
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 9019–9031
November 12-16, 2024 ©2024 Association for Computational Linguistics

Can Active Label Correction Improve LLM-based Modular AI Systems?

Karan Taneja
Georgia Institute of Technology
karan.taneja@cc.gatech.edu

Ashok K. Goel
Georgia Institute of Technology
ashok.goel@cc.gatech.edu

Abstract
Modular AI systems can be developed using
LLM-prompts-based modules to minimize de-
ployment time even for complex tasks. How-
ever, these systems do not always perform well
and improving them using the data traces col-
lected from a deployment remains an open chal-
lenge. The data traces contain LLM inputs and
outputs, but the annotations from LLMs are
noisy. We hypothesize that Active Label Cor-
rection (ALC) can be use on the collected data
to train smaller task-specific improved mod-
els that can replace LLM-based modules. In
this paper, we study the noise in three GPT-3.5-
annotated datasets and their denoising with hu-
man feedback. We also propose a novel method
ALC3 that iteratively applies three updates to
the training dataset: auto-correction, correction
using human feedback and filtering. Our results
show that ALC3 can lead to oracle performance
with feedback on 17-24% fewer examples than
the number of noisy examples in the dataset
across three different NLP tasks.

1 Introduction

Large language models (LLMs) such as OpenAI’s
ChatGPT (OpenAI, 2022), Google’s Bard based
on LaMDA (Thoppilan et al., 2022), and Meta’s
LLaMA (Touvron et al., 2023) are powerful zero or
few-shot learners as they can generalize to a wide
range of tasks simply through task explanations
or demonstrations without any model fine-tuning
(Qin et al., 2023). This led to the development
of many modular AI systems that leverage these
LLMs through API services to decompose complex
tasks and to automate workflows (Shen et al., 2023;
Significant Gravitas, 2023; Tellez, 2023; Taneja
et al., 2024). These AI systems rely on several
discriminative and generative sub-tasks performed
by LLMs, without any fine-tuning, to achieve the
desired behavior. LLM-based modular AI systems
work reasonably well in practice, but their robust-
ness is still in question because (i) they are limited

Inputs,

Noisy

Labels

Replacement

Model

X Y

AI System

Output

Input

Prompt &

LLM Call

Predict and

correct

misannotated

examples

using

ALC

Replace

 LLM

call

Figure 1: Noisy LLM-annotated datasets are collected
from deployment of a modular AI system. Active Label
Correction (ALC) is used to predict and correct misan-
notated examples in order to train a replacement model.

by the quality of zero-shot learning of the LLMs
that they employ (Shen et al., 2023), (ii) an error in
one module can trigger a cascade effect, propagat-
ing the error throughout the modular system, (iii)
AI developers cannot rely on future improvements
in the quality of underlying LLMs as the perfor-
mance on certain end-tasks can also worsen (Chen
et al., 2023) due to the fine-tuning focused on safety
and conversationality of LLMs, and (iv) domain
shift between LLM training data and deployed en-
vironment. Further, LLMs cannot be easily fine-
tuned for all sub-tasks in every AI system because
(i) there is a lack of training data, and (ii) the com-
putational cost required to train and maintain an
online service for multiple fine-tuned models can
be expensive and has a large carbon footprint.

To address these challenges, we propose collect-
ing data traces containing LLM inputs and outputs
from deployed AI systems, and training smaller
task-specific models that can replace LLM calls
(see Figure 1). We propose a method based on Ac-
tive Label Correction (ALC) (Rebbapragada et al.,
2012) to use human feedback to improve the quality
of data obtained from modular AI systems and eval-

