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Abstract

Despite their popularity in non-English NLP,
multilingual language models often underper-
form monolingual ones due to inter-language
competition for model parameters. We pro-
pose Cross-lingual Expert Language Models
(X-ELM), which mitigate this competition by
independently training language models on
subsets of the multilingual corpus. This pro-
cess specializes X-ELMs to different languages
while remaining effective as a multilingual en-
semble. Our experiments show that when given
the same compute budget, X-ELM outperforms
jointly trained multilingual models across all 16
considered languages and that these gains trans-
fer to downstream tasks. X-ELM provides addi-
tional benefits over performance improvements:
new experts can be iteratively added, adapt-
ing X-ELM to new languages without catas-
trophic forgetting. Furthermore, training is
asynchronous, reducing the hardware require-
ments for multilingual training and democratiz-
ing multilingual modeling.

1 Introduction

Massively multilingual language models (LMs),
which are trained on terabytes of text in a hundred
or more languages, underlie almost all non-English
and cross-lingual NLP applications (Scao et al.,
2022; Lin et al., 2022, i.a.). Despite their wide
adoption, these models come at a cost: the many
languages are represented in the same, fixed model
capacity, causing performance on individual lan-
guages to degrade relative to monolingual models
(Conneau et al., 2020; Chang et al., 2023). This
phenomenon (termed the curse of multilinguality)
can significantly harm low-resource language per-
formance (Wu and Dredze, 2020).

In this paper, we address this curse with Cross-
lingual Expert Language Models (X-ELM, Figure

TCorrespondence to blvns@cs.washington. edu
*Work done while visiting the University of Washington.

1), an ensemble of language models initialized from
a pretrained multilingual model and each indepen-
dently trained on a different portion of a multi-
lingual corpus with x-BTM, a new extension of
the Branch-Train-Merge paradigm (BTM; Li et al.,
2022; Gururangan et al., 2023, §2) to the more het-
erogenous multilingual setting. X-ELM allows for
efficient scaling of model capacity to better repre-
sent all considered languages.

x-BTM adapts existing BTM techniques to the
multilingual setting by introducing a new cluster
method for data assignments based on typologi-
cal language similarity (§3.2). We also propose
Heirachical Multi-round Training (HMR; §4), a
method for efficiently adapting trained X-ELMs to
novel multilingual settings by branching from ex-
isting, typologically related X-ELMs; this method
for adapting X-ELM to new languages strongly out-
performs standard language adaptation methods.

We train X-ELMs on 20 languages—including
adapting to 4 unseen ones—with up to 21 billion
training tokens, with the 1.7B parameter XGLM
model as the base (Lin et al., 2022). Our experi-
ments show that X-ELM strongly outperforms the
dense multilingual models given the same com-
pute budget in every considered setting (§6), and
that these improvements consistently benefit every
language. Notably, monolingual experts generally
underperform typologically-informed multilingual
X-ELMs, indicating that linguistically targeted mul-
tilinguality can benefit language modeling. We
then show that the language modeling gains of X-
ELM hold on downstream evaluations (§7).

Multilingual modeling with X-ELM provides ad-
ditional benefits beyond improved performance.
Training a set of X-ELMs is more computationally
efficient than training a comparable dense model;
each expert is trained independently, which re-
moves the overhead cost of cross-GPU synchro-
nization (Li et al., 2022) and allows asynchronous
model training in low-compute settings. Similarly,
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Figure 1: Overview of the X-ELM pretraining procedure. Left: We partition the multilingual text corpus into k
subsets either through automatic TF-IDF clustering of documents or through grouping languages by linguistic
typology. Center: Branch-Train-Merge (BTM) pretraining method. We initialize (branch) k experts from a seed
LM, train each expert on a different cluster from the pretraining corpus, and merge the experts into a set of X-ELMs.
Right: Hierarchical Multi-Round (HMR) training procedure (§4).

adapting X-ELMs to new languages with HMR
training—a popular use case of language models
(i.e., Chau et al., 2020)—is more efficient than con-
tinued training of a dense LM and does not risk
forgetting previously learned languages (Yogatama
etal., 2019). As a result, X-ELM allows much more
efficient and effective multilingual modeling than
prior approaches, democratizing multilingual NLP.
We release the code and trained models.'

2 Background: Branch-Train-Merge

Multilingual LMs are typically trained in a dense
manner, where a single set of parameters are up-
dated with every training batch. When training
large LMs, the dense training setup calculates gradi-
ents on and synchronizes model parameters across
many GPUs.? This requires all GPUs to be avail-
able simultaneously and incurs communication
costs that prolong training.

Branch-Train-Merge (BTM; Li et al. 2022) al-
leviates this cost by dividing the total compute
among smaller expert language models that are
trained independently on different domains and
then combined during inference time. While the
total number of parameters increases with the num-
ber of experts, inference with these models often
uses a subset of experts (see §3.3), keeping infer-
ence costs manageable. c-BTM (Gururangan et al.,
2023) then generalizes the above approach with
automatic clustering of domains. Across multiple

1https ://github.com/blvns/x-elm/
2For example, the XGLM-7.5B model “was trained on 256
A100 GPUs for about 3 weeks” (Lin et al., 2022).

corpora, they show that (1) the optimal number of
experts increases with data and compute and (2) a
set of small expert models performs similarly to
equivalently sized dense models at vastly reduced
FLOP budgets.

Our work extends these studies to the multilin-
gual setting, where experts are specialized to differ-
ent languages instead of English-language domains.
In the multilingual setting, we can also use typo-
logical structure to specialize experts, which we
show provides additional benefits over automatic
clustering. We also demonstrate that leveraging
the hierarchy of language families in multi-round
training yields further performance gains.

3 Cross-lingual Expert Language Models

Multilingual language models are jointly trained
on many different languages (e.g., Lin et al., 2022),
despite the well-documented effect this has on indi-
vidual language performance (Conneau et al., 2020;
Wang et al., 2020). We propose Cross-lingual Ex-
pert Language Models, or X-ELMs (Figure 1),
which we hypothesize will alleviate the curse of
multilinguality while maintaining the cross-lingual
properties of dense multilingual LMs.

3.1 x-BTM: Sparse Multilingual Training
This section overviews our algorithm for the sparse

training of multilingual experts.

