma. 2023b.
Larger language models do in-context learning dif-
ferently. CoRR, abs/2303.03846.

Noam Wies, Yoav Levine, and Amnon Shashua. 2023.
The learnability of in-context learning. In Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Patrick H Winston. 1980. Learning and reasoning by
analogy. Communications of the ACM, 23(12):689—
703.

Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao
Feng, Jingjing Xu, Yu Qiao, and Zhiyong Wu. 2023a.
Openicl: An open-source framework for in-context
learning. CoRR, abs/2303.02913.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023b. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
1423-1436. Association for Computational Linguis-
tics.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context

learning as implicit bayesian inference. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu,
Qiaoqiao She, and Yongdong Zhang. 2023a. k nn
prompting: Learning beyond the context with nearest
neighbor inference. In International Conference on
Learning Representations.

Xin Xu, Yue Liu, Panupong Pasupat, Mehran Kazemi,
et al. 2024. In-context learning with retrieved demon-
strations for language models: A survey. arXiv
preprint arXiv:2401.11624.

Zhiyang Xu, Ying Shen, and Lifu Huang. 2023b. Multi-
instruct: Improving multi-modal zero-shot learning
via instruction tuning. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 11445—
11465. Association for Computational Linguistics.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni.
2023. Pretraining data mixtures enable narrow model
selection capabilities in transformer models. CoRR,
abs/2311.00871.

Jinghan Yang, Shuming Ma, and Furu Wei. 2023a.
Auto-icl: In-context learning without human supervi-
sion. CoRR, abs/2311.09263.

Zhe Yang, Damai Dai, Peiyi Wang, and Zhifang Sui.
2023b. Not all demonstration examples are equally
beneficial: Reweighting demonstration examples for
in-context learning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 13209-13221.
Association for Computational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars
for in-context learning. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 39818-39833.
PMLR.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyun-
soo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee,
and Taeuk Kim. 2022. Ground-truth labels matter:
A deeper look into input-label demonstrations. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 2422-2437. Association for Com-
putational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022a. Ac-
tive example selection for in-context learning. In
Proceedings of the 2022 Conference on Empirical

1123


https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.61
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.61
https://doi.org/10.48550/arXiv.2303.03846
https://doi.org/10.48550/arXiv.2303.03846
http://papers.nips.cc/paper_files/paper/2023/hash/73950f0eb4ac0925dc71ba2406893320-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2303.02913
https://doi.org/10.48550/arXiv.2303.02913
https://doi.org/10.18653/V1/2023.ACL-LONG.79
https://doi.org/10.18653/V1/2023.ACL-LONG.79
https://doi.org/10.18653/V1/2023.ACL-LONG.79
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/V1/2023.ACL-LONG.641
https://doi.org/10.18653/V1/2023.ACL-LONG.641
https://doi.org/10.18653/V1/2023.ACL-LONG.641
https://doi.org/10.48550/ARXIV.2311.00871
https://doi.org/10.48550/ARXIV.2311.00871
https://doi.org/10.48550/ARXIV.2311.09263
https://doi.org/10.48550/ARXIV.2311.09263
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.880
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.880
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.880
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.155
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.155
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.622
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.622

Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 9134-9148. Association for Com-
putational Linguistics.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022b. Ac-
tive example selection for in-context learning. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 9134-9148. Association for Com-
putational Linguistics.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. 2023a.
What makes good examples for visual in-context
learning? In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and
Zhaoran Wang. 2023b. What and how does in-
context learning learn? bayesian model averag-
ing, parameterization, and generalization. CoRR,
abs/2305.19420.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023c. Automatic chain of thought prompt-
ing in large language models. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Zigiang Zhang, Long Zhou, Chengyi Wang, Sanyuan
Chen, Yu Wu, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, et al. 2023d. Speak for-
eign languages with your own voice: Cross-lingual
neural codec language modeling. arXiv preprint
arXiv:2303.03926.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
In Proc. of ICML, volume 139 of Proceedings of
Machine Learning Research, pages 12697-12706.
PMLR.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023a. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron C.
Courville, Behnam Neyshabur, and Hanie Sedghi.
2022. Teaching algorithmic reasoning via in-context
learning. CoRR, abs/2211.09066.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ryan Cot-
terell, and Mrinmaya Sachan. 2023b. Efficient
prompting via dynamic in-context learning. CoRR,
abs/2305.11170.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023c. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi
Yan, Lin Gui, and Yulan He. 2023d. The mystery
and fascination of llms: A comprehensive survey on
the interpretation and analysis of emergent abilities.
arXiv preprint arXiv:2311.00237.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023a. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Lingpeng Kong, Jiajun Chen, Lei Li, and Shujian
Huang. 2023b. Multilingual machine translation with
large language models: Empirical results and analy-
sis. arXiv preprint arXiv:2304.04675.

