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Abstract

Recent studies show evidence for emergent
cognitive abilities in Large Pre-trained Lan-
guage Models (PLMs). The increasing cogni-
tive alignment of these models has made them
candidates for cognitive science theories. Prior
research into the emergent cognitive abilities
of PLMs has largely been path independent to
model training, i.e., has focused on the final
model weights and not the intermediate steps.
However, building plausible models of human
cognition using PLMs would benefit from con-
sidering the developmental alignment of their
performance during training to the trajectories
of children’s thinking. Guided by psychomet-
ric tests of human intelligence, we choose four
sets of tasks to investigate the alignment of ten
popular families of PLMs and evaluate their
available intermediate and final training steps.
These tasks are Numerical ability, Linguistic
abilities, Conceptual understanding, and Fluid
reasoning. We find a striking regularity: regard-
less of model size, the developmental trajecto-
ries of PLMs consistently exhibit a window of
maximal alignment to human cognitive devel-
opment. Before that window, training appears
to endow models with the requisite structure
to be poised to rapidly learn from experience.
After that window, training appears to serve
the engineering goal of reducing loss but not
the scientific goal of increasing alignment with
human cognition.

1 Introduction

Large Pre-trained Language Models (PLMs) like
Google’s Gemini (Team et al., 2023), Meta’s
LLaMA 2 (Touvron et al., 2023), and OpenAI’s
GPT 4 (OpenAI, 2023a) show human-level or even
super-human performance on many cognitive per-
formance tasks. This is true in domains such as
mathematical reasoning (Shah et al., 2023; Ahn
et al., 2024), language comprehension (Warstadt
et al., 2020; Ye et al., 2023; Koubaa, 2023), concept
understanding (Vemuri et al., 2024), and analogi-

cal reasoning (Webb et al., 2023; Hu et al., 2023).
These successes have contributed to the hype of
reaching Artificial General Intelligence (AGI).

Such claims deserve to be scrutinized. There is
a massive disparity between the training data scale
of PLMs and humans. However, PLMs uninten-
tionally acquire human performance characteris-
tics from the corpora they are trained on, through
residues of the values, beliefs, and biases of the
authors of the texts (Pellert et al., 2024).

We approach the human alignment of PLMs by
grounding their evaluation in frameworks for psy-
chometric intelligence. Psychometric measures of
intelligence include multiple subtests spanning a
range of abilities, including mathematical think-
ing, language comprehension, spatial thinking, and
fluid reasoning (Snow et al., 1984; Carroll, 1993;
Sternberg, 2000; McGrew, 2009; Haier, 2023). In
this work, we choose representative assessments
of different facets of human intelligence, modified
for the required textual modality, to evaluate the
cognitive alignment of PLMs.

A second goal of our work is to move beyond
cognitive alignment to also evaluate the develop-
mental alignment of PLMs. The claim that the
final model state of a PLM approximates adult per-
formance leaves open the question of the path by
which it arrived there. Ideally, the model’s per-
formance improvements over training would also
track the progression of cognitive abilities over de-
velopment (Elman, 1996; Bengio et al., 2009). This
potential parallelism would be stronger evidence
for PLMs as cognitive science models. Researchers
are increasingly addressing this question by build-
ing PLMs trained on a developmentally plausible
corpus of child-directed speech, transcribed dia-
logue, and children’s literature (Huebner et al.,
2021; Warstadt et al., 2023; Bhardwaj et al., 2024).

We ask the question of developmental alignment
in a theoretically important way: Is the cognitive
alignment of PLMs achieved in a path-independent
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Figure 1: A list of cognitive intelligence tasks under consideration.

or path-dependent manner? Prior studies focusing
on the cognitive alignment of PLMs have only es-
tablished path independence: that models at the end
of training approximate adult performance across
various domains. Here, we also evaluate path de-
pendence: Do the performance improvements of
PLMs over training track the growth of these abil-
ities in children over development? We ask this
question for models of different sizes and track
their developmental alignment over millions and
billions of training tokens.
To summarize, our key contributions are as follows:

• Cognitive Modelling using AI: We test the
appropriateness of PLMs for cognitive model-
ing by evaluating whether their performance
profiles match those of adults.

• Developmental trajectories in LLM pre-
training and scaling: Previous studies have
largely focused on evaluating the final train-
ing checkpoints of PLMs for their cognitive
plausibility and have neglected the question of
developmental trajectories. Here, we also ask:
Can PLMs be used to model developmental
trajectories of children’s thinking despite the
training data scale mismatch?

• Representative tasks: We choose represen-
tative tasks of human cognition taken from
psychometric tests of intelligence tests. These
tasks evaluate numeric, linguistic, conceptual,
and fluid intelligence. We propose these to be
a prerequisite for considering PLMs as cogni-
tive science models.

2 Related work

2.1 Psychometric theories of intelligence

Previous studies of the human alignment of ML
models have typically looked at singular dimen-
sions, such as numeric abilities (Zhuang et al.,
2023; Fang et al., 2024). Rather than choose cog-
nitive abilities in a piecemeal fashion, we look to
psychometric theories of intelligence for guidance
(Sternberg, 2000). These theories distill perfor-
mance on a large number of subtests into a small
number of latent factors. Despite popular attention
to “general intelligence” and the latent factor g,
there is a long history of theories positing that in-
telligence is composed of multiple domain-specific
abilities. An important, early domain-specific the-
ory of intelligence included seven “primary abili-
ties” (Thurstone, 1938). The most widespread psy-
chometric theory of intelligence today, the Cattell-
Horn-Carrol (CHC) theory (Carroll, 1993; Mc-
Grew, 2009), includes among its “broad” abilities
quantitative knowledge, reading and writing abil-
ity, fluid reasoning, and “comprehension” knowl-
edge (a subcomponent of which is conceptual un-
derstanding). We evaluate the cognitive and de-
velopmental alignment of PLMs along these four
abilities.

2.2 Emergent cognitive abilities in Language
Models

Recently, the performance of language models has
improved as they have increased in size from mil-
lions to billions of parameters, trained on larger cor-
pora, and further tuned in novel ways (instruction
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Cognitive Domain Task Source License
Numeric Abilities Magnitude Comparison Effects (Shah et al., 2023) (cc by 4.0)
Linguistic Abilities BLiMP (Warstadt et al., 2020) (cc by 4.0)
Concept Understanding Typicality Effects (Vemuri et al., 2024; Castro et al., 2021) (cc by 4.0)
Fluid reasoning Raven’s Progressive Matrices (Hu et al., 2023) (cc by 4.0)

Table 1: Summary of assessments.

tuned, RLHF). This has led researchers to increas-
ingly advocate for the use of PLMs as cognitive
models (Piantadosi, 2023; Warstadt and Bowman,
2024). Increasing the number of parameters of the
models has given rise to emergent abilities that can-
not be predicted by extrapolating from the perfor-
mance of smaller models (Wei et al., 2022a). Emer-
gent abilities have been observed in a variety of
task types such as multi-task language understand-
ing (Hendrycks et al., 2021), grounded conceptual
mapping (Patel and Pavlick, 2022), and truthful-
ness (Lin et al., 2021). In recent work, Hoffmann
et al. (2022) and Biderman et al. (2023) have shown
the benefits of training a model for more tokens
on problem-solving (Wei et al., 2022b), common-
sense reasoning (Sakaguchi et al., 2021), arithmetic
abilities (Biderman et al., 2023), and linguistic per-
formance (Paperno et al., 2016). Although the
presence of emergent abilities extends to cogni-
tive science domains (Wei et al., 2022b; Goertzel,
2023; Hagendorff, 2023), prior studies have been
piecemeal in their approach and have failed to (1)
consider multiple cognitive abilities as specified by
theories of psychometric intelligence and (2) move
beyond cognitive alignment to also evaluate the
developmental alignment of PLMs over training.

