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Abstract

Research on continuous sign language recog-
nition (CSLR) is essential to bridge the com-
munication gap between deaf and hearing in-
dividuals. Numerous previous studies have
trained their models using the connectionist
temporal classification (CTC) loss. During in-
ference, these CTC-based models generally re-
quire the entire sign video as input to make
predictions, a process known as offline recogni-
tion, which suffers from high latency and sub-
stantial memory usage. In this work, we take
the first step towards online CSLR. Our ap-
proach consists of three phases: 1) developing
a sign dictionary; 2) training an isolated sign
language recognition model on the dictionary;
and 3) employing a sliding window approach
on the input sign sequence, feeding each sign
clip to the optimized model for online recog-
nition. Additionally, our online recognition
model can be extended to support online trans-
lation by integrating a gloss-to-text network
and can enhance the performance of any of-
fline model. With these extensions, our online
approach achieves new state-of-the-art perfor-
mance on three popular benchmarks across var-
ious task settings. Code and models are avail-
able at https://github.com/FangyunWei/SLRT.

1 Introduction

Sign languages are visual languages conveyed
through hand shapes, body movements, and facial
expressions. The domain of sign language recogni-
tion (SLR) (Jiao et al., 2023; Chen et al., 2022) has
recently attracted considerable attention, particu-
larly for its potential to bridge the communication
gap between the hearing and deaf communities.
SLR can be categorized into isolated sign language
recognition (ISLR) (Hu et al., 2023a; Zuo et al.,
2023) and continuous sign language recognition
(CSLR) (Chen et al., 2022; Zheng et al., 2023).
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ISLR, a supervised classification task, aims to ac-
curately predict the gloss! for each individual sign.
In contrast, as no annotations of sign boundaries
are provided, CSLR is a weakly supervised task.
In this context, a well-optimized model is able to
predict a sequence of glosses from a continuous
sign video containing multiple signs. Compared
to ISLR, CSLR is more challenging but also more
practical. The primary objective of this work is to
develop an online CSLR system.

Drawing inspiration from the advancements in
speech recognition (Amodei et al., 2016), numer-
ous CSLR models are trained using the estab-
lished connectionist temporal classification (CTC)
loss (Graves et al., 2006) with sentence-level anno-
tations. During inference, these models typically
process the entire sign video to make predictions,
leading to issues like high latency and significant
memory consumption. This method is known as
offline recognition, as depicted in Fig. la. Un-
like modern speech recognition systems, which
can recognize spoken words on the fly, CSLR
still lags behind due to the lack of practical on-
line recognition solutions, which are essential in
real-world scenarios such as live conversations or
emergency situations. Although CTC-based meth-
ods can be adapted for online recognition using a
sliding window technique, our empirical findings
show that the discrepancy between training (using
entire, untrimmed sign videos) and inference (us-
ing short, trimmed sign clips) results in suboptimal
performance.

In this paper, we take the first step towards prac-
tical online CSLR. Instead of directly training with
the CTC loss on a CSLR dataset, we optimize
an ISLR model using classification losses on a
dictionary containing all glosses from the target
CSLR dataset. During inference, we apply a slid-
ing window to a given sign video stream and pro-

'A gloss is a label associated with an isolated sign.
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(a) Training and inference of previous offfine recognition models that are trained using the CTC loss. These models require
access to the entire sign video before they can make predictions.
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(b) Training and inference in our online approach. We utilize a pre-trained CSLR model to segment all continuous sign videos
into isolated sign clips. This process creates a dictionary for each CSLR dataset, which supports the subsequent training of an
ISLR model. During inference, we apply a sliding window to the input sign stream and perform on-the-fly predictions. The
function of post-processing is to eliminate duplicates and background predictions.

Figure 1: Ilustration of (a) the offline recognition scheme and (b) the proposed online framework.

cess each video clip through the well-optimized
ISLR model to obtain corresponding predictions.
This approach aligns training and inference by uti-
lizing short video clips as input for both. How-
ever, using a sliding window with a small stride
may lead to multiple scans of the same sign, result-
ing in repetitive predictions. To mitigate this, we
introduce an effective post-processing technique
to eliminate duplicate predictions. We also con-
sider co-articulations, which are the transitional
movements of the body and hands between con-
secutive signs in a continuous video. Since these
movements are generally meaningless, we assign
them to an additional background category, and
predictions in this category are discarded during
post-processing. Our online method is illustrated
in Fig. 1b.

In our methodology, we train the ISLR model
using a sign dictionary. Existing CSLR datasets,
such as Phoenix-2014 (Koller et al., 2015),
Phoenix-2014T (Camgoz et al., 2018), and CSL-
Daily (Zhou et al., 2021), lack such dictionar-
ies. However, a pre-trained CSLR model utiliz-
ing CTC loss can effectively segment continu-
ous sign videos into individual isolated signs (Cui
et al.,, 2019; Wei and Chen, 2023; Zuo et al.,
2024). This process, known as CTC forced align-
ment, is a well-established technique in the speech
community for accurately aligning transcripts to
speech signals (Graves et al., 2006). Therefore, we
use the state-of-the-art CSLR model, TwoStream-
SLR (Chen et al., 2022), as the sign segmentor for

any CSLR dataset. This approach allows us to cre-
ate a sign dictionary that aligns with the glossary
of the respective CSLR dataset. During inference,
a fixed-length sliding window may inadvertently
include both a sign and its co-articulations. To bet-
ter align the training and the inference, we generate
a set of augmented signs from each isolated sign
by trimming video segments surrounding it. This
procedure also significantly enriches the training
data.

Different signs typically exhibit various dura-
tions. Personal habits of signers, e.g., signing
speed, can also amplify this issue. This necessitates
the model’s adaptability to variations in sign dura-
tions, especially when a sliding window includes
both a sign and co-articulations. We introduce a
saliency loss, which compels the model to focus
predominantly on the foreground signs while min-
imizing the influence of the co-articulations. The
implementation is simple—we adopt an auxiliary
classification loss on the pooled feature of the fore-
ground parts.

While our method is primarily designed for on-
line CSLR, it also shows promise for online sign
language translation (SLT) and enhancing offline
CSLR models. We start by implementing an addi-
tional gloss-to-text network, applying the wait-k
policy (Ma et al., 2019) tailored for simultaneous
(online) machine translation. This allows for on-
line SLT by gradually feeding the gloss predictions
generated by our online CSLR model into the wait-
k gloss-to-text network. Furthermore, our online
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CSLR model can facilitate offline CSLR models
in performance. This is achieved by incorporat-
ing a lightweight adapter into our frozen online
model and combining the adapter-generated fea-
tures with those extracted by a pre-trained offline
CSLR model.

Our contributions can be summarized as follows:

* One framework. We introduce an innovative
online CSLR framework that slides an ISLR
model over a sign video stream. To enhance
the ISLR model training, we further propose
several techniques such as sign augmentation,
gloss-level training, and saliency loss.

* Two extensions. First, we implement online
SLT by integrating a wait-k gloss-to-text net-
work. Second, we extend the online CSLR
framework to boost the performance of offline
CSLR models through a lightweight adapter.

e Performance. Our online approach along
with the two extensions establishes new state-
of-the-art results on three widely adopted
benchmarks: Phoenix-2014, Phoenix-2014T,
and CSL-Daily, under various task settings.

