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Abstract

The current framework for sequence labeling
encompasses a feature extractor and a sequence
tagger. This study introduces a unified frame-
work named SLGAN, which harnesses the ca-
pabilities of Generative Adversarial Networks
to address the challenges associated with Se-
quence Labeling tasks. SLGAN not only mit-
igates the limitation of GANs in backpropa-
gating loss to discrete data but also exhibits
strong adaptability to various sequence label-
ing tasks. Unlike traditional GANs, the dis-
criminator within SLGAN does not discrimi-
nate whether data originates from the discrim-
inator or the generator; instead, it focuses on
predicting the correctness of each tag within
the tag sequence. We conducted evaluations
on six different tasks spanning four languages,
including Chinese, Japanese, and Korean Word
Segmentation, Chinese and English Named En-
tity Recognition, and Chinese Part-of-Speech
Tagging. Our experimental results illustrate
that SLGAN represents a versatile and highly
effective solution, consistently achieving state-
of-the-art or competitive performance results,
irrespective of the specific task or language un-
der consideration. 1

1 Introduction

Generative Adversarial Networks (GANs) have
achieved remarkable success in the realm of com-
puter vision. Nonetheless, their applicability in
the field of Natural Language Processing (NLP)
has been limited due to the discrete nature of nat-
ural language text. This discretization challenge
arises from the inability to directly back-propagate
gradients from the discriminator to the discrete
data, thereby impeding the integration of GANs
into NLP tasks. While alternative approaches, such
as Reinforcement Learning (RL) (Guo, 2015; Yu

*Corresponding author.
1Our source code has been made publicly available at

https://github.com/aashenge/slgan.

et al., 2017) methodologies or smooth approxima-
tion policies (Zhang et al., 2016), have been pro-
posed to circumvent this limitation, the predom-
inant utilization of GANs in NLP has been con-
fined to text generation tasks, including summa-
rization, poetry generation, dialog systems, and
machine translation. Notably, there are scarce ap-
plications in sequence labeling tasks, primarily due
to the inherent distribution disparities between nat-
ural language text and sequence labels. Further-
more, existing approaches for sequence labeling
predominantly employ a pre-trained model and se-
quence tagger to model data distributions and sub-
sequently produce sequences of tags. The efficacy
of these methods is significantly constrained by
the quality of the training data and the inherent
limitations of the network’s learning capabilities.
It is well-recognized that the fundamental princi-
ple of Generative Adversarial Networks (GANs)
revolves around harnessing adversarial dynamics
between the discriminator and the generator, with
the ultimate aim of enhancing the generator’s data
generation performance through the critical feed-
back loop provided by the discriminator. Leverag-
ing this intrinsic strength of GANs, we introduce a
GAN-based framework and introduce a specialized
discriminator in a bystander role. The discrimina-
tor’s role is to guide the existing sequence labeling
model, with the overarching objective of elevating
the quality of the training process.

We present a unified framework for sequence la-
beling, denoted as SLGAN, which integrates Gen-
erative Adversarial Network (GAN) principles. SL-
GAN enhances the training process of the sequence
labeling model by incorporating a purposefully de-
signed discriminator. The schematic representa-
tion of the SLGAN framework is shown in Fig-
ure 1, which comprises two pivotal constituents:
the generator and the discriminator. We have con-
structed a generator, which relies on a pre-trained
BERT (Kenton and Toutanova, 2019) model and a
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conventional sequence tagger CRF (Lafferty et al.,
2001), to produce the sequence of tags. Conse-
quently, the loss function for the generator com-
prises two main components. One component
stems from the intrinsic supervised information
of the generator, while the other component is de-
rived from the loss feedback originating from the
discriminator. In contrast to the discriminator in
the standard GAN, which is primarily responsi-
ble for distinguishing between generated and real
data distributions, the discriminator in our SLGAN
framework is explicitly tailored to evaluate the
correctness of each tag within the tag sequence.
This evaluation is carried out by observing both
the textual content and the accompanying labels
simultaneously. The discriminator in our frame-
work simultaneously processes two distinct data
streams: (i) A composite data stream consisting
of textual information combined with labels gener-
ated by the generator. (ii) Another composite data
stream comprises textual information and ground
truth labels. The fusion of text and labels is facili-
tated through an attention layer. The loss incurred
from the first data stream is back-propagated into
the system to continuously refine the generator’s
output, striving for high-quality label generation
while concurrently intensifying the complexity of
the discrimination task. In summary, SLGAN lever-
ages the supervised guidance provided by the aux-
iliary discriminator to train an improved generator
for sequence labeling tasks.

