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Abstract

This paper focuses on extending the success
of large language models (LLMs) to sequen-
tial decision making. Existing efforts either
(i) re-train or finetune LLMs for decision mak-
ing, or (ii) design prompts for pretrained LLMs.
The former approach suffers from the computa-
tional burden of gradient updates, and the latter
approach does not show promising results. In
this paper, we propose a new approach that
leverages online model selection algorithms to
efficiently incorporate LLMs agents into se-
quential decision making. Statistically, our
approach significantly outperforms both tradi-
tional decision making algorithms and vanilla
LLM agents. Computationally, our approach
avoids the need for expensive gradient updates
of LLMs, and throughout the decision mak-
ing process, it requires only a small number of
LLM calls. We conduct extensive experiments
to verify the effectiveness of our proposed ap-
proach. As an example, on a large-scale Ama-
zon dataset, our approach achieves more than
a 6x performance gain over baselines while
calling LLMs in only 1.5% of the time steps.

1 Introduction

Sequential decision making addresses the problem
of adapting an agent to an unknown environment,
where the agent learns through a feedback loop
by repeatedly receiving contexts, selecting actions,
and observing feedback. This approach has been
widely applied in real-world scenarios, including
recommendation systems (Li et al., 2010; Agarwal
et al., 2016), healthcare (Tewari and Murphy,
2017; Svensson, 2023), and dialogue systems
(Li et al., 2016). With the significant success of
large language models (LLMs) in natural language
processing (Brown et al., 2020; Ouyang et al.,
2022; Achiam et al., 2023), an important next step
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Figure 1: Performance comparison (higher is better) on
the AmazonCat-13K dataset. The decision making task
is to predict item tags based on textual descriptions. We
compare three approaches: (i) a standard decision mak-
ing algorithm, (ii) a pretrained LLM as decision making
agent, and (iii) our approach that balances the above
two methods. We defer further details to Section 4.

is to extend this success to sequential decision
making and enhance applications therein.

Existing efforts to leverage LLMs for sequential
decision making focus on two directions: (i) view-
ing decision making as sequence modeling and re-
training or finetuning large models to adapt them to
unknown environments (Chen et al., 2021; Zheng
et al., 2022; Reid et al., 2022; Sun et al., 2023;
Raparthy et al., 2023; Lee et al., 2024), and (ii)
utilizing prompt engineering and in-context learn-
ing to adapt pretrained large models to sequential
decision making problems (Krishnamurthy et al.,
2024). While the first approach usually achieves
promising empirical results, it is hindered by the
substantial computational burden associated with
re-training or finetuning large models, which often
contain hundreds of billions of parameters. The
second approach (Krishnamurthy et al., 2024), on
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the other hand, has demonstrated that most in-
context learning and prompt engineering methods
fail to effectively adapt LLMs to sequential deci-
sion making environments, except when employ-
ing the most advanced models (at the time), i.e.,
GPT-4 (Achiam et al., 2023), with sophisticated
prompt designs.

In this paper, we propose a new approach to ef-
ficiently incorporate large pretrained models into
sequential decision making environments, without
the need for expensive model re-training or finetun-
ing. We run experiments (see Fig. 1 and its caption
for settings) on the AmazonCat-13K dataset (Bha-
tia et al., 2016) and observe that:

* Vanilla LLMs as decision making agents exhibit
strong initial performance thanks to their signif-
icant commonsense knowledge and remarkable
reasoning ability. However, LLM agents fail to
show continuous improvements.

* Standard sequential decision making algorithms,
while performing poorly initially, continuously
learn to adapt to the environment and improve
their performance over time.

To take advantage of both methods, we adapt on-
line model selection algorithms (Auer et al., 2002;
Agarwal et al., 2017; Pacchiano et al., 2020) to
a framework that can automatically balance the
performance of LLM-powered policies/agents and
standard decision making algorithms. Initially, the
framework relies more on LLM-powered policies
to achieve good initial results. As standard decision
making algorithms begin to adapt to the environ-
ments, it gradually shifts towards these algorithms.
To our knowledge, this work presents the first result
in leveraging online model selection algorithms to
efficiently incorporate LL.Ms into sequential deci-
sion making. Our framework also offers several
compelling advantages:

* Statistical efficiency. It achieves superior perfor-
mance compared to vanilla LLM-powered poli-
cies and standard sequential decision making
algorithms. As shown in Fig. 1, our approach
achieves more than a 6x performance gain (0.336
vs. 0.054) compared to baselines.