Step 0: Multilingual Data Allocation As a pre-
processing step, we partition the multilingual cor-
pus into k clusters to train each X-ELM. We con-
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sider both TF-IDF clusters and a new clustering
method that groups documents by language iden-
tity and linguistic typology (§3.2).

Step 1: Branch A preliminary stage of shared,
dense pretraining is important for ensembling ex-
pert language models (Li et al., 2022). Therefore,
the first step of BTM is to initialize (branch) each
expert with the parameters from a partially trained
language model. For this work, we initialize our
X-ELMs with an existing multilingual pretrained
model, XGLM (Lin et al., 2022).

Step 2: Train After initialization, we assign each
expert a data cluster and train for a fixed number of
steps with an autoregressive LM objective. Expert
training is independent, with no shared parameters
between models.

Step 3: Merge We collect the £ X-ELMSs into
a set and perform inference with them. We
consider several methods of inference and expert
ensembling in §3.3.

Steps 1-3 describe a single round of x-BTM train-
ing. However, we can continue to update the X-
ELM set by branching—initializing a new group of
experts—from existing models in the ensemble and
performing more rounds of x-BTM via the method
proposed in §4. This allows us to further improve
X-ELM by training and adding new experts.

3.2 Data Allocation Methods

How we assign data to experts is a key component
of training X-ELM, particularly as the data becomes
more diverse (i.e., spanning many languages). We
consider two methods of data allocation:

Balanced TF-IDF Clustering We partition the
multilingual corpus automatically into & compo-
nents with k-means clustering. First, we encode
each document into a word-level TF-IDF represen-
tation;> we then perform balanced k-means clus-
tering on these representations to obtain approxi-
mately balanced subsets of the data on which to
train each X-ELM. Further details on the balanced
k-means clustering method can be found in Guru-
rangan et al. (2023). This allocation method uses
no language information outside of what is inherent
in the text (e.g., script, vocabulary).

*Data tokenization is independent of the downstream
model. Here, we use the sklearn text-vectorizer tokenizer.

Linguistic Typology Clustering We also con-
sider segmenting the corpus by language identity.*
Rather than balancing the amount of data allocated
to each cluster in this setting, we keep the num-
ber of languages per cluster fixed. Specifically, we
learn a balanced hierarchical clustering of the lan-
guages (Figure 2). We build this hierarchy using
the language similarity metrics in LANG2VEC (Lit-
tell et al., 2017), which represents languages based
on linguistic features in resources such as WALS?
and estimates language similarity with distance in
this feature space. We initialize each cluster with a
single language; at each step, we merge each clus-
ter with exactly one other based on the minimum
distances between cluster centroids. We then group
languages by the resulting hierarchy and desired
number of experts. When the number of languages
equals the number of experts, typological clustering
results in monolingual training, as every language
is assigned a separate expert.

k =
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Figure 2: Hierarchical clustering of languages used to
train our X-ELM ensembles.

3.3 Inference with X-ELMs

We evaluate multiple methods for performing infer-
ence with X-ELMs:

Top-1 Expert This method performs inference
with a single expert chosen prior to evaluation,
which incurs the same inference cost as the dense
baselines. When evaluating Typology experts on
a particular language ¢, we choose the expert that
included 7 in the set of languages on which they
continued pretraining. Similarly, when evaluating
TF-IDF, we choose the X-ELM trained on the high-
est percentage of ¢’s data.

Ensembling TF-IDF Experts We also consider
ensembling TF-IDF experts by adapting the c-BTM
routing method (Gururangan et al., 2023). Here,
we calculate ensembling «, or weights, over the ex-
perts at each inference step based on the prior con-

*This requires knowledge of each document’s language.
We use the language tags provided with mC4.

SWorld Atlas of Language Structures, https://wals.
info/
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text’s TF-IDF distance from the experts’ k-means
centroids. These weights are then used to ensemble
the output probabilities from each expert.

More specifically, given a probability from
each expert pe(z; | x<;) and the correspond-
ing ensemble weight o, = ple | x<)
exp(—dist(z <, c.)?/T), the probability of the en-
semble pp(z; | T<¢) = ZeeE Qe - Pe(®t | T<t).
Here, dist(z ¢, c.) is obtained by embedding x ¢
with the learned TF-IDF vectorizer and calculating
the Euclidean distance from c, (the centroid over
the data representations allocated to expert e), and
T is a temperature parameter over the ensemble
weight distribution.

Ensembling X-ELM outputs increases the cost of
inference relative to dense models or top-1 infer-
ence. However, it can potentially better fit different
subsets of data in a diverse evaluation set. We also
do not assume we know the language of each exam-
ple when ensembling, which makes this approach
more flexible than the top-1 setting. In most cases,
we ensemble all k£ experts; however, we can also
reduce computational costs by sparsifying the en-
semble and only activating the m (< k) experts that
most contribute to an example: pp(z; | T<) =
Seer e - pelai | o)) : e € top-m(ag). Ap-
pendix Table 8 presents the performance tradeoff
with sparser TF-IDF ensembles.

4 Hierarchical Multi-Round Training

We previously described a single round of training
for X-ELM (§3.1). However, BTM can also be used
iteratively to train new experts seeded with those
learned in a prior round. The multilingual setting
provides a natural extension of multi-round training
that leverages typological structure.

We propose Hierarchical Multi-Round (HMR)
pretraining (Figure 1), which uses the learned ty-
pological tree structure from Linguistic Typology
clustering to iteratively train more specific X-ELMs.
Specifically, given an expert model z trained on a
cluster of languages L, we initialize a new set of
experts X' = x), 2}, ..., z), with the parent expert
x. Each new expert in X’ is then further trained on
a different sub-cluster ¢’ C L.

HMR pretraining gives multiple benefits over
single-round BTM. In particular, HMR training
saves compute and more easily adapts our X-ELMs
to new settings. A specific application of this is
adding new languages to the model: while updat-
ing dense multilingual LMs with new languages

is difficult and can lead to catastrophic forgetting
of existing languages (Winata et al., 2023), hierar-
chically training an expert on a new language adds
it to the X-ELM set without altering the existing
information in other experts. We evaluate HMR
training with this use case in §6.3.

