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Abstract

Knowledge graph embedding (KGE) mod-
els achieved state-of-the-art results on many
knowledge graph tasks including link predic-
tion and information retrieval. Despite the su-
perior performance of KGE models in prac-
tice, we discover a deficiency in the expres-
siveness of some popular existing KGE models
called Z-paradox. Motivated by the existence
of Z-paradox, we propose a new KGE model
called MQuinE that does not suffer from Z-
paradox while preserves strong expressiveness
to model various relation patterns including
symmetric/asymmetric, inverse, 1-N/N-1/N-N,
and composition relations with theoretical justi-
fication. Experiments on real-world knowledge
bases indicate that Z-paradox indeed degrades
the performance of existing KGE models, and
can cause more than 20% accuracy drop on
some challenging test samples. Our experi-
ments further demonstrate that MQuinE can
mitigate the negative impact of Z-paradox and
outperform existing KGE models by a visible
margin on link prediction tasks.

1 Introduction

Knowledge graphs (KGs) consist of many facts that
connect real-world entities (e.g., humans, events,
words, etc.) with various relations. Each fact in a
knowledge graph is usually represented as a triplet
(h, r, t), where h, t are respectively the head and
tail entities and r is the relation; the triplet (h, r, t)
indicates that the head entity h has the relation r to
the tail entity t. Due to the prevalence of relational
data in practice, KG has a wide range of appli-
cations including recommendation systems (Wang
et al., 2018; Ma et al., 2019; Wang et al., 2019), nat-
ural language processing (NLP) (Sun et al., 2018),
question answering (QA) (Huang et al., 2019) and
querying (Chen et al., 2022).

Embedding-based models (Bengio et al., 2003;
Blei et al., 2003) have revolutionized certain fields
of machine learning including KG in the past two

decades. Simply speaking, knowledge graph em-
bedding (KGE) models map each entity and rela-
tion into a vector or matrix and calculate the proba-
bility of a fact triple through some score functions.
KGE models are space and time efficient. More
importantly, KGE models such as TransE (Bor-
des et al., 2013), RotatE (Sun et al., 2019), OTE
(Tang et al., 2020), etc., are quite expressive; it was
shown that KGE models if designed carefully, can
capture various relation patterns including symme-
try/asymmetry, inversion, composition, injective
and non-injective relations. Due to the efficiency
and expressiveness of KGE models, embedding-
based models have achieved state-of-the-art perfor-
mance on many KG applications and are widely
deployed in practice.

Despite the popularity of KGE models on vari-
ous KG applications, in this work, we discover a
bottleneck, termed as “Z-paradox”, of the expres-
siveness of some existing KGE models. Below
we give a short description and illustration of Z-
paradox and present its formal definition and some
related properties in Section 3.

Z-paradox. Though popular KGE models (e.g.,
TransE, RotatE, OTE) have already taken various
relation patterns into account, there are still lim-
itations. In what follows we introduce a limita-
tion of popular KGE models. Specifically, in Fig-
ure 1.1, there are four entities e1, e2, e3, e4, with
e1 linking to e2, e3 linking to both e2 and e4.
The task is to determine whether e1 links to e4
or not. A good KGE model should permit both
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Figure 1.1: An illustration of Z-paradox
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Figure 1.2: Illustration of Z-paradox in YAGO3-10.

scenarios. However, we find that many popular
KGE models such as TransE (Bordes et al., 2013)
and RotatE (Sun et al., 2019) would guarantee
e1 links to e4 regardless of whether e1 actually
has relation r to e4 or not. We term this phe-
nomenon Z-paradox due to the graph structure
in Figure 1.1. To be more concrete, let us take some
examples from the YAGO3-10 knowledge base,
where some actors and movies are connected by
the relation ActedIn. We illustrate the phenomenon
via Figure 1.2, where the dotted arrow means
that popular KGE models infer that the arrow-
tail links to the arrowhead, which contradicts with
the true facts. In the upper left plot, we observe
that Aamir_Khan has acted in Range_De_Basanti,
R._Madhaven has acted in Range_De_Basanti and
3_Idiots, then the KGE model would infer that
Aamir_Khan has acted in 3_Idiots, which is cor-
rect. However, in the upper right plot, we observe
that Aamir_Khan has acted in Range_De_Basanti,
R._Madhaven has acted in Range_De_Basanti
and Dumm_Dumm_Dumm, then the KGE model
would also infer that Aamir_Khan has acted in
Dumm_Dumm_Dumm, which is incorrect. The
same phenomenon occurs in the lower left and right
plots.

We demonstrate that the Z-pattern is indeed a
serious issue for standard KG benchmark datasets.
For example, about 35% of the test facts in the
FB15k-237 dataset are negatively affected by the
Z-pattern, and KGE models such as TransE and
RotatE can suffer more than 20% accuracy drop
on these test facts; see Section 5.3 and Section 5.4
for details. To mitigate the negative impact of the
Z-pattern, we propose a new KGE model to over-
come the Z-paradox. Moreover, the new model
can ensure both the robust expressiveness and the
ability to model various relation patterns, i.e., pre-

serves the good properties of existing KGE models.
The new model embeds a triplet (h, r, t) by five
matrices (H, ⟨Rh,Rt,Rc⟩,T), where the matri-
ces H,T denote the embeddings of the head entity
h and tail entity t respectively, the matrix triplet
⟨Rh,Rt,Rc⟩ represents the embedding of the rela-
tion r. We term the new model Matrix Quintuple
Embedding (MQuinE). We show that MQuinE en-
joys good theoretical properties and can achieve
promising empirical results. Compared with ex-
isting KGE models on the challenging FB15k-237
dataset, MQuinE obtains a 10% improvement of
Hit@10 on test facts that are negatively impacted
by the Z-pattern, and attains 7% and 4% overall im-
provement of Hit@1 and Hit@10 on all test facts.

Our contributions are summarized as follows:
1) A newly-defined phenomenon in the knowledge
graph named Z-paradox has been discovered and
we prove that existing translation-based KGE mod-
els all suffer from Z-paradox. Theoretically, we
present a necessary condition for the occurrence of
Z-paradox.
2) We propose MQuinE, a new KGE model that
is free from Z-paradox meanwhile can still model
complex relations including (a)symmetric, inverse,
1-N/N-1/N-N, and composition relations.
3) Experimental results of MQuinE on standard
benchmark datasets validate that MQuinE can in-
deed overcome the negative impact of Z-paradox;
MQuinE outperforms existing KGE methods by a
large margin on most benchmark datasets.