2 Related Works

CSLR, ISLR, and SLT. Since only sentence-level
annotations are provided for CSLR, most CSLR
works (Zuo and Mak, 2022; Zheng et al., 2023;
Min et al., 2021; Chen et al., 2022; Hu et al., 2023c;
Niu et al., 2024) adopt the well-established CTC
loss, which is proven effective in speech recogni-
tion (Amodei et al., 2016), to train their models.
These CTC-based models have achieved satisfac-
tory offline CSLR performance. However, there
is a notable performance drop in online scenarios
due to the discrepancy between training on long,
untrimmed videos and inference on short clips. To
address this, FCN (Cheng et al., 2020) proposes a
fully convolutional network with a small receptive
field for preliminary online CSLR efforts. However,
FCN is still trained on long videos, maintaining the
training-inference discrepancy, and its performance
remains suboptimal. In this work, we propose a
novel approach by training an ISLR model on a
sign dictionary, enabling effective online inference
through a sliding window strategy.

ISLR is a classification task and has been ex-
plored in numerous recent works (Hu et al., 2023a;
Zuo et al., 2023; Lee et al., 2023). Some CSLR
models (Cui et al., 2019; Pu et al., 2019; Zhou
et al., 2020) adopt the idea of ISLR to iteratively

train their feature extractors, a process also known
as stage optimization (Cui et al., 2019). In this
work, our ISLR model not only achieves promis-
ing results in online recognition but also boosts the
offline models using a lightweight adapter network.
Taking a step further, SLT (Chen et al., 2024;
Yu et al., 2023; Gan et al., 2023; Lin et al., 2023;
Zhang et al., 2023) involves translating sign lan-
guages into spoken languages. This task is com-
monly approached as an NMT problem, employing
a visual encoder followed by a seq2seq translation
network. Similar to CSLR, online SLT remains
largely unexplored.
Sign Spotting. Given an isolated sign, the goal of
sign spotting is to identify whether and where it
has been signed in a continuous sign video (Varol
et al., 2022). Modern sign spotting works typically
rely on extra cues, including external dictionaries
(Momeni et al., 2020), mouthings (Albanie et al.,
2020), or Transformer attention (Varol et al., 2021).
However, these cues can be either difficult to obtain
(e.g., dictionaries) or unreliable (e.g., mouthings).
Sign spotting is typically used to enrich the train-
ing source for ISLR and few works validate the
spotting task in the context of CSLR.
Online Speech Recognition. Practical online
speech recognition systems have been studied in nu-
merous works (Pratap et al., 2020; He et al., 2019;
An et al., 2022). In these studies, model architec-
tures vary, including CNN (Pratap et al., 2020),
Transformer (Miao et al., 2020), and a combination
of them (An et al., 2022). Additionally, multiple op-
timization frameworks are explored, such as CTC
(Pratap et al., 2020), seq2seq (Fan et al., 2019), or
a hybrid of these (Miao et al., 2019). Unlike online
speech recognition, online CSLR remains under-
explored. This work takes the first step towards
building a practical online CSLR framework.

3 Method

An overview of our online framework is shown in
Fig. 2. We first build a sign dictionary with the aid
of a sign segmentor, i.e., a pre-trained CSLR model
(Sec. 3.1). Then, we train an ISLR model on this
dictionary, employing dedicated loss functions at
both the instance and gloss levels (Sec. 3.2). This
is followed by a demonstration of online inference
using the optimized ISLR model (Sec. 3.3). Finally,
we present two extensions (Sec. 3.4): (1) enabling
online SLT with a wait-k gloss-to-text network; (2)
boosting the performance of an offline model using
our online model.
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(a) Dictionary construction. We adopt a pre-trained CSLR model as the sign segmentor to segment each continuous sign video
into its constituent isolated signs, referred to as pseudo ground truths. Subsequently, we create augmented signs by cropping
clips around each pseudo ground truth. Both segmented isolated signs (pseudo ground truths) and augmented signs are then
incorporated into our dictionary.
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(b) Training of ISLR model. Our model is trained on the created dictionary under the supervision of the cross-entropy (CE) loss
and the proposed saliency loss (Fig. 2c) at both instance and gloss levels.
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(c) Saliency loss. It drives the model to focus more on the foreground sign instead of meaningless co-articulations (background).
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Figure 2: Overview of our methodology.

3.1 Dictionary Construction

Sign Segmentor. Existing CSLR datasets (Koller
etal., 2015; Camgoz et al., 2018; Zhou et al., 2021)
only provide sentence-level gloss annotations, lack-
ing labels for the temporal boundaries of each iso-
lated sign. Inspired by the observation that a well-
trained CTC-based CSLR model can identify the
approximate boundaries of the isolated signs in
a continuous sign video—by searching the most
probable alignment path with respect to the ground
truth (GT) (Cui et al., 2019)—we adopt the state-of-
the-art CSLR model, TwoStream-SLR (Chen et al.,
2022), as the sign segmentor. This model segments
each continuous sign video into a sequence of iso-
lated signs, as depicted in Fig. 2a.

We collect these segmented signs (pseudo GT) to
form a dictionary D. Each sign s € D is expressed
as a quadruple (V', ty, t., g), where V is the corre-
sponding continuous sign video, t; and t. denote
the beginning and ending frame indexes of sign s in
V, and g is the gloss label. Note that g € V,U{@},
where V, is the gloss vocabulary and & is the blank

(background) class. The segmentation process is
detailed in Sec. A.1.

Sign Augmentation. During inference, a sliding
window may inadvertently include both a sign and
its co-articulations. To better align the training and
the inference, we generate a set of augmented signs
for each pseudo GT. This is done by cropping clips
around each s € D, as shown in Fig. 2a. For each
pseudo GT sign s = (V,tp, L., g) appearing in a
sign video V', we generate t. —t,+ 1 augmented in-
stances {(V,i—W/2,i+W/2—1, g)}f‘;tb around
s, where W (W = 16 by default) is the window
size. These yielded instances are then added to
the dictionary, thereby significantly enhancing the
training source. Consequently, the final sign dictio-
nary consists of N, glosses, each linked to a set of
sign instances that include both pseudo GT signs
{s} and augmented signs {$5}.

3.2 ISLR Model

This section delineates the training methodology
and the associated loss functions utilized for the
ISLR model. Following TwoStream-SLR (Chen
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et al., 2022), the backbone comprises two parallel
S3D (Xie et al., 2018) networks, which model RGB
sign videos and human keypoints, respectively. The
input sign video spans W frames.