5 Experimental Design

5.1 Pretraining Data and Languages

We train our X-ELMs on mC4, an open-source, mul-
tilingual pretraining corpus derived from Common-
Crawl (Xue et al., 2021).5 mC4 provides language
tags for each document in the corpus, which were
automatically assigned with cld3” when the dataset
was constructed; we use these language tags dur-
ing typological clustering (§3.2). We focus our
experiments on the 16 highest-resourced languages
out of the 30 languages on which the seed LM,
XGLM-1.7B, was trained. For languages with sig-
nificantly more data than the others (e.g., English),
we subsample their data to the first 1,024 shards.
Appendix Table 5 gives the languages and data
quantities in our pretraining corpus.

5.2 Pretraining Settings

Each expert in the X-ELM experiments is a 1.7B
parameter model with the same architecture as the
1.7B XGLM transformer model (Lin et al., 2022),
and they are initialized with XGLM’s weights in
the initial round of BTM training. Unless otherwise
stated, we keep the training parameters from the
original XGLM training procedure; further details
are given in Appendix A.1.

We train the experts for a fixed number of train-
ing steps. The exact parameters and resources used
for each X-ELM experiment are reported in Table
4: in every setting, we control for the number of
tokens seen during training. This ensures that all ex-
perts in a setting see the same amount of data (and
undergo the same number of training updates) and
that experiments across different expert set sizes
but under the same training budget are comparable.
For most experiments, we use a shared budget of
10.5B tokens; where indicated, we increase this to
21.0B tokens to test the effect of further training.

®While one could also continue pretraining with the same
corpus that the seed LM was trained on, the pretraining data
for XGLM is not publicly available.

"https://github.com/google/cld3
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Figure 3: Average and language-specific (EN and SW) perplexities across different expert counts k (Num. Experts).
In each evaluation setting, we compare clustering training data for experts with the TF-IDF,,,; (square) and
Linguistic Typology (triangle) methods (§3.2). The best choice of k for each setting is marked with a star.

5.3 Baselines

We compare the performance of our X-ELM exper-
iments to two dense baselines: XGLM, which is
the 1.7B parameter seed model used to initialize
each expert prior to x-BTM training, and a single
dense model, which is also initialized with XGLM-
1.7B’s weights and then trained with the full data
and compute budget split across experts in other
X-ELM settings. This is equivalent to k=1 experts
in cases where we vary the number of experts.

Since the curse of multilinguality is often evalu-
ated in comparison to monolingual modeling, We
also consider the setting where we train monolin-
gual expert models on each target language (§6.1).
Given that we consider sixteen languages in our
X-ELM experiments, this corresponds to the k = 16
typological clustering setting.

5.4 Perplexity Evaluation

To evaluate the language modeling performance of
the X-ELMs, we separately calculate the perplex-
ity on the mC4 validation sets of each pretraining
language. For languages with larger evaluation
sets, we estimate performance on the first 5,000
validation examples. This perplexity metric is not
comparable across languages, as they have differ-
ent validation sets.

6 Language Modeling Experiments

We now test the effectiveness of sparse language
modeling in the multilingual setting. First, we
determine the optimal number of clusters for our
given compute budget and dataset (§6.1). We then
demonstrate that X-ELMs outperform comparable
dense models on seen languages (§6.2) and more
effectively adapt to new, unseen languages (§6.3).

6.1 Choosing the Number of X-ELMs

We first consider which number of experts gives the
best multilingual language modeling performance.
Figure 3 compares the choice of k € {1,4,8,16}
X-ELMs when trained on 10.5B tokens.® k = 8 is
the best-performing setting on 75% of languages
when clustering with TF-IDF and for 15 of the 16
pretraining languages when clustering by language
similarity. Furthermore, typological clustering con-
sistently outperforms TF-IDF.

These experiments indicate that, for the budget
we evaluate, the best overall X-ELM setting is
bilingual models (k=8) clustered by language
similarity. This result is surprising, as it is intuitive
to assume that simply continuing to pretrain each
expert on a single language (i.e., the £ = 16 set-
ting) would lead to better perplexity. We find that
one language, Swahili, does benefit from the mono-
lingual k£ = 16 setting—possibly because Swahili
is paired with a distant language (Vietnamese) by
the typological clustering process. However, per-
plexity is higher in the & = 16 setting for all other
languages, and in some cases, even underperforms
the dense (k = 1) model.

6.2 Perplexity Results on Seen Languages

We now examine the performance of X-ELM in the
best setting (k = 8) for the sixteen languages seen
during BTM training on computational budgets of
10.5B and 21.0B tokens. Table 1 presents the per-
plexities of the TF-IDF clustered X-ELMs as well
as the typologically (Typ.) clustered X-ELMs. As
baselines, we compare against the original XGLM-
1.7B model and a dense model trained on both
computational budgets. We find that the best set-
ting, k = 8 with typologically clustered experts,

8The k = 16 setting is equivalent to training monolingual

experts for every language. Full results are in Table 1 for
k = 8 and Appendix Table 7 for k = 4 and k = 16.
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10.5B Training Tokens

Lang. | YGIM | Dense TF-IDFiop1 TF-IDF.,.,*
AR | 1685 | 1529 14.51 14.56
BG | 1131 | 1044 10.39 10.39
DE | 1553 | 14.02 13.41 13.50
EL | 1044 | 940 9.20 9.18
EN | 1437 | 12.88 12.93 12.73
ES | 1602 | 14.13 13.92 13.76
FR | 13.12| 11.78 11.19 11.28
HI | 1828 | 1428 14.86 14.19
JA | 1457 | 1231 11.95 11.95
KO 882 | 7.79 7.72 7.67
RU | 1343 | 1252 12.14 12.21
SW | 1985 18.70 19.10 18.76
TR | 1781 | 1534 14.13 14.28
UR | 1438 | 1345 13.40 13.57
VI | 1307 | 11.39 11.00 10.86
ZH | 1791 | 13.74 13.28 13.53
Avg. | 1474 | 1297 12.70 12.60

21.0B Training Tokens

Typ. | Dense TF-IDFiop1  TF-IDFens™  Typ.
14.66 | 14.97 14.00 14.05 14.16
10.25 | 10.34 10.27 10.26  10.09
1342 | 13.72 12.95 13.05 12.97

9.17 9.24 9.03 9.00 8.98
12.78 | 12.69 12.68 12.47 12.55
13.99 | 13.87 13.54 13.37 13.69
1129 | 11.54 10.79 10.88 1091
11.25 | 13.68 14.36 13.62 10.52
1149 | 11.79 11.36 11.37 10.88

7.67 7.67 7.61 753 754
12.08 | 12.33 11.83 11.90 11.74
18.32 | 18.61 19.04 18.67 18.07
13.80 | 14.88 13.41 13.58 13.03
12.60 | 13.38 13.26 13.52  12.20
10.22 | 11.09 10.56 1042 9.69
11.98 | 13.12 12.61 12.87 11.24
12.19 | 12.68 12.33 1228 11.77

Table 1: Per-language and average perplexity results for the £ = 8 X-ELM experiments (original XGLM and k = 1
dense model included for comparison). Lower numbers are better. The best setting for each language is bolded per
compute budget. *TF-IDF ensemble uses more parameters for inference than other evaluations; see Table 8 for the

effect of sparsifying these ensembles on perplexity.

improves by 2.97 and 1.20 on average over the
seed and dense baseline models and has individual
language gains of up to 7.77 and 3.76 over these
models, respectively.

