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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in reasoning us-
ing Chain-of-Thought (CoT) prompting. How-
ever, CoT can be biased by users’ instruction.
In this work, we study the reasoning robust-
ness of LLMs to typographical errors, which
can naturally occur in users’ queries. We de-
sign an Adversarial Typo Attack (ATA) algo-
rithm that iteratively samples typos for words
that are important to the query and selects the
edit that is most likely to succeed in attacking.
It shows that LLMs are sensitive to minimal
adversarial typographical changes. Notably,
with 1 character edit, Mistral-7B-Instruct’s ac-
curacy drops from 43.7% to 38.6% on GSM8K,
while with 8 character edits the performance
further drops to 19.2%. To extend our evalu-
ation to larger and closed-source LLMs, we
develop the R2ATA benchmark, which as-
sesses models’ Reasoning Robustness to ATA.
It includes adversarial typographical ques-
tions derived from three widely-used reason-
ing datasets—GSM8K, BBH, and MMLU—by
applying ATA to open-source LLMs. R2ATA
demonstrates remarkable transferability and
causes notable performance drops across multi-
ple super large and closed-source LLMs.1

1 Introduction

Chain-of-Thought (CoT) prompting (Wei et al.,
2022) enables Large Language Models (LLMs)
to break down a complex problem into a series
of intermediate steps to solve complex problems.
Answering users’ queries in a step-by-step fash-
ion has been implemented in many state-of-the-
art AI systems such as ChatGPT (OpenAI, 2022),
Mistral (Jiang et al., 2023) and Gemini (Team
et al., 2023). Despite being carefully trained and
aligned, LLMs’ sensitivity to the prompt is evident

∗Equal contribution.
† Correspondence to: michaelshieh@comp.nus.edu.sg

1Our data and implementation scripts are available at
https://esther-gan.github.io/r2ata-web/

Figure 1: There are two typing errors in the query: omis-
sion of a letter (year becomes yar) and duplication of a
letter (has becomes haas). Consequently, in Step 1 the
model wrongly wrote Regina as A, while in Step 2 the
text reverses the relationship between this year’s and
last year’s written novel. These errors in intermediate
steps lead to an incorrect final answer.

when employing CoT reasoning. It was shown that
CoT reasoning can be biased by users’ instructions
(Perez and Ribeiro, 2022; Lanham et al., 2023;
Wang et al., 2024; Xiang et al., 2024) and be con-
fused by irrelevant context (Shi et al., 2023; Turpin
et al., 2024). For example, Turpin et al. (2024)
found that models tend to justify answers as correct
if the majority of previous examples suggest that
answer, even when it’s incorrect. These scenarios
demonstrate the importance of evaluating LLMs’
reasoning robustness at the contextual level, such as
sentence structure or information correctness. How-
ever, it is crucial to recognize that non-contextual
mistakes also naturally occur in users’ queries, sig-
nificantly influencing LLMs’ performance.

In this work, we study the robustness of CoT
reasoning against seemingly innocuous errors: ty-
pographical errors or typos. We found that typos
can significantly undermine the CoT reasoning pro-
cess. For instance, in Figure 1, the user made two
typographical errors in the input: omitting a letter
(year to yar) and duplicating a letter (has to haas),
yet these minor typos initiate a cascade of errors.
Recognizing the impact of such typos, we propose
the Adversarial Typo Attack (ATA) algorithm. It
is designed to effectively identify typographical er-
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Figure 2: ATA mainly consists of three steps: 1 selecting a set of tokens with the highest gradients; 2 sampling
typographical errors to edit the selected tokens and generate a batch of candidates; 3 evaluating the losses of the
candidates using the model and retaining the optimal candidate for the next iteration.

rors that can cause the model to generate incorrect
answers by modifying the input in a way that in-
creases the model’s probability of making mistakes.
We designate the target answer as “Sorry, I’m un-
able to answer the question.” This not only ensures
universal compatibility across various user queries,
but also reinforces our adversarial strategy by using
negative wording to signal the model not to gener-
ate a satisfactory answer. As illustrated in Figure 2,
ATA first extracts tokens that are important to the
input, as evaluated by gradients. Subsequently, it
samples a set of typing mistakes for each selected
word and modifies them within the input. Finally, it
assesses the loss for the edited input and preserves
the optimal candidate for the subsequent iteration.
ATA demonstrates significant effectiveness in at-
tacking. For example, with just 1 character edit,
Mistral-7B-Instruct’s accuracy drops from 43.7%
to 38.6% on GSM8K, while 8 character edits re-
sults in a halved accuracy at 19.2%.