9019

uate its efficacy for three publicly-available NLP
datasets. The data traces contain examples with
low-quality LLM annotations, but ALC can utilize
human expertise in an efficient manner by seek-
ing annotations for examples that are most likely
misannotated. We show that synthetic noise mod-
els employed by previous works are not adequate
to capture noisy LLM annotations which makes
it challenging to predict misannotated examples
in ALC. The proposed method ALC3 (i) auto-
corrects potentially misannotated examples using
model predictions, (ii) filters out the confusing ex-
amples in addition to (iii) using human feedback.
Perfect misannotation prediction on a dataset with
N% noisy examples will require human annotation
on N% of data to clean it. Our results show that
the three-step process of ALC3 can lead to oracle
test performance with feedback on 17-24% fewer
examples than N% (perfect predictor) for three
NLP tasks with different data sizes (5k-100k) and
complexity. The proposed method promotes the
idea of leveraging the powerful zero-shot learning
capabilities of LLMs for rapidly deploying modu-
lar AI systems and improving their quality as they
accumulate data from the real world. We focus on
discriminative tasks but the proposed method also
extends to generative tasks in principle (see §A).

We make three main contributions: (i) we pro-
pose an ALC-based pipeline and our method ALC3
to continually improve LLM-based modular AI
systems while minimizing annotation costs, (ii)
we compare different noise models with LLM-
annotation noise and the performance-cost curves
of different ALC methods for GPT-3.5-annotated
datasets, and (iii) we present experiments for three
publicly-available NLP datasets with tasks that are
common to modular AI systems including natural
language inference, named entity recognition, and
intent classification.

2 Related Work

LLM-based Modular AI Systems: ChatGPT
(OpenAI, 2022), LaMDA (Thoppilan et al., 2022)
are conversational LLMs trained on large amounts
of text and fine-tuned with human feedback, and
they perform well on diverse NLP tasks but not
at par with fine-tuned models (Qin et al., 2023).
HuggingGPT (Shen et al., 2023), AutoGPT (Sig-
nificant Gravitas, 2023), Jill Watson (Taneja et al.,
2024) are examples of modular AI systems based
on GPT-3.5 to solve complex tasks like planning,

goal setting, manipulating images or texts. These
AI systems depend on LLMs as API services and
are expensive to run. We propose a pipeline to use
data traces from the deployment of AI systems and
limited human supervision to improve their perfor-
mance and to make them cost-effective by using
smaller models.

Semi-supervised, Weakly-supervised and Ac-
tive Learning: In semi-supervised learning, train-
ing data consists of a set of labeled examples and
a typically much larger set of unlabeled examples
(Hady and Schwenker, 2013). Weakly supervised
learning more generally assumes that annotations
are partial, noisy, or provided at a higher level of
abstraction (Zhou, 2018). Self-training is a com-
mon method used to train a teacher model on the
supervised subset to predict soft pseudo-labels for
the unsupervised subset. Then, the supervised sub-
set and pseudo-labeled subset are used to train a
student model (Karamanolakis et al., 2021; Tanaka
et al., 2018; Yi and Wu, 2019). Active learning
strategy selects the most informative examples, typ-
ically by construction or by choosing from a pool
of unlabeled examples, and querying an oracle such
as human annotator for supervision (Settles, 2009).
Our problem is different from above but lies at the
intersection since we begin with a fully-annotated
noisy dataset and need to seek human expertise for
improving data and model quality.

Active Label Correction (ALC): ALC (Reb-
bapragada et al., 2012) uses self-training to clean
a noisy training set by iteratively predicting most
likely mislabeled examples using a trained model
and receiving human feedback to correct them.
Simple disagreement measures based on the output
probabilities work well for identifying mislabeled
examples. Robust ALC (Kremer et al., 2018) as-
sumes that label-conditioned noise and uses a latent
model for the true label. Dual ALC or DALC (Li
et al., 2022) additionally uses model predictions
with high confidence for automatic correction. We
note that previous works have primarily focused on
image classification problems in vision and experi-
mented with synthetic noise. We study and explore
the use of ALC for correcting real noise observed
in GPT-3.5-annotated datasets.