Expert language models outperform dense con-
tinued training For most languages (10 of
16), typologically clustered experts are the best-
performing setting. For some high-resource lan-
guages (EN and ES), ensembling the TF-IDF ex-
perts works better than a single expert. However,
this inference setting requires more parameters, as
it uses all X-ELMs instead of just the single best
expert per language. Furthermore, training X-ELMs
for longer unsurprisingly outperforms lower com-
pute settings. All of our experimental settings
outperform the seed XGLM model; similarly, the
experiments with the 21.0B token compute bud-
get perform better than the respective experiment
trained with 10.5B tokens.

X-ELMs improve language modeling on all lan-
guages We also show that multilingual language
modeling with X-ELMs does not disproportionally
benefit languages with more pretraining data (Fig-
ure 4). Instead, perplexity improvements over
both the seed LM and the dense LM baseline
may slightly favor low-resource languages (p =
—0.19, —0.26, respectively).

6.3 Unseen Languages and Modeling New
Languages with X-ELM

A common method for applying multilingual lan-
guage models to new settings is language-adaptive
pretraining (LAPT; Chau et al., 2020)), as this
reuses multilingual knowledge in existing LMs
while training on the target language(s). We
now examine how well X-ELM performs in this
paradigm by (1) evaluating X-ELM perplexity on
unseen languages and (2) adapting an existing X-
ELM set to new languages. Specifically, we con-
sider both zero-shot evaluation and further training
of X-ELM on four languages not included in the

8 °
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Figure 4: PPL improvements per language over XGLM-
1.7B (circle) and dense baseline (triangle) against the
training data quantity (for typ. clustered experts).
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original XGLM seed model: Azerbaijani (AZ), He-
brew (HE), Polish (PL), and Swedish (SV).?

Unseen Language Evaluation We evaluate the
existing dense baseline and ensembled TF-IDF
clustered experts from the 21B token compute bud-
get (§6.2) to test whether continued pretraining
with x-BTM improves performance on unseen lan-
guages (X-ELM Training). We also compare these
results to XGLM. We note these models never
trained on the target languages.

Table 2 presents the unseen target language
perplexities in the XGLM and X-ELM Training
columns. We find that the original XGLM model
performs poorly on the new languages, particularly
those less related to XGLM'’s highest-resourced
ones (i.e., AZ and HE). While the perplexities
remain high in the dense model and TF-IDF en-
sembles, continued training on other languages im-
proves the seed model.

Adapting X-ELM to new languages We now
consider how well Hierarchical Multi-Round train-
ing (HMR, §4) works for language adaptive pre-
training (LAPT, Chau et al., 2020), which incor-
porates new target languages into the continued
pretraining process. Here, we group each target
language with a higher-resource donor language al-
ready in our pretraining set; these are assigned with
the language similarity metric used for typological
clustering. We seed each new language’s expert
with an expert specialized to that language’s donor;
the new expert is then trained on the donor/target
language pair. For HMR inference, we evaluate
perplexity with the expert trained for that target
language; we also evaluate on the donor languages

Data for these languages is also obtained from mC4, with
the same preprocessing as other languages in our experiments.

Lang X-ELM Training LAPT
XGLM | Dense TF-IDF;,, | Dense HMR
Target
AZ 1467.45 | 739.58 722.10 | 65.73 32.74
HE 1817.07 | 685.02 815.96 | 53.08 26.21
PL 211.76 | 160.70 178.63 | 17.71 16.60
N 105.27 | 92.55 99.24 | 2737 26.16
Donor
TR 17.81 15.34 14.28 | 14.69 12.72
AR 16.85 15.29 1456 | 14.80 13.52
RU 13.43 12.52 12.21 | 12.28 12.02
EN 14.37 12.88 12.73 | 12.65 12.63

Table 2: Perplexity results on unseen target languages
and their respective donor languages. Donor language
performance is only bolded if these results outperform
all other X-ELM settings in that language (Table 1).

to see what benefit, if any, they receive from the
adaptation process.

We compare HMR against jointly continuing
training on all four new languages and their respec-
tive donors in a single model (Dense). Each setting
builds on models from the 10.5B compute bud-
get: we continue training on the dense baseline for
dense LAPT and branch from the donor languages’
k=8 typological experts for HMR training.

All of the LAPT settings provide considerable
improvements on the new target languages over
the unseen language experiments (Table 2, LAPT
columns). The HMR setting outperforms contin-
ued dense training on every new language. Fur-
thermore, HMR training removes the risk of catas-
trophic forgetting (Yogatama et al., 2019) in other
LAPT schemes, as this process adds new experts
to X-ELM rather than changing existing ones. '’

We also find that this setting provides perfor-
mance gains on two donor languages over the ex-
periments in §6.2. This is likely due to further
training with more closely related languages for
these languages (e.g., performing training on Ara-
bic with Hebrew rather than French), consequently
providing a more informative training signal for
the higher-resource donor language as well.

7 In-Context Learning Experiments

We also measure whether the perplexity improve-
ments in X-ELMSs correspond to better performance
on downstream tasks. We test X-ELMs on three
tasks in an in-context learning (ICL) framework,
showing X-ELM language modeling gains do trans-
late to ICL improvements over the baseline models.

7.1 Experimental Setup

We test the in-context learning abilities of X-ELM
on three downstream tasks:

XNLI (Conneau et al., 2018) is a multilingual
natural language inference benchmark covering 14
of our 16 pretraining languages (excluding JA and
KO). Since there are no gold training examples for
XNLI, we use the test set for evaluation and sample
demonstrations from the validation set.