Motivated by the intriguing observation, we
benchmark various models’ Reasoning Robustness
against the ATA, named R2ATA, on three common
language datasets that involve extensive reasoning,
GSM8K (Cobbe et al., 2021), BBH (Suzgun et al.,
2023) and MMLU (Hendrycks et al., 2021). We
test LLMs’ performances under different numbers
of adversarial typographical changes and report
their average performances. Moreover, we con-
sider two scenarios: direct adversarial robustness
for smaller open-sourced LLMs, where we are able
to apply ATA, and transfer adversarial robustness
for super large and closed-source LLMs, where we
use a fixed set of data obtained from implementable
models. We found that even state-of-the-art models
exhibit different levels of vulnerabilities. Notably,
R2ATA achieves performance drop from 38.2% to
26.4% on GSM8K, from 52.1% to 42.5% on BBH

and 59.2% to 51.5% on MMLU, resulting from
only four edits made on Vicuna-33B-chat. Addi-
tionally, Mixtral-8×7B shows an average decrease
of 6.7% drop on average among tasks, while Chat-
GPT exhibits a drop of 6.5%. We believe that
R2ATA will serve as an important benchmark to
evaluate the robustness of CoT reasoning.

2 Adversarial Typo Attack (ATA)

2.1 Overview

ATA employs an iterative process to introduce ty-
pographic errors in prompt words, selecting re-
placements based on their performance in guiding
the model to generate the desired attacking target.
Unlike traditional adversarial attacks that aim to
prompt models to produce harmful outputs, our
objective with ATA is to influence LLMs to gener-
ate incorrect reasoning responses while preserving
the naturalness and coherence of the text. There-
fore, to ensure universal adaptability to diverse user
queries, we designate our target response as “Sorry,
I’m unable to answer the question.”, which lever-
ages the negative semantic connotation to signal
the model not to generate a satisfactory answer,
reinforcing our adversarial strategy. Furthermore,
candidates considered in each iteration are limited
to those that contain only typographical errors, as
thoroughly explained in Section 2.2.

2.2 Typographical Errors used in ATA

To accurately simulate real user scenarios, we re-
strict word modifications to those commonly en-
countered during user interactions. In chatbot inter-
actions powered by LLMs, users frequently make
typing errors due to keyboard usage. These mis-
takes often remain undetected in the absence of a
grammar check tool.
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Error Example Sentence

None The quick brown fox jumps over the lazy dog.

Proximity Thr quick brown fox jumps over the lazy dog.

Double typing The quick brown fox juumps over the lazy dog.

Omission The quick brown fox jumps ovr the lazy dog.

Extra space The quick brown fox jumps over the lazy dog.

Table 1: Examples of typographical errors.

Keyboard Proximity Errors. One common er-
ror occurs when users accidentally strike keys adja-
cent to the intended key. For instance, when intend-
ing to type the letter ’S’, users may inadvertently
touch the keys ‘A’, ‘W’, ’D’, ‘Z’, or ‘X’.

Keyboard Double-Typing Errors. Another type
of error that often goes unnoticed is repeated typ-
ing, where a word is mistakenly typed with re-
peated characters, such as transforming “flop” into
“floop”. However, this particular error only occurs
with words, as users typically recognize and correct
repeated typing when it involves numbers.

Keyboard Omission Errors. In contrast to dou-
ble typing, typing omission refers to the uninten-
tional omission of a letter from a word.

Extra Whitespace Error. Another common
oversight users encounter involves unintentionally
inserting multiple spaces between words. This of-
ten stems from typing hastily, where users may
inadvertently strike the space bar more than once
or fail to notice extra spaces as they type swiftly.

These errors are hard to detect as they don’t
trigger conventional spelling or grammar checks,
leading to unnoticed text inconsistencies. Table 1
shows an example sentence with different imper-
ceptible perturbations errors. In addition to the
aforementioned minor revisions, there are other
commonly encountered errors, such as word shuf-
fling, abbreviation insertion, random uppercase
transformations, and the use of leet letters (Zhang
et al., 2022). However, these are usually noticeable
and easily corrected. Despite potentially impacting
the reasoning of the response more, we choose to
disregard them in our approach.

2.3 ATA Algorithm
Task Definition. For a LLM, let Q represent the
original question. Our objective is to create imper-
ceptible adversarial perturbations in Q to generate
an adversarial example, denoted as Qadv, which
induces the model to produce a target answer T .