2 Related works

We summarize some popular KGE models in Ta-
ble C.2. We go through some existing KGE meth-
ods and discuss how they relate to our work.

Translation distance based methods. Transla-
tion distance based approaches evaluate the plau-
sibility of fact triples by comparing the distances
between the head and tail entity embeddings af-
ter some relation transformations. Inspired by
word2vec (Mikolov et al., 2013), Bordes et al.
(2013) first introduced the idea of translation invari-
ance into the knowledge graph embedding domain
and proposed the TransE model. Sun et al. (2019)
proposed RotatE and characterized relations as rota-
tions between the head and tail entities in complex
space; it was shown that many desirable proper-
ties, such as symmetry/asymmetry, inversion, and
Abelian composition, can be achieved by RotatE.
Tang et al. (2020) extended RotatE from the 2-
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dimensional complex domain to high-dimensional
space. Lu and Hu (2020) proposed DensE to better
model the complex composition relation patterns.

Bilinear semantic matching methods. Nickel
et al. (2011) first introduced the idea of tensor de-
composition to model triple-relational data. Yang
et al. (2014) later proposed a simple and effective
bilinear model called DisMult and achieved promis-
ing empirical results. Subsequent works such as
ComplEX (Trouillon et al., 2016), TuckER (Bal-
ažević et al., 2019), DihEdral (Xu and Li, 2019),
QuatE (Zhang et al., 2019) and SEEK (Xu et al.,
2020) adopted more complicated bilinear opera-
tions to either improve the expressiveness of Dis-
Mult or decrease the model complexity.

Deep learning methods. Vashishth et al.
(2020) proposed COMPGCN to incorporate multi-
relational information into graph convolutional net-
works which leverages a variety of composition
operations from knowledge graph embedding tech-
niques to embed both nodes and relations in a graph
jointly. Dettmers et al. (2018) proposed ConvE
and used convolutional neural networks to model
multi-relational data. Subsequent works (Nathani
et al., 2019; Vashishth et al., 2020) brought more ad-
vanced neural network architectures such as graph
convolutional networks and graph attention net-
works. More recently, Wang et al. (2021) pro-
posed M2GNN and embeds entities and relations
into the mixed-curvature space with trainable het-
erogeneous curvatures. Zhou et al. (2022) pro-
posed JointE and adopted both 1-dimensional and
2-dimensional convolution operations to capture
the latent knowledge more carefully.

3 Z-paradox and its cure: MQuinE

In this section, we give a formal definition of Z-
paradox and propose a new KGE model called
MQuinE that can circumvent Z-paradox while hav-
ing strong expressiveness.

3.1 Z-paradox

Definition 1 (Z-paradox). Given a KGE model
parameterized by {ei}|E|i=1, {ri}

|R|
i=1 and a score

function s(·) such that s∗ := inf s. For any
e1, e2, e3, e4 ∈ E , r ∈ R, if

s(e1, r, e2) = s(e3, r, e2) = s(e3, r, e4) = s∗

(1)
implies that s(e1, r, e4) = s∗ must hold, then we
say the KGE model suffers from Z-paradox.

Consider a KGE model that suffers from Z-
paradox. If e1 → e2, e3 → e2, e3 → e4, i.e.,
(1) holds, then e1 → e4 must holds regardless
the fact is true or not. It is obvious that a KGE
model that suffers from Z-paradox has an inherent
deficiency in its expressiveness, and a good KGE
model should be able to circumvent Z-paradox.
Next, we show that a wide range of existing KGE
models indeed suffer from Z-paradox and therefore
have limited expressiveness.

Proposition 3.1. Given a KGE model parameter-
ized by {ei}|E|i=1, {ri}

|R|
i=1 and a score function s(·).

If s(h, r, t) can be expressed as

s(h, r, t) = ∥f(h, r)− g(t, r)∥

for some functions f(·) and g(·), and s∗ := inf s =
0, then the KGE model suffers from Z-paradox.

Proof. First, we notice that s(h, r, t) = s∗ = 0
implies f(h, r) = g(t, r). For four entities
e1, e2, e3, e4 satisfying

s(e1, r, e2) = s(e3, r, e2) = s(e3, r, e4) = 0,

we have

f(e1, r) = g(e2, r)

f(e3, r) = g(e2, r)

f(e3, r) = g(e4, r).

Then it follows that

s(e1, r, e4)

=∥f(e1, r)− g(e4, r)∥
=∥[f(e1, r)− g(e2, r)]− [f(e3, r)− g(e2, r)]

+ [f(e3, r)− g(e4, r)]∥ = 0,

i.e., (e1, r, e4) holds. This completes the proof.

Remark 3.1. Proposition 3.1 indicates that all ex-
isting translation-based KGE models suffer from
Z-paradox, including TransE (Bordes et al., 2013),
RotatE (Sun et al., 2019), OTE (Tang et al., 2020)
and MQuadE (Yu et al., 2021), etc.

Remark 3.2. KGE models with bilinear score func-
tions may also suffer from Z-paradox under certain
conditions. This is because bilinear score func-
tions can be transformed into distance-based score
functions. For example, we have

2hTRt = −∥Rt− h∥2 + ∥h∥2 + ∥Rt∥2.
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When h, t both have fixed norms and R is an or-
thogonal matrix, then maximizing hTRt is equiva-
lent to minimizing ∥Rt−h∥2. Setting s(h, r, t) =
∥Rt − h∥2, by Proposition 3.1, the model suf-
fers from Z-paradox provided that inf s = 0. The
above procedure can be applied to other bilinear
KGE models including DisMult (Yang et al., 2014),
ComplexEX (Trouillon et al., 2016), DihEdral (Xu
and Li, 2019), QuatE (Zhang et al., 2019), SEEK
(Xu et al., 2020), Tucker (Balažević et al., 2019).

3.2 MQuinE

In this section, we introduce our model – MQuinE;
before that, we review some fundamental relation
patterns which need to be considered for KGE mod-
els.