Mini-Batch Formation. In the traditional clas-
sification task, instances from a training set are
randomly selected to form a mini-batch. This sam-
pling strategy is referred to as instance-level sam-
pling. In this work, we empirically discover that the
gloss-level sampling (our default strategy) yields
better performance. As illustrated in Fig. 2b, we
initially sample M glosses from the dictionary. For
each gloss, we then sample K instances to form a
mini-batch, resulting in an effective batch size of
M x K. In our implementation, the K instances
sampled for each gloss can be either a pseudo GT
sign or its augmentations as described in Sec. 3.1.
Our technique shares a similar spirit with batch
augmentation (BA) (Hoffer et al., 2020), which
augments a mini-batch multiple times. Our gloss-
level sampling differs by employing “temporally
jittered” instances around the pseudo GT signs to
form a training batch, instead of directly augment-
ing the pseudo GT as in BA. Nevertheless, our
sampling strategy still retains the benefits of BA,
such as decreased variance reduction.

Loss Functions. Given a mini-batch with a size
of M x K, let p;'- denote the posterior probability
of the sample with gloss index i € [1, M] and
instance index j € [1, K]. The classification loss
of our ISLR model is composed of two parts: 1)
an instance-level cross-entropy loss (£Z,) applied
across M x K instances; 2) a gloss-level cross-
entropy loss (Efe) applied over M glosses to learn
more separable representations. The two losses can
be formulated as:

1 M K
I _ i
[’ce - _M % Kz;zglogpja
i=1 j=

(D

S R
Eceziﬂzlog} : pj-

=1 j=1

Saliency Loss. Our ISLR model processes sign
clips with a fixed length, but the foreground re-
gions in these clips can vary. To address this, we
devise a saliency loss that encourages the model
to prioritize the foreground sign and disregard the
background signs (co-articulations). An illustration
of the proposed saliency loss is shown in Fig. 2c.
In detail, for a training sample 5 = (V' 1, L¢, g),
which is an augmented instance of pseudo GT s =
(V, tp, te, g), we input it into our ISLR model. This

process yields its encoded feature f € R7s/@xC,
where T, = t, — 1 + 1 is the clip length, & = 8
is the down-sampling factor of the neural network,
and C denotes the channel dimension. Next, we up-
sample f to f,, € RATs/@%C ysing an up-sampling
factor 5 (8 = 4 by default). The overall scaling fac-
tor thus becomes 3/a. Without loss of generality,
assuming that fb <ty < to < te, the foreground
area starts from the ¢,-th frame and ends at the £,-th
frame. We then can generate the foreground feature
£+ € R by pooling £,[[Bty/a] : |Bic/al,
along the temporal dimension.

Finally, the saliency loss L; is implemented as
a cross-entropy loss over the probability yielded
from f;. Similar to Ll and LG, our saliency
loss is imposed at both instance and gloss levels,
denoted as £1 and L&, respectively.
Overall Loss Function. It is implemented as
the summation of the classification loss and the
saliency loss at both instance and gloss levels:
L=Ll+c8+ 4 L8

3.3 Online Inference

As shown in Fig. 2d, the online inference is im-
plemented using a sliding-window strategy with a
stride of S. Generally, sliding-window approaches
produce duplicate predictions, as they may scan
the same sign multiple times. Therefore, post-
processing is always necessary. The pseudo code of
our online post-processing is provided in Alg. 2 in
the appendix. The algorithm has two key functions:
(1) voting-based deduplication (Line 12), and (2)
background elimination (Line 13). Please refer to
Sec. A.2 for more details.

3.4 Extensions

Online Sign Language Translation. As shown in
Fig. 3, we append an additional gloss-to-text net-
work (Chen et al., 2022) with the wait-k policy (Ma
et al., 2019) onto our online CSLR model to enable
online SLT. This wait-k policy enables text predic-
tions after seeing k glosses (k = 2 following (Yin
et al., 2021)). During the inference phase, gloss
predictions produced by our online CSLR model
are sequentially fed into the well-optimized gloss-
to-text network, to produce translation results.

Promote Offline Models with Online Model. Our
online CSLR model can also enhance the perfor-
mance of offline models. As shown in Fig. 4, con-
sider two well-optimized CSLR models: our online
model and an existing offline model. Let f and f
denote the features extracted by the online model
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Figure 3: Appending a gloss-to-text network with the
wait-k policy onto our online CSLR model enables on-
line SLT. Circles and arrows distinguished by varied
colors indicate translation outcomes at distinct timings.

and the offline model, respectively. To first align
the dimensions of the two features, we attach a
lightweight adapter network—comprising a down-
sampling layer and a 2-layer MLP—to the online
model. This network projects f to f, matching
the dimension of f . We then fuse f and f using a
weighted sum operation: f ¢, = A FH(1-X) £,
where ) is a trade-off hyper-parameter set to 0.5 by
default. Finally, f . is fed into a classification
head supervised by the CTC loss. The training is
extremely efficient since the parameters of both
online and offline models are frozen. We adopt
TwoStream-SLR (Chen et al., 2022) as the offline
model due to its exceptional performance.

4 Experiments

4.1 Implementation Details

Datasets. We evaluate our method on three widely-
adopted datasets: Phoenix-2014 (P-2014) (Koller
et al., 2015), Phoenix-2014T (P-2014T) (Camgoz
et al., 2018), and CSL-Daily (CSL) (Zhou et al.,
2021). P-2014 is a German sign language dataset
consisting of 5,672/540/629 samples in the training,
development (dev), and test set, respectively, with
a vocabulary size of 1,081 glosses. P-2014T is
an extension of P-2014, which consists of 1,066
glosses and 7,096/519/642 samples in the training,
dev, and test set. CSL is the latest Chinese sign
language dataset with a vocabulary size of 2,000
glosses. There are 18,401/1,077/1,176 samples in
its training, dev, and test set.

Evaluation Metrics. Following (Chen et al., 2022),
we use word error rate (WER), which measures the
dissimilarity between the prediction and the GT,
as the evaluation metric for CSLR. A lower WER
indicates better performance. For SLT, we report
BLEU-4 scores computed by SacreBLEU (v1.4.2)
(Post, 2018).

Training. Our ISLR model is trained with an effec-

& Head
Continuousi Sign Video D
SlidingWindow | (@  Adapter )
LR S TR N
CJCoCJCd - —{% OnlineCSLR |

Figure 4: Boosting an offline model with our online
model. A lightweight adapter fuses the features of two
well-trained CSLR models, one offline and one online.
The parameters of both CSLR models remain frozen.

tive batch size of 4 x 6 (4 glosses and 6 instances
per gloss), for 100 epochs. We use a cosine an-
nealing schedule and an Adam optimizer (Kingma
and Ba, 2015) with a weight decay of 1~ and an
initial learning rate of 6e~*. When fine-tuning the
adapter network and classification head, we use a
smaller learning rate of 1e~* and fewer epochs of
40. We set A = 0.5.

Inference. Online inference is implemented using
a sliding window approach. We set W = 16,5 =
1,B = 7 in Alg. 2. For both offline inference
and CTC-based online inference, a CTC decoder
with a beam width of 5 is used following (Chen
et al., 2022). More details and studies on hyper-
parameters are available in the appendix.