2.3 Pre-trained language model use in
developmental modeling

Recently, researchers have begun advocating for
the use of PLMs for modeling cognitive develop-
ment in children (Kosoy et al., 2023; Salewski et al.,
2024). For example, Portelance et al. (2023) and
Bhardwaj et al. (2024) suggest the use of language
models to predict the age of acquisition of words
in children. Researchers have also proposed study-
ing second language acquisition and bilingualism
by mapping pre-training steps in PLMs to under-
stand the rate of language development (Evanson
et al., 2023; Marian, 2023; Sharma et al., 2024).
We evaluate the proposal that the performance of
intermediate training checkpoints of PLMs maps
to points during children’s cognitive development.

3 A suite of psychometric intelligence
tasks

We assemble a suite of tasks that benchmark PLMs
across four facets of psychometric intelligence. Ta-
ble 1 summarizes the tasks along with the licensing
details for public use. The details of each assess-
ment and their respective operationalization are
given below. 1

3.1 Numeric abilities

Figure 2: Mental Number Line: Organization of magni-
tude representations in a logarithmically scaled manner.

The question of how humans understand sym-
bolic numbers has been investigated by cognitive
scientists for more than half a century. These stud-
ies show that people map number symbols to a
mental number line (MNL, Figure 2) with a log-
compressed psychophysical scale (Moyer and Lan-
dauer, 1967).

Prior research on the numerical abilities of PLMs
has focused on higher-order and application-driven
aspects of mathematics such arithmetic equations
and word problems (Burns et al., 2021; Amini et al.,
2019; Yuan et al., 2023), exact facts (Lin et al.,
2020), and measurement estimation (Zhang et al.,
2020). However, these tasks fail to directly tap
the foundational cognitive mechanisms underlying
human numerical understanding: recruitment of
the MNL.

In a recent study, Shah et al. (2023) found ev-
idence for a human-like MNL in various PLMs.
They showed that despite lacking explicit neural
circuitry to represent numbers, through experience
(i.e., vast amounts of training data), PLMs show
human-like performance profiles and learn latent
representations consistent with the MNL.

1We add the tasks to a publically available unified language
model testing framework, titled lm-evaluation-harness (Gao
et al., 2023), to support the evaluation of future models on
these psychometric intelligence assessments.
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We follow Shah et al. (2023) and look for the two
behavioral signatures of a compressed MNL rep-
resentation, the distance effect and the ratio effect.
In humans, these are defined as:

• Distance effect (refer to Figure 1A - top):
The greater the distance |x− y| between two
numbers x and y, the faster they are compared,
i.e., the greater (or lesser) number is identified
(Moyer and Landauer, 1967).

• Ratio effect (refer to Figure 1A - bottom):
The time to compare two numbers x and y
decreases nonlinearly as a function of the ratio
of the larger number over the smaller number
max(x,y)
min(x,y) (Halberda et al., 2008).

These effects can be mapped to language models
by adopting the following linking hypothesis:
the greater the cosine similarity of two number
representations in a PLM, the more difficult it is
to discriminate them (i.e., to judge which one is
greater (or lesser)), and thus the longer it takes.
While we focus on the Distance and Ratio effects
in PLMs, the results for all the effects investigated
by Shah et al. (2023) are in Appendix B.1.

Operationalization: We used the same proto-
col as Shah et al. (2023). For each effect, we
test three formats of number representations of
PLMs: mixed-case number words, lower-case num-
ber words, and digits. We present the R2 values for
the Distance and Ratio effects, which are averaged
across each input representation. The R2 values
for the distance effect in PLMs are obtained by
fitting a linear function predicting the cosine sim-
ilarity of x and y from their distance |x − y|. R2

values for the ratio effect in PLMs are obtained by
fitting a negative exponential function predicting
the normalized cosine similarity of x and y from
their ratio max(x,y)

min(x,y) . Note: This task requires access
to the latent representations of models.

3.2 Linguistic abilities

Language (or verbal) ability is a central component
of human cognition and cognitive neuroscience
(Hagoort, 2019). At the dawn of the cognitive
revolution, it was conceptualized as a largely in-
nate ability, and language acquisition was thought
to require relatively little learning from experience
(Fodor, 1985; Chomsky, 2014). More recently, cog-
nitive developmentalists have shown that infants
can learn language through exposure to the statisti-

cal regularities of the linguistic environment (Saf-
fran et al., 1996; Siegelman, 2020). These findings
have been modeled using multi-layer perceptrons
(Elman, 1996) and, more recently, PLMs (Lake and
Murphy, 2023).

We use BLiMP (Benchmark of Linguistic Min-
imal Pairs for English) (Warstadt et al., 2020) to
evaluate the linguistic abilities of each PLM under
consideration. BLiMP consists of 67 datasets of
1000 pairs of minimally different sentences which
vary in acceptability and span 12 phenomena at
three levels of language: morphology, syntax, and
semantics. The 12 phenomena are described in
Appendix B.2. Each pair consists of one accept-
able sentence and one unacceptable sentence which
otherwise differ minimally. BLiMP evaluates the
models by measuring if they assign a higher proba-
bility to the acceptable vs. unacceptable sentence
of each pair. Figure 1B shows two examples of
minimal pairs.

Operationalization: We use the LM-eval-
harness (Gao et al., 2023) benchmarking suite to
test our models on the BLiMP tasks. We evaluate
if a model assigns a higher sequential probability
to the acceptable sentence. Note: This requires
models that can generate probabilities of tokens.

3.3 Concept understanding

On encountering a new stimulus, humans catego-
rize it – assign it to a known concept – in order
to make inferences about its unobservable prop-
erties (Murphy, 2002). A striking finding is that
not all members of a category are equal (Rosch,
1975). Rather, for a given category (e.g., Bird),
some members (e.g., pigeon) are more typical than
others (e.g., ostrich). This phenomenon, known as
the typicality effect, is a central feature of human
categorization (Lakoff, 2008).

Typicality gradients in human categories can be
measured using the production task, where partic-
ipants are given a category label (e.g., Bird) and
asked to list as many members of the category as
they can in a limited time (Battig and Montague,
1969; Van Overschelde et al., 2004; Castro et al.,
2021). The typicality of an item is defined as the
proportion of participants who produce it.

Language models have shown some evidence of
human-like typicality gradients. Heyman and Hey-
man (2019) used word2vec embeddings to predict
the category typicality norms released by De Deyne
et al. (2008). More recent work by Misra et al.
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(2021) and Bhatia and Richie (2022) has looked at
correlations of PLMs like BERT, RoBERTa, and
GPT-2 to the Rosch (1975) typicality norms for
ten categories. Vemuri et al. (2024) performed the
most comprehensive study of the alignment of con-
cept understanding in the latent representations of
PLMs. We expand upon their task setup to evalu-
ate human-like concept understanding in the PLMs
that are the focus here.