A Takeaway

Through a comprehensive literature review of ICL,
we have discovered takeaways across several do-
mains. These include training, demonstration de-
sign, scoring functions, analysis, and ICL applica-
tions that go beyond text.

A.1 Training

To further enhanced ICL capabilities, methods pro-
pose to train the LLMs in the stage of pre-training
and warmup before ICL inference.

< Takeaway: (1) The key idea of training before
inference is to bridge the gap between pretraining
and downstream ICL formats by introducing ob-
jectives close to in-context learning. Warmup is
optional for ICL as many pretrained LLMs have
manifested the ICL ability. (2) Compared to in-
context finetuning involving demonstration, instruc-
tion finetuning without a few examples as demon-
stration is simpler and more popular. All these
warmup methods improve the ICL capability by
updating the model parameters, which implies that
the ICL capability of the original LLMs has great
potential for improvement. Therefore, although
ICL does not strictly require model warmup, we
recommend adding a warmup stage before ICL in-
ference. (3) The performance advancement made
by warmup encounters a plateau when increasingly
scaling up the training data, indicating that LLMs
only need a small amount of data to adapt to learn
from the context during warmup.
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A.2 Demonstration Organization

The performance of ICL strongly relies on the
demonstration surface, including the selection, for-
matting, and ordering of demonstration examples.

<& Takeaway: (1) Demonstration selection
strategies improve the ICL performance, but most
of them are instance level. Since ICL is mainly
evaluated under few-shot settings, the corpus-level
selection strategy is more important yet underex-
plored. (2) The output score or probability distri-
bution of LLMs plays an important role in instance
selecting. (3) For k demonstrations, the size of
search space of permutations is k!. How to find the
best orders efficiently or how to approximate the
optimal ranking better is also a challenging ques-
tion. (4) Adding chain-of-thoughts can effectively
decompose complex reasoning tasks into intermedi-
ate reasoning steps. During inference, multi-stage
demonstration designing strategies are applied to
generate CoTs better. How to improve the CoT
prompting ability of LLMs is also worth explor-
ing. (5) In addition to human-written demonstra-
tions, the generative nature of LLMs can be utilized
in demonstration designing. LLMs can generate
instructions, demonstrations, probing sets, chain-
of-thoughts, and so on. By using LL.M-generated
demonstrations, ICL can largely get rid of human
efforts on writing templates.

A.3 Scoring Function

The scoring function determines how to transform
the predictions of a language model into an esti-
mation of the likelihood of a specific answer. The
answer with the highest probability is selected as
the final answer.

< Takeaway: (1) Although directly adopting
the conditional probability of candidate answers is
efficient, this method still poses some restrictions
on the template design. Perplexity is also a sim-
ple and widely scoring function. This method has
universal applications, including both classification
tasks and generation tasks. However, both methods
are still sensitive to demonstration surface, while
Channel is a remedy that especially works under
imbalanced data regimes. (2) Existing scoring func-
tions all compute a score straightforwardly from
the conditional probability of LLMs. There is lim-
ited research on calibrating the bias or mitigating
the sensitivity via scoring strategies.

A4 Analysis

Numerous analytical studies investigate influencing
factors of ICL during both the pretraining and infer-
ence stages, and attempt to figure out the learning
mechanisms of ICL from the perspective of func-
tional modules and theoretical interpretation.