* Computational efficiency. First, our approach
does not require expensive re-training or finetun-
ing of LLMs. Second, it can be implemented

with a small number of LLMs over the decision
making process. In our experiment, we show that
it calls LLMs in only 1.5% of the time steps.

* Plug-and-play compatibility. Our framework
can flexibly incorporate off-the-shelf pretrained
LLMs in a plug-and-play manner. Furthermore,
unlike existing methods that require advanced
models such as GPT-4 (Krishnamurthy et al.,
2024), our approach can leverage much smaller
language models (e.g., a model with 80 million
parameters) and achieve promising decision mak-
ing results.

2 Problem Setting

We focus on contextual bandits, a key problem in
sequential decision making that emphasizes the
fundamental challenge of balancing exploration
and exploitation (Lattimore and Szepesvari, 2020).
In contextual bandits, a learner interacts with an
unknown environment over 7' € N rounds. At
each round ¢ € [T, the learner receives a con-
text x; € X (the context space), selects an action
a; € A (the action space), and then observes a
bounded loss ¢;(a;) (sampled from an unknown
distribution), where ¢, : A — [0,1] is the un-
derlying loss function. Contextual bandits can be
viewed as the simplest form of reinforcement learn-
ing where state transitions are abstracted away. Fol-
lowing the convention (Agarwal et al., 2012; Foster
et al., 2018; Foster and Rakhlin, 2020), we assume
that the learner has access to a function class F C
(X x A —[0,1]) to approximate an unknown true
loss function f*(x,a) = E[¢; | z; = z,a; = al.
Let 7*(z) = argmin, f*(x,a) denote the opti-
mal policy with respect to the true expected loss
(i.e., always selecting an action that achieves the
smallest expected loss). The learner’s goal is to
choose a policy m = (mrq, - - , 77 ) to minimize the
cumulative regret, which is defined as Reg(7') :=
Sy £ mw) — £ (w7 (3)).

We focus on the setting where the context space
and the action space are subspaces of the language
space, i.e., the learner interacts with an environ-
ment through textual contexts and actions, and ac-
tions that induce low loses are usually consistent
with commonsense knowledge and/or reasoning. '

!'One can also prompt LLMs with numerical representa-
tions to get regression-style predictions (Garg et al., 2022).
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Therefore, our setting motivates leveraging pre-
trained large language models (LLMs) into contex-
tual bandits. Specifically, we consider a pretrained
LLM: prompt p — output o, that maps a prompt p
to a textual response o (Brown et al., 2020; Ouyang
et al., 2022; Achiam et al., 2023). Since LLMs are
pretrained to acquire general knowledge about the
world, we expect the output o; ~ LLM(p = x¢)
of LLMs, when prompting LLMs with the context
z; (and other relevant information), would provide
informative guide for the decision making process.

Additional notation. For an integer n € N, we
let [n] denote the set {1,...,n}. For a finite set
Z, we let unif (Z) denote the uniform distribution
over all the elements in Z. We use ¢; € R% to
denote the i-th canonical vector in RY, i.e., its i-th
entry is 1 and the rest entries are 0.

3 Methods

We present our approach for efficiently incorporat-
ing LLMs into contextual bandits/decision making
in this section. We provide the algorithmic founda-
tion in Section 3.1 and various sampling strategies
in Section 3.2.

3.1 Efficient Decision Making with LLMs

At a high level, our framework utilizes an online
model selection algorithm to adaptively balance
the performance of two sets of base algorithms:
(i) standard contextual bandit algorithms, and (ii)
policies constructed based on off-the-shelf pre-
trained LLMs. Our framework achieves the best-
of-both-worlds by (i) efficiently extracting knowl-
edge stored in pretrained LLMs and (ii) leverag-
ing the long-term learning ability of standard con-
textual bandit algorithms. We construct LLM-
powered policies in Section 3.1.1 and introduce
the algorithmic framework in Section 3.1.2.

3.1.1 LLMs as Decision Making Agents

Since the outputs of LLMs are in the general lan-
guage space that may not align with any action in
the action set, we first provide an algorithm to con-
vert pretrained LL.Ms to decision making agents.
Algorithm 1 is designed to be compatible with
flexible choices of LLMs, embedding models,
and similarity measures. It prompts the LLM
with context = to obtain top-k£ most likely out-
puts o; and together with their likelihood g¢;:

Algorithm 1 Construct LLM-Powered Policies

Input: Context z, pretrained LLM, embedding
model ¢ : language — R, similarity measure
Sim : R? x R — R, and hyperparameter
ke NT.