• SLGAN realizes the integration and tailoring
of the generative-adversarial mechanism to
suit the sequence labeling tasks.

• SLGAN is a unified and comprehensive frame-
work, consistently yielding enhancements
across the entire spectrum of sequence label-
ing tasks.

• SLGAN is effective for sequence labeling
tasks regardless of language and domain.

2 Related Work

Generative adversarial networks (GANs) have
achieved remarkable success in the field of com-
puter vision (Radford and Metz, 2021; Chen et al.,
2016; Salimans et al., 2016) and image gener-
ation (Karras et al., 2019; Wang et al., 2018).
Through the process of adversarial training, where
the generator engages in a competitive learning

paradigm with the discriminator, the generator gen-
erates data that closely approximates the distri-
bution of real-world data. Nevertheless, to the
best of our knowledge, the effective application of
GANs in the domain of Natural Language Process-
ing (NLP) has been limited due to the inherently
discrete nature of textual data. To tackle this chal-
lenge, the work proposed by Zhang et al. employed
Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks in their ad-
versarial training approach, aimed at generating
realistic textual content. Notably, they replaced the
traditional GAN objective with a feature distribu-
tion matching criterion during the generator’s train-
ing process. On one hand, researchers introduced
a method to handle the non-differentiability of the
multinomial distribution by replacing the softmax
function with the Gumbel-softmax distribution,
which offers a continuous approximation of the
multinomial distribution (Kusner and Hernández-
Lobato, 2016). On the other hand, researchers
suggested furnishing the discriminator with the in-
termediate vector generated by the generator, as
opposed to the entire sequence output (Lamb et al.,
2016). It is noteworthy that GANs primarily cen-
ter their applications around text generation tasks,
while their participation in the domain of sequence
labeling tasks remains limited.

Typically, within the sequence labeling frame-
work, an initial feature extractor is employed, such
as LSTM or CNN (Ma and Hovy, 2016) architec-
tures. Subsequently, a sequence tagger, notably
Conditional Random Field (CRF) networks (Laf-
ferty et al., 2001), is utilized to assign tags to each
character. With the advancement of pre-trained lan-
guage models like BERT (Kenton and Toutanova,
2019) and ELMo (Peters et al., 2018), a gradual
shift has occurred, replacing LSTM and CNN with
these potent models. ELECTRA (Clark et al.,
2020) was proposed in an economically efficient
way, by replacing the Masked Language Modeling
(MLM) task in BERT with a task focused on detect-
ing replaced tokens. ELECTRA engaged in train-
ing a discriminator to predict whether each token
is being substituted with a sample generated by the
model. SLGAN draws inspiration from the ELEC-
TRA. The distinguishing factor between SLGAN
and ELECTRA lies in their objectives. SLGAN’s
core emphasis is on optimizing performance in se-
quence labeling tasks, whereas ELECTRA aims
to establish a robust pre-trained model. After the
pre-training phase, the authors discarded the gen-
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erator, only retaining the discriminator component,
which represents the ELECTRA model. Conse-
quently, ELECTRA is a discriminator. Differing
from ELECTRA, SLGAN, in line with the estab-
lished paradigm of GANs and their derivative mod-
els, pursues the goal of enhancing generator quality.

3 Proposed Method

The architecture of the SLGAN framework is il-
lustrated in Figure 1. It is important to note that
two distinct BERT models are employed within
the generator and discriminator components. In
both instances, the role of the BERT model re-
mains consistent, primarily focused on obtaining
representations of the input sentences. The input
sentences undergo independent processing within
the respective BERT models, yielding two distinct
streams of input representations. The initial input
stream is dedicated to the task of generating tag
sequences within the generator, while the second
stream is specifically utilized for participating in at-
tention operations. Given that the input sequences
and the predicted labels reside within disparate data
distributions, an attention layer is deployed to inte-
grate these distinct data distributions. Specifically,
the logits generated by the generator and those de-
rived from the ground truth labels are individually
merged with the original input representations via
the attention layer. The logits from the generator
and those from the conversion of ground truth la-
bels are individually integrated with the original
input representations through the use of the atten-
tion layer. It is noteworthy that the discriminator
remains agnostic to the data’s source, be it the gen-
erator or the original input data. The primary mis-
sion of the discriminator is to evaluate the accuracy
of each tag within the tag sequences within both
data streams.