4.2 Comparison with SOTA Methods

Online Recognition. Almost all previous CSLR
works are trained under the supervision of the
CTC loss (Graves et al., 2006). During inference,
these approaches generally process an entire sign
video to generate predictions, i.e., offline recogni-
tion. These CTC-based approaches can be simply
adapted to online recognition by employing a slid-
ing window strategy to the input sign stream. To
decode the predictions of the current window U,
the initial step involves feeding U into the CSLR
model, which yields a probability map P. The
prediction of U is obtained from the CTC decoder,
which considers P and the last decoding state of
the preceding window. Refer to the original imple-
mentation (Graves et al., 2006; Parlance, 2021) for
more details. We implement the online inference
for the previously best-performing offline model,
TwoStream-SLR, equipped with the same post-
processing algorithm. The comparison with the on-
line TwoStream-SLR is shown in Tab. 1. The per-
formance of online TwoStream-SLR significantly
degrades compared to its offline counterpart. We
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. . P-2014 P-2014T CSL
Method Window Size Dev] Test] | Dev] Test] | Dev] Test|
40 202 280 | 290 296 | 447 447

. 3 305 302 | 304 308 | 489 502
FCN™ (Cheng et al., 2020) 24 325 328 | 329 347 | 556 563
16 365 364 | 388 391 | 723 728

40 236 237 | 231 239 | 430 437

3 251 250 | 247 260 | 527 537

TwoStream-SLR (Chen et al., 2022) 24 268 266 | 288 296 | 684 692
16 303 316 | 384 393 | 1014 1033

Ours | 16 | 226 221|222 221 | 302 293

Table 1: Comparison with other online CSLR methods across three benchmarks. With the aid of a sliding window,
TwoStream-SLR (Chen et al., 2022) (state-of-the-art offline model) is capable to fulfill online recognition. *: Due to
the unavailability of the source code, we reimplement FCN (Cheng et al., 2020), a preliminary attempt for online
CSLR. We report their performance using the WER % metric.

Method Win. P-2014T CSL
Size | Devt Test? | Devt  Testt
SimulSLT | N/A | 22.85 23.14 | -  13.88"
40 | 2280 22.64 | 1854 17.98
Twost 32 | 2223 2201 | 1632 1623
wostream | H4 12219 19.92 | 13.66  13.49
16 | 1836 1881 | 10.40  9.98
Ours | 16 | 2375 23.69 | 2120  20.63

Table 2: Comparison with other online SLT methods
on two benchmarks. For fair comparison, we use the
same wait-k gloss-to-text network for both TwoStream
Network (Chen et al., 2022) and our method. * denotes
reimplementation results in (Sun et al., 2024).

hypothesize that this decline in performance is due
to the discrepancy between training (on untrimmed
sign videos) and inference (on short sign clips).
Even using a larger window size of 40, the perfor-
mance gap remains over 5% on P-2014 and 18%
on CSL. This gap is particularly pronounced on
CSL, which we attribute to the longer duration
of test videos in CSL. In contrast, our method di-
rectly optimizes an ISLR model and feeds each
sliding window into this well-optimized model dur-
ing inference, thereby aligning training and infer-
ence processes. Our approach outperforms on-
line TwoStream-SLR with a window size of 16
by 9.5/17.2/74.0% across the three datasets.

FCN (Cheng et al., 2020) presents a preliminary
attempt for online CSLR, using a fully convolu-
tional network with a small receptive field. How-
ever, its evaluation lacks real-world applicability.
The authors simulate the online scenario by either
concatenating multiple sign videos or splitting a
single video into a predefined number of chunks.
To ensure a fair comparison under a realistic sce-
nario, we reimplement FCN and achieve offline
recognition WERs of 23.9/24.2% and 23.0/24.5%

P-2014 | P-2014T CSL
Dev| Test||Dev] Test||Dev] Test)

STMC (Zhou et al., 2020) 21.1 20.7]19.6 21.0| - -
C2SLR (Zuo and Mak, 2024) [20.5 20.4|20.2 20.4[31.9 31.0
SignBERT+ (Hu et al., 2023a)| 19.9 20.0|18.8 19.9| - -
SEN (Hu et al., 2023b) 19.5 21.0{19.3 20.7|31.1 30.7
CTCA (Guo et al., 2023) 19.5 20.1{19.3 20.3|31.3 294
CorrNet (Hu et al., 2023c¢) 18.8 19.4|18.9 20.5|30.6 30.1
TwoStream (Chen et al., 2022)| 18.4 18.8|17.7 19.3|25.4 25.3

Ours |17.9 18.0(17.2 18.6]24.8 24.4

Method

Table 3: Comparison with other offline CSLR methods.

on P-2014 and P-2014T, respectively. These results
are comparable to those reported in the original
FCN paper. When evaluated in the online context,
our model consistently outperforms FCN across all
three benchmarks, as shown in Tab. 1.

Online Translation. The pioneering effort in on-
line SLT is made by SimulSLT (Yin et al., 2021).
Our approach diverges from SimulSLT in three
main aspects: 1) instead of using a masked Trans-
former like SimulSLT to encode sign videos, we in-
corporate an ISLR model for encoding sign clips; 2)
for inference, where SimulSLT relies on a boundary
predictor to generate word boundaries, we adopt a
more straightforward sliding window strategy; 3)
unlike SimulSLT, which is tailored exclusively for
online SLT, our model is versatile enough to ac-
commodate both online CSLR and SLT. As shown
in Tab. 2, by integrating the wait-k gloss-to-text
network into our online CSLR model, we observe
superior BLEU-4 scores in comparison to Simul-
SLT. Furthermore, our translation model also out-
performs the online TwoStream Network, despite
using the same gloss-to-text network.

Offline Recognition. As described in Sec. 3.4
and illustrated in Fig. 4, our well-trained online
model can enhance the performance of any offline
model through the use of an adapter network. We
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Method  |Window Size| WER%| AL| WPL| Memory]
Entire video | 17.7 4,299 261 15.0
40 23.1 800 94 6.4
TwoStream 32 24.7 640 66 6.0
24 28.8 480 50 5.5
16 38.4 320 31 5.1
ous | 16 | 222 320 29 51

Table 4: Comparison with offline/online TwoStream-
SLR in latency and memory cost (GB) on the P-2014T
dev set. AL (ms): algorithmic latency; WPL (ms): win-
dow processing latency. It refers to offline recognition
when the window size is set to “Entire video.”

instantiate the offline model with the TwoStream-
SLR model due to its superior performance. As
shown in Tab. 3, our approach, which involves
fine-tuning only the lightweight adapter network
and classification head, outperforms the previous
best results by 0.8/0.7/0.9% on the test sets of the
three benchmarks.

4.3 Ablation Studies

Unless otherwise specified, all ablation studies are
conducted on P-2014T.

Latency and Memory Cost. Offline models are
hampered by high latency and substantial memory
requirements. As Tab. 4 illustrates, we quantita-
tively compare our method against both offline and
online TwoStream-SLR models concerning latency
and memory costs. Following prior research in on-
line speech recognition (Strimel et al., 2023; Shi
et al., 2021), we categorize latency into two types:
algorithmic latency (AL) and window processing
latency (WPL). AL refers to the minimum theo-
retical delay necessary for generating a prediction,
which directly correlates with the window size. In
contrast, WPL denotes the actual time required
to produce a prediction for a specific window in-
put. These evaluations are conducted using a single
Nvidia V100 GPU. The findings highlight that, in
comparison to the offline TwoStream model, our
online model achieves a significant reduction in AL
by approximately 92% and lowers memory costs by
66%. Additionally, our approach significantly sur-
passes the online TwoStream-SLR in performance
using the same window size. A demo is available
in the supplementary materials.