Operationalization: For each model, we cal-
culate the representativeness of a member to its
category in three possible ways:

• Closeness judgment problem: Calculate the
cosine similarity between the obtained latent
representations for the member and the cate-
gory. This requires models where the latent
representations are readily available.

• Surprisal values: For each member of a cate-
gory, the probability of the sequence a "mem-
ber" (eg. pigeon) is a "category" (eg. bird).
This method requires access to the probability
of each token in a sequence.

• Prompting: Prompt the models with the fol-
lowing design: Guidelines, Query, and Op-
tions. The Guideline highlights the task of
re-ranking the members given in the Options
based on appropriateness with the Query. The
Query consists of the in-filling task: A is a
[category name]. The Options are each of the
possible members of the category. Given the
complexity of the prompting, usable outputs
are only obtained from models that are larger
than 30 billion parameters.

For the two in-filling problems (i.e., based on
surprisal values and prompting), we also evaluate
models on zero to three exemplars as context. The
details of the experiments on these different exem-
plar contexts are given in Appendix B.3.

3.4 Fluid reasoning
Humans can logically parse information and detect
patterns in novel stimuli without having to rely
on prior experiences or learned information. This
ability is called fluid reasoning (Cattell, 1963).

We focus on the dominant measure of fluid rea-
soning, the Ravens Progressive Matrices (RPM)
test (Raven, 2003). An example Ravens-like prob-
lem is given in Figures 1D and 3. An RPM item
consists of a 3x3 matrix of cells with one empty cell.
Participants must induce the underlying, abstract
patterns that hold across the rows and columns of

the matrix, and apply these to infer the image in the
empty cell from a given set of options. These im-
ages vary in visual attributes like shape and color,
along with more abstract qualities. The RPM is the
standard measure of fluid reasoning (Snow et al.,
1984) and is highly correlated with analogical rea-
son (Goswami, 1986; Webb et al., 2023).

(type, size, color)

row 1: (0, 0.8, 0.8), (5, 0.6, 0.5), (3, 0.4, 0.3)
row 2: (0, 0.6, 0.3), (5, 0.4, 0.8), (3, 0.8, 0.5)
row 3: (0, 0.4, 0.5), (5, 0.8, 0.3),   (?, ?, ?)   .       

Figure 3: Example adaptation of visual RPM problems
to the textual format. Each image is decomposed into
tuples of (type, size, color). Type indicates the shape of
the image.

Given the visual nature of the RPM, previous
work by Hu et al. (2021, 2023) and Webb et al.
(2023) mapped the Raven-10000 dataset to a tex-
tual format to facilitate the testing of PLMs. The
mapping involves reformulating visual elements
into text-based numerical tuples representing at-
tributes like shape, size, and color textually, as
illustrated in Figure 3, to form the I-Raven dataset.
We use their approach with a focus on the “Cen-
ter Single Alignment” sub-task, which features a
single shape per matrix cell. We differ from their
work by evaluating a broader set of models.

Operationalization: We determine the model’s
preferred answer for a problem by comparing the
surprisal values of the whole sequence (instruction,
question, candidate tuple) for each of the candidate
options, i.e. the probability of each completed digit
representation of a matrix. For the example given
in Figure 3, this would be checking the probability
of this sequence (summation of token probabilities)
with the correct answer (3, 0.6, 0.8) to the other
candidates. A complete list of the prompts used in
this paper is given in Appendix B.4.

4 Models under consideration

We evaluate a wide range of language model fami-
lies, shown in Table 2. These models are selected
based on the following criteria:

Public availability: Open-source models allow
us to perform a thorough analysis by accessing
the latent representation and the token probability
during generation. We follow Holt et al. (2024)
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Models Source Latent rep. Token prob. Multiple sizes Intermediate checkpoints Known training order
Amber (Liu et al., 2023) ✓ ✓ ✗ ✓ ✓

Falcon (Almazrouei et al., 2023) ✓ ✓ ✗ ✗ ✗

Starling (Zhu et al., 2023) ✓ ✓ ✗ ✗ ✗

Llama (Touvron et al., 2023) ✓ ✓ ✓ ✗ ✗

Mistral (Jiang et al., 2023) ✓ ✓ ✗ ✗ ✗

Qwen (Bai et al., 2023) ✓ ✓ ✓ ✗ ✗

Pythia (Biderman et al., 2023) ✓ ✓ ✓ ✓ ✓

Gemini (Team et al., 2023) ✗ ✗ ✗ ✗ ✗

GPT-3.5-Turbo (OpenAI, 2023b) ✗ ✓ ✗ ✗ ✗

GPT 4 (OpenAI, 2023a) ✗ ✓ ✗ ✗ ✗

Table 2: List of language model families under consideration with their statistics.

Numeric Abilities Linguistic Abilities Conceptual Understanding Fluid reasoning
Model Distance Ratio BLiMP Latent Rep. Zero Shot RPM

Effect (R2) Effect (R2) (Acc.) (Average Spearman’s Correlation) (Acc.)
Amber-7B 0.913 0.591 0.794 0.083 0.250 0.654
Falcon-7B 0.928 0.838 0.817 -0.116 0.180 0.730
Starling-LM-7B-alpha 0.522 0.187 0.827 -0.003 0.258 0.730
Llama-2-7B 0.670 0.614 0.818 -0.065 0.238 0.752
Llama-2-13B 0.672 0.263 0.793 0.076 0.247 0.756
Llama-3-8B 0.886 0.631 0.735 0.049 0.112 0.796
Llama-3-8B-Instruct 0.903 0.745 0.788 0.004 0.128 0.810
Mistral-7B 0.641 0.233 0.829 -0.025 0.245 0.756
Mistral-7B-Instruct 0.637 0.543 0.834 0.033 0.255 0.674
Qwen-0.5B 0.833 0.553 0.785 0.072 0.282 0.684
Qwen-1.8B 0.878 0.301 0.792 0.114 0.235 0.746
Qwen-4B 0.881 0.264 0.730 0.001 0.246 0.770
Qwen-7B 0.858 0.616 0.789 0.006 0.229 0.766
Qwen-14B 0.783 0.507 0.792 -0.140 0.249 0.776
Pythia-70M 0.829 0.429 0.723 0.005 0.211 0.194
Pythia-160M 0.947 0.665 0.749 0.067 0.260 0.448
Pythia-410M 0.926 0.679 0.815 0.126 0.284 0.608
Pythia-1B 0.944 0.702 0.806 0.090 0.280 0.674
Pythia-1.4B 0.933 0.764 0.819 0.074 0.283 0.730
Pythia-2.8B 0.961 0.723 0.827 0.221 0.273 0.760
Pythia-6.9B 0.909 0.713 0.809 0.105 0.280 0.716
Pythia-12B 0.846 0.595 0.829 0.184 0.291 0.756
Gemini NA NA NA 0.311 * NA NA
GPT-3.5-Turbo NA NA 0.825 0.242 * 0.231 0.792
GPT-4 NA NA 0.849 0.559 * 0.428 0.822

Table 3: Performance of Pre-trained Language Models on the tasks. Distance Effect: Averaged R2 values of
different LLMs when fitting a linear function on the cosine-similarity vs. distance plot. Ratio Effect: Averaged
R2 values of different LLMs when fitting a negative exponential function on the cosine-similarity vs. ratio plot.
Note: Each value is averaged across all three input types and all model layers to produce one generalizable score.
Latent Rep: Average Spearman’s Correlation when using the cosine similarity and latent representation-based
approach (Note: * refers to the prompting approaches for select models which are gated by APIs, and not the latent
representation-based approach), Zero-Shot: Average Spearman’s Correlation when using the zero-shot surprisal
values, BLiMP: The Benchmark of Linguistic Minimal Pairs for English, RPM: Raven’s Progressive Matrices

while choosing PLMs. Although most models in
this study are publicly available and open-source,
we use three state-of-art commercial PLMs that are
gated behind API calls; GPT-3.5-Turbo (pointing to
gpt-3.5-turbo-0613 on the OpenAI platform), GPT-
4 (pointing to gpt-4-1106 on the OpenAI platform),
and Gemini (also referred to as Gemini-1-Pro at the
time of writing). The GPT-x model APIs provide
token probabilities of the response, allowing us to
calculate surprisal, while Gemini does not.