Symmetric/Asymmetric relation. A relation
r is symmetric iff the fact triple (h, r, t) holds ⇔
the fact triple (t, r, h) holds. And a relation r is
asymmetric iff the fact triples (h, r, t) and (t, r, h)
do not hold simultaneously.

Inverse relation. A relation r2 is the inversion
of the relation r1 iff the fact triple (h, r1, t) holds
⇔ the fact triple (t, r2, h) holds.

Relation composition. A relation r3 is the
composition of relation r1 and r2 (denoted by
r3 = r1 ⊕ r2) iff the facts (a, r1, b) and (b, r2, c)
imply the fact (a, r3, c).

Abelian (non-Abelian). If r1 ⊕ r2 = r2 ⊕ r1,
the composition r1 ⊕ r2 is Abelian; otherwise, it is
non-Abelian.

1-N/N-1/N-N relation. A relation r is a 1-N
/ N-1 relation if there exist at least two distinct
tail/head entities such that (h, r, t1), (h, r, t2) /
(h1, r, t), (h2, r, t) hold. A relation r is an N-N
relation if it is both 1-N and N-1.

Next, we propose MQuinE, which preserves the
aforementioned relation patterns, moreover, cir-
cumvents the Z-paradox. Specifically, for a fact
triple (h, r, t), we use

s(h, r, t) = ∥HRh −RtT+HRcT∥2F (2)

to measure the plausibility of the fact triple. Here
H,T ∈ Rd×d are symmetric matrices and denote
the embeddings of the head entity and tail entity,
respectively, and the matrix triple ⟨Rh,Rt,Rc⟩ ∈
Rd×d ×Rd×d ×Rd×d denotes the embedding of
the relation r. Specifically, for a true fact triple
(h, r, t), we expect s(h, r, t) ≈ 0, moreover, for a
false triple, we hope the score is relatively large.

3.3 Expressiveness of MQuinE
In this section, we theoretically show that MQuinE
is able to model symmetric/asymmetric, inverse,
1-N/N-1/N-N, Abelian/non-Abelian compositions
relations, more importantly, MQuinE does not suf-
fer from Z-paradox.

Theorem 3.2. MQuinE can model the symme-
try/asymmetry, inverse, 1-N/N-1/N-N relations.

Theorem 3.3 (Composition). MQuinE can model
the Abelian/non-Abelian compositions of relations.

The proofs of Theorem 3.2 and Theorem 3.3 are
provided in Appendix.

Theorem 3.4 (No Z-paradox). MQuinE does not
suffer from Z-paradox.

Proof. We show the result via two examples. Let

Rh =

[
1 0
0 0

]
,Rt =

[
0 0
0 −1

]
,

Rc =

[
−1 0
0 −1

]
,E1 =

[
1 0
0 1

]
,

E2 =

[
1 0
0 0

]
,E3 =

[
0 0
0 1

]
.

On one hand, set E4 =

[
1 1
1 0

]
, it holds that

s(e1, r, e2) = 0, s(e3, r, e2) = 0,

s(e3, r, e4) = 0, s(e1, r, e4) = 1.

In other words, given a Z-pattern, e1 does not link

to e4. On the other hand, set E4 =

[
1 0
0 −1

]
, it

holds that

s(e1, r, e2) = 0, s(e3, r, e2) = 0,

s(e3, r, e4) = 0, s(e1, r, e4) = 0.

In other words, given a Z-pattern, e1 may link to
e4. This completes the proof.

Remark 3.3. Set Rc = 0, MQuinE becomes
MQuadE (Yu et al., 2021). So it is not surprising to
draw the conclusion that MQuinE can model vari-
ous relation patterns (Theorem F.1, Theorem F.2,
Theorem F.3 and Theorem 3.3) since MQuadE can.
The cross term HRcT plays the central role in cir-
cumventing Z-paradox. Adding such a cross term
to MQuadE to obtain MQuinE is nontrivial, the key
insight is Proposition 3.1 — without a cross term
between the head and tail entities, a distance-based
model must suffer from Z-paradox.
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Relation Relation matrix property

1-N relation rank(Rt) + rank(Rc) < d
N-1 relation rank(Rh) + rank(Rc) < d
N-N relation rank(Rt) + rank(Rc) < d and rank(Rh) + rank(Rc) < d
Symmetric relation (Rt)T = ∓Rh, (Rc)T = ±Rc

r2 inversion of r1 Rh
1 = (Rt

2)
T ,Rt

1 = (Rh
2 )

T ,Rc
1 = −(Rc

2)
T

Compositions r3 = r1 ⊕ r2 Rh
3 = Rh

1R
h
2 ,R

t
3 = Rt

1R
t
2,R

c
3 = Rh

1R
c
2 +Rc

1R
t
2

r1 ⊕ r2 Abelian composition Rh
1R

h
2 = Rh

2R
h
1 ,R

t
1R

t
2 = Rt

2R
t
1,R

h
1R

c
2 +Rc

1R
t
2 = Rh

2R
c
1 +Rc

2R
t
1

r1 ⊕ r2 Non-Abelian composition Rh
1R

h
2 ̸= Rh

2R
h
1 , or Rt

1R
t
2 ̸= Rt

2R
t
1, or Rh

1R
c
2 +Rc

1R
t
2 ̸= Rh

2R
c
1 +Rc

2R
t
1

Table 3.1: The various relations which can be modeled with different matrices.

Algorithm 1: Z-sampling
Input: the set of entities E , the set of

relations R, the set of observed
triplets O, a triplet (h, r, t), number
of negative samples m ∈ N, number
of Z-samples k ∈ N.

1 Fix h, r, sample m tail entities {ti}mi=1 s.t.
(h, r, ti) /∈ O ∀i ∈ [m], set
Sneg = {(h, r, ti)}mi=1;

2 Set SZ = ∅;
3 for i = 1, 2, . . . ,m do
4 Collect all Z-patterns associated with

(h, r, ti), i.e., e2, e3 ∈ E s.t.
(h, r, e2), (e3, r, e2), (e3, r, t) ∈ O;

5 SZ =
SZ ∪ {(h, r, e2), (e3, r, e2), (e3, r, t)};

6 end
7 Uniform randomly select k triplets in SZ

and remove other triplets from SZ ;
Output: Sneg and SZ .