1: Prompt LLM with context x to obtain top-
k most likely outputs o; and likelihood g;:
{(017 q1)7 B (0k7 Qk)}

2: Embed all actions {g(a) : a € A} C R? and
LLM outputs {g(0;) : i € [k]} C R4

3: Get a; := argmax,¢ 4 Sim(g(0;), g(a)) for
each i € [k].

4: Construct 7'M such that P(7""M(z) = a;) =

k
G/ > -1 -

{(01,q1)," -, (ok, qx)}.> For each embedded out-
put g(0;), it then measures its similarity between
each of the embedded action {g(a),a € A}, and
find the one a; with the highest similarity. Finally,
we construct policy 7--M by mapping z into the
(multi) set {aq, - - - , a } with weighted probability,
ie., P(r""M(2) = a;) = ¢;/ Z?:l ¢;- The LLM-
powered policy uses the same policy 7-M for the
entire decision making process to avoid expensive
re-training/finetuning of LLMs.

3.1.2 Algorithmic Framework

In Algorithm 2, we present our framework to ef-
ficiently incorporate LLLMs into contextual bandits.
Algorithm 2 leverages online model (expert) selec-
tion algorithms (Auer et al., 2002; Agarwal et al.,
2017; Pacchiano et al., 2020) to adaptively balance
standard contextual bandit algorithms and LLM-
powered policies. Compared to existing online
model selection algorithms, Algorithm 2 addition-
ally (i) incorporates Algorithm 1 to convert LLMs
into policies, and (ii) allows more flexible sampling
strategies to control the number of LLM calls (see
Section 3.2 for detailed discussion). At a high-
level, the sampling probability in Algorithm 2 is
designed to rely more on the set of LLM-powered
policies at the beginning, and then gradually tran-
sit to put more probability on standard contextual
bandit algorithms. By doing so, we aim to simulta-
neously achieve the following two objectives:

2Additional instructions or prior interaction history can
also be incorporated into the prompt design. When k = 1, we

only need to obtain the LLM output o, without computing the
likelihood q.
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Algorithm 2 Efficient Decision Making with
LLMs

Input: A set of contextual bandit algorithms

{ﬂ_CBl’--- ,WCBMl}, and a set of LLMs
{LLMM1+17 ) LLMM}
1: Convert LLMs to {mttMan+1 .. 7liMa

using Algorithm 1.
2: Order all policies as {7}, . Initialize sam-
pling strategy p; = unif [M].
fort=1,2,...,T do
Receive contaxt z;.
Sample ¢y ~ p;.
Follow 7't to play action a; and observe
loss 4¢(at).
7. Update contextual bandit algorithms with
(33,5, ag, ﬁt(at)).
8:  Update sampling strategy p;11 < p¢.

// We discuss detailed sampling strategies

AN A

updates in Section 3.2.

* Leveraging knowledge in LLMs. At the be-
ginning stage, we leverage LLMs to select more
informative data to warm start the learning pro-
cess, and help contextual bandit algorithms learn
better.

* Long-term adaptation to environments. In the
later stage, we leverage the long-term learning
ability of contextual bandit algorithms to mini-
mize losses in the long run.

3.2 Sampling Strategies

In this section, we discuss in detail how to up-
date the sampling strategy in Algorithm 2 (line 8).
We present simple, pre-determined sampling strate-
gies in Section 3.2.1 and learning-based sampling
strategies in Section 3.2.2.

3.2.1 Simple Pre-Determined Sampling
Strategies

We provide several simple, pre-determined sam-
pling strategies in this section. They are simple
and can be implemented without additional com-
putation overhead. They follow the basic idea of
putting more probability on LLM-powered poli-
cies at the beginning and gradually transiting prob-
ability to standard contextual bandit algorithms.
We use pL‘LM to denote the total probability of
sampling LLM-powered policies, and use ptCB =

1 — pr*M to denote the total probability of sam-
pling standard contextual bandit algorithms. In the
following, we focus primarily on updating pLLM
(and thus p; B) We set 0 < Pmin < Pmax < 1 as
user-specified lower and upper bound on pttM,

* Polynomial decay. Let Cp,y and o be
LLM

two hyperparameters.  We set p; =
min{pmam maX{pmina Cpoly/t }}

* Exponential decay. Let Cep and [ be
LLM .

two hyperparameters. ~ We set pt =
mln{pmaxamax{pmma exp eXp( Bt)}}

Number of LLM calls. For these simple sam-
pling strategies, it’s easy to see the expected num-
ber of LLM calls equals to Zthl prtM. One can
also easily tune hyperparameters to control the
number of LLM calls.