Algorithm 1 Adversarial Typo Attack
Input: Question Q1:n, mistake dictionary M, word edit func-

tion Edit, loss L, batch size B, number of edits E
1: repeat
2: //Retrieve the top-k gradient words

from the question
3: {w(1), w(2), . . . , w(k)} = Top-k(∇L(Q1:n))
4: for b = 1, · · · , B do
5: //Uniformly sample a word and a

letter for editing
6: ws = Uniform({w(1), w(2), . . . , w(k)})
7: ls = Uniform(ws)
8: //Uniformly sample from mistake

dictionary to edit word
9: Q

(b)
1:n = Edit(ws,Uniform(M[ls]))

10: end for
11: //Select modified question with

lowest loss
12: Qb∗

1:n = argminb L(Qb
1:n)

13: //Replace original question with
modified question

14: Q1:n = Qb∗
1:n

15: until Repeat for E times
Output: Modified question Q1:n

This can be formulated as follows:

min
Qadv

L
(
T |Qadv

)
, (1)

where L(T |Qadv) = − log p(T |Qadv) is the nega-
tive log-likelihood of the LLM generating the target
answer T given the adversarial prompt Qadv.

Algorithm Description. For each original ques-
tion Q1:n = {w1, w2, . . . , wn} comprising of
words wi, we initiate our algorithm by identify-
ing the most influential words in the question using
the loss function ∇L(Q1:n).

We then rank these words by their influence and
select the top-k, denoted as {w(1), w(2), . . . , w(k)}.
From this influential word set, we randomly sample
a word ws and uniformly select a letter ls within ws

for potential modification. This selected letter un-
dergoes potential modification through the Edit(·)
function, introducing errors based on the operations
listed in the mistake dictionary M, which covers
four types of typographical errors in Table 1. To
create a batch size of B candidates, we repeat this
sampling process B times and calculate the loss for
each modified question, denoted as L(Qb

1:n), for
b ∈ {1, · · · , B}.

We finally select the modified question with the
lowest loss:

Qb∗
1:n = argmin

b
L(Qb

1:n). (2)

This process is repeated for E iterations, depending
on the desired number of edits to execute the tar-
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Dataset Model (#Params) Ori. Avg-ATA ATA-1 ATA-2 ATA-4 ATA-8

GSM8K

Gemma-2B (2.5B) 15.1 8.1 (↓ 7.0) 11.2 9.4 7.1 4.6
Llama2-7B (6.7B) 27.3 16.7 (↓ 10.6) 21.8 19.7 14.7 10.6
Mistral-7B (7.2B) 43.7 30.1 (↓ 13.6) 38.6 35.4 27.1 19.2
Gemma-7B (8.5B) 39.9 32.1 (↓ 7.8) 38.7 36.8 29.8 23.1

BBH

Gemma-2B (2.5B) 29.6 20.8 (↓ 8.8) 24.7 21.9 20.2 16.4
Llama2-7B (6.7B) 35.7 28.1 (↓ 7.6) 32.2 30.1 26.8 23.3
Mistral-7B (7.2B) 50.0 40.9 (↓ 9.1) 46.8 43.1 39.1 34.6
Gemma-7B (8.5B) 42.4 35.9 (↓ 6.5) 40.6 38.1 33.5 31.3

MMLU

Gemma-2B (2.5B) 34.1 27.5 (↓ 6.6) 30.3 29.7 27.5 22.6
Llama2-7B (6.7B) 35.1 29.5 (↓ 5.6) 31.6 30.2 28.9 27.5
Mistral-7B (7.2B) 54.6 47.0 (↓ 7.6) 51.1 49.3 44.8 42.7
Gemma-7B (8.5B) 53.5 47.8 (↓ 5.7) 51.7 50.1 47.6 41.8

Table 2: Main results of ATA’s direct attacks on GSM8K (0-shot), BBH (3-shot), and MMLU (5-shot) for smaller
models. Results expressed in accuracy (%). All models are chat models.

geted attack on the question. The overall algorithm
is further illustrated in Algorithm 1.

3 Experiment

3.1 Experimental Setup
Dataset. For our experiments, we have se-
lected three widely recognized reasoning datasets:
GSM8K (Cobbe et al., 2021), BBH (Suzgun et al.,
2023), and MMLU (Hendrycks et al., 2021), which
cover evaluation of comprehensive reasoning ca-
pabilities, including logical reasoning, symbolic
reasoning, mathematical reasoning, and common-
sense reasoning. We include all test questions from
the GSM8K dataset in our evaluation. For the BBH
and MMLU datasets, due to computational con-
straints, we will select a subset of 50 questions
from each topic.

Generation of adversarial test cases. We con-
duct ATA on both zero-shot and few-shot prompts,
focusing specifically on editing the questions (and
options, if applicable). Notably, we avoid attacking
the standardized prompt, “Let’s think step by step.”
to ensure the model retains its understanding of the
need for CoT. For few-shot prompts, we retain the
original examples without edits, simulating human
behavior of directly copying examples.