3.1 Generative Model

The generator, located in the lower-left section of
the figure, is a compact sequence labeling model
composed of an encoder and a decoder. For the
encoder, we employ the pre-trained BERT model,
while the decoder is implemented using a CRF
layer. The generator leverages the pre-trained
BERT model to project the input sequences into
a vector space. This process yields a feature map,
which is subsequently processed through two fully
connected layers, each equipped with the Rectified
Linear Unit (ReLU) activation function. Following

the fully connected layer, a CRF network, a widely
employed sequence tagger, is utilized to generate
the tag sequences. The output of the fully con-
nected layer, denoted as logits1, is simultaneously
input to both the CRF and attention layers.

In Figure 1, in line with the established model
for sequence labeling tasks, we designate the
input as the observational sequence: X =
{x1, x2, ...xn}, n ∈ N+, take the NER task as
an example and employ the typical “BMESO”
tagging schema, the corresponding tags are the
hidden state sequence: Y = {y1, y2, ...yn}
and yi ∈ {B_type,M_type, E_type, S_type,O}
∀i ≤ n, i ∈ N+. The prefix serves to denote the
relative position of the present character within an
entity, while the suffix “type” signifies the entity
type. The overall count of tags equals n ∗m+ 1,
with n representing the entity types and m denoting
the tag categories. Y ∈ Ln, here, Ln denotes the
set of all potential tag sequences. The decoder CRF
endeavors to discover the optimal tag sequence Y ′

based on the input X , in the following manner:

Y
′
= argmax

Y ∈Ln
P (Y |X) (1)

3.2 Discriminative Model

The structure of the discriminator includes a fea-
ture extractor layer, a Gumbel Softmax (Jang et al.,
2017) layer, an attention layer, a Fully Connected
(FC) layer, and a softmax layer. The discriminator
concurrently processes three inputs: logits1 and
logits2, which respectively correspond to the out-
put of the generator and the transformed values
derived from the ground truth Y , as well as the rep-
resentation of the input sequences X .The input text
is encoded through a separate BERT model to pro-
duce feature representations. Each token exhibits a
feature dimension of 768, resulting in a collective
feature size for the entire sentence, represented as
X , with dimensions of (768 ∗n), where n signifies
the sequence length. An attention layer is applied
to merge the representations of X and Y , yielding
two separate attention outputs denoted as z_1 and
z_2. Here, X is defined as a set of embeddings,
X = {emb_1, emb_2, ..., emb_n}, while Y takes
values in {logits_1, logits_2}, and the shape of
Y is label_size ∗ n. To facilitate the subsequent
attention operation, X and Y are initially resized to
achieve a middle_size shape. Following the atten-
tion operation, the shape of z remains consistent,
retaining dimensions of (middle_size ∗ n).
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Figure 1: Overview of the SLGAN training process. The framework is rooted in the GAN structure, comprising a
generator (G) and a discriminator (D). The generator (G) is a versatile model capable of generating tag sequences,
with a traditional approach being adopted in our study. The pre-trained BERT model is leveraged as a feature
extractor, while a CRF network is employed as a sequence tagger within the generator. On the other hand, the
discriminator (D) serves as a classifier tasked with distinguishing the accuracy of each tag within the tag sequence.
“D” is trained on both the original input data and the output of “G”. “G” is trained using a composite objective that
encompasses the supervised loss from the sequence labeling model and the loss back-propagated by “D”.

Subsequently, both z_1 and z_2 are indepen-
dently processed through subsequent Fully Con-
nected (FC) and softmax layers. The FC layer
serves to transform the features to achieve the
appropriate size for the final classification task.
The compacted features are then directed into the
softmax layer. The shrunken features have di-
mensions of (2 ∗ n) since the primary objective
of the discriminator is to assess the correctness
of each tag within the tag sequence, denoted as
K = {k1, k2, ..., kn}(k ∈ “right”, “wrong”).
Considering that the discriminator makes predic-
tions based on both z_1 and z_2, the size of the
output K is twice the batch size. The softmax
layer employs the cross-entropy loss function for
computation.