Human-AI Collaborative Annotation: CoAn-
notating (Li et al., 2023) is a data annotation pro-
cess that uses variations in LLM prompts to esti-
mate model uncertainty for deciding allocation to
annotators. In our work, we boost data quality to-
wards the goal of continual model improvement to

9020

Inputs,

Noisy

Labels

Model

Predictions

Trained

Model

Auto-

correction
Human

Annotation

Filtering

X Y Y

YYY

AI System

Output

Input

Prompt &

LLM Call

Inference

Update Y Retain human

annotations

from previous

iterations

YYY

Y

Iterations

1
2

345

6

789
Iteration 1: 2, 3, 4, 5

Iteration 2: 6, 7, 8, 9

Figure 2: Proposed process for improving LLM-based modular AI systems using ALC3. The inputs and noisy
labels from a zero/few-shot learner-based module are used to obtain a trained model. Model predictions on the
noisy training dataset are computed for the next three steps. (i) Auto-correction updates the labels where model
prediction contradicts the original label with very high confidence. (ii) Human annotation is used to verify and
update a fixed number of confusing examples. (iii) Filtering removes some of remaining examples that are deemed
noisy based on model predictions. The process is performed iteratively until a stopping condition. Only human
annotations are retained after each iteration, iteration two is shown with columns 6, 7, 8, and 9 for illustration.

replace LLM-based modules in AI systems. As a
result, we use an iterative process where human
feedback helps increase model and misannotation
prediction quality i.e. better prediction of exam-
ples most likely to be misannotated, along with
auto-correction and filtering. CoAnnotating is non-
iterative and does not leverage fine-tuned models
or previously annotated human examples, but re-
lies on numerous LLMs calls for each example.
Machine Teaching (Taneja et al., 2022a,b) is an-
other framework for human-AI collaborative anno-
tation where annotators work with an ML model
and knowledge base to teach concepts to machines
in a selective labeling process. In our proposed
process, LLMs can be interpreted as a source of
knowledge as they provide initial annotations, but
the presence of annotations transforms the problem
into one of label correction.

3 Methods

Modular AI systems rely on the zero/few-shot
learning power of LLMs to process the input, per-
form sub-tasks, and generate output. These AI
systems can accumulate data traces that include
inputs, intermediate outputs of each module, and
final outputs through user interactions. To evalu-
ate a module that relies on LLMs as a zero-shot
learner, one can analyze the amassed inputs and
outputs. We propose collecting these input-output
pairs for each module to create noisy annotated
datasets, and improving data quality using human
feedback with the goal of training a replacement

model. The datasets above are assumed to be noisy
because LLM annotations have lower quality than
human annotations.

ALC (Rebbapragada et al., 2012) iteratively pre-
dicts and flag the examples that are most likely
to be noisy or misannotated, and seeks correction
from human annotators on the flagged examples.
The iterative approach aims to jointly (i) minimize
noise in training examples which is also a proxy
for test error, and (ii) minimize human feedback
by effectively predicting misannotated examples.
Our proposed method ALC3, outlined in Figure 2,
uses two additional steps beyond the basic ALC.
We first auto-correct the examples where model
prediction contradicts the label with very high con-
fidence, leveraging the trained model for labelling,
similar to Dual ALC (Li et al., 2022). After hu-
man annotation, we filter out examples with low
label probabilities to reduce the noise in the train-
ing dataset. In each iteration, we retain the human
annotations, but reset and obtain a new set of auto-
corrected and filtered examples. We describe each
step in more details in the following subsections.

3.1 Misannotation Prediction
The task of misannotation prediction (MP) involves
predicting the examples that are most likely to be
noisy based on the entire noisy dataset. This en-
sures efficient human annotation as annotators fo-
cus on examples most likely to improve the dataset
and the trained model. Given a noisy dataset
D = {(xi, yi)}ni=1 where (xi, yi) are pairs of in-
puts and outputs, we train a model pθ to predict

9021

y∗ = argmaxy pθ(y|x). We then obtain pre-
dictions on the D itself and compute probabili-
ties pθ(yi|xi) for each example. Similar to Reb-
bapragada et al. (2012), we suppose that an exam-
ple is misannotated with probability m(xi, yi) =
1− pθ(yi|xi). In other words, if the probability of
(xi, yi) is low under the trained model, it is likely
to be misannotated (m ≈ 1) and vice versa.