< Takeaway: (1) Knowing and considering why
ICL works and what factors may influence can help
us improve the ICL performance. (2) Although
some analytical studies have taken a preliminary
step to explain ICL, most of them are limited to
simple tasks and small models. Extending analysis
on extensive tasks and large models may be the
next step to be considered. (3) Among existing
work, explaining ICL with gradient descent seems
to be a reasonable, general, and promising direction
for future research. If we build clear connections
between ICL and gradient-descent-based learning,
we can borrow ideas from the history of traditional
deep learning to improve ICL.

A.5 In-context Learning Beyond Text

The tremendous success of ICL in NLP has in-
spired researchers to explore in-context learning in
different modalities beyond natural language with
promising results.

< Takeaway: (1) Properly formatted data (e.g.,
interleaved image-text datasets for vision-language
tasks) and architecture designs are key factors
for activating the potential of in-context learning.
Exploring it in a more complex structured space
such as for graph data is challenging and promis-
ing (Huang et al., 2023a). (2) Findings in textual
in-context learning demonstration design and selec-
tion cannot be trivially transferred to other modal-
ities. Domain-specific investigation is required to
fully leverage the potential of in-context learning
in various modalities.

B Experimental Detail

In the experiment, we utilize 8 demonstra-
tions and test on gpt2 (Radford et al., 2019),
gptj (Wang and Komatsuzaki, 2021), LLaMA3-
8B-Instruct(Al@Meta, 2024) and Qwen2-7B-
Instruct (Bai et al., 2023a). All experiments are
executed on a single NVIDIA A100 (80G). For
datasets we choose sst2 (Socher et al., 2013a),
sst5 (Socher et al., 2013b), commonsense_qa (Tal-
mor et al., 2019), ag_news (Zhang et al., 2015)
and snli (Bowman et al., 2015). For the last two
datasets, we only select 1000 data from the train-
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Model Direct PPL Channel
GPT2  44.13(1.00) 114.02(2.58) 157.70(3.57)
GPT-J 611.04(1.00) 1766.82(2.89) 1793.27(2.93)
Qwen2 745.89(1.00) 1886.63(2.53) 1957.97(2.63)
Llama3 790.46(1.00) 1935.04(2.45) 1956.21(2.47)
AVG 1.00 2.61 2.90

Table 4: The qualitative results of the Efficiency met-
ric in Table 3 which record the language model infer-
ence latency (including the time for scoring with dif-
ferent scoring functions, with input data containing 8
in-context examples). The unit is milliseconds (ms).
Each cell’s parentheses contain the ratio of the latency
for the current column model using the current row scor-
ing function to the latency using direct inference. The
final calculated average is the average of these ratios.

Model Direct PPL Channel
GPT2 1.12 0.85 3.18
GPT-J 1.00 0.77 4.06
Qwen2 0.72 0.70 2.43
Llama3 0.89 0.78 243
AVG 0.93 0.78 3.03

Table 5: The qualitative results of the Stability metric
in Table 3 which reflect whether the in-context learning
ability is easily affected by changes in demonstration
examples. We conducted experiments using a test set of
size 10k and set up 5 different random seeds. Each time,
8 examples were randomly selected from Sk training
examples for the experiments. The table records the
variance of performance.

ing set for retrieval and the first 1000 data from
the test set for testing. During the inference phase,
a PPL-based approach is employed. The entire
code framework is built upon OpenICL (Wu et al.,
2023a), for which we extend our gratitude to the
authors.

Table 4 and Table 5 show the quantitative results
on the efficiency and stability metrics for different
scoring functions in Table 3.

C Evaluation and Resources

C.1 Traditional Tasks

As a general learning paradigm, ICL can be ex-
amined on various traditional datasets and bench-
marks, e.g., SuperGLUE (Wang et al., 2019),
SQuAD (Rajpurkar et al., 2018). Implementing
ICL with 32 randomly sampled examples on Su-
perGLUE, Brown et al. (2020) found that GPT-

Benchmark Tasks #Tasks
BIG-Bench .

(Srivastava et al., 2022) Mixed tasks 204
?S?llz_lgun etal., 2023) Unsolved problems 23
PRONTOQA . .