3.2.2 Learning-Based Sampling Strategies

While there exist many other learning-based sam-
pling strategies, we primarily use log-barrier on-
line mirror descent (OMD), also known as the
CORRAL update (Agarwal et al., 2017), to up-
date the sampling probability with respect to
importance-weighted losses incurred by base al-
gorithms.

Algorithm 3 Log-Barrier-OMD Update (Agarwal
et al., 2017)

Input: Learning rate > 0, previous distribution
D¢, selected base algorithm index 7;, and the
incurred loss 44 (ay).

1: Construct an importance-weighted loss vector

7 . Li(at) M
gt = 7Pt,it €;, € R™.

2: Find a constant A € [min; £;;, max; /4 ;] such
1 _
that >, = -y =1

3: Return an updatec{ distribution p;;; such that
A= Ll - ).

DPt+1,4

Algorithm 3 takes as input an initial learning rate
1 > 0, previous sampling distribution p;, the index
14 of selected base algorithm, and the incurred loss
li(at). Algorithm 3 first constructs the standard
importance-weighted unbiased loss estimator for

30One can aﬁply mmgle strategies (e.g., uniform allocation)
to allocate p; ' (and p; B) to individual policies.
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all base algorithms (line 1), and then follow log-
barrier online mirror descent to update the sam-
pling distribution with respect to the losses (line
3). The update requires a normalization constant
A (line 2), which can be approximated with nu-
merical root-finding algorithms such as the Brent’s
method (Zhang, 2011).

We sample from a smoothed version p; of the
sampling distribution p; to help contextual ban-
dit base algorithms explore at the beginning stage.
Specifically, we clip the (total) sampling probabil-
ity on LLMs pttM to 1 — ppy if the (total) sam-
pling probability on contextual bandits p&B falls
below pmin, a user-specified hyperparameter.

Number of LLM calls. To control the number
of LLM calls, we can either early stop sampling
from LLM-powered policies in Algorithm 2 once
the budget B is used up, or further modify the
sampling strategy as

3 _ B—Ny\ 3
=t (B8 g g,

ey

where NV, represents the number of LLM calls used
up to time step ¢. Both approaches limit the number
of LLM calls to at most B.

4 Empirical Results

We conduct extensive experiments to examine the
effectiveness of our proposed framework. We
present experimental setups in Section 4.1, our
main results in Section 4.2, and ablation study in
Section 4.3. We defer additional experimental de-
tails to Appendix A. Code to reproduce all results
is available at https://github.com/dchen48/
DMwithLLM.

4.1 Experimental Setups

Datasets. We conduct experiments on two tex-
tual contextual bandit datasets, whose details are
summarized in Table 1. OneShotWikilLinks-311
(Singh et al., 2012; Vasnetsov, 2018) is a named-
entity recognition task where contexts are text
phrases preceding and following the mention text,
and actions are text phrases corresponding to the
concept names. AmazonCat-13K (Bhatia et al.,
2016) is an extreme multi-label dataset whose con-
texts are text phrases corresponding to the title and

content of an item, and actions are integers corre-
sponding to item tags. We construct binary loss for
each dataset, where selecting the correct actions
leads to a loss of 0, and incorrect actions results in
a loss of 1. In our experiments, we process data in
batches with a batch size of 32.

Table 1: Datasets used for experiments.

Dataset T | Al
OneShotWikilLinks-311 622000 311
AmazonCat-13K 1186239 13330

Baselines. We use SpannerGreedy (Zhu et al.,
2022a) as the contextual bandit baseline, which is
an efficient algorithm for textual decision making.
We use Algorithm 1 with £ = 1 to construct the
LLM-powered policy baselines. We consider var-
ious LLM backbones, including Flan-T5 (Chung
et al., 2024), with sizes small (80M parameters),
base (250M parameters) and large (780M parame-
ters), and more recent models Gemma 2B (instruct)
(Team et al., 2024) and GPT-40-mini (OpenAl,
2024a).

We implement our Algorithm 2 by combin-
ing the two types of baselines mentioned above.
In most of our experiments, we select LLM
backbones from the Flan-T5 model series;* we
run additional experiments with Gemma 2B and
GPT-40-mini to verify the efficacy of our method
when implemented with more advanced mod-
els. Unless otherwise noted, we implement Al-
gorithm 2 using Algorithm 3 and a smoothing pa-
rameter ppin = 0.2.