Intuitively, when model prediction for a training
example is inconsistent with the annotation, we
can argue that the remaining examples suggest evi-
dence against the given annotation and, therefore,
it is likely to be misannotated. Since each exam-
ple has a minimal impact on the model for a large
enough sample size, pθ(yi|xi) approximates as the
probability of the model trained with one example
removed from the dataset. We study this impact of
data size in the next section.

After computing m(xi, yi) for all (xi, yi) ∈ D,
we sort (xi, yi) ∈ D from highest to lowest value
of m(xi, yi). We flag a fraction M ∈ (0, 1) of
examples in D with the highest m(.) values for
human annotation. A low value of fraction M leads
to a low recall as many misannotated examples are
missed while a high M leads to lower precision
because many correctly annotated examples are
flagged. We refer to this baseline as ALC. We also
evaluate Random Label Correction (RLC) as a
baseline where the examples are flagged randomly.

3.2 Auto-correction

While ALC only employs human supervision for
correction, the model predictions can also be a
source of correct annotations. Dual ALC (Li et al.,
2022) leverages model predictions along with hu-
man feedback to update the dataset. Instead of
using label-transition matrix for noise modeling,
we adapt their method by simply using model pre-
dictions to update labels before determining misan-
notated examples for direct comparison with other
ALC methods. We accept output label y∗ as true
annotation for an example if pθ(y∗|x) > δ where
δ ≲ 1 is a constant threshold. We refer to this
as auto-correction since it requires no human in-
put. We use remaining examples to correct the
most likely misannotated examples as before and
refer to this baseline method as DALC. Since auto-
correction is performed before human annotation,
we do not flag any examples that are auto-corrected.

3.3 Filtering
In ALC3, after auto-correction and human anno-
tation, we filter out the examples that are likely to
be noisy to improve the quality of the training data.
Let mflag be the number of flagged examples using
MP and mcorr be the number of corrected exam-
ples in the current iteration. Then, MP precision is
given by pMP = mcorr/mflag. In our experiments,
we filter out mfilter examples with lowest values of
pθ(y|x) where mfilter = 3mcorr, a rough approxima-
tion of number of examples that will be corrected
in the next few iterations.

As pMP drops with each iteration, effectiveness
of filtering in terms of lowering the noise in training
dataset reduces. We estimate the noise in every
iteration and perform filtering only if pMP is strictly
better than random selection. Therefore, for kth

iteration, we use

mfilter,k =

{
3 ·mcorr,k if pMP,k > ηk

0 otherwise

ηk = ηo −
∑k

j=1mcorr,j

|D|
where ηo is the fraction of noisy examples initially
which is estimated by annotating a small random
subset that is also used as the test set.

3.4 Iterative Data Correction
For each iteration of ALC3, we first train pθ,
and perform auto-correction using pθ(y

∗|x) as dis-
cussed earlier. This is followed by misannota-
tion prediction using pθ(y|x) where examples are
flagged for human annotation. Once the flagged
examples are annotated by a human expert, some
remaining examples are filtered out to further im-
prove data quality based on low pθ(y|x). Finally,
after above three updates, this dataset is used to
train a new model pθ′ for the next iteration. In each
iteration, a new set of examples are auto-corrected,
human-annotated, and filtered. We reset the previ-
ously auto-corrected or filtered examples and select
a new set based on pθ′ predictions. An human-
annotated example is not auto-corrected or flagged
or filtered in subsequent iterations. The process
is repeated iteratively improve the quality of the
data and trained model until a stopping criterion
(discussed in Section 4.5) is met.

With each iteration, new feedback from the hu-
man annotator is accommodated into the dataset
and trained model. The new model predictions re-
veal new inconsistencies with the noisy annotations

9022

and lead to the next set of flagged examples. As
the count of misannotated examples reduces in the
noisy dataset with each iteration, we can expect
the MP performance to drop. We discuss this phe-
nomenon in the results section. We can control
the MP performance by varying M , the fraction
of flagged examples. Ideally, one can train a new
model after correcting every example but this ex-
treme case is expensive and infeasible due to long
waiting time as model training runs after every ex-
ample. But we still wish to choose M to maximize
MP precision and human efficiency. Therefore, in
practice, the MP precision can be measured for the
latest batch of examples and M can be decreased
if precision is low or vice versa. Increasing preci-
sion by lowering M comes at the cost of low recall
and running more iterations. In our experiments,
we use a fixed value of M i.e. a fixed number of
examples are flagged in each iteration.