3.2.1 Gumbel Softmax Layer
Initially, the true labels are transformed from a
discrete distribution into one-hot encoding, repre-
sented as Y _onehot. Given that Y _onehot lacks
smoothness, we proceed to convert it into an ap-
proximately continuous and smooth distribution,
denoted as logits2, using the Gumbel softmax ap-
proach as in Equation 2. Subsequently, logits2 is
actively engaged in the attention operation with X .

logits_2 = softmax(1/τ(h+ g ∗ α)) (2)

Here, h represents the one-hot distribution
Y _onehot, g corresponds to the Gumbel-Softmax

distribution, and the temperature τ is fixed at a
value of 0.5. Additionally, the parameter α is
specifically set to 0.1.

3.2.2 Attention Layer
The discriminator encounters a challenge when at-
tempting to determine the correctness of each tag
solely based on observing the tag sequences. Con-
sequently, the text features serve as a necessary
reference and are combined with the label features.
Given that the input text and label categories in-
herently belong to different data distributions, an
attention layer is employed to establish their asso-
ciation. To facilitate this integration, we employ
the Scaled Dot-Product Attention mechanism to
correlate the representations of (X, logits_1) and
(X, logits_2), enabling the fusion of relevant in-
formation.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

Here, we define the matrices involved in the atten-
tion operation. Specifically, Q is equivalent to X ,
and K is set as Y . The matrix X , representing the
features generated by BERT, exhibits dimensions
of (768 ∗ n), while matrix Y is structured with di-
mensions of (label_size ∗ n). To facilitate their
participation in the attention operation, both X and
Y are resized to align with a middle_size, which
we have designated as having a value of 200. The
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dimension d_k is set to be equal to middle_size,
and n signifies the sequence length.

3.3 Loss Function

The generator of SLGAN follows the conventional
approach used in sequence labeling tasks, wherein
the CRF loss function is adopted. Simultaneously,
the primary objective of the SLGAN discrimina-
tor is the accurate prediction of tags within the tag
sequences. Accordingly, the widely-used cross-
entropy loss function, common in sequence label-
ing tasks, is applied. The discriminator endeavors
to minimize the cross-entropy loss. In summation,
SLGAN is designed to minimize the overall loss
function as described below:

min
G

min
D

L(G,D) (4)

LG = LCRF + λLD_out (5)

LD = LD_out + LD_truth (6)

In Eq. (5), the parameter λ plays a crucial role
in weighting the contributions of the two distinct
types of loss and is explicitly configured to a value
of 1. The loss functions LD_out and LD_truth corre-
spond to cross-entropy losses, which are computed
from data streams originating from the generator’s
output and the realistic data distribution, respec-
tively. Concurrently, LCRF represents the CRF
loss. It is essential to note that LD_out is subse-
quently backpropagated to the generator for further
training.

LCRF = − log p(y|X) = −s(X, y) + log(
∑

y∈Yx

es(X,y))

(7)

The function s denotes the scoring function, and
Yx represents all tag sequences.

4 Experiments

The evaluation encompasses a diverse set of tasks,
spanning in-domain Chinese Word Segmentation
(CWS), cross-domain CWS, Korean Word Segmen-
tation (KWS), Japanese Word Segmentation (JWS),
Chinese Named Entity Recognition (NER), English
NER, and Chinese Part-of-Speech (PoS) Tagging.
These tasks encompass four distinct languages and
are evaluated across fourteen datasets. To illus-
trate the specifics of our experimental setup, for the
CWS and Chinese NER tasks, we employ BERT-
base-Chinese as the feature extractor. For JWS
and KWS tasks, BERT_Multilingual is employed,

serving as the feature extraction layer. For the En-
glish NER experiments, the BERT-Base-Cased is
utilized. It is noteworthy that a consistent "BMES"
tagging schema is applied uniformly across all
experiments to ensure a standardized evaluation
framework.