Models. To evaluate the reasoning robustness
of LLMs, we select LLMs ranging from smaller
parameters to larger parameters to attack. We
use Gemma-2B-It, Gemma-7B-It (Team et al.,
2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
Llama2-7B-Chat (Touvron et al., 2023), Vicuna-
13B-v1.5, Vicuna-33B-v1.3 (Chiang et al., 2023),
Mixtral-8×7B-Instruct-v0.1 (Jiang et al., 2024),
ChatGPT (gpt-3.5-turbo-0613) (OpenAI, 2022),

GPT-4 (gpt-4-0613) (OpenAI, 2023). For the larger
and closed-source models, such as Vicuna-33B-
v1.3, Mixtral-8×7B-Instruct-v0.1, and ChatGPT,
we employ questions generated by the smaller
Mistral-7B-Instruct-v0.2 model to evaluate their
performance. This approach demonstrates ATA’s
transferability across white-box models and be-
tween white-box and black-box models.

Implementation details. We present accuracy
results for both the original and edited scores, rep-
resented on a logarithmic scale ranging from 1 to 8
edits applied to each question. The primary metric
for assessing the effectiveness of an adversarial at-
tack is the reduction in accuracy. All experiments
are conducted on the A800-SMX-80GB GPU.

3.2 Main results

The main results of the attacks on the GSM8K,
BBH, and MMLU datasets and comparison of the
performance of the baselines models are summa-
rized in Table 2 and Table 3.

Performance Degradation under ATA. As
shown in Table 2 and Table 3, our method consis-
tently reduces model performance across various
datasets, demonstrating the significant vulnerabil-
ity of LLMs to such errors. For instance, in Ta-
ble 2, small models like Gemma-2B2, Llama2-7B,
Mistral-7B and Gemma-7B show striking average
absolute reductions of 7.0%, 10.6%, 13.6% and
7.8% respectively for GSM8K. Similar declines
are observed across four models on other datasets
shown by 8.8%, 7.6%, 9.1%, and 6.5% respec-
tively for BBH, and 6.6%, 5.6%, 7.6%, and 5.7%

2We will now use the abbreviated model name without the
version information to avoid redundancy.
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Dataset Model (#Params) Ori. Avg-ATA ATA-1 ATA-2 ATA-4 ATA-8

GSM8K
Vicuna-13B (13B) 33.4 28.4 (↓ 5.0) 32.4 30.8 26.2 24.3
Vicuna-33B (33B) 38.2 29.2 (↓ 9.0) 35.3 32.6 26.4 22.5
Mixtral-8×7B (47B) 68.5 60.9 (↓ 8.3) 66.7 62.8 57.9 53.4

BBH
Vicuna-13B (13B) 51.2 42.5 (↓ 8.7) 47.7 44.9 40.8 36.6
Vicuna-33B (33B) 52.1 43.7 (↓ 8.4) 49.4 44.7 42.5 38.2
Mixtral-8×7B (47B) 65.6 60.4 (↓ 5.2) 64.0 62.8 58.3 56.4

MMLU
Vicuna-13B (13B) 53.4 48.2 (↓ 5.2) 50.8 50.3 48.2 43.6
Vicuna-33B (33B) 59.2 52.3 (↓ 6.9) 56.3 54.9 51.4 47.5
Mixtral-8×7B (47B) 68.4 63.3 (↓ 5.1) 66.1 64.8 62.1 60.2

Table 3: Main results of transfer attacks on GSM8K (0-shot), BBH (3-shot), and MMLU (5-shot) for larger models.
Adversarial data used to attack is from Mistral-7B. Results expressed in accuracy (%). All models are chat models.

respectively for MMLU. These results consistently
illustrate that even minor typographical errors can
trigger significant performance degradation, reflect-
ing a systemic weakness in LLMs’ ability to han-
dle imperfect input. The consistent decrease in
accuracy across different datasets and models un-
derscores the generalizability of our attack. By
exploiting these vulnerabilities, our adversarial ty-
pographical errors disrupt the internal reasoning
processes of LLMs, leading to erroneous outputs
and highlighting a critical area for improvement for
LLMs.

Transferability. To further explore the impact
of adversarial typographical errors on LLMs, we
evaluated the transferability of adversarial prompts
crafted for Mistral-7B to larger models. The re-
sults reveal a similar vulnerability to smaller mod-
els, as larger models shown in Table 3: Vicuna-
13B, Vicuna 33B, and Mixtral-8×7B show aver-
age absolute reductions of 5.0%, 9.0%, and 8.3%
respectively for GSM8K, 8.7%, 8.4%, and 5.2%
respectively for BBH, 5.2%, 6.9%, and 5.1% re-
spectively for MMLU. This consistent decrease
in performance across various larger models un-
derscores the high transferability of our adversarial
attacks, demonstrating that typographical errors not
only disrupt smaller models but also significantly
impair the reasoning processes of more complex
systems. These findings emphasize that the vulner-
abilities exploited by our attacks are fundamental,
affecting a broad spectrum of model architectures
and sizes, thereby highlighting the critical need for
robust defense mechanisms in the development of
future LLMs.