The comparison of MQuinE and some existing
KGE models in expressiveness are given in Ta-
ble C.1. To our knowledge, MQuinE is the only
KGE model that does not suffer from Z-paradox
while preserving the ability to capture all relation
patterns.

4 Learning of MQuinE

Parameterization and regularization. We con-
strain the entity embedding matrices to be sym-
metric and parameterize each entity matrix E by
a lower triangular matrix A and its transpose,
i.e.,E = A + AT . We use the Frobenius norm
of entity and relation embedding matrices as regu-
larization.

Z-sampling. The negative sampling technique
plays an important role in the training of KGE mod-
els. Classic negative sampling first sample a batch
of observed facts. Then for each fact (h, r, t) in the

batch, fix the head entity h and relation r and sam-
ple m tail entities {ti}mi=1 such that {(h, r, ti)}mi=1

are not observed. Lastly, perform a gradient step
to decrease the score of positive samples and in-
crease the score of negative samples. To mitigate
the effect of Z-patterns more explicitly and fully
exploit the benefit of MQuinE, we propose a new
sampling technique called Z-sampling. Given a
positive fact (h, r, t), Z-sampling first sample m
negative samples {(h, r, ti)}mi=1 following exactly
the same procedure as the classic negative sam-
pling, then it collects all Z-patterns from observed
facts that are related to the sampled negative sam-
ples, i.e.,

SZ = ∪m
i=1{(h, r, e2), (e3, r, e2), (e3, r, ti)

|(h, r, e2), (e3, r, e2), (e3, r, ti) ∈ O}.

Lastly, the Z-sampling uniform randomly samples
k facts from SZ and treats them as positive facts.
The detailed algorithm of Z-sampling is given in
Algorithm 1. Z-sampling explicitly tries to min-
imize the score of positive facts in the Z-pattern
and maximize the score of negative facts simulta-
neously. Experiments on KG benchmark datasets
demonstrate the effectiveness of Z-sampling; see
Section 5.6 for details. Note that Algorithm 1 can
also be applied to ranking the head entity h (fixing
r, t) with minor modifications, we omit the details.

Objective function. The loss function L(h,r,t)

with respect to an observed fact (h, r, t) is

L(h,r,t) = − log σ(γ − s(h, r, t))

− λnegE(h,r,t′)∼Sneg

[
log σ(s(h, r, t′)− γ)

]

− λZE(h,r,t′′)∈SZ

[
log σ(γ − s(h, r, t′′))

]
,

where γ > 0 is a pre-defined margin, σ is the
sigmoid function, i.e., σ(x) = 1/(1 + e−x), Sneg

and SZ are the negative samples and Z-samples
as defined in Algorithm 1, and λneg, λZ > 0 are
used to control the trade-off between positive and
negative samples.
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5 Experiments

We conduct experiments to demonstrate the im-
pact of Z-paradox for existing KGE models on KG
benchmark datasets and evaluate the performance
of MQuinE. First, we introduce the experimental
setup in Section 5.1, including the description of
benchmark datasets, evaluation tasks, evaluation
metrics and baseline methods. In Section 5.3, we
propose a metric called Z-value to quantify the
number of Z-patterns related to a given fact and
gather statistics of Z-values to quantify the effect
of Z-patterns for our experimental datasets. For
each dataset, we divide their test samples into
easy, neutral, and hard cases according to their
Z-value. In Section 5.4, we evaluate the perfor-
mance of MQuinE against other competitive base-
line methods on the easy, neutral, and hard cases
respectively; we also report the overall improve-
ment of MQuinE in Section 5.5. Lastly, we con-
duct an ablation study to evaluate the effectiveness
of Z-sampling with different KGE models in Sec-
tion 5.6.

5.1 Experimental setup

Dataset. We conduct experiments on five
large-scale benchmark datasets — FB15k-237
(Toutanova and Chen, 2015), WN18 (Bordes et al.,
2013), WN18RR (Dettmers et al., 2018), YAGO3-
10 (Mahdisoltani et al., 2014), and CoDEx (Safavi
and Koutra, 2020) (CoDEx-L, CoDEx-M, CoDEx-
S). The detailed statistics of these datasets are given
in Table D.1. These datasets contain various rela-
tions including 1-N, N-1, N-N, and composition
relations, and are suitable for evaluating complex
KGE models. We follow the train/validation/test
split from Sun et al. (2019) and divide the observed
facts into training, validation, and testing by 8:1:1.

Evaluation task and metrics. We evaluate the
performance of KGE models on the link prediction
task. Given a query fact (h, r, t), the link prediction
task requires one to fix h, r and rank t among all
possible tail entities t′ ∈ E except those t′’s such
that (h, r, t′)’s appear in the training set. We use
the mean reciprocal rank (MRR), mean rank (MR),
Hits@N (N = 1,3,10) as our evaluation metrics.

Baselines. We compare MQuinE with KGE
baselines including TransE (Bordes et al., 2013),
RotatE (Sun et al., 2019), DisMult (Yang et al.,
2014), ComplEX (Trouillon et al., 2016), DihE-
dral (Xu and Li, 2019), QuatE (Zhang et al., 2019),
TuckER (Balažević et al., 2019), ConvE (Dettmers

et al., 2018), OTE (Tang et al., 2020), BoxE (Ab-
boud et al., 2020), HAKE (Zhang et al., 2020),
MQuadE (Yu et al., 2021), ExpressivE (Pavlović
and Sallinger, 2023), DualE (Cao et al., 2021) and
HousE (Li et al., 2022).

5.2 Implementation details
Our model. We initialized the element of entity
matrices from the normal distribution N (0, 0.01)
and the relation matrices Rh,Rt,Rc are initiated
as the identity matrix. We apply grid search to find
the best hyper-parameters of MQuinE. The tuning
ranges of hyper-parameters are as follows: number
of Z-samples k ∈ {10, 32, 64}, dimension of en-
tity and relation matrices d ∈ {20, 25, 32, 35, 42},
batch size b ∈ {256, 512, 1024}, self-adversarial
temperature α ∈ {0.5, 1}, fixed margin γ ∈
{6, 9, 12, 15, 21, 24}, number of negative samples
m ∈ {128, 256, 512, 1024}, initial learning rate
η ∈ {10−3, 10−4, 10−5}, regularization coefficient
λreg ∈ {10−4, 5 × 10−4, 10−3, 10−2, 10−1}, neg-
ative sampling coefficient λneg ∈ {0.5, 1.0, 2.0}.
The best hyperparameters for each dataset are given
in Table E.6.