Effects of Major Components. In Tab. 5, we ex-
amine the effect of each major component by pro-
gressively adding them to our baseline ISLR model.
This baseline model is trained only on pseudo GT
({s}) without the background class, using a single
objective function £/, achieving a WER of 62.9%

ce’

BG | Sign | Gloss-Level Training | Sal.
Class Alio’g. G-L Samp. G-L Los% Loss Dev] Test)
62.6 62.9
v 49.1 48.4
v v 244 244
v v v 227 234
v v v v 224 22.6
v v v v v 1222 221

Table 5: Ablation studies for the major components.
Each row employs the post-processing. BG: back-
ground; Aug.: augmentation; Samp.: sampling; Sal.:
saliency.

Method | Accuracyt Dev] Test]
Equal Partitions 14.4 926 923
CTC Forced Alignment 93.4 22.2 22.1

Table 6: Study on sign segmentor.

on the test set. Then, we introduce the background
class into the training, resulting in a significant
WER reduction of 14.5%. The largest performance
gain comes from sign augmentation: the model
trained on both pseudo GT and augmented signs
({s} U {s}) outperforms the model trained only on
{s}, reducing the WER by 24.0%. Next, our gloss-
level training strategy, which uses: 1) a gloss-level
sampling strategy that randomly selects M glosses,
each comprising K instances; 2) an improved ob-
jective function £, + L&, further decreases the
WER to 22.6%. At last, adding the saliency loss
will lead to the final test WER of 22.1% with negli-
gible extra costs.

Sign Segmentor. We segment isolated signs from
continuous videos to build a dictionary for ISLR
model training. It is infeasible to directly evaluate
its quality due to the lack of frame-level annota-
tions. As an alternative, we invite an expert signer
to conduct a human evaluation on the isolated signs
of 100 randomly picked glosses in P-2014T. The
signer needs to judge whether each sign is correctly
categorized. As shown in Tab. 6, our default sign
segmentor that uses the CTC forced alignment al-
gorithm can lead to an accuracy of 93.4%. To better
validate its significance, we implement a baseline
sign segmentor that equally partitions each contin-
uous sign video according to the number of glosses.
The isolated signs obtained in this way suffer from
low accuracy (14.4%), resulting in a much worse
online CSLR performance (>90% WER) than our
default strategy.

Sign Augmentation. As described in Sec. 3.1, we
augment each segmented isolated sign s (pseudo
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Strategy ~ Threshold | Dev]  Test|
IoU 0.5 274 271
IoU 0.3 23.4 23.6

Center N/A 22.2 22.1

Table 7: Study on sign augmentation strategies.

A | 1.0 07 0.5 0.3 0.0

Dev] | 205 173 172 174 177
Test] | 20.8 18.7 18.6 18.6 193

Table 8: Study on fusion weight \.

ground truth) by generating a collection of video
clips {$} around it. These clips are centered within
the duration of s. We compare our default strategy
with an alternative that employs an intersection-
over-union (IoU) criterion (Shou et al., 2016) to
generate augmented sign clips. In this IoU-based
strategy, clips {5} are selected if they meet the
condition ToU(s, §) > ~, where + is a predefined
threshold. As shown in Tab. 7, the IoU-based strat-
egy is sensitive to the threshold variation: a large
threshold may result in insufficient augmented
signs, particularly for short isolated signs. In con-
trast, our default strategy does not rely on a prede-
fined threshold and considers each isolated sign s
equally.

Feature Fusion. In Tab. 8, we study the fusion
weight A\, when combining the features produced by
our online model with an adapter network and the
offline model (i.e., TwoStream-SLR (Chen et al.,
2022)) to boost offline recognition (see Sec. 3.4).
Setting A = 0.0 degenerates the integrated model
to the offline TwoStream-SLR model, whereas
A = 1.0 indicates that only the features encoded
by the online model are used. Note that when
A = 1.0, the fused model is trained using the origi-
nal ISLR model (whose parameters are frozen), the
adapter network, and the classification head, under
the supervision of the CTC loss. Thus, the result-
ing model performs (20.5/20.8% WER on dev/test
set) better than its online counterpart (22.2/22.1%
WER on dev/test set), as it considers more contexts
during training. We empirically set A = 0.5. More
ablation studies are available in Sec. B.

5 Conclusion

In this work, we develop a practical online CSLR
framework. First, we construct a sign dictionary
that aligns with the glossary of a target dataset.
To enrich the training data, we collect augmented
signs by cropping clips around each sign. To enable
online CSLR, we train an ISLR model on the dic-

tionary, using both standard classification loss and
the introduced saliency loss. During inference, we
perform online CSLR by feeding each sliding win-
dow into the well-optimized ISLR model on the fly.
A simple yet efficient post-processing algorithm is
introduced to eliminate duplicate predictions. Fur-
thermore, two extensions are proposed for online
SLT and boosting offline CSLR models, respec-
tively. Along with the extensions, our framework
achieves SOTA performance across three bench-
marks under various task settings.

6 Limitations

Although we present an effective system for online
CSLR, our approach has several limitations. First,
we use a sign segmentor, i.e., a pre-trained CTC-
based CSLR model, to segment continuous sign
videos into several isolated sign clips as pseudo GT
when building a dictionary. However, the bound-
aries of signs are inherently ambiguous, introduc-
ing unavoidable noise into the subsequent ISLR
model training. Recent works on sign segmenta-
tion (Renz et al., 2021; Moryossef et al., 2023)
may assist in constructing a dictionary with high-
quality samples, which are expected to benefit our
system. Second, as discussed in TwoStream-SLR
(Chen et al., 2022), imprecise 2D keypoint esti-
mation caused by motion blur, low-quality video,
etc., can degrade model performance. A keypoint
estimator specifically designed for sign language
recognition might mitigate this issue. Third, our
training framework certainly causes losses of con-
textual information, resulting in worse performance
than typical offline models. In the future, intro-
ducing extra knowledge, e.g., facial expressions
(Viegas et al., 2023), handshape (Zhang and Duh,
2023), and phonology (Kezar et al., 2023), may
boost model performance.

It is also worth mentioning that our method re-
lies on glosses. As suggested by (Miiller et al.,
2023), below we discuss the limitations of gloss-
dependent approaches and the Phoenix datasets:

* Limitations of gloss-dependent approaches.
Sign languages convey information through
both manual and non-manual features. This
multi-channel nature makes glosses—unique
identifiers for signs—prone to irrecoverable
information loss. Our work represents an ini-
tial effort in online sign language processing,
and we hope it will inspire future research
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towards more advanced, gloss-free sign lan-
guage translation.