3.3 Attack Performance Analysis

Effectiveness. We compare ATA-4 with two
baselines to evaluate its effectiveness. The first

Model Method GSM8K BBH MMLU Avg.

Mistral-7B∗
Original 43.7 50.0 56.6 50.1
Random 39.2 48.4 54.8 47.5 (↓ 2.6)
PromptBench − 50.0 56.4 53.2 (↓ 0.1)
ATA-4 27.1 39.1 48.3 38.2 (↓ 11.9)

Gemma-7B∗
Original 39.9 42.4 53.5 45.3
Random 40.3 41.2 53.4 45.0 (↓ 0.3)
PromptBench − 42.3 53.5 47.9 (↓ 0.1)
ATA-4 29.8 33.5 47.6 37.0 (↓ 6.3)

Vicuna-33B+

Original 38.2 52.1 59.2 49.8
Random 37.4 52.2 57.9 49.2 (↓ 0.6)
PromptBench − 52.1 59.0 55.6 (↓ 0.1)
ATA-4 26.4 42.5 51.4 40.1 (↓ 9.7)

Table 4: Performance compared to random selection
and PromptBench, where ∗ indicates direct applying
ATA, while + indicates transfering from other models.
Promptbench is not used to attack GSM8K dataset as
there is no instruction used in GSM8K.

baseline, referred to as the random baseline, in-
volves randomly choosing words and letters to
be edited and replacing them by randomly sam-
pling from a mistake dictionary. The second base-
line employs the “DeepWordBug” strategy from
Promptbench (Zhu et al., 2023), which targets the
instruction portion of the prompts. As shown in
Table 4, our results demonstrate that ATA-4 sig-
nificantly outperforms both baselines in degrading
model performance. For Mistral-7B, Gemma-7B,
and Vicuna-33B, ATA-4 at 4 edits results in av-
erage absolute reductions in accuracy of 11.9%,
6.3%, and 9.7% respectively. In stark contrast,
the random baseline yields much lower reductions
of 2.6%, 0.3%, and 0.6%, while Promptbench’s
DeepWordBug strategy results in minimal reduc-
tions of 0.1%, 0.1%, and 0.1%. These findings
underscore the superior effectiveness of ATA-4,
which leverages targeted typographical errors to
exploit model vulnerabilities more efficiently than
random or instruction-focused attacks. This also
demonstrates a clear and significant impact on the
reasoning capabilities of LLMs compared to the
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Model Task Ori. ATA-1 ATA-2 ATA-4 ATA-8

ChatGPT+
GSM8K 72± 0.8 68± 1.3 66± 2.5 62± 1.2 58± 1.7

BBH 69± 0.4 68± 0.4 65± 0.7 61± 0.3 59± 0.6
MMLU 67± 0.3 65± 0.2 63± 0.4 59± 0.6 56± 0.5

GPT-4+
GSM8K 88± 0.5 87± 0.6 86± 0.5 84± 0.4 81± 0.7

BBH 89± 0.6 89± 0.6 87± 0.7 86± 0.2 85± 0.6
MMLU 86± 0.8 85± 0.4 84± 0.3 84± 0.9 82± 0.8

Table 5: Performance of ATA on closed-source mod-
els. ATA notably impacts ChatGPT but have a minimal
impact on GPT-4, highlighting GPT-4’s human-level
comprehension and resistance to such errors. This af-
firms that ATA generates imperceptible typos in prompt.

baseline strategies.

Performance on ChatGPT and GPT-4. We con-
duct transfer experiments on ChatGPT and GPT-4.
However, due to the high cost involved, we only
sample 100 instances for each dataset, and we run
for 3 times and report the results with their respec-
tive standard deviations in Table 5. ATA achieves
an average performance drop of 8.5% on GSM8K,
5.8% on BBH, and 6.3% on MMLU. However,
when targeting GPT-4, it fails to produce significant
impact, resulting in an average performance drop
of only 3.5% on GSM8K, 2.3% on BBH, and 2.3%
on MMLU. The inability to attack GPT-4 demon-
strates that when models possess a similar level of
comprehension as humans, typos have negligible
influence on the results. Moreover, this substan-
tiates that ATA solely incorporates imperceptible
typos within prompts.