Baselines. We follow the implementation of
RotatE1 and use the best configuration of TransE,
RotatE, DisMult, and ComplEX reported2. We set
the number of Z-sampling k to 32 for experiments
in Section 5.6.

5.3 Statistics of Z-patterns
We define two statistics that characterize the Z-
patterns of a fact. The first one is Z-value, which
can be used to measure the number of Z-patterns
associated with a fact (h, r, t). The second one is
the rank of a fact based on its Z-value.

Definition 2 (Z-value). Given a fact (h, r, t), define

nZ(h, r, t) :=
∣∣{(e2, e3) | e2 ̸= e3; (h, r, e2),

(e3, r, e2), (e3, r, t) ∈ O}
∣∣,

which is the number of Z-patterns connected with
(h, r, t)3.

Definition 3. Define rankZ(h, r, t) as follows
∑

t′∈E, (h,r,t′)/∈O
1{nZ(h,r,t′)≥nZ(h,r,t)},

1https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding

2https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding/blob/master/best_config.
sh

3Z-value differs from the concept of Z-score in statistics.
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Models FB15k-237 WN18RR YAGO3-10
Easy Neutral Hard Easy Neutral Hard Easy Neutral Hard

ComplEX 67.3% 47.3% 48.9% 96.3% 50.5% 49.6% 0.678% 0.455% 0.518%
DisMult 63.2% 45.2% 37.2% 96.1% 48.6% 48.4% 0.627% 0.356% 0.526%
TransE 64.0% 48.0% 41.9% 90.9% 48.2% 53.7% 0.665% 0.404% 0.665%
RotatE 67.7% 48.1% 39.7% 84.7% 53.4% 49.2% 0.751% 0.457% 0.691%

MQuinE 69.7% 52.9% 52.7% 85.2% 56.8% 62.2% 0.783% 0.543% 0.759%

Table 5.1: Hits@10 on easy, neutral, and hard cases of FB15k-237, WN18RR and YAGO3-10.

Case name Condition

Easy case rankZ(h, r, t) < 10.
Neutral case nZ(h, r, t) is tied for the 10th place.
Hard case otherwise.

Table 5.2: Case splitting description.

Dataset Easy case Neutral case Hard case

FB15k-237 6,681 (33%) 6,546 (32%) 7,239 (35%)
WN18 356 (7%) 4,331 (87%) 313 (6%)
WN18RR 314 (10%) 2,679 (86%) 123 (4%)
YAGO3-10 1,248 (25%) 1,074 (21%) 2,678 (54%)

Table 5.3: Statistics of Z-patterns in the testing set re-
sponding to the training set.

which is the rank of nZ(h, r, t) among unobserved
candidate facts.

Intuitively, for two facts (h, r, t) and (h, r, t′),
if nZ(h, r, t) ≫ nZ(h, r, t

′), then KGE models
that suffer from Z-paradox would incline to assign
(h, r, t) a lower score4 compared with (h, r, t′) and
rank (h, r, t) higher than (h, r, t′). Therefore, for
a test fact (h, r, t), if there are many facts (h, r, t′)
such that (h, r, t′)’s do not appear in the training
set and nZ(h, r, t

′) ≫ nZ(h, r, t), then for KGE
models that suffer from Z-paradox, this test fact
should be hard for them to predict. Motivated by
the above logic, we use rankZ(h, r, t) to measure
the level of difficulty for predicting (h, r, t). In
Table 5.2, we divide the test facts into three cate-
gories, namely, easy, neutral and hard cases. For
easy cases, we require nZ(h, r, t) to be top-9; for
neural cases, we require nZ(h, r, t) is tied for the
10th place; other cases are categorzied into hard
cases. In Table 5.3, we summarize the ratio of easy,
neutral and hard cases in our experimental datasets.
We can observe that both FB15k-237 and YAGO3-
10 have a notable number of hard cases while most
test facts of WN18 and WN18RR are neutral cases.

5.4 Case study of MQuinE
We evaluate the performance of MQuinE and
other baseline methods on the easy/neutral/hard
cases, respectively. The results on FB15k-237 and

4A lower score means a more plausible fact.

WNRR18 are shown in Table 5.1, respectively. We
can observe that the Hits@10 on hard cases is sig-
nificantly lower than the Hits@10 on easy cases
when using CompLEX, DisMult, TransE and Ro-
tatE; the prediction accuracy on hard cases is about
20% lower than the accuracy on easy cases. This
observation indicates that Z-paradox is indeed a
serious issue and can significantly degrade the per-
formance of existing KGE models. The results
in Table 5.1 also show that MQuinE can signifi-
cantly improve the performance on hard cases; the
Hits@10 obtained by MQuinE is 13.0% higher than
RotatE on FB15k-237. In the meanwhile, MQuinE
does not sacrifice accuracy on easy and neutral
cases; the Hits@10 of MQuinE is 2.0% and 4.8%
higher than RotatE on easy and neutral cases, re-
spectively. A similar conclusion can be drawn for
the WN18RR dataset, in which the Hits@10 of
MQuinE is about 13.0% higher than RotatE and
10.6% higher than TransE on WN18RR.

5.5 Overall evaluation on link prediction

The overall evaluation results of MQuinE and other
KGE baseline methods on FB15k-237, WN18RR,
YAGO3-10, and CoDEx are presented in Table 5.4
and some missing results are provided in Ap-
pendix E. The metric values of baseline methods
are taken directly from their original papers. Over-
all, we observe that MQuinE outperforms all the
existing KGE methods with a visible margin in
all metrics on FB15k-237, where Hits@1 is 7%
higher than other methods and Hits@10 reaches
58.8%. Similarly, MQuinE also exceeds other
baseline methods in most metrics on WN18RR,
YAGO3-10, WN18 and CoDEx. In addition, we
evaluate MQuinE with the node classification task
on CoDEx-S and CoDEx-M, and our results shown
in Table E.5 (in Appendix E) outperforms the base-
lines metrics reported by Safavi and Koutra (2020).