(Saparov and He, 2023) Question answering 1
MGSM

(Shi et al., 2022) Math problems !
{"\Ié ll\gzzkam etal., 2022) Plan and reasoning tasks 8
OPT-IML Bench Mixed tasks 2000

(Iyer et al., 2022)

Table 6: New challenging evaluation benchmarks for
ICL. For short, we use LLMAS to represent LLM As-
sessment Suite (Valmeekam et al., 2022).

3 can achieve results comparable to state-of-the-
art (SOTA) finetuning performance on COPA and
ReCoRD, but still falls behind finetuning on most
NLU tasks. Hao et al. (2022b) showed the po-
tential of scaling up the number of demonstration
examples. However, the improvement brought by
scaling is very limited. At present, compared to
finetuning, there still remains some room for ICL
to reach on traditional NLP tasks.

C.2 New Challenging Tasks

In the era of large language models with in-context
learning capabilities, researchers are more inter-
ested in evaluating the intrinsic capabilities of large
language models without downstream task finetun-
ing (Bommasani et al., 2021).

To explore the capability limitations of LLM on
various tasks, Srivastava et al. (2022) proposed
the BIG-Bench (Srivastava et al., 2022), a large
benchmark covering a large range of tasks, includ-
ing linguistics, chemistry, biology, social behav-
ior, and beyond. The best models have already
outperformed the average reported human-rater
results on 65% of the BIG-Bench tasks through
ICL (Suzgun et al., 2023). To further explore tasks
actually unsolvable by current language models,
Suzgun et al. (2023) proposed a more challenging
ICL benchmark, BIG-Bench Hard (BBH). BBH in-
cludes 23 unsolved tasks, constructed by selecting
challenging tasks where the state-of-art model per-
formances are far below the human performances.
Besides, researchers are searching for inverse scal-
ing tasks,? that is, tasks where model performance
reduces when scaling up the model size. Such
tasks also highlight potential issues with the cur-

2https://github.com/inverse-scaling/prize
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rent paradigm of ICL. To further probe the model
generalization ability, Iyer et al. (2022) proposed
OPT-IML Bench, consisting of 2000 NLP tasks
from 8 existing benchmarks, especially benchmark
for ICL on held-out categories.

Specifically, a series of studies focus on ex-
ploring the reasoning ability of ICL. Saparov and
He (2023) generated an example from a synthetic
world model represented in first-order logic and
parsed the ICL generations into symbolic proofs
for formal analysis. They found that LLMs can
make correct individual deduction steps via ICL.
Shi et al. (2022) constructed the MGSM bench-
mark to evaluate the chain-of-thought reasoning
abilities of LLMs in multilingual settings, finding
that LLMs manifest complex reasoning across mul-
tiple languages. To further probe more sophisti-
cated planning and reasoning abilities of LLMs,
Valmeekam et al. (2022) provided multiple test
cases for evaluating various reasoning abilities on
actions and change, where existing ICL methods
on LL.Ms show poor performance.

In addition, Tang et al. (2023b) proposed a
benchmark called SAMSum, which is a human-
annotated dataset specifically designed for multi-
turn dialogue summarization, to evaluate the qual-
ity of dialogue summaries generated by LLMs via
ICL.

C.3 Open-source Tools

Noticing that ICL methods are often implemented
differently and evaluated using different LLMs and
tasks, Wu et al. (2023a) developed OpenICL, an
open-source toolkit enabling flexible and unified
ICL assessment. With its adaptable architecture,
OpenlICL facilitates the combination of distinct
components and offers state-of-the-art retrieval and
inference techniques to accelerate the integration
of ICL into advanced research.

D In-Context Learning Beyond Text

The tremendous success of ICL in NLP has in-
spired researchers to explore its potential in differ-
ent modalities, including visual, vision+language
and speech tasks as well.

D.1 Visual In-Context Learning

Employing masked auto-encoders (MAE) for im-
age patch infilling, the model trained by Bar et al.
(2022) generates consistent output images at in-
ference, demonstrating robust ICL capabilities for
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Figure 5: Image-only and textual augmented prompting
for visual in-context learning.