4 Benchmark: Reasoning Robustness to
Adversarial Typo Attacks (R2ATA)

To enable a comprehensive evaluation of LLMs’
Reasoning Robustness to ATA, including future
new models, super-large models, and closed-source
models, we propose the establishment of a bench-
mark named R2ATA. This benchmark utilizes ad-
versarial typographical questions derived from
transfer experiments conducted in Section 3, specif-
ically GSM8K, BBH, and MMLU. Concrete exam-
ples of R2ATA for each dataset are shown in Tables
6 to 8 in Appendix A.1.

4.1 R2ATA Statistics
Representative Example. Figure 3 compares the
model’s responses to an original and an adversari-
ally edited GSM8K question. In the original ques-
tion, the model follows a logical reasoning pathway
to reach the correct answer. Meanwhile, the ad-
versarially edited question introduces subtle typo-

graphical errors. These minor perturbations cause
the model to misinterpret key terms, leading to er-
roneous intermediate steps and ultimately resulting
in a wrong answer.

Distribution of Typographical Edits. One of
the key analyses involves examining the distribu-
tion of the edit operations used in R2ATA. Fig-
ure 4 illustrates the edit operation statistic present
in R2ATA. Notably, the predominance of the
whitespace error operation adopted by ATA high-
lights its significance in exploiting model vulnera-
bilities. This suggests that LLMs are particularly
susceptible to errors stemming from additional
whitespace, possibly due to a lack of robustness
in handling such perturbations. The frequency of
whitespace errors implies that patterns involving
multiple whitespaces between words are likely in-
frequent in the training data, resulting in heightened
sensitivity and errors in reasoning outputs.

The variation in error operation distribution
across the three datasets, as depicted in Figure 4,
indicates that task complexity influences the preva-
lence of specific error operations. The GSM8K
dataset focuses on mathematical reasoning, while
MMLU and BBH cover a broader range of tasks, in-
cluding logical and commonsense reasoning (Suz-
gun et al., 2023). By systematically evaluating
LLMs’ performance under these conditions, the
benchmark aims to provide insights into improving
model robustness across diverse reasoning tasks.

4.2 R2ATA Analysis
The R2ATA benchmark is analyzed at various levels
to provide comprehensive insights into the types
and patterns of typographical errors that impact
model performance.

Type of Edited Words. Figure 5 illustrates the
distribution of edited word types across all three
datasets. The data reveals that nouns are the most
frequently edited word type, accounting for 48.9%
of the edits. Verbs follow at 16.7%, and adjectives
at 14.9%. This distribution reflects the significant
roles these word types play in conveying meaning.
Nouns, as primary subjects and objects, are often
targeted for edits due to their substantial semantic
weight, which can profoundly alter sentence mean-
ing and context. Verbs, crucial for actions and
states, similarly impact sentence meaning when
modified. Adjectives, providing descriptive nu-
ances, can subtly change the tone or implication of
text upon editing. In contrast, stop words such as
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(a) Whitespace and Replace Errors. (b) Omission and Double.

Figure 3: Comparison of Mistral-7B responses to original (left) and adversarially edited (right) GSM8K questions.
Minor typographical errors in the edited question can lead to misinterpretation and incorrect answers.

Figure 4: Distribution of error operations selected by ATA across
the datasaets in R2ATA benchmark. The predominance of whites-
pace errors highlights a key vulnerability in LLMs.

Verb
16.7%

Noun
48.9%

Adjective
14.9%

Preposition
5.7%

Adverb
3.8%

Determiner
2.9%
Other
2.6%

Pronoun
2.3%

Numeral
1.3%

Conjunction
1.0%

Figure 5: Distribution of edited word types in
R2ATA. Nouns, Verbs, and Adjectives consti-
tute the majority of edited words.

conjunctions and prepositions primarily contribute
to grammatical structure rather than semantic con-
tent, making them less frequently edited and thus
less impactful on overall meaning. This goes to
show that models need to be more robust to subject
perturbations to ensure more robustness to these
typographical errors.

Edited Words Statistics. Figure 6 shows the
word cloud of edited words with size reflecting edit
frequency. To ensure a fair comparison, we applied
Inverse Document Frequency (IDF) normalization,
calculated using: IDF(t) = log

(
N
dft

)
, where t is

the term, N is the total number of prompts, and dft
is the number of prompts containing the term t.

We adjust each word’s frequency by multiplying
it with its IDF weight to highlight words dispropor-
tionately edited relative to their overall frequency.
In the GSM8K dataset, frequent edits of words
like “many,” “people,” “much,” “two,” “each,” and
“total” suggest their semantic importance in mathe-

matical problems due to their inherent complexity
and the model’s sensitivity to linguistic patterns and
numerical expressions. Figures 6(b) and 6(c) show
word clouds from BBH and MMLU datasets, high-
lighting words like “describe,” “which,” “complete”
for BBH, and “individual,” “an,” “which,” “all,”
and “morally” for MMLU, which cover diverse
topics compared to GSM8K’s focus on math. The
minimal presence of stop words among frequently
edited words indicates that edits target content-
bearing words, suggesting that ATA edits aim to
disrupt the text’s logical flow, coherence, or se-
mantics, thus strategically influencing the model’s
reasoning abilities.