Availability of multiple sizes: The availability of
model sizes for the same architecture and training
paradigms allows us to evaluate the emergent cog-
nitive abilities of the models. We have multiple
sizes available for the LLama-2, Qwen, and the
Pythia family of models.

Availability of intermediate training checkpoints:
This allows us to evaluate the effects of pre-training
on the model outputs. Together, the availability
of multiple model sizes and intermediate training
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checkpoints allow us to best evaluate the develop-
mental alignment of PLMs. Amber and Pythia’s
family of models have available intermediate train-
ing checkpoints. While Amber has 360 interme-
diate checkpoints, the checkpoints are at 4 Billion
tokens each and are not at the required granularity.

Pythia Family of models: Pythia (Biderman
et al., 2023) is one of the first open-source projects
with the goal of scientific and transparent model
development. It has 8 model sizes ranging from 70
Million to 12 Billion parameters, with each model
trained on 286 Billion tokens. The models in the
suite are equivalent (in size) to popular decoder ar-
chitectures like GPT-Neo-(125M, 1.3B, 2.7B) and
OPT-(125M, 350M, 1.3B, 2.7B, 6.7B), but with the
added benefits of training on a known de-duplicated
corpus (Gao et al., 2020), using the same training
order for each model size, and having 154 interme-
diate checkpoints to study the learning trajectories
of PLMs. Thus, the Pythia suite of models is ideal
for studying the cognitive and developmental align-
ment of PLMs to humans.

All open-source models are obtained from Hug-
gingface (Wolf et al., 2020), while the gated mod-
els are obtained from their respective platforms
through API calls. For each model in the Pythia
suite, the following intermediate checkpoints are
available: [1, 2, 4, 8, ... 512; 1000, 2000, 3000 ...
143000 (exponential increase in checkpoint number
until the 512th checkpoint and subsequent progres-
sion of 1000 steps until the last checkpoint)], with
each checkpoint representing 2 Million tokens seen.
Overall, we test 1232 intermediate checkpoints of
the Pythia suite of models across all the tasks.

5 Cognitive and developmental alignment
of PLMs

The suite of tasks enables comprehensive evalua-
tion of a variety of PLMs on their cognitive align-
ment to humans across four domains of psychome-
tric intelligence: numeric abilities, linguistic abil-
ities, concept understanding, and fluid reasoning.
Table 3 highlights the key results of this evaluation.
For the evaluation of conceptual understanding in
PLMs, we only report the results for the zero-shot
surprisal values and latent representations. This is
because we see similar results for zero-shot and
few-shot surprisal value-based methods (see com-
prehensive results in Appendix B.3).

The cognitive alignment of PLMs on psychomet-
rics assessments is summarized below:

• Numeric abilities: All PLMs show a human-
like distance effect but weakly show a human-
like ratio effect. We do not observe any no-
table changes in alignment with model scaling,
indicating the need for the evaluation of future
models on this task.

• Linguistic abilities: The accuracy of the PLMs
on the BLiMP linguistic acceptability tasks
improves upon increasing the number of pa-
rameters. Furthermore, we find that all PLMs
are substantially more accurate on morpholog-
ical tasks over syntactic and semantic tasks
(Accuracy: semantic < syntax ≪ morphol-
ogy; see Appendix Table 5).

• Concept understanding: Prompting methods
in commercial models perform substantially
better than other methods – closeness judg-
ment and surprisal values – on all open-source
models. In the Pythia suite, we observe that
larger models outperform smaller counterparts
on the same training data.

• Fluid reasoning: For all PLM architecture
types, larger models outperform their smaller
equivalent models.

• Despite differences in PLM architecture type,
all models of an approximate size of 7 Billion
parameters perform comparably.

The developmental alignment of the PLMs on
the tasks is shown in Figure 4. We make the fol-
lowing key observations:

• Training endows the “blank slate” with requi-
site structure: In each assessment, the model
“warm-ups” in training on a few million/ bil-
lion tokens, moving from a “blank slate” to
possessing the requisite structure. This struc-
ture can be thought of as the child’s endow-
ment at birth. Development of the four abili-
ties begins only after reaching this state.

• Training shows a region of development: For
all four tasks, we see a window of monotonic
development, in which all models gain the
respective cognitive abilities.

• After development, training appears to serve
an engineering goal: After the window of de-
velopment, the metric becomes unstable once
the phenomena are learned. The training ap-
pears to serve the engineering goal of loss re-
duction (Chen et al., 2023). This observation
is especially pronounced for numeric abilities
and conceptual understanding.
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(A) Magnitude Comparison Effects

(B) Typicality Effects

(D) Raven's Progessive Matrices(C) BLIMP

Figure 4: Developmental trajectory of the Pythia suite of models on the psychometric intelligence tasks as a function
number of tokens seen. We display the x-axis in a log-scaled manner as maximal development occurs in the range
of 100 Million to 20 Billion tokens seen for all tasks. The windows of maximal development are illustrated by the
blue shading.

• Assessments for Fluid Reasoning and Lin-
guistic Abilities show significant gains with
scaling and greater pre-training: For the as-
sessments of these abilities, we see that the
alignment score continues to increase as the
PLMs are trained on a greater number of to-
kens. (Also, morphological performance de-
velops first followed by syntax and then se-
mantics; see Appendix Figure 7.) Further-
more, for these abilities, models also show
scaling effects, with larger models outperform-
ing smaller ones.

• The relative positions of the windows weakly
align with human development: Variation in
the onsets of the windows is weakly consistent
with what is known of cognitive development.
For example, children acquire language early
(i.e., during the preschool years), whereas the
onset of improving fluid reasoning is later,

when children enter elementary school, and
continues for longer, throughout adolescence.
Correspondingly, the models significantly de-
velop linguistic abilities while training on 250
Million to 7 Billion tokens, whereas they ac-
quire fluid reasoning abilities later, while train-
ing on 1 to 20 Billion tokens.

6 Conclusions

This paper investigates the appropriateness of using
PLMs for human cognitive and developmental mod-
eling. It uses representative assessments of four
facets of psychometric intelligence: numeric abili-
ties, linguistic abilities, conceptual understanding,
and fluid reasoning. Our experiments show that
PLMs develop cognitive abilities purely through
their experience in the world, indicating that the
cognitive abilities tested are acquirable through
mere exposure to language distributions and do
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not necessarily require innate human-like inductive
biases. Most significantly, we find a window of
monotonic development in which all models im-
prove approximately linearly on the four cognitive
abilities. Before that window, we interpret training
as endowing “blank slate” models with the requi-
site structure for rapid learning. Also notable is
the finding of PLM scaling effects for the assess-
ments of linguistic abilities and fluid reasoning. We
propose evaluation against these tasks as a prereq-
uisite before treating PLMs as models of human
cognition and its development.