* Limitations of the Phoenix datasets. We recog-
nize several limitations in the Phoenix-2014
and Phoenix-2014T datasets, such as: 1) a
narrow focus on weather forecasts; 2) a lim-
ited number of video-sentence pairs; and 3)
simplistic glosses that lose non-manual fea-
tures. To better assess our method’s effec-
tiveness, we introduce CSL-Daily, the largest
Chinese sign language dataset, with a vocabu-
lary of 2,000 glosses and about 20,000 video-
sentence pairs—almost 2.5 times larger than
Phoenix. CSL-Daily covers more diverse do-
mains, such as family life and medical care.
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A More Implementation Details

A.1 Sign Segmentor

n=1 0 O O
n=2 & e ©o
n=3 0 O O O O
n=4 9. @ e O
n=s o O O O O O
q(t,n)
n=2 v @ @ @
weisi0 O O O ;g
t=1 t=2 t=3 t=T—-1t=T

Figure 5: Illustration of the CTC forced alignment al-
gorithm used to compute ¢(t,n) (Eq. 4). @ is the
blank class, (g1,-..,9s) is the gloss sequence. The
red lines denote the optimal path, which is obtained by
backtracking from the final gloss that has the maximum
probability (Eq. 8). Pseudo code is available in Alg. 1.

We use a pre-trained CSLR model, TwoStream-
SLR (Chen et al., 2022), to segment continuous
sign language videos into a set of isolated sign clips,
which are then utilized to train our ISLR model.
Below we formulate the segmentation process.

Given a continuous sign video V' comprising 7’
frames and its gloss sequence g = (g1,...,9N)
consisting of NV glosses, the probability of an align-
ment path 8 = (01, ...,07) with respect to the
ground truth g, where 0, € {g;}Y, U {2} and &
is the blank (background) class, can be estimated
with the conditional independence assumption:

T
p(0|V) =[] p:(6s), 2)
=1

where p;(6;) denotes the posterior probability that
the ¢-th frame is predicted as the class 6;. Note that
due to the temporal pooling layers in the model’s
backbone (S3D (Xie et al., 2018)), we up-sample
the original output probabilities of the CSLR model
by a factor of 4 to match the length of the input
sign video.

The optimal path is the one with the maximum
probability:

0" = argmaxp(0|V), (3)
0cS(g)
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Algorithm 1 Search for the optimal alignment path

forn < 1to2N +1do
fort < 2to7 do

end for
end for
n < arg maxyeonon+1} 4(15 k)
07 < Gn
fort < T —1toldo
N 4= arg max ¢(n)<p<n 4(t; k)
0F < Gn
: end for
: return 0" = (67, ..

R A A S ey

—_
B 22

5 07)

Q(tv TL) - pt(gn) maXxg(n)<k<n q(t — 1, k)

Input: Frame-wise probabilities p; Extended gloss sequence g; Initialized ¢(¢,0) and ¢(1,n)
Output: The optimal alignment path 8* = (67, ..

*
. 0%)
> Recursive computation

> Backtracking

where S(g) denotes the set containing all feasi-
ble alignment paths with respect to ground truth
g. After obtaining the optimal path 8%, we aggre-
gate successive duplicate predictions into a single
isolated sign.

We apply the CTC forced alignment algorithm
(Cui et al., 2019; Graves et al., 2006; Wei and Chen,
2023) to search for the optimal path 8*. First, we in-
sert blanks to the gloss sequence following the prac-
tice in (Cui et al., 2019; Graves et al., 2006). This
process results in an extended gloss sequence of
length 2N + 1: g = (2,91,9,92,...,9,9N, D).
Subsequently, we define ¢(t,n) as the maximum
probability, up to time step ¢, for the sequence com-
prising the first » elements of g. ¢(¢,n) can be
recursively computed as:

t.n) = pi(gn t—1,k), 4
q(t,n) = pe(g )f(glgggnﬂ ), 4
where
n—1 ifg,=3o0r g, o= 3
f(n) = .
n — 2 otherwise
)

following (Graves et al., 2006). The initial condi-
tions of ¢(t,n) are defined as:

q(t,0)=0,1<t<T, (6)
pl(gn) n:172

1,n) = G

atn) {0 2<n<2N+1 2

The probability of the optimal path can be formu-
lated as:

p(O7[V) = ke{gljle%}ﬁm} a(T, k). ®)

Finally, the optimal path 8* can be obtained by
backtracking p(6*|V') in Eq. 8. We provide an
illustration and pseudo code of both the recursive
computation and backtracking in Fig. 5 and Alg. 1.

A.2 Online Inference

The pseudo code of our online post-processing al-
gorithm is provided in Alg. 2. The algorithm has
two key functions: (1) voting-based deduplication
(Line 12), and (2) background elimination (Line
13). We build a simple deduplicator based on ma-
jority voting: we collect predictions from B slid-
ing windows to form a voting bag, and output the
predicted class that appears more than B/2 times.
If no class meets this criterion, the bag yields a
background class @. Finally, we eliminate back-
ground predictions and merge non-background pre-
dictions; for instance, {A,@,2} — {A} and
{A, A A} — {A}.

A.3 Architecture of the ISLR Model

Following TwoStream-SLR (Chen et al., 2022), we
build our ISLR model using a two-stream architec-
ture, which processes both RGB videos and key-
point heatmaps to more effectively interpret sign
languages. The video stream consists of a S3D
network (Xie et al., 2018) for feature extraction,
coupled with a head network. The head network
includes a temporal average pooling layer and a
fully connected layer followed by a softmax layer
for computing gloss probabilities. The input video
dimensions are 7' x H x W x 3, where T repre-
sents the number of frames, and H and W denote
the frame height and width, respectively. We stan-
dardize H and W to 224 and set 7" to 16. The S3D
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Algorithm 2 Post-processing for online inference

1:

2: Output: Post-processed predictions

3: 104+ 0

4: raw < Queue(maxsize = B)

5. temp <+ &

6: output + (]

7: while receive new frames do

8: V « concat(frame;, ..., frame;tw_1)
9: p < arg max(M(V))
10: raw.push(p)

11: if raw.full() then

12: Py < voting(raw)

13: if (p, # @) and (p, # output[—1] or temp = &) then
14: print(py)

15: output.append(py)

16: end if

17: temp <— py

18: raw.pop|()

19: end if

20: 11+ S
21: end while
22: return output[1:]

Input: ISLR model M; sliding window size W; sliding stride S’; voting bag size B

> Raw predictions
> Variable to store last voting result
> Post-processed predictions

> Majority voting
> [—1] denotes the last element
> Output online predictions

> Output final predictions

network outputs features of size 7'/8 x 1024 after
spatial pooling, which are then input into the head
network to generate the gloss probabilities.

Human keypoints are represented as a sequence
of heatmaps, following (Duan et al., 2022), allow-
ing the keypoint stream to share the same archi-
tecture as the video stream. For each sign video,
we first use HRNet (Sun et al., 2019) pre-trained
on COCO-WholeBody (Jin et al., 2020), to gener-
ate 11 upper body keypoints, 42 hand keypoints,
and 10 mouth keypoints. These extracted key-
points are then converted into heatmaps using a
Gaussian function (Chen et al., 2022; Duan et al.,
2022). The input heatmap sequence has dimensions
T'x H' xW'x N, where N;, = 63 denotes the total
number of keypoints, and we set H' = W' = 112
to reduce computational cost.