4.1 Datasets

4.1.1 In-domain and Cross-domain Chinese
Word Segmentation

In the assessment of the CWS task, we consider
five distinct datasets. Specifically, for simplified
Chinese, we leverage the PKU, MSR, and Chi-
nese Penn Treebank 6.0 (CTB6) datasets. In the
case of traditional Chinese, the AS and CITYU
datasets are utilized for evaluation. Our evalua-
tion encompasses the cross-domain CWS task, en-
compassing five distinct datasets. These datasets
are further categorized into two domains: the Chi-
nese fantasy novel domain and the patent domain.
Within the realm of Chinese fantasy novels, we con-
sider the DoLuoDaLu (DL), FanRenXiuXianZhuan
(FR), and ZhuXian (ZX) datasets (Qiu and Zhang,
2015). Simultaneously, datasets originating from
the dermatology and patent domains, namely Der-
matology (DM) and Patent (PT) (Ye et al., 2019),
are included. It is essential to highlight that these
datasets are drawn from domains characterized by
the emergence of numerous neologisms, especially
originating from fiction, thereby exacerbating the
out-of-vocabulary (OOV) issue. In conducting our
evaluation, we adhere to the dataset configurations
detailed in the work (Ye et al., 2019) to ensure a
comprehensive and consistent assessment.

4.1.2 Japanese and Korean Word
Segmentation

In evaluating the JWS task, we rely on Version
1.1 of the extensively employed Balanced Cor-
pus of Contemporary Written Japanese (BCCWJ)
dataset (Maekawa et al., 2014). To ensure a sys-
tematic evaluation, we perform a dataset split in
accordance with the guidelines provided by the
Project Next NLP. Our evaluation of the KWS task
encompasses two distinct datasets: the UD_Korean-
GSD corpora 2 and the Kaist 3 datasets. These
datasets were originally purposed for assessing syn-
tactic parsing tasks and are derived from the KAIST

2https://github.com/emorynlp/ud−korean/tree/master/-
google

3https://github.com/UniversalDependencies/UD_Korean-
Kaist
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Treebank (Choi et al., 1994) and the Google UD
Treebank (McDonald et al., 2013). To construct
these datasets, we extract words guided by syntac-
tic information that implicitly conveys word bound-
aries. Furthermore, the dataset split is performed
in accordance with the Universal Dependencies in
the Korean (UDK) project to maintain consistency
and alignment with established standards.

4.1.3 Chinese and English Name Entity
Recognition

In our evaluation of the Chinese NER task, we
consider four datasets: OntoNotes4.0 (Pradhan
et al., 2011), Weibo (Peng and Dredze, 2015),
MSRA (Levow, 2006), and Resume (Zhang
and Yang, 2018). For the English NER task,
the CoNLL2003 dataset (Tjong Kim Sang and
De Meulder, 2003) is employed as the benchmark.
This comprehensive selection of datasets ensures a
rigorous evaluation across multiple languages and
domains.

4.1.4 Chinese Part-of-Speech Tagging
In the assessment of the Chinese PoS Tagging task,
we employ four distinct Chinese datasets for the
evaluation of SLGAN. These datasets encompass
CTB5, CTB6, and CTB9, originating from the
Penn Chinese TreeBank (Xue et al., 2005), and
UD1 (Universal Dependencies) (Nivre et al., 2016).
CTB5, CTB6, and CTB9 are in simplified Chinese,
while UD1 is in traditional Chinese. To maintain
methodological consistency, we adhere to the offi-
cial dataset splits as prescribed in our experiments.
This comprehensive dataset selection facilitates
a comprehensive evaluation of SLGAN’s perfor-
mance across different languages and domains.

4.2 Parameter Settings and Evaluation
Metrics

In our experimental settings, we establish a consis-
tent sequence length of 128 across all tasks. The
batch size is set at 64, and we conduct training for
15, 10, and 10 epochs for the NER, WS, and PoS
Tagging tasks, respectively. To optimize the train-
ing process, we employ the Adam optimizer with
a learning rate of 2e − 5. To mitigate overfitting,
we incorporate an early stop mechanism into our
training process. Beyond the conventional Micro
F1 score, we recognize the significance of the Out-
of-Vocabulary (OOV) error as a crucial metric for
assessing a word segmentation model’s generaliza-
tion capacity. Consequently, we introduce OOV

recall (R_oov) to evaluate the generalization ability
of SLGAN in the WS task. Furthermore, to as-
certain the model’s reliability and consistency, we
monitor the Standard Deviation (SD) values across
multiple experiments. This practice helps ensure
the robustness and stability of the SLGAN model.