7 Limitations

Some limitations of the work are as follows: (1)
We use an aggregation of psychometric tests for
PLMs. The limitations of each test are inherited in
the suite of tasks. (2) The alignment scores may be
wrongly interpreted when evaluating PLMs with
these tasks. Alignment scores show the similarity
of PLM outputs to human outputs on psychometric
tests and indicate that PLMs do not need explicit
neural circuitry for these intelligence tests. We do
not suggest these models as proxies for humans in
any manner and recommend further testing before
use. (3) The developmental alignment of the mod-
els points towards the acquisition of human-like
performance on the four psychometric assessments
in the range of 100 Million to 20 Billion train-
ing tokens. This conclusion has two limitations:
Pythia is the only suite of models with available
intermediate checkpoints and, while unlikely, the
observed developmental trajectories might be ar-
tifacts of the pre-training order. (4) The psycho-
metric assessments for PLMs are adapted from
similar human psychometric tests. Different ways
of adaptation may lead to different results. Fur-
thermore, while representative, these assessments
are not exhaustive tests of human intelligence. Fu-
ture work can expand to other tests like spatial and
commonsense reasoning. (5) Some open source
models like Llama-2 have larger 70 Billion param-
eter variants but we lack the compute resources to
evaluate them. Large open-source models would
lead to appropriate comparisons of performance
with commercial models like GPT-4. (6) While
our work evaluates changes in cognitive alignment
with an increase in model size and the number of
pre-training tokens, we do not control for differ-
ent tuning methodologies like instruction tuning
and reinforcement learning with human or artificial

intelligence feedback. Accounting for different tun-
ing methods is computationally intensive for the
1200+ model checkpoints across 10 architectures.

8 Ethical Considerations

All tasks and corresponding datasets have low eth-
ical risks and none expose sensitive information.
Additionally, we obtain approval from the authors
of each dataset for their use and release. There are
no major risks associated with conducting this re-
search beyond those associated with working with
PLMs. There may be risks in misinterpreting the
alignment scores when evaluating with the tests.
The psychometric analysis of this study is one-way:
we look for human performance characteristics and
behaviors in PLMs. PLMs are experimental tech-
nologies and future work using this research should
proceed with caution. Assessment of the tasks in-
dicates PLM alignment – or the lack thereof – to
human cognitive behavior. Indications of higher
human alignment do not indicate an absolute proxy
for humans. The goal of tasks in this work is a
pre-cursor assessment of PLMs on their ability to
act as cognitive models. Therefore, researchers and
users should perform more tests before use.
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Model Distance Effect Ratio Effect Size Effect MDS Stress MDS Correlation Range (Sim) Max (Sim)
Amber-7B 0.913 0.591 0.607 0.157 0.572 0.008 0.995
Falcon-7B 0.928 0.838 0.725 0.183 0.655 0.286 0.779
Starling-LM-7B-alpha 0.522 0.187 0.494 0.320 0.305 0.001 0.995
Llama-2-7B 0.670 0.614 0.535 0.122 0.547 0.016 0.983
Llama-2-13B 0.672 0.263 0.421 0.234 0.372 0.002 0.999
Llama-3-8B 0.886 0.631 0.403 0.304 0.587 0.003 0.996
Llama-3-8B-Instruct 0.903 0.745 0.409 0.324 0.512 0.005 0.995
Mistral-7B 0.641 0.233 0.244 0.287 0.425 0.001 0.996
Mistral-7B-Instruct 0.637 0.543 0.182 0.317 0.512 0.001 0.992
Qwen-0.5B 0.833 0.553 0.215 0.246 0.679 0.064 0.911
Qwen-1.8B 0.878 0.301 0.330 0.198 0.328 0.107 0.902
Qwen-4B 0.881 0.264 0.330 0.215 0.581 0.160 0.763
Qwen-7B 0.858 0.616 0.257 0.153 0.636 0.129 0.734
Qwen-14B 0.783 0.507 0.206 0.248 0.369 0.138 0.710
Pythia-70M 0.829 0.429 0.418 0.204 0.463 0.060 0.949
Pythia-160M 0.947 0.665 0.382 0.231 0.715 0.042 0.970
Pythia-410M 0.926 0.679 0.393 0.210 0.710 0.041 0.972
Pythia-1B 0.944 0.702 0.470 0.196 0.725 0.037 0.973
Pythia-1.4B 0.933 0.764 0.600 0.203 0.658 0.022 0.983
Pythia-2.8B 0.961 0.723 0.459 0.256 0.737 0.009 0.993
Pythia-6.9B 0.909 0.713 0.535 0.195 0.663 0.013 0.990
Pythia-12B 0.846 0.595 0.540 0.189 0.620 0.007 0.993

Table 4: Magnitude Comparison effects. Distance Effect: Averaged R2 values of different LLMs when fitting
a linear function on the cosine-similarity vs distance plot. Size Effect: Averaged R2 values of different LLMs
when fitting a linear function on the cosine-similarity vs size-difference plot. Ratio Effect: Averaged R2 values
of different LLMs when fitting a negative exponential function on the cosine-similarity vs ratio plot. Note: Each
value is averaged across all three input types and all model layers to produce one generalizable score. MDS Stress:
The stress value is a measure of how well the distances between the points in the multidimensional space represent
the dissimilarities of the original data points (lower is better). MDS Correlation: Correlation between the MDS
solutions and the expected values of human MNL. Range (Sim): This indicates the range of the cosine-similarities.
Max (sim): This indicates the maximum similarity between any two numbers. Range and Max (sim) describe the
y-axis.

B Extended set of experiments

B.1 Numeric abilities: Magnitude comparison
effects

Physical quantities in the world are encoded as
logarithmically scaled magnitude representations
(Fechner, 1860). While the distance and the ratio
effects are the biggest indicators of the presence
of such log-scaled magnitude representations and
the numerical precision in humans, other human
effects also explain the mental number line. These
effects are as follows:

• Distance effect (refer to figure 1 (A) top):
The greater the distance |x-y| between two
numbers (x, y), the faster the comparison in
humans (Moyer and Landauer, 1967).

• Size effect: Given two comparisons of the
same distance (i.e., of the same value for |x
- y|), the smaller the numbers, the faster the
comparison (Parkman, 1971).

• Ratio effect (refer to figure 1 (A) bottom):
The time taken by humans to compare two

numbers (x,y) is a decreasing function of the
ratio of the larger number over the smaller
number max(x,y)

min(x,y) (Halberda et al., 2008).

• Multidimensional scaling: Along with the
three effects, we investigate the consistency
of the latent number representations of PLMs
with the human MNL using multidimen-
sional scaling (Borg and Groenen, 2005; Ding,
2018). MDS recovers the latent representation
from the cosine (dis)similarities between the
vector representations of all pairs of numbers
(for a given LLM, layer, and number format).
This is evaluated by the correlation between
the positions of the numbers 1 to 9 in the MDS
solution and the expected values (log(1) to log
(9)) of the human MNL (refer to the correla-
tion value in table 4).