XStoryCloze (Lin et al., 2022) is a manu-
ally translated benchmark extending StoryCloze
(Mostafazadeh et al., 2016) to other languages.
This is a story-completion task wherein the model
identifies the correct final sentence of a short story.

'9This forgetting of known languages occurs in our dense

LAPT baseline, with perplexity decreasing by 1.91 points on
average for languages not included in the adaptation setting.
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Model XNLI XStoryCloze PAWS-X
Acc. Win Rate Acc. Win Rate Acc. Win Rate
XGLM (1.7B) | 44.88 28.6% 57.76 28.6% 48.54 14.3%
Dense 4431 71% 56.10 0.0% 48.44 28.6%
Zeroshot  1YP: (TRG) 44.17 71% 5779 28.6% 49.86 42.9%
TF-IDF (Top-1) | 43.77 143% 57.80 28.6% 50.04 28.6%
TF-IDF (Ens.) | 45.10 429% 57.46 143% 49.93 0.0%
XGLM (1.7B) | 42.34 28.6% 53.21 0.0% 5452 0.0%
Dense 41.70 0.0% 55.00 0.0% 5481 14.3%
Fewshot  1VP- (TRG) 4215  T143% 5462 T71.4% 5539  128.6%
Typ. (EN) 42.43 17.1% 55.54 128.6% 55.13 14.3%
TF-IDF (Top-1) | 42.55 214% 55.03 t143% 5550 142.9%
TF-IDF (Ens.) | 42.93 357% 5472 28.6% 54.57 14.3%

Table 3: Average performance (Acc.) and the percentage of languages where this setting outperforms the others
(Win Rate) on the overlap of task evaluation languages and the X-ELM target languages. The few-shot setting
provides k=8 English demonstrations to the model and averages performance across five runs. fIndicates (best)
performance ties between two evaluation settings on a language when calculating the win rate.

This dataset covers seven of our pretraining lan-
guages and four other low-resource languages.

PAWS-X (Yang et al., 2019) is a binary classifi-
cation task that requires the model to determine
whether a pair of sentences are paraphrases.
This benchmark covers seven of our pretraining
languages, including two (JA and KO) that are not
covered by the other ICL benchmarks.

We compare X-ELMs against dense baselines in
zero- and few-shot settings. For all benchmarks, we
evaluate on 1,000 random examples and perform
five runs on different demonstrations for few-shot
learning, using English demonstrations for every
language to test cross-lingual transfer. Further de-
tails about the ICL evaluation are in Appendix A.2.

7.2 Results

We evaluate our best X-ELMs by perplexity—k=8
experts trained on the larger compute budget of
21B training tokens—on their in-context learning
abilities (Table 3).!! Here, we consider two metrics
to summarize model performance across languages:
Acc. is the average accuracy of each model for that
ICL task across evaluation languages, and Win
Rate is the percentage of languages where that
model achieves the highest score out of the consid-
ered models; if two models get the highest score,
they are both considered to win that setting.

We find that X-ELMs outperform both the seed
and compute-matched dense baselines across the
three tasks and in both the zero- and few-shot eval-
uation settings. Furthermore, though X-ELM im-

Full results for each task are given in Appendix Tables 9,
10, and 11.

proves over the seed model, the dense model un-
derperforms XGLM. This may be due to using
different data from the original XGLM pretraining,
as data quality issues have been documented for
mC4 (Kreutzer et al., 2022; Chung et al., 2023).
We also note that few-shot ICL performance on
XNLI and XStoryCloze is consistently lower than
in the zero-shot setting; this is a recurring issue in
multilingual ICL also observed in the seed model
(Lin et al., 2022).

8 Related Work

8.1 Multilingual Pretraining and Adapation

Many variants of dense multilingual pretraining
have been proposed since multilingual BERT (De-
vlin et al., 2019): changing the architecture and
scaling the model size up (Goyal et al., 2021; Lin
et al., 2022), adding additional cross-lingual objec-
tives (Conneau and Lample, 2019; Chi et al., 2022;
Reid and Artetxe, 2022), and careful language and
data curation (Scao et al., 2022). Most similar to
our work is Pfeiffer et al. (2022), which proposes
an architecture, X-MOD, with language-specific
modules. However, many slimitations of dense
modeling persist here as the model and language
modules are jointly trained.

Across most multilingual pretraining methods is
the curse of multilinguality (Conneau et al., 2020),
particularly for lower-resource languages in mas-
sively multilingual training (Wu and Dredze, 2020).
Blevins et al. (2022) find that multilingual mod-
els forget information previously learned during
training, which they hypothesize is due to this phe-
nomenon; Wang et al. (2020) similarly suggest that
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this effect is due to training dynamics. More re-
cently, Chang et al. (2023) presented a controlled
study corroborating limited model capacity as a
cause of this curse. A primary motivation of our
work is to mitigate this curse while maintaining the
other benefits of multilingual modeling.

However, not all multilinguality is harmful to
language modeling. Chang et al. (2023) show that
seeing linguistically similar languages can bene-
fit low-resource language performance; this cor-
roborates our finding that X-ELMS trained on re-
lated languages outperfrom monolingual experts.
In this vein, a recent direction in multilinguality
has been fargeted multilingual modeling, where
models are trained on data from the same language
family (Ogueji et al., 2021; Ogunremi et al., 2023;
Ljubesic et al., 2024; Downey et al., 2024).

We also consider how X-ELM can be used for
language adaption. The most common method,
language-adaptive pretraining (LAPT; Chau et al.,
2020), continues multilingual pretraining with new
languages incorporated into the training regime.
Other work proposed using adapters to update the
model with new languages (Pfeiffer et al., 2020);
notably, Faisal and Anastasopoulos (2022) used
similar linguistic motivations to our typological
clustering to group languages for adapters. How-
ever, Ebrahimi and Kann (2021) found that LAPT
outperformed adapters for adaptation.

8.2 Sparse Models for NLP

Sparse language models (Evci et al., 2020; Mostafa
and Wang, 2019; Dettmers and Zettlemoyer, 2019)
route inputs through a subset of the total model
parameters. Our work builds most directly on the
Branch-Train-Merge (Li et al., 2022; Gururangan
et al., 2023) algorithm, which results in full-model
experts specialized on domains defined by meta-
data or a learned clustering. This design expands
on early Mixture-of-Experts (MoE) models (Jacobs
et al., 1991) and on DEMix layers (Gururangan
et al., 2022), which routes sequences to per-layer
experts based on metadata.