4.3 Experimental Results

The evaluation results for the WS, NER, and PoS
Tagging tasks are presented in Tables from Table 1
to Table 6. To enhance readability, the results have
been rounded to one or two decimal places for
precision and clarity.

4.3.1 Results of In-Domain Chinese Word
Segmentation

In Table 1, we present the results of the in-
domain CWS task. SLGAN achieves state-of-the-
art (SOTA) F1 scores across all five datasets. No-
tably, in addition to the F1 score, SLGAN signif-
icantly enhances the recall of Out-of-Vocabulary
(OOV) words. SLGAN attains a new SOTA perfor-
mance in terms of R_oov scores on all five datasets,
which encompass both simplified and traditional
Chinese. Impressively, SLGAN showcases an out-
standing improvement of +10.47% in R_oov score
on the AS dataset compared to existing dominant
methods. These notable enhancements in OOV
recall underscore the robustness and exceptional
generalization ability of SLGAN.

4.3.2 Results of Cross-Domain Chinese Word
Segmentation

Table 2 provides a comprehensive overview of the
evaluation results in the cross-domain CWS task.
The first two rows represent results reported by Liu
et al. and Zhang et al., while it’s important to
note that these methods were not evaluated on all
five datasets. Therefore, we refer to the evalua-
tion results reported by Ding et al. for comparison.
SLGAN demonstrates its robust performance on
cross-domain Chinese CWS without the need for
additional data from the target domain, setting it
apart from the Partial-CRF model (Liu et al., 2014),
which relies on partially labeled data and combines
data from various sources into a unified format.
In comparison to methods (Zhang et al., 2018; Ye
et al., 2019), SLGAN achieves competitive results
without the use of extra dictionaries or word embed-
dings specifically trained for the target domain. No-
tably, when compared with the four methods exclu-
sively developed for cross-domain CWS, SLGAN
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CITYU AS PKU MSR CTB6
F1 R_oov F1 R_oov F1 R_oov F1 R_oov F1 R_oov

Gong et al., 2019 96.2 73.58 95.2 77.33 96.2 69.88 97.8 64.2 97.3 83.89
Huang et al., 2020 97.6 87.27 96.6 79.26 96.6 79.71 97.9 83.35 97.6 87.77
Meng et al., 2019 97.9 - 96.7 - 96.7 - 98.3 - - -
Tian et al., 2020 97.8 87.57 96.58 78.48 96.51 86.76 98.28 86.67 97.16 88.00

BERT_CRF 97.61 85.98 96.50 83.36 96.50 79.78 98.10 86.54 96.58 88.98
SLGAN 97.82 87.71 96.63 89.73 96.70 94.22 98.30 96.28 97.70 90.72

SLGAN (SD) 0.24 0.12 0.13 0.26 0.39 0.51 0.26 0.18 0.25 0.12

Table 1: Comparison of SLGAN with established primary methods in the CWS task. We assess the performance
using the F1 score and R_oov as evaluation metrics. SLGAN (SD) represents the Standard Deviation obtained from
five experiments.

DL FR ZX DM PT
Liu et al., 2014 92.5 90.2 83.9 82.8 85.0

Zhang et al., 2018 92.0 89.1 88.8 81.2 85.9
Ye et al., 2019 93.5 89.6 89.6 82.2 85.1

Ding et al., 2020 94.1 93.1 90.9 85.0 89.6
Tong et al., 2022a 92.1 90.8 90.9 88.4 92.37

SLGAN 93.29 91.76 90.27 87.79 90.83
SLGAN (SD) 0.24 0.2 0.36 0.25 0.13

Table 2: Comparison between SLGAN and established
primary methods in the Cross-Domain CWS task. We
evaluate performance using the F1 score as the primary
metric.

BCCWJ
F1 R_oov

Kitagawa and Komachi, 2018 98.42 -
Higashiyama et al., 2019 98.93 -

Tong et al., 2022b 98.94 93.01
BERT_CRF 97.71 90.08

SLGAN 98.5 95.19
SLGAN (SD) 0.08 0.12

Table 3: Comparison between SLGAN and established
primary methods in the JWS task. The metrics are the
F1 score and R_oov.

requires no additional optimization efforts. For fair
and comparable evaluations, SLGAN solely trains
a base segmenter using the PKU dataset. On the
DM dataset, SLGAN even surpasses the SOTA re-
sults, achieving a notable +2.79% increase in F1
score. Additionally, there is a +1.23% boost on the
PT dataset. These substantial improvements in the
cross-domain CWS task serve as strong evidence of
SLGAN’s impressive generalization capabilities.