Beyond these effects, we investigate the develop-
ment of the latent understanding of the concept of
"numbers" in the PLMs. As PLMs see more data,
the average values of the similarity become larger,
indicating that models learn the distinctions among
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Figure 5: Development of the idea of "numbers" in
Pythia. The y-axis indicates the maximum cosine sim-
ilarity between the latent representations of any two
number words/ digits.

Figure 6: Development of the idea of "numbers" in
Pythia. The y-axis shows the cosine similarity between
word types. The cosine similarity values are averaged
over all input types, all model layers, and all model
sizes.

numbers better (refer to figure 5). This is further
substantiated by figure 6, where the similarities be-
tween number words develop to be greater than the
similarity between (number, non-number) words
and (non-number, non-number) words.

B.2 Linguistic Abilities
The 12 phenomena tested by BLiMP are as follows:

• Anaphor agreement (morphology): This lin-
guistic phenomenon tests if an anaphor (pro-
noun) adheres to the antecedent (noun or
phrase it refers to) in terms of gender, number,
or person.

• Argument Structure (syntax): The argument
structure tests the relationship between a verb
and its arguments (such as nouns or noun
phrases).

• Binding (syntax, semantics): This tests the
structural relationship between an anaphor
(pronoun) and its antecedent (noun or phrase
it refers to).

• Control/ Raising (syntax, semantics): These
structures test how semantics differ by syntac-
tical variations of subjects/verbs in subordi-
nate and main clauses.

• Determiner-noun agreement (morphology):
This tests the agreements of the determiners
with the corresponding nouns in number (sin-
gular or plural) and sometimes gender (e.g.,
"his" for masculine nouns, "her" for feminine
nouns).

• Ellipsis (syntax): This refers to the omission
of words from a sentence that can be under-
stood from the context.

• Filler-gap (syntax): This tests the syntactic
structure of sentences that include phrasal
movements (wh-questions, relative clauses).

• Irregular forms (morphology): Forms in lan-
guage that do not follow regular patterns and
may need to be memorized. For example, the
superlative of good is better, best, and not
gooder, goodest.

• Island effects (syntax): These test the con-
straints on syntactic environments where the
gap in a filler-gap dependency can occur.

• NPI licensing (semantics): This phenomenon
tests the constrained situations where negative
polarity items like any and ever are limited to
the scope of negation.

• Quantifiers (semantics): This phenomenon
tests the constraints regarding the placement
of quantifiers. Specifically, BLiMP looks at
superlative quantifiers (such as "at least") that
cannot occur within negation, and definite
quantifiers and determiners cannot function as
subjects in existential "there" constructions.

• Subject-verb agreement (morphology): The
subject and tense forms of the verb must agree
on the number, for example, singular vs plural.

Table 5 shows that the PLMs are more accurate
in morphology than in language syntax and seman-
tics. Most models also perform better on syntactic
language features than semantic language features.

B.3 Conceptual Understanding
Table 7 shows the human alignment of PLMs on
their concept understanding for different opera-
tionalization methods. We see that Gemini, GPT-
3.5-Turbo, and GPT-4 perform better than other
models. Furthermore, Surprisal and Prompting-
based methods are stronger techniques for eval-
uating conceptual understanding of models than
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Model BLiMP Syntax Semantic Morphology
Amber-7B 0.794 (± 0.174) 0.779 (± 0.011) 0.736 (± 0.011) 0.888 (± 0.009)

Falcon-7B 0.817 (± 0.173) 0.797 (± 0.011) 0.758 (± 0.011) 0.917 (± 0.008)

Starling-LM-7B-alpha 0.827 (± 0.161) 0.799 (± 0.011) 0.788 (± 0.011) 0.938 (± 0.007)

Llama-2-7B 0.818 (± 0.165) 0.792 (± 0.011) 0.782 (± 0.011) 0.917 (± 0.008)

Llama-2-13B 0.793 (± 0.184) 0.757 (± 0.011) 0.767 (± 0.011) 0.898 (± 0.008)

Llama-3-8B 0.735 (± 0.210) 0.708 (± 0.011) 0.651 (± 0.012) 0.871 (± 0.010)

Llama-3-8B-Instruct 0.788 (± 0.181) 0.765 (± 0.011) 0.726 (± 0.012) 0.898 (± 0.008)

Mistral-7B 0.829 (± 0.174) 0.801 (± 0.011) 0.780 (± 0.010) 0.940 (± 0.007)

Mistral-7B-Instruct 0.834 (± 0.149) 0.808 (± 0.011) 0.788 (± 0.011) 0.931 (± 0.008)

Qwen-0.5B 0.785 (± 0.176) 0.759 (± 0.012) 0.718 (± 0.012) 0.907 (± 0.008)

Qwen-1.8B 0.792 (± 0.162) 0.777 (± 0.012) 0.764 (± 0.011) 0.875 (± 0.010)

Qwen-4B 0.730 (± 0.154) 0.694 (± 0.013) 0.728 (± 0.013) 0.814 (± 0.012)

Qwen-7B 0.789 (± 0.156) 0.769 (± 0.012) 0.736 (± 0.012) 0.885 (± 0.010)

Qwen-14B 0.792 (± 0.144) 0.775 (± 0.012) 0.747 (± 0.012) 0.881 (± 0.010)

Pythia-70M 0.723 (± 0.210) 0.701 (± 0.012) 0.628 (± 0.012) 0.872 (± 0.010)

Pythia-160M 0.749 (± 0.207) 0.717 (± 0.012) 0.718 (± 0.011) 0.864 (± 0.010)

Pythia-410M 0.815 (± 0.169) 0.785 (± 0.011) 0.752 (± 0.011) 0.935 (± 0.007)

Pythia-1B 0.806 (± 0.198) 0.782 (± 0.011) 0.728 (± 0.011) 0.935 (± 0.007)

Pythia-1.4B 0.819 (± 0.173) 0.792 (± 0.011) 0.768 (± 0.011) 0.931 (± 0.008)

Pythia-2.8B 0.827 (± 0.156) 0.800 (± 0.011) 0.782 (± 0.011) 0.925 (± 0.007)

Pythia-6.9B 0.809 (± 0.179) 0.792 (± 0.011) 0.750 (± 0.011) 0.913 (± 0.008)

Pythia-12B 0.829 (± 0.158) 0.804 (± 0.011) 0.778 (± 0.011) 0.932 (± 0.007)

Gemini NA NA NA NA
GPT-3.5-Turbo 0.825 (± 0.166) 0.818 (± 0.010) 0.781 (± 0.011) 0.931 (± 0.007)

GPT-4 0.849 (± 0.120) 0.797 (± 0.010) 0.801 (± 0.009) 0.941 (± 0.007)

Table 5: Accuracy of different language models on the BLiMP linguistic acceptability tasks.

representation-based methods. Given the higher
performance of Prompting methods on three API-
based models, we only show the category-wise
results for those models. The final prompt design is
given in section B.3.1 and table 11. Tables 8, 9, and
10 show Spearman’s correlation on the categories
along with the standard deviation, the minimum
correlation, and the maximum correlation. We per-
form the same infilling tasks 50 times for each
category to account for variations in generations.
We note that the models often failed to return all
the options in the in-filling task. We discard such
situations in our analysis.