5.6 Evaluation of Z-sampling

We examine the impact of Z-sampling on our model
as while as other baseline methods, the results
are given in Table 5.5. To fairly evaluation the
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Models FB15k-237 WN18RR YAGO3-10

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

DisMult 0.241 0.155 0.419 0.443 0.403 0.534 0.340 0.240 0.540
ComplEX 0.247 0.158 0.428 0.472 0.432 0.550 0.360 0.260 0.550
DihEdral 0.320 0.230 0.502 0.486 0.443 0.557 0.472 0.381 0.643
TuckER 0.353 0.260 0.536 0.470 0.443 0.526 0.527 0.446 0.676
ConvE 0.325 0.237 0.501 0.430 0.400 0.520 0.520 0.450 0.660

TransE 0.294 - 0.465 0.466 0.422 0.555 0.467 0.364 0.610
RotatE 0.336 0.241 0.530 0.476 0.428 0.571 0.495 0.402 0.670
ExpressivE 0.333 0.243 0.512 0.482 0.407 0.619 - - -
BoxE 0.337 0.238 0.538 0.451 0.400 0.541 0.567 0.494 0.699
HAKE 0.346 0.250 0.542 0.497 0.452 0.582 0.545 0.462 0.694
MQuadE 0.356 0.260 0.549 0.426 0.427 0.564 0.536 0.449 0.689
DualE 0.330 0.237 0.518 0.482 0.440 0.561 - - -
HousE 0.361 0.266 0.551 0.496 0.452 0.585 0.565 0.487 0.703

MQuinE 0.420 0.332 0.588 0.492 0.454 0.603 0.566 0.492 0.711

Models CoDEx-S CoDEx-M CoDEx-L

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

RESCAL 0.404 0.293 0.623 0.317 0.244 0.456 0.304 0.242 0.419
TransE 0.354 0.219 0.634 0.303 0.223 0.454 0.187 0.116 0.317
ComplEx 0.465 0.372 0.646 0.337 0.262 0.476 0.294 0.237 0.400
ConvE 0.444 0.343 0.635 0.318 0.239 0.464 0.303 0.240 0.420
TuckER 0.444 0.339 0.638 0.328 0.259 0.458 0.309 0.244 0.430

MQuinE 0.443 0.379 0.652 0.335 0.320 0.476 0.326 0.267 0.440

Table 5.4: Overall evaluation results on the FB15k-237, WN18RR, and YAGO3-10, and CoDEx datasets.

Without Z-sampling With Z-sampling

Models Hits@N Hits@N
1 3 10 1 3 10

DisMult 0.155 0.263 0.419 0.212 (↑ 5.7%) 0.326 (↑ 6.3%) 0.422 (↑ 0.3%)
ComplEX 0.158 0.275 0.428 0.231 (↑ 7.4%) 0.350 (↑ 7.5%) 0.454 (↑ 2.6%)

TransE - - 0.465 0.234 0.370 0.484 (↑ 1.9%)
RotatE 0.234 0.366 0.524 0.230 (↓ 0.4%) 0.356 (↓ 1.0%) 0.508 (↓ 1.6%)
MQuadE 0.248 0.377 0.529 0.269 (↑ 2.1%) 0.342 (↓ 3.5%) 0.504 (↓ 2.5%)

MQuinE 0.274 0.375 0.532 0.332 (↑ 5.8%) 0.440 (↑ 6.5%) 0.588 (↑ 5.6%)

Table 5.5: Effect of Z-sampling on the FB15k-237 dataset.

effect of Z-sampling, we rerun DisMult, Com-
plEX, TransE, RotatE and MQuadE with/without
Z-sampling based on their original implementation.
We can observe that the Z-sampling strategy can
significantly improve the performance of DisMult,
ComplEX, but degrades the performance of RotatE
and MQuadE a little bit. This demonstrates that Z-
sampling is a useful technique for KGE models that
do not suffer from Z-paradox. Not surprisingly, the
Z-sampling strategy improves the performance of
MQuinE significantly; Z-sampling improves both
Hits@1, Hits@3 and Hits@10 for more than 5%.
Moreover, during our numerical experiments, we
also observed that Z-sampling can stabilize the
training of MQuinE and make MQuinE more ro-
bust to the different hyperparameter setups.

6 Conclusion

In this paper, we introduce a phenomenon called
Z-paradox and show that many existing KGE mod-
els suffer from it both theoretically and empirically.
To overcome Z-paradox, we propose a new KGE
model MQuinE that can circumvent Z-paradox
while maintaining strong expressiveness. Experi-
ments on real-world knowledge bases suggests that
the Z-paradox indeed degrades the performance
of existing KGE models and strongly support the
effectiveness of MQuinE.

Limitations. There are a few limitations for
MQuinE. Z-paradox holds for translation-distance
based score function and apply to bilinear and deep
learning based KGE models under some certain
conditions.
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Appendix

A Organization

In Section 2, we give an overview of KGE mod-
els. We introduce the Z-paradox bottleneck along
with its theoretical properties, and propose our new
KGE model MQuinE in Section 3 and Section 4
respectively. In Section 5, we evaluate the effect
of Z-paradox on standard KG benchmarks and em-
pirically compare MQuinE with other competitive
baselines. At last, we give a conclusion of our work
and discuss the future direction in Section 6.

B Notation Description

We denote the set of entities as E and the set of re-
lations as R. Following the conventional notation,
we represent a knowledge graph as a set of triplets
O = {(hi, ri, ti) | hi, ti ∈ E , ri ∈ R}ni=1, where
n is the number of observed facts. For each entity
e and relation r, we use their bold version e and r
to denote their embeddings. A KGE model is asso-
ciated with a score function s(·) : E ×R×E → R.
Given a fact (h, r, t), the KGE model tends to pre-
dict it to be true if s(h, r, t) is small and false other-
wise. We use bold capital letters. e.g., A,B,H,T
to denote matrices, and use ∥ · ∥ to denote the Eu-
clidean norm of vectors or the Frobenius norm of
matrices.

C Missing summary table of score
functions and properties for knowledge
graph embedding models.

We provide a summary Table C.2 of score functions
and their mathematical forms for different KGE
models.