Following TwoStream-SLR (Chen et al., 2022),
we incorporate bidirectional lateral connections
(Duan et al., 2022; Feichtenhofer et al., 2019) and
a joint head network to better explore the potential
of the two-stream architecture. Lateral connections
are applied to the output features of the first four
blocks of S3D. Specifically, we utilize strided con-
volution and transposed convolution layers with
a kernel size of 3 x 3 to align the spatial reso-
lutions of features produced by the two streams.

Subsequently, we add the mapped features from
one stream to the raw output features of the other
stream to achieve information fusion. The joint
head network maintains the architecture of the orig-
inal network in each stream. Its distinctive feature
is that it processes the concatenation of the out-
put features of both streams. Refer to the original
TwoStream-SLR paper (Chen et al., 2022) for ad-
ditional details.

A.4 Training Details

ISLR Model. We train our ISLR model for 100
epochs with an effective batch size of 4 x 6, which
means that 4 glosses and 6 instances for each gloss
are sampled. For data augmentation, we use spa-
tial cropping with a range of [0.7-1.0] and tempo-
ral cropping. Both RGB videos and heatmap se-
quences undergo identical augmentations to main-
tain spatial and temporal consistency. We employ a
cosine annealing schedule and an Adam optimizer
(Kingma and Ba, 2015) with a weight decay of
le — 3 and an initial learning rate of 6e — 4. La-
bel smoothing is applied with a factor of 0.2. All
models are trained on 8§ x Nvidia V100 GPUs.

Wait-k Gloss-to-Text Network. To facilitate on-
line sign language translation, we train an addi-
tional gloss-to-text network using the wait-k policy
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P-2014 P-2014T
Method ‘ Dev] Test| | Dev] Test]
NLA-SLR | 342 337 | 329 334
Ours 22.6 221 | 222 221

Table 9: Comparison with the state-of-the-art ISLR
method, NLA-SLR (Zuo et al., 2023), in the online
CSLR context.

(Ma et al., 2019), setting k£ = 2 as suggested in
(Yin et al., 2021). We employ the mBART archi-
tecture (Liu et al., 2020) for this network, owing
to its proven effectiveness in gloss-to-text transla-
tion (Chen et al., 2022). The implementation of
the wait-k policy strictly adheres to the guidelines
in (Ma et al., 2019), involving the application of
causal masking. The network undergoes training
for 80 epochs, starting with an initial learning rate
of 1le — 5. To prevent overfitting, we incorporate
dropout with a rate of 0.3 and use label smoothing
with a factor of 0.2.
Boosting Offline Model. Our online model can
boost the performance of offline models with an
adapter, as shown in Fig. 4 of the main paper.
When fine-tuning the adapter network and the clas-
sification head, we adopt a smaller learning rate
of 1e — 4 and fewer epochs of 40, and the weight
A = 0.5. We adopt the CTC loss (Graves et al.,
2006) as our objective function. Eq. 2 computes
the probability of a single alignment path 6. The
CTC loss is applied across the set of all feasible
alignment paths S(g) in relation to the ground truth
g:

Lete = —log Z p(0|V). )

0cS(g)

B More Quantitative Results

B.1 Comparison with the SOTA ISLR Method

In this paper, we utilize an ISLR model to ful-
fill online CSLR. Our approach introduces novel
techniques for enhancing the training of the ISLR
model, including sign augmentation, gloss-level
training, and saliency loss. To further verify the
effectiveness of our model, we re-implement the
leading ISLR method, NLA-SLR (Zuo et al., 2023).
This approach integrates natural language priors
into ISLR model training and demonstrates state-
of-the-art results across various ISLR benchmarks
(Li et al., 2020; Joze and Koller, 2019; Hu et al.,
2021). However, as shown in Tab. 9, in the online
CSLR context, our method significantly outper-

Method | Win. Size | Devt  Test}
GT Glosses ‘ N/A ‘ 2541 2449
40 22.80 22.64
TwoStream 32 22.23  22.01
24 22.19 19.92
16 18.36  18.81
Ours |16 | 2375 23.69

Table 10: Comparison with a gloss-to-text translation
model using ground-truth glosses on P-2014T.

forms NLA-SLR, evidenced by a notable 11.3%
reduction in word error rate (WER) on the Phoenix-
2014T test set, affirming the superiority of our
ISLR techniques.

B.2 Gloss-to-Text Translation Using GT
Glosses

As indicated in Tab. 10, utilizing ground-truth
glosses achieves a BLEU-4 score of 24.49 on the
P-2014T test set. Notably, our online method ap-
proaches this upper bound more closely than other
online TwoStream baselines, with a minimal gap
of 0.8 BLEU-4 point.

B.3 Study on Hyper-Parameters

In Tab. 11a, we vary the percentage of background
samples used from 0% to 100%. We find that us-
ing all background samples yields the best perfor-
mance. This result implies the effectiveness of
incorporating the background class in modeling
co-articulations.

In a mini-batch, we randomly sample M glosses,
with each gloss comprising K instances. The im-
pact of varying M and K is explored in Tab. 11b.

Our saliency loss aims to enforce the model to
focus more on the foreground part. As detailed in
Sec. 3.2 of the main paper, we upsample the feature
by a factor of 5. We examine various values of 3
in Tab. 11c.

We also investigate the optimal size of the sliding
window in our proposed online CSLR method. Tab.
11d indicates that a window size of 16 frames is
most effective, aligning closely with the average
sign duration.

For our online post-processing, we implement
majority voting to eliminate duplicates. The influ-
ence of the voting bag size B is analyzed in Tab.
1le. Here, B = 1 implies the absence of post-
processing. A moderate bag size is preferred as a
larger bag might mistakenly drop correct predic-
tions, leading to lower recall. Conversely, a smaller
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Perc. (%) | Dev] Test]

M K ‘ Dev] Test|
0 | 458 468 122|227 240
20 | 254 25.1

6 4225 228
50 | 225 237 4 6|22 221
100 | 222 221 —

(b) Number of glosses (M)
and instances per gloss (K)
in a mini-batch.

(a) Percentage of back-
ground samples.

B | Dev] Test] W | Dev] Test]
2223 232 8 259 256
41222 221 16 | 22.2 221
81222 227 32| 23.0 232

(d) Sliding window size
(W).

B |1 3 5 7 9 11 13

Dev] | 54.8 27.8 23.0 222 234 26.1 31.7
Test] | 57.3 29.0 232 22.1 232 259 315

(c) Up-sampling factor (3)
in the saliency loss.

(e) Voting bag size (B).

Table 11: Studies on hyper-parameters.

bag might not completely remove duplicates, re-
sulting in lower precision.