Note: Under the closeness judgment protocol,
our experiments fail to match up to the performance
of the models used by Vemuri et al. (2024). This is
because our choice of open-source models only pro-
vides token representations, on which we later per-
form an aggregation operation. This aggregation
operation leads to a loss of information. In contrast,
Vemuri et al. (2024) use sentence-transformer mod-
els (Reimers and Gurevych, 2019), which provide

singular latent representation for longer text. This
variation in experimentation leads to the difference
in alignment scores.
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Categories GPT 3.5 GPT 4 Gemini
bird 0.183 0.536 0.353
carpenters tool 0.418 0.679 0.610
clothing 0.022 0.594 0.155
color -0.016 0.882 0.569
dwelling 0.208 0.335 0.340
earth formation 0.251 0.496 0.155
fabric 0.48 0.708 0.504
fish 0.183 0.643 0.247
flower 0.48 0.772 0.515
flying thing 0.07 0.249 0.184
footwear 0.118 0.521 0.218
four-legged animal 0.435 0.818 0.537
fruit 0.465 0.726 0.508
furniture 0.069 0.525 0.147
gardeners tool 0.355 0.557 0.507
green thing 0.196 0.572 0.335
insect 0.18 0.629 0.286
instrument 0.194 0.709 0.450
kitchen utensil 0.384 0.624 0.252
ship 0.104 0.233 -0.078
snake 0.177 0.419 0.328
toy 0.299 0.480 0.169
tree 0.333 0.557 0.445
vegetable 0.096 0.783 0.121
vehicle 0.17 0.381 0.033
weapon 0.348 0.421 0.239
weather 0.333 0.255 0.274
Average 0.242 0.559 0.311

Table 6: Typicality effects: Comparing Average Spear-
man’s correlation score across categories from tables 8,
9, and 10.
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Model Latent Surprisal Prompting
Representations Values

Zero-shot One-shot Two-shot Three-shot
Amber-7B 0.083 0.250 0.227 0.261 0.247 NA
Falcon-7B -0.116 0.180 0.215 0.242 0.200 NA
Starling-LM-7B-alpha -0.003 0.258 0.211 0.215 0.235 NA
Llama-2-7B -0.065 0.238 0.213 0.202 0.207 NA
Llama-2-13B 0.076 0.247 0.163 0.183 0.170 NA
Llama-3-8B 0.049 0.112 0.167 0.193 0.196 NA
Llama-3-8B-Instruct 0.004 0.128 0.213 0.261 0.262 NA
Mistral-7B -0.025 0.245 0.219 0.261 0.257 NA
Mistral-7B-Instruct 0.033 0.255 0.192 0.204 0.235 NA
Qwen-0.5B 0.072 0.282 0.264 0.288 0.250 NA
Qwen-1.8B 0.114 0.235 0.246 0.251 0.215 NA
Qwen-4B 0.001 0.246 0.217 0.252 0.193 NA
Qwen-7B 0.006 0.229 0.203 0.220 0.220 NA
Qwen-14B -0.140 0.249 0.224 0.207 0.199 NA
Pythia-70M 0.005 0.211 0.266 0.291 0.285 NA
Pythia-160M 0.067 0.260 0.263 0.276 0.264 NA
Pythia-410M 0.126 0.284 0.235 0.282 0.242 NA
Pythia-1B 0.090 0.280 0.309 0.287 0.264 NA
Pythia-1.4B 0.074 0.283 0.249 0.267 0.235 NA
Pythia-2.8B 0.221 0.273 0.286 0.267 0.236 NA
Pythia-6.9B 0.105 0.280 0.264 0.250 0.220 NA
Pythia-12B 0.184 0.291 0.248 0.274 0.270 NA
Gemini NA NA NA NA NA 0.311
GPT-3.5-Turbo NA 0.231 0.248 0.299 0.270 0.242
GPT-4 NA 0.428 0.471 0.399 0.402 0.559

Table 7: Results for the typicality effects using the three methods

Categories Average SpearmanR Minimum Values Maximum Values Std Dev
bird 0.353 -0.156 0.582 0.144
carpenters tool 0.610 0.417 0.885 0.104
clothing 0.155 -0.104 0.523 0.141
color 0.569 -0.147 0.916 0.260
dwelling 0.340 0.140 0.499 0.086
earth formation 0.155 -0.449 0.494 0.191
fabric 0.504 0.125 0.811 0.168
fish 0.247 -0.505 0.611 0.265
flower 0.515 -0.183 0.779 0.208
flying thing 0.184 -0.068 0.602 0.193
footwear 0.218 -0.340 0.569 0.215
four-legged animal 0.537 0.225 0.689 0.099
fruit 0.508 -0.019 0.802 0.222
furniture 0.147 -0.479 0.663 0.310
gardeners tool 0.507 0.025 0.771 0.151
green thing 0.335 0.037 0.535 0.117
insect 0.286 -0.121 0.635 0.193
instrument 0.450 0.092 0.832 0.175
kitchen utensil 0.252 -0.164 0.691 0.243
ship -0.078 -0.414 0.277 0.179
snake 0.328 -0.156 0.596 0.147
toy 0.169 -0.203 0.526 0.174
tree 0.445 0.257 0.585 0.073
vegetable 0.121 -0.322 0.596 0.184
vehicle 0.033 -0.053 0.236 0.055
weapon 0.239 -0.173 0.577 0.193
weather 0.274 -0.029 0.591 0.147

Table 8: Average Spearman’s correlation score for each category on 50 runs of each in-filling experiment on the
Gemini-Pro model.
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Figure 7: Developmental trajectory of the Pythia suite of models on the BLiMP linguistic acceptability tasks.
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Categories Average SpearmanR Minimum Values Maximum Values Std Dev
bird 0.183 -0.209 0.552 0.209
carpenters tool 0.418 -0.162 0.858 0.282
clothing 0.022 -0.321 0.540 0.192
color -0.016 -0.596 0.564 0.261
dwelling 0.208 -0.053 0.400 0.123
earth formation 0.251 -0.296 0.562 0.217
fabric 0.480 -0.044 0.767 0.233
fish 0.183 -0.326 0.690 0.280
flower 0.480 -0.301 0.800 0.269
flying thing 0.070 -0.181 0.377 0.149
footwear 0.118 -0.439 0.581 0.241
four-legged animal 0.435 -0.264 0.869 0.292
fruit 0.465 -0.006 0.868 0.241
furniture 0.069 -0.325 0.447 0.195
gardeners tool 0.355 -0.311 0.796 0.294
green thing 0.196 -0.337 0.572 0.211
insect 0.180 -0.248 0.503 0.201
instrument 0.194 -0.242 0.466 0.191
kitchen utensil 0.384 -0.610 0.797 0.334
ship 0.104 -0.314 0.599 0.250
snake 0.177 -0.244 0.591 0.196
toy 0.299 -0.210 0.603 0.180
tree 0.333 -0.199 0.731 0.289
vegetable 0.096 -0.191 0.542 0.172
vehicle 0.170 -0.381 0.381 0.201
weapon 0.348 -0.058 0.609 0.156
weather 0.333 -0.425 0.662 0.236

Table 9: Average Spearman’s correlation score for each category on 50 runs of each in-filling experiment on the
GPT-3.5-Turbo model.