4.3.3 Results of Japanese Word Segmentation
Table 3 presents the evaluation outcomes for
Japanese Word Segmentation (JWS). SLGAN
achieves results close to the SOTA without relying
on word dictionaries or character type information,
as employed in prior works (Higashiyama et al.,
2019; Kitagawa and Komachi, 2018). In compari-
son to the BERT_CRF model, SLGAN delivers a
notable increase of +1.04% in the F1 score, high-
lighting its enhanced performance. SLGAN also

GSD KAIST
F1 R_oov F1 R_oov

Tong et al., 2022b 92.37 83.81 91.19 82.24
BERT_CRF 87.12 78.27 87.62 78.34

SLGAN 87.57 85.14 88.90 88.70
SLGAN (SD) 0.22 0.18 0.24 0.12

Table 4: Comparison of SLGAN with established meth-
ods in the KWS task. F1 score and R_oov are the met-
rics.

demonstrates significant proficiency in handling
out-of-vocabulary (OOV) words in the Japanese
dataset. These evaluation results provide further
evidence of SLGAN’s effectiveness, particularly in
dealing with OOV words, and underscore its robust
performance in the Japanese context.

4.3.4 Results of Korean Word Segmentation
For the KWS task, no directly related baselines are
available, as the Korean datasets we utilized are typ-
ically designed for assessing syntactic parsing. To
provide a meaningful comparison, we contrast SL-
GAN’s performance with that of the BERT_CRF
model and perform additional experiments. Table 4
outlines the evaluation results of SLGAN on the
KWS task. Notably, the KAIST dataset sees a sub-
stantial increase of +1.31% in F1 score. Further-
more, there is a remarkable +10.88% enhancement
in OOV word recall. These results underscore SL-
GAN’s effectiveness in addressing the KWS task,
particularly in enhancing OOV word recall.

4.3.5 Results of Chinese and English NER
Table 5 displays the results of the Chinese and
English NER tasks. The evaluation results are
rounded to two decimal places. SLGAN achieves
near SOTA results. While the FGN model (Xuan
et al., 2020) has achieved SOTA performance on
the Weibo and Resume datasets, FGN leverages
glyph information, which is particularly useful for
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OnNote Weibo MSRA Resume CoNLL
Li et al., 2020 84.47 - 96.72 - 93.33

Wu et al., 2021 82.57 70.43 96.24 95.98 -
Zhu and Li, 2022 82.83 72.66 96.26 96.66 93.65
Xiong et al., 2023 81.47 68.23 95.42 - -
Yang et al., 2023 82.66 71.94 - 96.2 -

BERT_CRF 79.16 67.33 94.80 95.78 91.08
SLGAN 82.30 71.05 96.10 96.63 93.29

SLGAN (SD) 0.16 0.20 0.11 0.25 0.18

Table 5: SLGAN v.s. existing primary methods of the
NER task. The F1 score is the metric.

CTB5 CTB6 CTB9 UD1
(Meng et al., 2019) 96.61 95.41 93.15 96.14
(Liu et al., 2021) 97.14 95.18 - 96.06
(Li et al., 2020) 97.92 96.57 - 96.98

BERT_CRF 96.06 94.77 92.29 94.79
SLGAN 96.78 94.86 94.61 96.11

SLGAN (SD) 0.19 0.14 0.18 0.06

Table 6: Comparison of SLGAN with established meth-
ods in the Chinese PoS Tagging task. We employ the F1
score as the metric.

Chinese characters due to their pictographic nature.
In contrast, SLGAN relies solely on text features.
The BERT-MRC+DSC (Li et al., 2020) surpasses
our SLGAN on the OntoNotes 4.0 dataset. How-
ever, it’s essential to note that BERT-MRC+DSC
is based on the Machine Reading Comprehension
(MRC) framework, which involves introducing sub-
stantial external knowledge, such as synonyms, and
formalizing the NER task as an MRC task. Addi-
tionally, BERT-MRC+DSC utilizes dice loss as a
replacement for conventional cross-entropy loss to
address data imbalance issues. SLGAN achieves
competitive performance without relying on exter-
nal information. In both tasks, SLGAN is trained
solely on its training splits. Even without specific
optimizations, SLGAN achieved near SOTA results
in Chinese NER. It secured the SOTA result on
the MSRA dataset and also performed remarkably
well in English NER. Comparing SLGAN to BERT
alone, we observe significant performance improve-
ments across all five datasets. These results under-
line the effectiveness of SLGAN in NER tasks for
both Chinese and English. Unlike Japanese, En-
glish is linguistically distinct from Chinese, further
validating SLGAN’s versatile effectiveness across
different languages.