Evaluation metrics. We evaluate algorithms in
terms of both statistical and computational perfor-
mances. Statistically, following the convention in
contextual bandits, we measure the performance
in terms of the (average) reward, where one can
easily convert loss into reward r;(a;) := 1—£;(ay).
Computationally, since models used in contextual
bandit algorithms are relatively lightweight (we
empirically verify this in Section 4.2), we measure
the performance in terms of the number of LLM

*Our goal is not to examine the most advanced LLMs
or contextual bandit algorithms. Instead, we aim to verify
that Algorithm 2 can effectively balance contextual bandit

algorithms and LLMs policies, and outperform both of them
when applied individually.
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Figure 2: Comparison of average reward on the
OneShotWikilLinks-311 dataset (higher is better). Our
Algorithm 2 is implemented with various sizes of
Flan-T5 model. The dashed lines represent the per-
formance of directly applying LLM-powered policy
7FanT5 (Algorithm 1) of corresponding sizes.

calls. Our results are averaged over 5 random runs;
shaded area in figures represents the standard error
of the mean.

4.2 Main Results

Statistical efficiency. Fig. 2 compares aver-
age reward achieved by various algorithms on
the OneShotWikiLinks-311 dataset. Our Algo-
rithm 2 significantly outperforms other baselines:
it achieves reward no smaller than 0.17131 no mat-
ter which Flan-T5 model is used; on the contrary,
even with the Flan-T5 large, LLM-powered pol-
icy 7F1aT5 only achieves reward 0.12423 and the
contextual bandit algorithm SpannerGreedy only
achieves reward 0.11773. The fact the Algorithm 2
with Flan-T5 small (yellow solid line) greatly out-
performs 7f1an-T>-1aree (red dashed line) shows the
benefits of our algorithmic design. Note Flan-T5
small is nearly 10x smaller in parameter count com-
pared to Flan-T5 large.

Computational efficiency. To examine the com-
putational efficiency, we first run experiments to
compare the cost of 7M selection versus the cost
of contextual bandit selection, in terms of the exe-
cution time. As shown in Table 2, all 7MM gelec-
tions are considerably more expensive (from 52x to
159x more execution time) compared to contextual
bandit selection.

Table 3 presents the fraction of LLMs calls in
Algorithm 2 over the decision making process. Al-

Table 2: Cost ratio of 7'M selection and contextual ban-
dit selection, measure as the execution time of Flan-T5
models divided by the execution time of Spanner-
Greedy.

Small (80M) Base (250M)
52.16 79.49

Large (780M)
159.20

gorithm 2 not only achieves higher reward (Fig. 2),
but also only calls LLMs in a small fraction (from
6% to 14%) of time steps. For comparison, directly
applying 771315 calls LLM at every time step.

Table 3: Fraction of LLM calls in Algorithm 2 over the
decision making process with Flan-T5 models and on
the OneShotWikilLinks-311 dataset.

Small (80M) Base (250M)
0.06177 0.10033

Large (780M)
0.14381

To further improve computational efficiency, we
apply Eq. (1) or early stopping to limit the number
of LLM calls of our algorithm, and show results
in Table 4. Our results show that Algorithm 2
achieves slightly worse reward when limited to a
smaller number of LLM calls. However, Algo-
rithm 2 still outperform both baselines with an
upper bound B = 10000 on the number of LLM
calls, which is around 9x smaller compared to the
number of LLM calls used in the unconstrained
version of Algorithm 2.

Large-scale exhibition. We conduct a large-
scale experiment on the AmazonCat-13K dataset
that has more than 13k actions (around 42x larger
than the OneShotWikilLinks-311 dataset). With
Flan-T5 small model, as shown in Fig. 1, our Al-
gorithm 2 achieves more than a 6x performance
gain over baselines: our algorithm achieves reward
0.33603, yet both SpannerGreedy and 72T
achieves reward below 0.05424. Algorithm 2 calls
LLMs in only 1.5% of the time steps (17783.4
LLM calls on average over horizon 1186239).

Learning with more advanced LLMs. We run
additional experiments on the AmazonCat-13K
dataset with more advanced LLMs: Gemma 2B
and GPT-40-mini. We show the results in Fig. 3.
When using Gemma 2B as the LLM backbone,
compared to baselines, our Algorithm 2 achieves
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Figure 3: Performance comparison (higher is better) on the AmazonCat-13K dataset. Algorithm 2 incorporates
SpannerGreedy and Algorithm 1 as base algorithms. Left: Use Gemma 2B as the LLM backbone. Right: Use

GPT-40-mini as the LLM backbone.