Other MoE models have recently been applied to
multilingual settings. Pfeiffer et al. (2022) develop
a multilingual expert model with language-specific
routing, and Kudugunta et al. (2021) develop a
machine translation model with routing determined
by the source-target language pair or the target
language. Similar to BTM, Jang et al. (2023) trains
experts specialized to different tasks, including five
machine-translation language pairs.

9 Conclusion

This work presents an approach to break the curse
of multilinguality by extending sparse language
modeling to the multilingual setting with X-ELM.
We find that X-ELMs achieve better perplexity on
every language over standard, dense language mod-
els trained with the same compute budget; expert
language models can also be easily adapted to
new languages without catastrophic forgetting. X-
ELMs present additional benefits over dense models
for multilingual modeling, including training effi-
ciency and flexibility. Finally, we show that these
language modeling improvements transfer to down-
stream, in-context learning performance.

While our experiments show that X-ELM out-
performs dense LMs, we foresee many avenues
of future work to further tailor sparse modeling
to multilinguality. These include better methods
for data allocation—such as clustering methods
that leverage cross-lingual signal— and algorith-
mic improvements to better allocate compute and
more effectively ensemble models. By proving the
efficacy of sparse language modeling in the multi-
lingual setting, we hope to inspire future work in
this vein that fairly models every language while
leveraging the potential of cross-lingual learning.

Limitations

This work focuses on rigorously examining the
effect of training X-ELMsS in a limited number of
settings, training languages, and data sources; this
is both to ensure that we provide comprehensive
comparisons with prior approaches to multilingual
language modeling and due to computational lim-
itations. Therefore, the proposed method should
be further verified in other settings. In particular,
in future work, we hope to examine how X-ELM
performs at scale when using larger experts, more
languages, and larger training budgets. Addition-
ally, while we consider one seed model, XGLM
(Lin et al., 2022), future work should examine the
effect of other pretrained initializations as well as
training our own seed models to test how much
multilinguality is needed in X-ELM initialization.
We also note the limited nature of our down-
stream evaluations, which is due to (1) the limited
number of multilingual benchmarks available and
(2) our requirement that evaluation benchmarks
overlap with (most of) our 16 pretraining languages.
Furthermore, since we compare against the seed
model, we focus on XGLM'’s original evaluation
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tasks and the prompting settings developed for this
baseline (rather than developing our own that may
be biased towards the X-ELM models).

Finally, training X-ELM rather than a single
dense model increases some computational costs,
similar to other BTM methods. The primary in-
crease is in storage, as each expert’s weights need
to be stored separately. In some cases, the inference
cost of X-ELM can be higher than the best model
(e.g., when using an ensemble of experts); however,
we propose several inference methods that only re-
quire loading a single model and demonstrate that
you can sparsify the TF-IDF ensemble and achieve
similar perplexities (Appendix Table 8).
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A Additional Experimental Details

A.1 Pretraining

Table 5 summarizes the languages we use, as well
as their frequencies in the original XGLM pretrain-
ing dataset and in our sub-sampled mC4 corpus.

Table 4 presents the compute allocated to each
expert and setting at different compute budgets of
the X-ELM experiments. The per-model instance
batch size (bsz) for all experiments is 2, and each
training example had a sequence length (seq. len)
of 2048. The total token budget (# Tokens) is the
product of (k, # GPUs, # updates, grad acc., bsz,
seq. len), normalized by the number of GPUs used
for model parallelism (2).

The experts are trained with a linear decay learn-
ing rate schedule; we use a maximum learning rate
of 1.5e — 4 after performing preliminary learning
rate sweeps.

A.2 In-Context Learning

We reimplement the evaluation protocol from Lin
et al. (2022), where the model scores multiple ver-
sions of every example (with the different possible
labels filled in), and the label of the highest-scoring
version is considered as the model’s prediction. We
use the English prompt formats and evaluation pro-
tocols developed for the seed LM of our experts,
XGLM, for the downstream tasks of XNLI, XSto-
ryCloze, and PAWS-X. The prompt templates we
use are reprorted in Table 6.

In the few-shot setting, we perform five evalu-
ation runs with different demonstration samples
and reported the average performance. All few-
shot experiments are performed with eight random
demonstrations. Unless otherwise stated, we evalu-
ate performance on the development set and sample

# Tokens k #GPUs #updates grad acc.
1 8 20,000 32

4 4 20,000 16

105B | ¢ 4 20000 g
16 2 20,000 g

! 8 40,000 3

4 4 40000 16

2L0B | 4 40,000 g
16 2 40,000 8

Table 4: Overview of the total compute budget and
resources used for different X-ELM experiments. K is
the number of experts, # GPUs indicates the number of
GPUs used to train each expert, and grad acc. gives the
number of gradient accumulation steps used.

10833


https://arxiv.org/abs/2005.00052
https://arxiv.org/abs/2005.00052
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2305.16252
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

demonstrations from the training set. As we are
testing X-ELM’s cross-lingual abilities, the demon-
strations are in English for every target language.

A.3 Licensing and Intended Use

All of the artifacts used to build the X-ELMs pre-
sented in this work were released for use within
academic research (Gururangan et al., 2023; Lin
et al., 2022; Xue et al., 2021). This also holds
for the evaluation benchmarks used to validate the
X-ELMs (Xue et al., 2021; Conneau et al., 2018;
Lin et al., 2022; Yang et al., 2019). Therefore, the
intended use of the code and models presented in
this work is in open-source research as well; paric-
ularly, to improve the performance and useablilty
of multilingual models for all languages.