C Qualitative Results
C.1 Saliency Loss

In general, a continuous sign video comprises mul-
tiple isolated signs linked together with meaning-
less transitional movements (co-articulations), each
serving as a bridge between two adjacent signs.
During inference, a given sliding window might
include only a portion of an isolated sign, along
with segments of one or two co-articulations. The
variation in sign duration may also complicate this
issue (Fig. 6(a)(b)(c)). To enhance the model’s
ability to focus on the foreground signs, we intro-
duce the saliency loss. Its objectives are to: 1)
drive the model to assign higher activation to each
foreground part; 2) encourage the model to learn
more discriminative features of the foreground
parts. In addition to demonstrating the improve-
ment achieved by integrating the saliency loss, as
shown in Tab. 6 of the main paper, we provide visu-
alization results in Fig. 6(d)(e)(f). It is evident that,
with the aid of the saliency loss, our model iden-
tifies foreground signs more precisely and yields
higher activations when the sliding window encoun-
ters these signs.

C.2 Comparison of Predictions

As shown in Tab. 12, we conduct qualitative com-
parison between the online TwoStream-SLR and
our approach, presenting three examples from the

dev sets of Phoenix-2014T and CSL-Daily, respec-
tively. It is clear that our proposed online model
yields more accurate predictions than the online
TwoStream-SLR, even when the latter uses a large
window size of 40 frames.

D Broader Impacts

Sign languages serve as the primary means of com-
munication within the deaf community. Research
on CSLR aims to bridge the communication gap
between deaf and hearing individuals. While most
existing CSLR research has concentrated on en-
hancing offline recognition performance, the de-
velopment of an online framework remains largely
unexplored. In this paper, we introduce a practical
online solution that involves sequentially process-
ing short video clips extracted from a sign stream.
This is achieved by feeding these clips into a well
optimized model for ISLR, thereby enabling on-
line recognition. Our work, therefore, lays the
groundwork for future advancements in online and
real-time sign language recognition systems.
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Figure 6: Visualization of sign duration and prediction scores (output probabilities) on the Phoenix-2014T dev
set. (a) Statistics of the average duration of each gloss in the vocabulary. To calculate the average duration of a
specific gloss, we average the duration of all instances belonging to this gloss. (b)(c) Statistics of the sign duration
at the instance level for two randomly selected glosses, namely “FLUSS” and “REGEN”. (d)(e)(f) Window-wise
prediction scores of three instances, each belonging to the glosses of “FLUSS”, “REGEN” and “DONNERSTAG”,
respectively. Each time step is associated with a window center. We visualize the pseudo ground truths and the
predictions made by the models with and without the use of saliency loss.
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Example (a) | | WER%/

Ground truth TAG SUED MITTE WOLKE KRAEFTIG NEBEL
(Day South Mid Cloud Heavy Fog)
Prediction (W = 40) TAG SUED MITTE *#*#*#* MEISTENS NEBEL 333
(TwoStream-SLR (Chen et al., 2022)) | (Day South Mid ***** Mostly Fog) ’
Prediction (W = 16) TAG SUED NEBEL MITTE NEBEL PUEBERWIEGEND NEBEL 500
(TwoStream-SLR (Chen et al., 2022)) | (Day South Fog Mid Fog Overwhelmingly Fog) :
Prediction (W = 16) TAG SUED MITTE WOLKE KRAEFTIG NEBEL 0.0
(Ours) (Day South Mid Cloud Heavy Fog) ’
Example (b) | | WER%|
Ground truth JETZT WETTER WIE-AUSSEHEN MORGEN DIENSTAG NEUNTE FEBRUAR )
(Now Weather Look Tomorrow Tuesday Ninth February)
Prediction (W = 40) JETZT WETTER WIE-AUSSEHEN MORGEN DIENSTAG WENN NEUNTE FEBRUAR 143
(TwoStream-SLR (Chen et al., 2022)) | (Now Weather Look Tomorrow Tuesday If Ninth February) :
Prediction (W = 16) JETZT WETTER JETZT WIE-AUSSEHEN MORGEN DIENSTAG *#*##* FREUNDLICH 42.9
(TwoStream-SLR (Chen et al., 2022)) | (Now Weather Now Look Tomorrow Tuesday ****** Friendly) :
Prediction (W = 16) JETZT WETTER WIE-AUSSEHEN MORGEN DIENSTAG NEUNTE FEBRUAR 0.0
(Ours) (Now Weather Look Tomorrow Tuesday Ninth February) :
Example (c) | | WER%|
Ground truth OST SUEDOST UEBERWIEGEND WOLKE BISSCHEN SCHNEE )
(East Southeast Mainly Cloud Bit Snow)
Prediction (W = 40) OST *#*###*%* MEISTENS WOLKE BISSCHEN SCHNEE 333
(TwoStream-SLR (Chen et al., 2022)) | (East #****%* Mostly Cloud Bit Snow) :
Prediction (W = 16) REGION KOMMEN OST SUEDOST MEISTENS WOLKE BISSCHEN SCHNEE 500
(TwoStream-SLR (Chen et al., 2022)) | (Region Come East Southeast Mostly Cloud Bit Snow) :
Prediction (W = 16) OST SUEDOST MEISTENS WOLKE BISSCHEN SCHNEE 16.7
(Ours) (East Southeast Mostly Cloud Bit Snow) :
Example (d) | | WER%|
Ground truth 16 % (R DA A -
(Want Be Healthy Smoke No)
Prediction (W = 40) 8B 50 R O R A 40,0
(TwoStream-SLR (Chen et al., 2022)) | (Want Be Body Healthy Strong Smoke No) ’
Prediction (W = 16) AR SR R TE U 7 A 30.0
(TwoStream-SLR (Chen et al., 2022)) | (Want Me Body Healthy Strong Smoke You No) ’
Prediction (W = 16) A8 E DR R R N 20.0
(Ours) (Want Be Body Healthy Smoke No) :
Example (e) | | WER%|
SR A K 2 T
Ground truth . . -
(Today Cloudy Probably Will Rain)
Prediction (W = 40) EPNEPN ] 20.0
(TwoStream-SLR (Chen et al., 2022)) | (Today Come Cloudy Probably Will Rain) :
Prediction (W = 16) AR R U K& N 40.0
(TwoStream-SLR (Chen et al., 2022)) | (Today Come Cloudy You Probably Will Rain) :
Prediction (W = 16) SR BH K2 RN 0.0
(Ours) (Today Cloudy Probably Will Rain) :
Example (f) | | WER%|
IR Zik E W E AR W T
Ground truth . . -
(Tomorrow Exam Need Bring Pen No Bring Cellphone)
Prediction (W = 40) BAR Ok Bl 0 (R AN FAL 375
(TwoStream-SLR (Chen et al., 2022)) | (Tomorrow Buy Exam Need Bring You Homework No Bring Cellphone) :
Prediction (W = 16) BAR 5 g T B 2 AR N T R 625
(TwoStream-SLR (Chen et al., 2022)) | (Tomorrow Buy Exam Me Need Bring What Quickly Homework No Bring Cellphone) i
Prediction (W = 16) BIR il 2 (Bl A L 125
(Ours) (Tomorrow Exam Need Bring Homework No Bring Cellphone) ’

Table 12: Qualitative comparison between the online TwoStream-SLR and our approach on the dev sets of Phoenix-
2014T (Example (a,b,c)) and CSL-Daily (Example (d,e,f)), respectively, under the online scenario. We use different
colors to represent substitutions, deletions, and insertions, respectively. W denotes the sliding window size.
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