Table 4: Limit the number of LLM calls in Algorithm 2.
Experiments conducted with the Flan-T5 large model
and on the OneShotWikilLinks-311 dataset.

Algorithms #LILM calls Reward
SpannerGreedy N/A 0.11773
rflan-T5-large 622000 0.12423
Algorithm 2 89448.6 0.17913
Algorithm 2
w/ Eq. (1) #LLM calls Reward
B =10K 7669.2 0.16836
B =20K 12084.4 0.17309
Algorithm 2 w/ #LLM calls Reward
early stopping
B =10K 10000 0.16774
B =20K 20000 0.17508

a 5.82x performance gain and calls Gemma 2B
in only 1.62% of the time steps. When using
GPT-40-mini as the LLM backbone, compared to
baselines, our Algorithm 2 achieves a 2.47x perfor-
mance gain and calls GPT-40-mini in only 4.49%
of the time steps.’ These results show that our

Due to computational constraints, we calculate the per-
formance of Algorithm 1 with Gemma 2B or GPT-40-mini as
the average performance over the first 96000 time steps (the
first 3000 data batches with a batch size 32). These averaged
performances should be fairly accurate, as demonstrated by
the real-time average performance of the Flan-T5 small model
in Fig. 1, which appears to follow a nearly straight line.

Algorithm 2 not only works well with Flan-T5
models but also with more advanced models such
as Gemma 2B and GPT-40-mini, highlighting the
broad compatibility of our algorithmic design.

4.3 Ablation Study

Probability updating strategies. We examine
the performance of various probability updating
strategies introduced in Section 3.2. Beyond the
log-barrier OMD update, we also include simple
pre-determined updating strategies: polynomial
decay and exponential decay (we set ppin = 0
and ppax = 0.8). For polynomial decay, we set
a = 1 and select a Cp,o1y from set {1, 10,100} that
achieves the highest reward. For exponential decay,
we select 5 € {0.1,0.01} and Ceypp € {1, 10,100}
jointly that achieves the highest reward. Table 5
shows the results of various probability updating
strategies: while log-barrier OMD achieves better
reward, pre-determined updating strategies gener-
ally leads to a smaller number of LLM calls.

Table 5: Comparison of different probability updating
strategies. Experiments conducted with the Flan-T5
large model and on the OneShotWikiLinks-311
dataset. We record the final average reward.

Methods #LLM calls Reward
Polynomial decay 19419.8 0.17413
Exponential decay 14943.6 0.17259
Log-barrier OMD 89448.6 0.17913
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Smoothing strategy for Algorithm 3. In Algo-
rithm 3, we adopt the smoothing strategy that clip
the (total) sampling probability on LLMs prtM
to 1 — ppip if the (total) sampling probability on
contextual bandit algorithms ptCB falls below pmin.
By doing this, we help contextual bandit base al-
gorithms within Algorithm 2 better adapt to the
environment, especially at the beginning stage. We
compare our clipping-type smoothing strategy with
the mixing-type smoothing strategy proposed in
Agarwal et al. (2017): given a smooth parameter v,
set py := (1 — ) - pt + ~y - unif [M]. We present
the results in Table 6. Our result indicates that
smoothing Algorithm 3 is important and our clip-
ping strategy work betters than the mixing strategy.

Table 6: Comparison of different smoothing
strategies for Algorithm 3. Experiments con-
ducted with the Flan-T5 large model and on the
OneShotWikilinks-311 dataset.

Methods #LLM calls Reward
No smoothing 618551.4  0.12386
Clipping (ours) #LLM calls Reward

Pmin = 0.1 144201.2  0.17532
Pmin = 0.2 89448.6 0.17913
Mixing #LLM calls Reward

v =0.05 151608.0  0.17449

v=0.1 149728.6  0.17288

v=0.2 189486.0  0.16691
v=04 248214.4  0.15862
5 Analyses

LLMs empower contextual bandit algorithms.
As shown in Fig. 2, Algorithm 2 consistently out-
performs its base algorithms. Since the LLM back-
bones in LLM-powered policies are never updated
(for efficiency reasons), we hypothesizes that our
Algorithm 2 empowers its bandit base algorithms
with the help of LLMs.