Language mC4' Size (%) XGLM Size
AR (Arabic) 243.14 (4.1%) 64.34
BG (Bulgarian) 109.3 (1.9%) 61.10
DE (German) 615.59 (10.4%) 369.30
EL (Greek) 193.63 (3.3%) 180.37
EN (English) 877.43 (14.8%) 3,324.45
ES (Spanish) 723.17 (12.2%) 363.83
FR (French) 506.74 (8.6%) 303.76
HI (Hindi) 125.44 (2.1%) 26.63
JA (Japanese) 764.71 (12.9%) 293.39
KO (Korean) 91.29 (1.5%) 79.08
RU (Russian) 957.02 (16.2%) 1,007.38
SW (Swabhili) 3.06 (0.05%) 3.19
TR (Turkish) 248.07 (4.2%) 51.51
UR (Urdu) 10.15 (0.2%) 7.77
VI (Vietnamese) 296.65 (5.0%) 50.45
ZH (Chinese) 143.68 (2.4%) 485.32
AZ (Azerbaijani) 15.23 (-) -
HE (Hebrew) 67.14 (-) -
PL (Polish) 393.85 (-) -
SV (Swedish) 154.54 (-) -

Table 5: The frequencies and relative percentages of
different languages in our training corpus (fan mC4
subsample) and in the XGLM corpus, CC100-XL (Lin
et al., 2022). Sizes are in gigabytes (GiB). EN, ES, FR,
and RU are downsampled to 1,024 shards for mC4.

B Additional X-ELM Analysis

B.1 Comparing the Data Distribution of
Clustering Techniques

Figure 5 shows the difference in language distribu-
tions between the TF-IDF and Linguistic Typology
clusters. While TF-IDF allows language data to
spread across experts, we find that, in practice, the
distributions remain relatively sparse. The main
exception is at kK = 16, when the highest-resourced
languages in the data (e.g., English or Russian)
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Figure 5: Percentage of language data assigned to dif-
ferent experts with TF-IDF (top row) and Typ. (bottom
row) clustering. For Typ. clustering, each language is
assigned entirely to a single expert.

are split across clusters due to the constraint that
balances the amount of data per cluster.

B.2 Sparse TF-IDF Ensembling

In §6, we compare ensembling TF-IDF experts in
an X-ELM set against choosing a single TF-IDF
expert for inference based on the amount of in-
language data seen by that expert during training.
In the cases of m=2,4, this approach sparsifies
the ensemble by dynamically selecting the top m
experts based on their current ensemble weights.
Here, we additionally consider how sparsifying the
TF-IDF ensemble holds up against these other set-
tings (Table 8). We find that for seen languages,
reducing the number of experts active to just m=2
usually gives very similar performance to the full
ensemble (m=8). However, this is not true in the
case of unseen languages, where the m=8 setting
consistently outperforms sparser ensembles.

B.3 X-ELM Forgetting

We evaluate X-ELMs as a set of models by dynami-
cally choosing the best expert for a given evaluation
setting or ensembling the experts’ outputs. How-
ever, each expert is initialized with a model trained
on all the languages we consider. This prompts the
question: how much do individual experts forget'?
about the languages they are not specialized to?

Forgetting occurs as X-ELMs become more spe-
cialized. We compare the perplexity of each ex-
pert model on all pretraining languages to that of
the seed model, XGLM-1.7B (Figure 6).Across the
considered values of k, we see less forgetting in the

12We consider an expert to have forgetten information about
a language if its perplexity on that language increases.
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Dataset Prompt

XNLI {Sentence 1}, right? [Mask], {Sentence 2}
XStoryCloze {Context} [Mask]

PAWS-X {Sentence 1}, right? [Mask], {Sentence 2}

Labels
Entailment: Yes | Neural: Also | Contradiction: No
Identity
True: Yes | False: No

Table 6: Prompts used for the ICL experiments in §7; the [MASK] is filled with one of the label forms given in the
last column. For XStoryCloze, {Context} refers to the format {Sent. 1} {Sent. 2} {Sent. 3} {Sent. 43},
and “Identity” refers to the text of one of the answers given for that example.

X-ELMs trained on TF-IDF clusters than in those
clustered typologically. For the & = 8 expert set-
ting, the TF-IDF experts only forget on 47.7% of
settings, and when forgetting occurs, the perplexity
increase over the baseline is 3.10 on average. For
typologically clustered experts, these measures are
83.6% and 3.14, respectively.

We observe similar trends for the & = 4 and
k = 16 X-ELMs. On average, the ¥ = 4 TF-
IDF experts experience forgetting in only 18.8% of
cases with an average perplexity increase of 1.24
when forgetting occurs; the typology experts for-
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Figure 6: Heatmap comparing individual X-ELM per-
plexities to the seed LM with TF-IDF (left) and Typ.
(right). Rows give results for k = 8,4, 16, respectively.
Positive scores indicate that the expert forgot that lan-
guage. For Typ. clusters, languages that the model was
explicitly trained on are grayed out.
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Figure 7: Per-expert deltas compared to the origi-
nal XGLM-1.7B of every pretraining language plotted
against the language’s frequency in the original XGLM
pretraining corpus (p = —0.33, p << 0.001).

get 78.1% of the time with an average perplexity
increase of 1.34. For the £k = 16 setting, these
statistics are 60.9% and 0.9 for the TF-IDF clusters
and 89.4% and 1.24 for the typology clusters.

X-ELMs are more likely to forget certain lan-
guages. For example, English is rarely forgotten,
with only 25% of experts performing worse than
the baseline. In comparison, 94.6% of experts per-
form worse on Urdu than XGLM. One potential
cause of this discrepancy is the frequency with
which the language was seen during seed training:
languages that are more common in the XGLM pre-
training corpus see fewer cases of forgetting and
have smaller perplexity increases when it does oc-
cur (Figure 7). Another likely factor is inaccurate
language classification in the BTM training data,
which is a common issue when training language
models on specific languages (Blevins and Zettle-
moyer, 2022); this could lead to related, higher-
resourced languages contaminating the datasets for
lower-resourced ones (Kreutzer et al., 2022).