Task Text Prompt

tasks like image segmentation. This method is
expanded in Painter (Wang et al., 2023c), which
incorporates multiple tasks to develop a general-
ist model with competitive performance. SegGPT
(Wang et al., 2023d) further builds on this by inte-
grating diverse segmentation tasks and exploring
ensemble techniques to enhance example quality.
Additionally, Wang et al. (2023g) introduce the
Prompt Diffusion model, the first diffusion-based
model with ICL abilities, guided by an extra text
prompt for more precise image generation, as illus-
trated in Figure 5.

Similar to ICL in NLP, the effectiveness of visual
in-context learning greatly depends on the choice
of demonstration images, as shown in research by
(Zhang et al., 2023a) and (Sun et al., 2023). To
optimize this, Zhang et al. (2023a) examine two
strategies: using an unsupervised retriever to select
the nearest samples with an existing model, and a
supervised approach to train a specialized retriever
to boost ICL performance. These approaches im-
prove results by ensuring semantic similarity and
better alignment in viewpoint, background, and ap-
pearance. Beyond retrieval, Sun et al. (2023) also
investigate a prompt fusion technique to further
enhance outcomes.

D.2 Multi-Modal In-Context Learning

In the vision-language domain, a vision encoder
paired with a frozen language model demonstrates
multi-modal few-shot learning capabilities after
training on image-caption datasets, as shown by the
Frozen model (Tsimpoukelli et al., 2021). Extend-
ing this, Flamingo integrates a vision encoder with
large language models (LLMs) for enhanced in-
context learning across multi-modal tasks, leverag-
ing large-scale web corpora (Alayrac et al., 2022).
Similarly, Kosmos-1 exhibits zero-shot, few-shot,
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and multi-modal chain-of-thought prompting abil-
ities (Huang et al., 2023b). METALM intro-
duces a semi-causal language modeling objective
to achieve strong ICL performance across vision-
language tasks (Hao et al., 2022a). The ICL-
D3IE approach employs a novel in-context learning
framework that iteratively updates diverse demon-
strations—including hard, layout-aware, and for-
matting demonstrations to train large language
models (LLMs) for enhanced document informa-
tion extraction (DIE)(He et al., 2023). Recent
advancements include creating instruction tun-
ing datasets from existing vision-language tasks
or with advanced LLMs like GPT-4, connecting
LLMs with powerful vision foundational models
like BLIP-2 for multi-modal learning (Xu et al.,
2023b; Li et al., 2023a; Liu et al., 2023a; Zhu et al.,
2023a; Dai et al., 2023b).

D.3 Speech In-Context Learning

In the speech area, Wang et al. (2023a) treated text-
to-speech synthesis as a language modeling task.
They use audio codec codes as an intermediate rep-
resentation and propose the first TTS framework
with strong in-context learning capability. Subse-
quently, VALLE-X (Zhang et al., 2023d) extend the
idea to multi-lingual scenarios, demonstrating su-
perior performance in zero-shot cross-lingual text-
to-speech synthesis and zero-shot speech-to-speech
translation tasks.

D.4 Comparison with other survey papers

Our survey was drafted and posted on the Arxiv at
the end of 2022, which is, to the best of our knowl-
edge, the very first to review in-context learning in
the field. We also regularly update this survey in a
timely manner, with four major revisions.

Starting from 2023, we notice the emerge of sev-
eral related survey in the field of in-context learn-
ing. Xu et al. (2024) made a comprehensive review
on the choices for models, training procedures and
inference algorithms to retrieve demonstrative ex-
amples of in-context learning. Li (2023) provided
practical suggestions on prompt engineering for in-
context learning. Zhou et al. (2023d) and Highmore
(2024) focused on the theoretical interpretation and
analysis of ICL, which corresponds to Section 5
in this survey. All the above-mentioned survey pa-
pers differ with ours in terms of scope and topics.
This survey focused on the general development of
ICL, including the formal definition of ICL, train-
ing strategies, prompt designing strategies, analysis

and applications.

1128