D Dataset details

Statistics of the benchmark datasets are summa-
rized in Table D.1. We give a brief overview of
them in the following:

FB15k-237. FB15k-237 is a subset of the Free-
base (Bollacker et al., 2008) knowledge graph
which contains 237 relations. The FB15k (Bor-
des et al., 2013) dataset, a subset of Free-base, was
used to build the dataset by (Toutanova and Chen,
2015) in order to study the combined embedding
of text and knowledge networks. FB15k-237 is
more challenging than the FB15k dataset because
FB15k-237 strips out the inverse relations.
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Model Sym/Asym Inversion Composition Injective Non-injective Z-paradox

TransE %/" " " " % %

TransX "/" % % " % %

DisMult "/% % % " % "

ComplEX "/" " % " % "

RotatE "/" " " " % %

OTE "/" " " " " %

BoxE "/" " % " " "

ExpressivE "/" " " " " %

MQuadE "/" " " " " %

MQuinE "/" " " " " "

Table C.1: The pattern modeling and inference abilities of several models.

Model Category Model Score function s(h, r, t) Representation of parameters

Bilinear

DisMult −⟨h, r, t⟩ h, r, t ∈ Rk

ComplEX −Re(⟨h, r, t̄⟩) h, r, t ∈ Ck

DihEdral −hTRt h, t ∈ R2k,R ∈ Dk
K

QuatE −
〈
h⊗ r

∥r∥ , t
〉

h, r, t ∈ Hk

SEEK
∑

x,y

〈
rx,h, twx,y

〉
h, r, t ∈ Rk

TuckER −W ×1 h×2 r×3 t h, t ∈ Rk, r ∈ Rl,W ∈ Rk×l×k

Deep learning ConvE g(vec(g([h, r] ∗w))W )t h, r, t ∈ Rk,w ∈ Rm1 ,W ∈ Rm2

Translation-based

TransE ∥h+ r− t∥ h, r, t ∈ Rk

RotatE ∥h ◦ r− t∥ h, r, t ∈ Ck, ∥ri∥ = 1

OTE ∥hΦ(R)− t∥ h, t ∈ Rk,R = diag{R1, · · · ,Rs},Ri ∈ Rk/s×k/s

MQuadE ∥HR− R̂T∥F H,T,R, R̂ ∈ Rp×p,H,T are symmetric

Ours MQuinE ∥HRh −RtT+HRcT∥F H,T,Rh,Rt,Rc ∈ Rp×pH,T are symmetric

Table C.2: The score functions of different KGE models.

WN18. WN18 is a subset of the WordNet (Fell-
baum, 1998), a lexical database for the English lan-
guage that groups synonymous words into synsets.
WN18 contains relations between words such as
hypernym and similar_to.

WN18RR. WN18RR is a subset of WN18 that re-
moves symmetry/asymmetry and inverse relations
to resolve the test set leakage problem. WN18RR
is suitable for the examination of relation composi-
tion modeling ability.

YAGO3-10. YAGO3-10 is a subset of the YAGO
knowledge base (Mahdisoltani et al., 2014) whose
entities have at least 10 relations. The dataset con-
tains descriptive relations between persons, movies,
places, etc.

CoDEx. CoDEx (Safavi and Koutra, 2020) is a
set of knowledge graph completion datasets ex-
tracted from Wikidata and Wikipedia that improve
upon existing knowledge graph completion bench-
marks in scope and level of difficulty.

E More experimental results and
hyperparameters

The results of link prediction on the WN18 dataset
and some missing results on FB15k-237, WN18RR,
and YAGO3-10 are shown in Table E.4, Table E.1,
Table E.2 and Table E.3. The overall results with
CoDEx dataset (Safavi and Koutra, 2020) are pre-
sented in Table E.5.

F Proofs for Theorem 3.2 and
Theorem 3.3

For better illustration, we restate Theorem 3.2 as
Theorem F.1, Theorem F.2, Theorem F.3.

Theorem F.1. MQuinE can model the symme-
try/asymmetry relations.

Proof. A relation r is symmetric iff (h, r, t) ⇔
(t, r, h). In MQuinE, it requires

HRh −RtT+HRcT = 0

⇔TRh −RtH+TRcH = 0.
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Dataset #Entity # Relation # Train # Valid # Test

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000
CoDEX-L 77,951 69 551,193 30,622 30,622
CoDEX-M 17,050 51 185,584 10,310 10,310
CoDEX-S 2,034 42 32,888 1,827 1,828

Table D.1: Statistics of the datasets.

Metrics

Models MRR MR Hits@N
1 3 10

DisMult 0.241 254 0.155 0.263 0.419
ComplEX 0.247 339 0.158 0.275 0.428
DihEdral 0.320 - 0.230 0.353 0.502
QuatE 0.311 176 0.221 0.342 0.495
TuckER 0.353 162 0.260 0.387 0.536
ConvE 0.325 224 0.237 0.356 0.501

TransE 0.294 357 - - 0.465
RotatE 0.336 177 0.241 0.373 0.530
BoxE 0.337 163 0.238 0.374 0.538
OTE 0.351 - 0.258 0.388 0.537
MQuadE 0.356 174 0.260 0.392 0.549

MQuinE 0.420 109 0.332 0.440 0.588

Table E.1: Overall evaluation results on the FB15k-237
dataset.

Note that

TRh −RtH+TRcH = 0

⇔ −HT (Rt)T + (Rh)TTT +HT (Rc)TTT = 0

(a)⇔ −H(Rt)T + (Rh)TT+H(Rc)TT = 0,

where (a) uses the fact that the entity matrix in
MQuinE is symmetric. Hence, if

(Rt)T = ∓Rh, (Rc)T = ±Rc,

the relation is symmetric, otherwise, asymmetric.

Theorem F.2. MQuinE can model the inverse re-
lations.

Proof. A relation r1 is the inverse relation of r2 iif
(h, r1, t) ⇔ (t, r2, h). In MQuinE, it requires

HRh
1 −Rt

1T+HRc
1T = 0

⇔TRh
2 −Rt

2H+TRc
2H = 0.

Using the fact that the entity matrix is symmetric,
we have

TRh
2 −Rt

2H+TRc
2H = 0

⇔H(Rt
2)

T − (Rh
2)

TT−T(Rc
2)

TH = 0.