4.3.6 Results of Chinese Part-of-Speech
Tagging Task

Table 6 provides a comprehensive overview of the
evaluation results in the Chinese PoS Tagging task.
Notably, SLGAN achieves the SOTA result on the
CTB9 dataset, with an impressive improvement

Figure 2: A comparison between SLGAN and the output
of BERT_CRF model.

of up to +1.46% in the F1 score. It is worth
mentioning that SLGAN, which relies solely on
the semantic features of the text, outperforms the
Glyce model (Meng et al., 2019) that leverages
additional glyph information from Chinese char-
acters. On the CTB5, CTB6, and UD1 datasets,
BERT+DSC (Li et al., 2020) achieves SOTA re-
sults by replacing the conventional cross-entropy
loss with dice loss, which effectively addresses data
imbalance issues. To ensure a fair comparison, we
contrast SLGAN’s performance with BERT_CRF,
which does not involve any loss function optimiza-
tion. These results illustrate the competitiveness
of SLGAN in PoS tagging tasks. SLGAN consis-
tently outperforms BERT_CRF on all four datasets.
Notably, there is a substantial improvement of up
to +2.93% in the F1 score observed on the CTB9
dataset. Compared with LEBERT (Liu et al., 2021),
which deeply integrates lexicon features into BERT,
SLGAN achieves its results solely from the text in-
put without relying on external features. The strong
performance in Chinese PoS Tagging tasks under-
scores the universality of SLGAN.

4.3.7 Ablation Study and Qualitative Analysis

To further analyze the impact of GAN-generated
pseudo-data on the performance of the sequence
labeling model, we conducted an ablation exper-
iment. We compare the initial output of the gen-
erator (traditional sequence labeling model) with
the output after training (GAN-generated pseudo-
data) to illustrate the model’s learning process. We
perform a case study by randomly selecting two
examples from the CWS and Chinese NER tasks.
In Figure 2, we observe that SLGAN aligns well
with the ground truth in both samples. In the upper
example, "The judge told Fesille that he would be
released and could leave immediately", the main
issue is with the entity "Fesille". In the lower sen-
tence, "Tea is the primary industry in Pinglin, and
the renowned Wenshan Pouchong tea stands out as
one of the finest varieties of Taiwanese tea", the
primary concern is with the entity "Pinglin". "Fes-
ille" represents a person’s name, which often poses
a challenge in handling out-of-vocabulary (OOV)
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words. "Pinglin" typically relates to entities associ-
ated with administrative regions, and the entity type
"GPE" usually signifies political entities like cities,
states, countries, and continents, whereas "PER"
represents a person’s name. SLGAN correctly iden-
tifies entity boundaries but may misclassify entity
types. These cases illustrate SLGAN’s generaliza-
tion ability in addressing sample bias.

5 Conclusion

SLGAN demonstrates its effectiveness in address-
ing sequence labeling tasks by leveraging GAN
architecture. It offers a universal and efficient so-
lution for tasks such as WS, NER, and PoS Tag-
ging. SLGAN’s performance is evaluated across
six tasks spanning four languages, consistently
achieving SOTA or near SOTA results in all experi-
ments. Notably, SLGAN excels in handling OOV
words, showcasing its SOTA performance in terms
of R_oov. Furthermore, SLGAN extends its ap-
plicability to cross-domain CWS tasks. Moreover,
SLGAN’s impressive performance in NER and PoS
Tagging tasks reiterates its versatility across differ-
ent labeling tasks, transcending language barriers.

6 Limitations

Since SLGAN is built on the generative adversarial
mechanism, it suffers from the inherent limitations
of GAN networks and exhibits instability during
training. Moreover, the training time will be longer
than that of a framework composed of a single mod-
ule. Additionally, the SLGAN framework currently
focuses only on WS, NER, and PoS tagging tasks.
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