4 Experiments and Results

4.1 Performance on Evaluation Tasks
We evaluate the ALC-based pipeline on three dif-
ferent tasks: (1) ATIS (Airline Travel Informa-
tion System) Intent Classification (Hemphill et al.,
1990), (2) CoNLL 2003 Named Entity Recogni-
tion or NER (Tjong et al., 2003) and (3) Question-
answering Natural Language Inference or QNLI
(Wang et al., 2018). The three tasks are common
to many conversational AI agents (Lin et al., 2023).
Intent classification is used for processing inputs
down to different path, NER is used for slot-filling
(such as train booking) to fill various parts of a
database query, and NLI is used in conversational
AI agents to confirm the validity of the output in
answering the user query. The three datasets span
different levels of complexity and sizes as shown
in Table 1. The ground truth labels allow us to
compare our pipeline to the oracle performance.

For each task, we created a prompt on OpenAI
Playground and used the OpenAI API to get out-
puts for both train and test splits of each dataset
using ‘gpt-3.5-turbo-0613’ model (Sept’21 cut-off)
with zero temperature. We use GPT-3.5 as it is
available as an API service and performs well at
following instructions. For fine-tuning, we used
‘distilbert-base-uncased’, ‘roberta-base’ and ‘albert-
large-v2’ pre-trained transformer models from Hug-
gingFace for ATIS, CoNLL and QNLI tasks respec-
tively based on their public leaderboards1 and avail-

1https://paperswithcode.com/

Task Metrics Train Eval FT

ATIS
Size 4,952 878 878
Acc. 0.702 0.756 0.982
F1-sco. 0.789 0.832 0.982

CoNLL

Size 14,041 3,250 3,250
#NERs 23,499 5,942 5,942
Precision 0.576 0.614 0.958
Recall 0.757 0.765 0.961
F1-sco. 0.654 0.682 0.959

QNLI
Size 104,743 5,463 5,463
Acc. 0.849 0.845 0.920

Table 1: Performance of GPT-3.5 on train and test set of
three tasks: (1) ATIS Intent Classification, (2) CoNLL
2003 Name Entity Recognition, and (3) QNLI Natural
Language Inference along with performance of fine-
tuned models in FT column.

ability on HuggingFace. The results for each task
are shown in FT (fine-tuned) column in Table 1.
The training details are given in §B.

ATIS dataset consists of 17 unique intents (‘air-
port’, ‘aircraft’, ‘distance’, etc.) assigned to user
queries. A description of all 17 intents was pro-
vided to GPT-3.5 for classification. 40 examples
with multiple labels were removed to reduce the
task to single-label classification. For the CoNLL
dataset, the prompt describes a sample NER output
and four types of entities i.e. person, location, or-
ganization, and miscellaneous. QNLI dataset con-
sists of pairs of questions and sentences based on
the Stanford Question Answering Dataset (Wang
et al., 2018). The prompt contains these two inputs
and asks if the passage answers the question. All
prompts and output parsing are detailed in §C.

The performance of GPT-3.5 is shown in Train
and Eval columns in Table 1. The results agree
with Qin et al. (2023) in terms of the difference
in performance between a fine-tuned model and
zero-shot learning using GPT-3. We note that GPT-
3.5 has 10-30% lower performance than fine-tuned
models across the three tasks. While GPT-3.5 gen-
eralizes well to new tasks as a zero/few-shot learner,
this result suggests that there is a large performance
gap that needs to be bridged when bootstrapping
modular AI systems with GPT-3.5. Therefore, it
is important to develop a method to improve each
module and the overall system over time after de-
ploying the LLM-based AI systems.