Impact on the Token Level. Figure 7a illustrates
the how accuracy varies with edit distance for ad-
versarially edited prompts across three datasets:
GSM8K, BBH, and MMLU. Meanwhile, Figure
7b shows how accuracy varies with the Jaccard co-
efficient, with each data point representing 0, 1,
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(a) GSM8K (b) BBH (c) MMLU

Figure 6: Statistic of words edited in R2ATA.

(a) Edit Distance. From left to right,
each data point represents 0, 1, 2, 4,
8 edits respectively.

(b) Jaccard Coefficient. From left to
right, each data point represents 8,
4, 2, 1, 0 edits respectively.

Figure 7: Effects of adversarial edits at the token level.
Figure 8: Visualizing attention changes before
and after adversarial attacks.

2, 4, and 8 edits. It is evident that even a small
number of edits leads to a substantial increase in
edit distance, resulting in a significant decline in
accuracy. However, despite this increase in edit
distance, the Jaccard coefficient remains relatively
stable, consistently exceeding 0.8 across all edits.
This high degree of similarity between the edited
and original prompts suggests that the edits are
likely imperceptible to humans, underscoring the
challenge of detecting adversarial modifications.
Impact on Attention Figure 8 illustrates the
changes in attention distribution before and after
an adversarial attack on a question. In the original
question, attention was focused on critical words
such as “much,” “increased,” and “by 150%”. How-
ever, after the question was edited, there was a
noticeable shift in attention. For instance, the at-
tention on “much” decreased significantly due to
it being altered to “muxh”. Similarly, attention
on “increased” and “by 150%” was entirely lost.
Instead, the attention was redirected to irrelevant
words like “the house”. This misallocation of at-
tention led to errors in the reasoning steps, as the
model focused on less important parts of the text,
thereby compromising its ability to understand and
answer the question correctly. The detailed im-
plementation code for attention calculation using
PyTorch is shown in Appendix A.2.

5 Related Work

Textual Adversarial Attacks have garnered signif-
icant attention due to their ability to exploit vul-
nerabilities in LLMs. These attacks, which ma-
nipulate input text to mislead models into incor-
rect predictions or misleading responses, have been
studied extensively at various levels of input gran-
ularity: character-level (Gao et al., 2018; Li et al.,
2019; Pruthi et al., 2019), word-level (Garg and
Ramakrishnan, 2020; Jin et al., 2020; Zhou et al.,
2024), sentence-level (Shi et al., 2023; Xu et al.,
2024; Turpin et al., 2024; Lanham et al., 2023)
and semantic-level Zhu et al. (2023); Parcalabescu
and Frank (2023), as noted by Zhu et al. (2023).
However, these approaches often generate adver-
sarial examples that are easily detectable by human
users, limiting their real world applicability. Our
approach instead introduces imperceptible modifi-
cations to prompts similar to Brown et al. (2018);
Richards et al. (2021), offering a more realistic
assessment of adversarial risks.

Furthermore, while some defenses address re-
lated threats, such as malware detection adver-
saries (Fleshman et al., 2018; Íncer Romeo et al.,
2018), they operate in more constrained spaces and
do not directly apply to the nuanced edits (Lowd
and Meek, 2005) that we explore.
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6 Conclusion

This study examined the robustness of LLMs to
typographical errors using the ATA algorithm and
the R2ATA benchmark. By focusing on impercep-
tible, real-world attacks in NLP, our work fills a
key gap in adversarial research, moving beyond
the artificial constrains of prior approaches and
offering insights into more practical vulnerabili-
ties in LLMs. Our findings show that even minor
typographical changes significantly reduce model
accuracy. Specifically, we observe that adversar-
ial prompts from Mistral-7B similarly affect larger
models like Vicuna-13B, Vicuna-33B, and Mixtral-
8×7B, indicating that both smaller and larger mod-
els are vulnerable. This highlights the need for
improved robustness in LLMs against typograph-
ical errors. The R2ATA benchmark is a valuable
tool for developing more resilient models capa-
ble of reliable performance despite minor errors,
emphasizing the critical need for robust defense
mechanisms in future LLMs.