To test this hypothesis, we first plot the real-time
probability ptCB of Algorithm 2 sampling its contex-
tual bandit base algorithm (Fig. 4, left). Since ptCB
quickly increases its value to (around) 1 after the
initial learning stage, we know that the contextual
bandit base algorithm within Algorithm 2 plays

an important role after the initial stage. We then
plot the hypothetical performance of the contextual
bandit base algorithm within Algorithm 2 (as if it
were played at every time step). As shown in Fig. 4
(right), the contextual bandit base algorithm within
Algorithm 2 (solid black line) achieves much better
performance compared to the stand-alone contex-
tual bandit algorithm (0.17546 vs. 0.11773). Since
the main difference lies in the incorporation of data
selected by LLM-powered policy, this shows that
LLM selected data helps contextual bandit algo-
rithm learn better.

We also draw the hypothetical performance of
SpannerGreedy learned with purely LLM se-
lected data (solid purple line in Fig. 4 right),
which is worse than SpannerGreedy (0.06669
vs. 0.11773). This suggests that exploration in
contextual bandit algorithm is also important and
cannot be replaced with LLM selected data.

Algorithm 2 with multiple LLMs. We run Al-
gorithm 2 with two LLMs: Flan-T5 large and
Flan-T5 small. We compare this approach to Al-
gorithm 2 with either Flan-T5 large or Flan-T5
small. We use Ng and Ny, to denote the number
of Flan-T5 large and Flan-T5 small calls, respec-
tively, and show the results in Table 7. Compared
to learning with a large model, learning with both
large and small models achieves slightly worse
reward,® but also uses a slightly smaller number
of large model calls. Algorithm 2 relies more on
the large model (89224 calls) instead of the small
model (5833.4 calls on average), as it is designed
to automatically adapt to better base policies.

Table 7: Algorithm 2 with multiple LLMs. Experiments
conducted on the OneShotWikilLinks-311 dataset.

Flan-T5 models Ng Ny, Reward
large + small 5833.4 89224.0 0.17813
large N/A 89448.6 0.17913
small 38424.0 N/A 0.17131

6 Related Work

Sequential decision making. Sequential deci-
sion making is rooted in rich theoretical founda-

®This may be due to the fact that balancing over more
models creates larger learning overheads.
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Figure 4: Experiments with the Flan-T5 large model and on the OneShotWikilinks-311 dataset. Left: Real-time
probability p$B of sampling contextual bandit base algorithm in Algorithm 2. Right: Hypothetical performance of
the contextual bandit base algorithm within Algorithm 2 (black solid line) and hypothetical performance of the
contextual bandit algorithm learned with purely LLM selected data (solid purple line).

tions (Langford and Zhang, 2007; Agarwal et al.,
2014; Foster et al., 2021), and there is a long line of
work that develop efficient decision making algo-
rithms with general function approximation (Agar-
wal et al., 2012; Foster et al., 2018; Foster and
Rakhlin, 2020; Simchi-Levi and Xu, 2021; Zhu
et al., 2022a; Zhu and Mineiro, 2022; Rucker et al.,
2023; Zhang et al., 2024); in our experiments, we
include one such algorithm to textual environments.
Another line of work focus on developing online
model selection algorithms to balance the perfor-
mance of base algorithms (Auer et al., 2002; Agar-
wal et al., 2017; Pacchiano et al., 2020; Zhu and
Nowak, 2020, 2022; Marinov and Zimmert, 2021;
Zhu et al., 2022b; Dann et al., 2024). Compared
to previous online model selection approaches, we
further incorporate LLMs into the decision making
process.

LLMs for decision making. While there have
been many studies that leverage LLMs into super-
vised learning (Xie et al., 2021; Garg et al., 2022;
Akylirek et al., 2022), the understanding of how to
leverage LL.Ms into sequential decision making is
less developed. There exist two main approaches:
(i) view decision making as sequence modeling
and pretrain/finetune large models to adapt them to
unknown environments (Chen et al., 2021; Zheng
et al., 2022; Reid et al., 2022; Sun et al., 2023;
Raparthy et al., 2023; Lee et al., 2024), and (ii)
leverage prompt engineering and in-context learn-

ing to adapt pretrained large models to sequential
decision making problems (Krishnamurthy et al.,
2024). In this paper, we propose a new approach
that efficiently incorporates LLMs into sequential
decision making, addressing drawbacks of previ-
ous approaches.