9023

https://paperswithcode.com/

Noise Accuracy C. Imbalance

None 98.2% -
Random 97.2% 0.1697
Label-cond. 93.5% 0.0485
Input-cond. 88.6% 0.1033
GPT-3.5 84.0% 0.0949

Table 2: Comparison of different noise types, including
no noise (None), Random, Label-conditional, Input-
conditional, and GPT-3.5 annotations, on model Accu-
racy and Class Imbalance for ATIS dataset.

4.2 Noise Characteristics
We compare different types of synthetic noise mod-
els with the noise induced by GPT-3.5 while an-
notating the ATIS dataset. We use ATIS dataset
for this experiment as it has the highest number of
classes which can lead to more pronounced noise
patterns. We add different types of synthetic noise
to the original dataset with the same proportion
of misannotations as GPT-3.5. Table 2 shows the
accuracy of models trained with different noises
in ATIS dataset and the class imbalance measured
by the KL divergence of label distribution from
the original label distribution. Details about noise
models are provided in Appendix E.

We find that GPT-3.5 adds the most detrimen-
tal noise while having a similar class imbalance
as other noise models. We posit that GPT-3.5 pro-
vides very reasonable false annotations that are
inherently hard to detect or ignore which leads to
poor test performance. It is also interesting to note
that a model trained on GPT-3.5-annotated train-
ing data performs much better than GPT-3.5 itself
(84.0% versus 75.6%). This is due to the input
data distribution learned by the model leading to
better input representations compared to a generic
pre-trained LLM. This motivates the fine-tuning
of task-specific models for modular AI systems as
well as the use of ALC to improve data quality
which can lead to further improvements.

In Figure 3, we show 2D t-SNE projections
(Maaten and Hinton, 2008) of Contriever text em-
beddings (Izacard et al., 2022) from ATIS dataset.
We visualize examples labeled with 7 classes
shown in the legend and larger dots indicate the ex-
amples misannotated by GPT-3.5. We observe that
most misannotated examples lie near intersections
or between class clusters. This indicates that noise
induced by GPT-3.5 is indeed complex and depends
on the text, its true label, and other possible labels.

20 15 10 5 0 5 10 15 20

15

10

5

0

5

10

15
ground_service
city
airfare
airline
abbreviation
distance
capacity

Figure 3: A 2D projection of ATIS text embeddings for
a subset of 7 classes. GPT-3.5 annotations are indicated
by colors while large dots indicate errors. Most misan-
notated examples lie near cluster boundaries.

Previous work has used synthetic random (Kremer
et al., 2018) or label-conditional noise (Rebbapra-
gada et al., 2012; Li et al., 2022) which, as observed
in Table 2, are not representative of noise present
in GPT-3.5 annotations that we study.

4.3 Misannotation Prediction

In Figure 4, we compare RLC, ALC, and DALC
for MP on all three datasets annotated using GPT-
3.5. Note that filtering in ALC3 doesn’t im-
pact misannotation prediction in the first itera-
tion, leading to same results as DALC. We use
δ = 0.75, 0.98, 0.90 for ATIS, CoNLL and QLNI
to keep the proportion of auto-corrected exam-
ples between 3% to 6%. We note from Table 1
that 29.8% of the ATIS and 15.1% of the QNLI
train dataset were misannotated by GPT-3.5. For
CoNLL, 57.4% of examples contain errors in token
classes though only 9.7% of tokens in the dataset
are misclassified.

We observe that precision decreases for ALC
and DALC as M increases for all tasks because
the examples with the highest probability of being
misannotated based on m(.) values indeed have a
higher rate of being misannotated. In other words,
beginning from examples with the highest m(.)
values, a human annotator will see a decrease in
MP quality over time as they verify examples with
lower m(.) values. We also see an increase in re-
call as M increases because more misannotated
examples are flagged at higher values of M . We
also note that DALC has consistently lower pre-
cision and recall than ALC. The auto-corrected
examples in DALC typically have high m(.) as
pθ(y ̸= y∗|x) is low but these examples cannot be
flagged. ALC flags the examples with the highest