Metrics

Models MRR MR Hits@N
1 3 10

DisMult 0.443 4999 0.403 0.453 0.534
ComplEX 0.472 5702 0.432 0.488 0.550
DihEdral 0.486 - 0.443 0.505 0.557
TuckER 0.470 - 0.443 0.482 0.526
ConvE 0.430 - 0.400 0.440 0.520

TransE 0.466 - 0.422 - 0.555
RotatE 0.476 3340 0.428 0.492 0.571
BoxE 0.451 3207 0.400 0.472 0.541
MQuadE 0.426 6114 0.427 0.462 0.564

MQuinE 0.492 2599 0.454 0.518 0.603

Table E.2: Overall evaluation results on the WN18RR
dataset.

Metrics

Models MRR MR Hits@N
1 3 10

DisMult 0.340 5926 0.240 0.380 0.540
ComplEX 0.360 6351 0.260 0.400 0.550
DihEdral 0.472 - 0.381 0.523 0.643
TuckER 0.527 3306 0.446 0.576 0.676
ConvE 0.520 2792 0.450 0.560 0.660

RotatE 0.495 1767 0.402 0.550 0.670
BoxE 0.567 1164 0.494 0.611 0.699
MQuadE 0.536 1337 0.449 0.582 0.689

MQuinE 0.566 992 0.492 0.629 0.711

Table E.3: Overall evaluation results on the YAGO3-10
dataset.

Therefore, simply set

Rh
1 = (Rt

2)
T , Rt

1 = (Rh
2)

T , Rc
1 = −(Rc

2)
T ,

the conclusion follows.

Theorem F.3. MQuinE can model the 1-N/N-1/N-
N relations.

Proof. 1-N relations. A relation r is 1-N iff there
exist two distinct fact triples (h, r, t1) and (h, r, t2).
Set s(h, r, t1) = s(h, r, t2) = 0, we get

HRh −RtT1 +HRcT1 = 0,

HRh −RtT2 +HRcT2 = 0,
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Metrics

Models MRR MR Hits@N
1 3 10

ComplEX 0.941 - 0.936 0.945 0.947
DihEdral 0.946 - 0.942 0.949 0.954
TuckER 0.953 - 0.949 0.955 0.958
ConvE 0.943 374 0.935 0.946 0.956

TransE - 263 - - 0.754
RotatE 0.949 09 0.944 0.952 0.959
MQuadE 0.897 268 0.893 0.926 0.941

MQuinE 0.958 189 0.937 0.957 0.975

Table E.4: Results of link prediction on the WN18
dataset.

Models CoDEx-S CoDEx-M
Acc F1-score Acc F1-score

RESCAL 0.843 0.852 0.818 0.815
TransE 0.829 0.837 0.797 0.803
ComplEx 0.836 0.846 0.824 0.818
ConvE 0.841 0.846 0.826 0.829
TuckER 0.840 0.846 0.823 0.816

MQuinE 0.876 0.883 0.831 0.828

Table E.5: Overall evaluation results on the CoDEx
datasets for triple classification.

where H,T1,T2 are the embedding matrices of
h, t1, t2, and ⟨Rh,Rt,Rc⟩ is the matrix triple of
the relation r.

By simple calculations, we have

(−Rt +HRc)(T1 −T2) = 0.

Now let us set rank(Rt) + rank(Rc) < d, then

rank(−Rt+HRc) ≤ rank(Rt)+rank(Rc) < d,

i.e., −Rt+HRc is low rank. Then T1 and T2 can
be distinct, MQuinE can model 1-N relations.

N-1 relations. A relation r is N-1 iff there ex-
ist two distinct fact triples (h1, r, t) and (h2, r, t).
Similar to the proof for 1-N relations, we have

H1R
h −RtT+H1R

cT = 0,

H2R
h −RtT+H2R

cT = 0,

where H1,H2,T are the embedding matrices of
h1, h2, t. Then it follows that

(H1 −H2)(R
h +RcT) = 0.

Set rank(Rh) + rank(Rc) < d, MQuinE can
model N-1 relations.

N-N relations. Set rank(Rt) + rank(Rc) < d
and rank(Rh) + rank(Rc) < d. The conclusion
follows.

Theorem 3.2 (Compositions). MQuinE can
model the Abelian/non-Abelian compositions of
relations.

Proof. A relation r3 is a composition of r1 and r2
iff we have (e1, r1, e2), (e2, r2, e3) → (e1, r3, e3).
In MQuinE, it requires

E1R
h
1 −Rt

1E2 +E1R
c
1E2 = 0,

E2R
h
2 −Rt

2E3 +E2R
c
2E3 = 0.

Rewrite the above two equalities as

E1R
h
1 − (Rt

1 −E1R
c
1)E2 = 0,

E2(R
h
2 +Rc

2E3)−Rt
2E3 = 0.

Then it follows that

E1R
h
1(R

h
2 +Rc

2E3)

=(Rt
1 −E1R

c
1)E2(R

h
2 +Rc

2E3)

=(Rt
1 −E1R

c
1)R

t
2E3,

where is equivalent to

E1R
h
1R

h
2 = Rt

1R
t
2E3−E1(R

h
1R

c
2+Rc

1R
t
2)E3.

Let

Rh
3 = Rh

1R
h
2 , Rt

3 = Rt
1R

t
2,

Rc
3 = Rh

1R
c
2 +Rc

1R
t
2.

Then we know that (e1, r3, e3) holds.
Abelian/Non-Abelian compositions By defini-

tion, if

Rh
1R

h
2 = Rh

2R
h
1 , Rt

1R
t
2 = Rt

2R
t
1,

Rh
1R

c
2 +Rc

1R
t
2 = Rh

2R
c
1 +Rc

2R
t
1,

r3 is an Abelian composition, otherwise, non-
Abelian.
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Dataset k d b α γ m λreg λneg

FB15k-237 32 38 1024 0.5 12.0 256 0.01 1.0
WN18 64 35 1024 1.0 9.0 256 5e-3 1.0
WN18RR 64 35 1024 0.5 12.0 512 0.01 1.0
YAGO3-10 64 18 4096 1.0 32.0 512 5e-3 1.0
CoDEx-S 32 32 1024 0.5 12.0 256 0.01 1.0
CoDEx-M 32 32 1024 0.5 12.0 256 0.01 1.0
CoDEx-L 32 32 1024 0.5 12.0 256 5e-3 1.0

Table E.6: The best hyperparameters of MQuinE on four datasets in our experiments.
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