C Full Experimental Results

Table 7 presents the full perplexity results for the
k =4 and k = 16 X-ELM experiments, trained on
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k=4 Experts k=16 Experts

Lang. | YGIM Dense | TF-IDFiopy TF-IDFens®  Typ. | TF-IDFiopi  TE-IDFens™  Typ.
AR 1685  15.29 14.99 1503 15.00 15.60 1567  15.40
BG 1131 1044 10.39 1039 10.42 11.10 1070 10.31
DE 1553 14.02 13.85 13.89 1371 14.71 1443 145
EL 1044 9.40 9.36 933 928 9.72 9.64 941
EN 1437 12.88 12.64 1271 1278 13.60 1323 1327
ES 1602 14.13 13.93 13.96  14.06 14.83 14.58  14.59
FR 1312 1178 11.62 11.65 11.55 12.38 1213 1215
HI 1828  14.28 14.22 1421 12.64 16.11 1567 13.86
JA 1457 1231 12.23 1212 1173 13.39 13.14  13.18
KO 882 778 7.81 777 170 8.14 8.09  7.75
RU 1343 1252 12.30 1233 1246 12.96 1276 12.82
SW 1985  18.70 18.61 18.62  18.19 19.38 19.13 1643
TR 17.81 1534 14.85 14.96 1481 15.67 1578 15.52
UR 1438 13.45 13.56 1373 13.18 13.88 13.87 12,65
VI 13.07 1139 11.43 1121 1032 11.85 1165 11.59
ZH 1791 1374 13.38 1370 13.11 14.65 1495 13.58
Avg. | 1474 1297 | 12.82 1285 12.56 | 13.62 1346  12.94

Table 7: Per-language and average perplexity results for the k = 4 and £ = 16 X-ELM experiments (original XGLM
and k = 1 dense model included for comparison). Lower numbers are better. Each X-ELM setting is trained on
10.5B tokens. *TF-IDF ensemble uses more parameters for inference than other evaluations.

a 10.5B token compute budget. We find that both
choices of k£ underperform the k£ = § setting.

Downstream Evaluation on Individual Lan-
guages Tables 9, 10, and 11 detail the per-

L TF-IDF Ens.
language results for XNLI, XStoryCloze, and ang- | top-1 m=2 m=4 m=8
PAWS-X, respectively. AR | 1400 1412 1405 1405

BG 10.27 10.27 10.27 10.27
DE 12.95 13.09 13.07 13.04
EL 9.03 9.03 8.99 9.00
EN 12.68 12.50 12.48 12.47
ES 13.54 13.40 13.39 13.37
FR 10.79 10.92 10.88 10.88
HI 14.36 13.47 13.62 13.62
JA 11.36 11.35 11.37 11.37
KO 7.61 7.53 7.53 7.53
RU 11.83 11.90 11.90 11.90
SwW 19.04 18.67 18.67 18.67
TR 13.41 13.58 13.58 13.58
UR 13.26 13.52 13.52 13.52
VI 10.56 10.41 10.41 10.42
ZH 12.61 12.84 12.84 12.87

Avg. | 1233 12.29 12.29 12.28

AZ - 73649 72497 722.10
HE - 749.12  719.68 719.05
PL - 17731 17527 174.83
SV - 95.33 94.37 94.14

Table 8: Perplexity scores of the different inference
methods on the TF-IDF X-ELMs trained with 21B to-
kens. Top-1 chooses a single expert per language, with
no routing mechanism, whereas m=2,4,8 ensembles TF-
IDF experts.
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Model | AR BG DE EL EN ES FR HI RU SW TH" TR UR VI ZH

Zero-shot

XGLM (1.7B) 46.8 457 441 425 515 365 472 459 473 436 449 425 435 439 469
Dense 479 450 453 452 511 372 459 445 445 396 443 448 4311 41.6 446
Typ. (TRG) 462 449 439 454 520 360 472 435 419 406 - 442 419 444 463

TF-IDF (Top-1) | 47.3 45.1 429 47.1 515 363 456 43.1 406 387 - 450 432 418 446
TF-IDF (Ens.) 48.6 472 462 431 530 37.0 475 457 456 40.0 458 441 442 426 46.6

Few-shot

XGLM (1.7B) 420 442 434 434 472 38.1 455 404 4311 414 419 38.0 39.7 422 443
Dense 434 422 43.6 419 459 367 423 422 40.8 400 432 399 403 41.0 435
Typ. (TRG) 428 430 426 430 473 385 454 389 399 417 - 410 39.6 429 434
Typ. (EN) 422 42,6 440 426 473 385 429 4211 428 409 445 41.1 400 42.1 449

TF-IDF (Top-1) | 43.1 43.6 432 41.7 475 382 453 421 405 419 - 411 414 4211 441
TF-IDF (Ens.) 43.0 433 443 433 478 377 442 432 423 414 444 418 410 427 449

Table 9: Individual language accuracy on XNLI. *TH (Thai) is an unseen language for the X-ELM models.

Model \ AR EN ES EU”" HI ID* MY* RU SW TE* ZH
Zero-shot

XGLM (1.7B) 533 63.1 573 564 550 593 540 60.0 60.1 57.0 555
Dense 50.5 60.7 56.1 521 520 554 534 58.6 58.6 555 562
Typ. (TRG) 523 627 575 52.7 60.2 60.3 58.8

TF-IDF (Top-1) | 52.1 62.1 58.1 532 552 577 526 59.6 605 573 570
TF-IDF (Ens.) 519 604 578 540 554 585 520 595 602 571 57.0

Few-shot

XGLM (1.7B) 48.6 582 532 517 504 521 51.5 525 56.0 565 537
Dense 502 590 546 513 516 535 529 569 57.8 542 552
Typ. (TRG) 503 60.1 55.0 - 520 - - 574 580 - 56.0
Typ. (EN) 48.8 60.1 55.0 52.2 537 574 55.2

TF-IDF (Top-1) | 493 595 545 514 524 552 529 554 580 56.1 56.1
TF-IDF (Ens.) 494 590 538 51.1 525 545 520 551 578 550 554

Table 10: Individual language accuracy on XStoryCloze (and EN StoryCloze). *Unseen languages for the X-ELM
models.

Model \ DE EN ES FR JA KO ZH
Zero-shot

XGLM (1.7B) 445 479 51.8 452 538 49.6 470
Dense 494 475 507 475 488 472 48.0
Typ. (TRG) 479 479 53.0 455 554 53.6 457

TF-IDF (Top-1) | 474 469 550 459 549 494 508
TF-IDF (Ens.) 49.1 471 521 472 536 500 504

Few-shot

XGLM (1.7B) 563 505 554 552 556 53.0 557
Dense 560 549 558 552 549 538 530
Typ. (TRG) 56.5 534 558 551 556 559 554
Typ. (EN) 56.0 534 558 554 555 547 551

TF-IDF (Top-1) | 56.6 542 557 549 556 557 557
TF-IDF (Ens.) 53.8 549 548 53.6 553 552 544

Table 11: Individual language accuracy on PAWS-X.
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