9024

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Flagged (M%)

30

40

50

60

70

80

90

Pr
ec

is
io

n
%

 (S
ol

id
)

10

20

30

40

R
ec

al
l %

 (D
as

he
d)

(a) ATIS
RLC
ALC
DALC/ALC3

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Flagged (M%)

10

20

30

40

50

Pr
ec

is
io

n
%

 (S
ol

id
)

10

20

30

40

R
ec

al
l %

 (D
as

he
d)

(b) CoNLL
RLC
ALC
DALC/ALC3

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Flagged (M%)

20

30

40

50

60

70

80

Pr
ec

is
io

n
%

 (S
ol

id
)

0

10

20

30

40

50

60

R
ec

al
l %

 (D
as

he
d)

(c) QNLI
RLC
ALC
DALC/ALC3

Figure 4: MP precision and recall for ATIS, CoNLL,
and QNLI with change in M . ALC3 results are same as
DALC, and both perform worse than ALC because data
quality is improved with auto-correction before MP.

m(.) values leading to higher precision and recall.
For RLC, the precision is constant and low while
recall increases perfectly linearly with M because
examples are flagged at random.

For the human annotator, examples flagged by
DALC/ALC3 are more likely to be correct as com-
pared to those flagged by ALC. A more balanced
set of flagged examples for the correction task
may also avoid the problem of over-reliance of
human annotators on model predictions. Further,
increase in quality per iteration can be higher with
DALC/ALC3 because of two sources of true labels
viz. auto-flipping and human corrections. Given a
method, we wish to maximize precision to correct
a higher proportion of misannotated examples in

2 4 6 8 10 12 14 16 18
Flagged (M%)

40

50

60

70

80

Pr
ec

is
io

n
%

100%
50%
25%
12%
6%
3%

(a) MP precision versus flagged examples (M)

0 20 40 60 80 100
Data Size (%)

40

45

50

55

60

65

70

Pr
ec

is
io

n
%

M=5%
M=11%
M=17%

(b) MP precision versus data size (%)

Figure 5: Effect of data size on MP precision. MP preci-
sion reduces as more examples are flagged and reduces
as data size is decreased, but we observe diminishing
returns with increase in data size.

each iteration. Therefore, we use low values of M
in each step in iterative data correction.

4.4 Effect of Data Size on MP

We wish to understand how the quantity of data
collected by modules within an AI system will
impact MP performance. Towards this end, we
vary the amount of data used to train the model for
MP. We use 100%, 50%, 25%, 12%, 6%, and 3%
of the QNLI dataset, the largest of the three with
105k examples (3% ≈ 3.1k), to evaluate the impact
of data size. The results are shown in Figure 5.

We observe a decrease in the MP precision as
the data size decreases (Figure 5(a)). The drop in
precision from 6% to 3% is much bigger than drop
from 100% to 50% as each example plays a bigger
role in learning for small data sizes. In Figure 5(b),
we plot the precision as a function of data size with
a fixed M . The precision increases as the data size
increases, but with diminishing returns. In practice,
the observed precision can suggest the data size
increase required to improve MP performance.

9025

0 2 4 6 8 10 12
Iteration

80

85

90

95

Ac
cu

ra
cy

 %
 (×

)

0

20

40

60

80

100

Pr
ec

is
io

n
%

 (
)

(a) ATIS, M=2.5%
Oracle
RLC
ALC
DALC
ALC3

0 2 4 6 8 10 12
Iteration

75

80

85

90

95

F1
 %

 (×
)

0

10

20

30

40

50

Pr
ec

is
io

n
%

 (
)

(b) CoNLL, M=5.0%
Oracle
RLC
ALC
DALC
ALC3

0 1 2 3 4 5 6 7
Iteration

88

89

90

91

92

Ac
cu

ra
cy

 %
 (×

)

20

30

40

50

60

70

Pr
ec

is
io

n
%

 (
)

(c) QNLI, M=2.5%
Oracle
RLC
ALC
DALC
ALC3

Figure 6: Model performance (Accuracy/F1-score) with
iterations of simulated human verification using RLC,
ALC, DALC, and ALC3 along with MP Precision and
the Oracle performance. Accuracy/F1-score (×) in-
creases while MP precision (•) decreases with each
iteration. We iterate until close-to-oracle performance
is achieved i.e. Accuracy/F1 is within 1% of the ground
truth fine-tuned model (green bar).