Categories Average SpearmanR Minimum Values Maximum Values Std Dev
bird 0.536 0.355 0.756 0.098
carpenters tool 0.679 0.549 0.843 0.078
clothing 0.594 0.350 0.751 0.100
color 0.882 0.813 0.952 0.035
dwelling 0.335 0.183 0.497 0.070
earth formation 0.496 0.373 0.628 0.061
fabric 0.708 0.583 0.801 0.052
fish 0.643 -0.237 0.817 0.218
flower 0.772 0.629 0.869 0.057
flying thing 0.249 -0.118 0.704 0.221
footwear 0.521 0.191 0.721 0.112
four-legged animal 0.818 0.634 0.906 0.056
fruit 0.726 0.567 0.868 0.069
furniture 0.525 0.381 0.605 0.055
gardeners tool 0.557 0.314 0.757 0.098
green thing 0.572 0.444 0.709 0.050
insect 0.629 0.451 0.871 0.103
instrument 0.709 0.585 0.885 0.064
kitchen utensil 0.624 0.358 0.750 0.075
ship 0.233 -0.346 0.618 0.232
snake 0.419 0.002 0.575 0.108
toy 0.480 0.277 0.675 0.111
tree 0.557 0.300 0.781 0.106
vegetable 0.783 0.413 0.892 0.102
vehicle 0.381 0.166 0.699 0.119
weapon 0.421 0.268 0.650 0.082
weather 0.255 0.122 0.357 0.061

Table 10: Average Spearman’s correlation score for each category on 50 runs of each in-filling experiment on the
GPT-4 model.
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Prompt region Description Actual prompt
Guidelines Describe the overall idea of typicality to the model and the task guidelines Appendix B.3.1
Query This is the actual fill-in-the-blanks task The ___ is a "Category-Name"
Options List of items in a randomized order and separated by a new line —

Table 11: Prompt design for evaluating typicality effects in models bigger than 30 billion parameters.
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B.3.1 Conceptual Understanding - Final Prompt

Typicality effects refer to the influence of the typicality or prototypicality of an object or category on 
various cogniƟve processes, including percepƟon, categorizaƟon, and memory. The concept of typicality 
stems from the prototype theory, which suggests that our mental representaƟons of categories are 
based on prototypes or typical examples. 

In the context of percepƟon, typicality effects can influence how we perceive and recognize objects. 
Objects that are more prototypical or representaƟve of a category are typically perceived more quickly 
and accurately than atypical objects. For example, when shown a series of pictures of birds, a typical bird 
like a robin would be recognize faster than a less typical bird like a penguin. 

In categorizaƟon tasks, typicality effects can influence how we classify objects into categories. 
Prototypical or highly typical objects are more likely to be assigned to their corresponding category than 
atypical objects. For instance, when asked to categorize fruits, an apple, being a highly typical fruit, is 
more likely to be classified as a fruit compared to a less typical fruit like a durian. 

Typicality effects also impact memory processes. Prototypical objects are typically beƩer remembered 
than atypical objects. When asked to recall a list of animals, parƟcipants are more likely to remember 
prototypical animals such as dogs or cats compared to less typical animals like lemurs or armadillos. 

Overall, typicality effects demonstrate how the typicality or prototypicality of objects within a category 
influences our percepƟon, categorizaƟon, and memory processes, highlighƟng the role of prototypes in 
cogniƟve funcƟoning. 

Based on the typicality effect definiƟons, give rankings for filling the blank task without any descripƟon 
from the following opƟons.  

Make sure to include all the items from the opƟons. Please return items in the following manner: 

1. item1 

2. item2 

3. item3 

Also make sure to use the same items as given in the opƟons. 

Query: 

            A ___ is a [Category Name] 

            OpƟons:  

            [A] 

            [B] 
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B.4 Fluid Reasoning
Humans cannot completely operate without relying on prior experience. The pervasive role of prior
knowledge in shaping cognition is a foundational tenet of the cognitive revolution. However, “Fluid
intelligence” is the ability to solve novel and abstract problems (Raven, 2003). It is a core cognitive
ability, closely related to other domain-general cognitive abilities like working memory, and executive
function, both correlationally (Conway et al., 2002) and in terms of the underlying neural correlates (i.e.,
in the prefrontal cortex) (Burgess et al., 2011). It is distinguished from crystallized intelligence, which is
composed of the domain-specific knowledge and skills one acquires through one’s lifetime (Hartshorne
and Germine, 2015). This distinction is a classic one in psychology (Carroll, 1993).

B.4.1 Scholastic Assessment Test analogy questions
Previous work has shown that fluid reasoning correlates with analogical reasoning (Goswami, 1986; Snow
et al., 1984; Cattell, 1987). AI, ML, and NLP research has focused on analogical reasoning because this
requires many componential abilities: syntactic parsing, semantic understanding, categorization, inductive
reasoning, mathematical reasoning, and so on (Pearson, 2021). Research on the cognitive alignment of
PLMs has focused on performance on the 374 Scholastic Assessment Tests (SAT) analogy questions
by Turney (2005). Despite being broadly used in literature (Turney, 2005; Turney and Pantel, 2010;
Hendrickx et al., 2019; Webb et al., 2023), our pilot experiments show that PLMs like GPT-3.5-Turbo,
GPT-4, and Gemini perform nearly at ceiling on this test, while other open source models perform poorly
on the same test. This hints that the set of questions in the test may be part of the GPT-X/ Gemini training
or tuning data.

Operationalization: Each problem is of the form A:B::?, with answer choices containing candidates
for C:D. We evaluate the performance of models in three ways:

• Closeness judgment problem: Calculate the cosine similarity between the obtained latent representa-
tions for the member and the category. This requires models where the latent representations are
readily available. These cosine similarities are calculated in different ways:

– 3-cos-add: cos( vector(D),vector(C) - vector(A) + vector(B))
– 3-cos-mul: cos(vector(D), vector(B))*cos(vector(D), vector(C))/(cos(vector(D), vector(A))+ e);

e is a small constant to prevent overflow.
– Concat-cos: cos( [vector(A) || vector(B)] , [vector(C) || vector(D)])

• Surprisal values: Calculating the summation of probabilities for each token with the as=to relation-
ship; forming the sequence A is to B as C is to D.

• Prompting: Prompt the models with the following design: Guidelines, Query, and Options. The
Guideline highlights the task of solving the analogy problem. The Query consists of A:B. The
options are the candidate pairs C:D.
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B.4.2 Raven’s Progressive Matrices - list of prompts used in experiments

1. "Solve the following Raven Progressive Matrix problem by idenƟfying the paƩern in the sequences. 
Select the correct choice for the missing element. 

2. "IdenƟfy the correct opƟon to complete the Raven Progressive Matrix. Consider the paƩerns in 
numeric and fracƟonal values across the rows to solve the problem." 

3. "Solve the Raven Progressive Matrix problem" 

4. "Solve the Raven Progressive Matrix problem. Select the correct choice for the missing element in row 
3." 

5. "Complete the paƩern in the Raven Progressive Matrices problem" 

6. "Apply abstract reasoning to solve the following Raven Progressive Matrices problem:" 

7. "Solve the Raven Progressive Matrices by idenƟfying paƩerns and drawing analogies. Select the 
correct choice for the missing element in row 3." 

8. "Select the correct choice for row 3, using the paƩerns and analogies from rows 1 and 2." 

 

row1: (2,0.5,100), (4,0.5,100), (3,0.5,100) 

row2: (3,0.7,50), (2,0.7,50), (4,0.7,50) 

row3: (4,0.2,70), (3,0.2,70), ? 

Choices: (1,0.2,70), (5,0.2,30), (5,0.2,70), (2,0.2,70), (5,0.2,110), (4,0.2,70), (3,0.5,70), (2,0.2,90)" 
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