Limitation

Our algorithm primarily focuses on typographi-
cal errors common in languages that use alphabets
and whitespaces, such as English. This excludes
languages with different writing systems, such as
Chinese, where typographical errors may involve
character substitutions or stroke omissions. The
typographical errors considered may not cover all
possible real-world scenarios. For instance, whites-
pace errors only apply to languages that use spaces,
while letter addition and deletion errors are relevant
only to alphabetic languages. Therefore, future re-
search should extend the scope to encompass a
broader range of linguistic diversity to ensure the
applicability of findings across various languages
and writing systems. Exploring language-specific
modifications will provide a more comprehensive
understanding of LLM robustness across diverse
linguistic contexts. Developing and testing adver-
sarial attacks tailored to these languages will help
in creating more universally resilient language mod-
els. Additionally, our evaluation primarily relies
on open-source and commercially available LLMs
due to accessibility constraints. While the R2ATA
benchmark effectively demonstrates vulnerabilities
in these models, the performance of many closed-
source LLMs remains unexplored.
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A Appendix

A.1 Examples of Edits by ATA
GSM8K Table 6 shows an example of typograph-
ical errors generated on a GSM8K question.

Original Question: Archie buys beef jerky that comes
30 sticks to a bag and costs $18.00 per bag. If
Archie buys 1 bag while they’re $3.00 off a
bag, how much will each stick of jerky cost in
cents?\nAnswer: Let’s think step by step.

ATA-1 Question: Archie buys beef jerky that comes
30 sticks to a bag and costs $18.00 per bag.
If Archie buys 1 bag while they’re $3.00 off
a bag, how much will each stick of jerky cost in
cents?\nAnswer: Let’s think step by step.

ATA-2 Question: Archie buys beec jerky that comes
30 sticks to a bag and costs $18.00 per bag.
If Archie buys 1 bag while they’re $3.00 off
a bag, how much will each stick of jerky cost in
cents?\nAnswer: Let’s think step by step.

ATA-4 Question: Archie buys beec jerky that comes
30 sticks to a bag and costs $18.00 per bag.
If Archie buys 1 bag while they’re $3.00 off
a bag, how much will each stick of jer kg cost in
cents?\nAnswer: Let’s think step by step.

ATA-8 Question: Archie buys beec jerky that comes
30 sticks to a bag and costs $18.00 per bag.
If Archie buys 1 bag while they’re $3.00 off
a bag, how much will eacn stick of jer kg cost in
cents?\nAnswer: Let’s think step by step.

Table 6: An example of typographical errors generated
on a GSM8K question.

BBH Table 7 shows an example of typographical
errors generated on a BBH question.

MMLU Table 8 shows an example of typograph-
ical errors generated on a MMLU question.

Original Q: Is the following sentence plausible? "Petr
Cech was safe at first."\nA: Let’s think step
by step.

ATA-1 Q: Is the following sentence plausible? "Petr
Cech was szfe at first."\nA: Let’s think step by
step.

ATA-2 Q: Is the following sentence plausible? "Petr
Cech was szfe at first."\nA: Let’s think step by
step.

ATA-4 Q: Is the folllwing sentence plausible? "Petr
Cech was szfe at first."\nA: Let’s think step by
step.

ATA-8 Q: Is the follwing sntence plausible? "Petr Cech
was szfe at firsst."\nA: Let’s think step by step.

Table 7: An example of typographical errors generated
on a BBH question.

Original Q: Which of these should an objective NOT
be?\n(A) Broad (B) Achievable (C) Measur-
able (D) Time-bound\nA: Let’s think step by
step.

ATA-1 Q: Which of these should an objective NOT
be?\n(A) Broad (B) Achievable (C) Measurable
(D) Tie-bound\nA: Let’s think step by step.

ATA-2 Q: Which of these should an objective NOT
be?\n(A) Brod (B) Achievable (C) Measurable
(D) Tie-bound\nA: Let’s think step by step.

ATA-4 Q: Which of these should an object ve NOT
be?\n(A) Brod (B) Achievable (C) Measurable
(D) Tie-bound\nA: Let’s think step by step.

ATA-8 Q: Which of thee shoulld an object ve NOT
be?\n(A) Brod (B) Achievable (C) Me aaurable
(D) Tie-bound\nA: Let’s think step by step.

Table 8: An example of typographical errors generated
on a MMLU question.

A.2 Calculation of Attention Weights
We obtained the attention weights using the Hug-
gingface library. We obtain from specifically the
last attention layer. Because there are 16 attention
heads, we chose to perform mean pooling on the
attention weight matrix and obtained the attention
of all the words with respect to the last token in the
user input.

from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
model_name,output_attentions=True)

tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
{"role": "user", "content": "Question: Josh..."}

]

inputs = tokenizer.encode(messages,
return_tensors='pt')

input_ids = inputs['input_ids']

attention = model(input_ids,attn_output_weights=True)
attention_last = attention_all[-1].mean()
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