7 Conclusion

In this paper, we study the problem of how to ef-
ficiently incorporate large language models into
contextual bandits, a key problem in sequential
decision making that emphasizes the fundamental
challenge of balancing exploration and exploita-
tion. We propose to use online model selection
algorithms to adaptively balance LLMs agents and
standard contextual bandit algorithms. Statistically,
our approach greatly outperforms stand-lone LL.M-
powered policies and contextual bandit algorithms.
Computationally, our approach avoids the need for
expensive re-training or finetuning, and utilizes
only a small fraction of LLM calls throughout the
decision making process. Our framework is highly
flexible, allowing for the integration of various off-
the-shelf pretrained LLMs. In our experiments,
it delivers promising results even when using a
language model with only 80 million parameters.
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8 Limitations

Our current approach primarily addresses contex-
tual bandit problems, a specific case of reinforce-
ment learning that lacks state transitions. Although
it is possible to abstract away state transitions, treat-
ing an episode of reinforcement learning as a sin-
gle step in a contextual bandit and applying our
algorithms, we believe that more fine-grained treat-
ments are necessary to achieve better performance
in reinforcement learning. Moving forward, we
plan to extend our algorithms and analyses to gen-
eral reinforcement learning problems.
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A Other Details for Experiments

A.1 Datasets

OneShotWikilLinks (Singh et al., 2012; Vasnetsov, 2018) is a named-entity recognition task where
contexts are text phrases (English) preceding and following the mention text, and actions are text
(English) phrases corresponding to the concept names. OneShotWikilLinks-311 is a subset of this dataset
obtained by taking all actions with at least 2000 examples. We construct binary reward function that is an
indicator function for whether the action corresponds to the actual entity mentioned.

AmazonCat-13K (Bhatia et al., 2016) is an extreme multi-label dataset whose contexts are text phrases
(English) corresponding to the title and content of an item, and actions are integers corresponding to item
tags. We construct binary reward function that indicates whether (one of) the correct item tags is selected.

A.2 Models and Hyperparameters

A.2.1 Algorithm 1

We construct LLM-powered policies using Algorithm 1 and various LLM backbones, including Flan-T5
models of different sizes (Chung et al., 2024), Gemma 2B (instruct) (Team et al., 2024) and GPT-40-mini
(OpenAl, 2024a). We use sentence transformer (Reimers and Gurevych, 2019) as the embedding model,
cosine similarity as the similarity measure, and hyperparameter £ = 1. We provide the prompt design
used in line 1 of Algorithm 1 below.

OneShotWikilinks-311. We only run experiments with Flan-T5 models on this dataset. Given the text
phrases preceding the mention text text_preceding, and following the mention text text_following,
we aim to predict the mention text. Let <extra_id_0> represent the masked token in Flan-T5 models
that needs to be filled in; we construct the prompt as:

question: text_preceding <extra_id_0>. text_following

AmazonCat-13K. We run experiments with Flan-T5 models, Gemma 2B and GPT-40-mini on this
dataset. Given the title and content of an item, we aim to predict the associated label. We construct
prompts for different LLMs in the following.

* Flan-TS models. We construct the prompt as:

Title: title
Content: content
Task: Predict the associated label.

* Gemma 2B. Following the template provided in Google (2024), we construct the prompt as:

<bos><start_of_turn>user

Title: title

Content: content

Task: Predict the item tag based on the content and title.<end_of_turn>
<start_of_turn>model

¢ GPT-40-mini. Following the format provided in OpenAl (2024b), we construct system prompt as:
Predict the item tag based on the content and title.
and construct user prompt as:

Title: title
Content: content

13
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A.2.2  Other Models and Hyperparameters

For SpannerGreedy, we adapt the implementation and hyperparameters from Zhu et al. (2022a).
We use sentence transformer (Reimers and Gurevych, 2019) to embed contexts in R!536 by con-
catenating text_preceding and text_following (OneShotWikilLinks-311) or title and content
(AmazonCat-13K). We use sentence transformer to embed actions in R7%% and then apply SVD to reduce
the dimensionality of actions to RC. SpannerGreedy uses a bilinear function f(z,a) = (¢(a), W¢(x))
to make prediction, where ¢(-) represents (pre-processed) embedding for contexts and actions. For Algo-
rithm 3, we set the learning rate n = 0.05.

A.3 Other Details

We implement our code in PyTorch and run our experiments on NVIDIA Tesla V100 GPUs and NVIDIA
A100 GPUs. Our paper uses several scientific artifacts, and our usage follows their licenses.
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