4.5 Iterative Data Correction

The quality of training data improves after each it-
eration of label correction and the iterative process
can be continued until we obtain a high-quality
dataset. We simulate correction, without actual
human annotators, by using ground truth from the
original dataset to update the annotations of the
flagged examples. We fix M = 0.025 (2.5%) for
ATIS and QNLI tasks, but M = 0.050 (5.0%) for
CoNLL because > 50% examples contain noisy
tokens. For CoNLL task, we report the F1-score
on token-level classification as a standard practice.

However, we predict misannotations on the sen-
tence level since the human annotators verify com-
plete sentences. Therefore, we calculate MP preci-
sion by treating every token as flagged if a sentence
is predicted to be misannotated. While this arti-
ficially leads to low precision, it is more useful
to observe compared to sentence-level precision
which is consistently high because most examples
for CoNLL contain misannotated tokens.

We train models with the updated datasets and
plot performance i.e. Accuracy or F1-score (×
markers) after each iteration in Figure 6. We also
plot the MP precision (• markers) for each itera-
tion. We say that a model has achieved close-to-
oracle performance if the accuracy or F1-score is
within a 1% range of the model trained on the orig-
inal dataset (Oracle). The horizontal green bar in
each plot shows this 1% range. For the ATIS task,
ALC3, DALC and ALC achieve close-to-oracle
performance in 9, 11 and 13 iterations respectively.
With M = 2.5%, this means only 2.5% × 9 =
22.5% of the dataset is human-annotated with
ALC3 which is less than the 29.8% of data mis-
annotated by GPT-3.5. ALC3 requires about 18%
less annotations than DALC and 31% less than
ALC. For CoNLL, we again observe that ALC3,
DALC, and ALC require 9, 11, and 13 iterations to
achieve close-to-oracle performance. Since 57.4%
of CoNLL annotations by GPT-3.5 contain tokens
with incorrect classes, it is reasonable to human-
annotate 5.0%× 9 = 45% (< 57.4%) of the data.
For QNLI, we need 5 iterations using ALC3 i.e.
correcting 2.5% × 5 = 12.5% (< 15.1%) of the
dataset. For RLC, MP precision remains constant
as examples are randomly selected for correction.
It leads to slower improvements in performance
compared to other methods. With perfect MP, we
would require 29.8%, 57.4%, and 15.1% exam-
ples for ATIS, CoNLL, and QNLI respectively to
lead to the original dataset quality. But ALC3 has
close-to-oracle performance with 17-24% fewer ex-
amples than perfect MP by using human feedback
in addition to auto-correction and filtering.

We also observe a gradual decrease in MP pre-
cision for ALC, DALC, and ALC3 due to a de-
crease in the number of misannotated examples
after each iteration. As human annotators examine
the flagged examples in practice, we can calculate
the MP precision after each iteration and use it as
a stopping criterion or as a signal to decrease M .
Additionally, as mentioned earlier, we hold out a
human-annotated random test set to evaluate model

9026

performance. If the MP precision is no longer in
a target range or the model performance saturates,
one can stop performing iterations until more data
becomes available from the deployed AI system.
Overall, we find that ALC3 can achieve close-to-
oracle performance by correcting only a fraction
of the dataset, 17-24% than the fraction of misan-
notated examples for all three GPT-3.5-annotated
datasets, and ≈ 16% less than DALC.

5 Conclusion

Modular AI systems can leverage LLMs as
zero/few-shot learners for rapid deployment with-
out any training or fine-tuning but there is a large
performance gap when compared to fine-tuned
models. The proposed pipeline utilizes our method
ALC3 to improve modular AI systems by leverag-
ing LLM-annotated data and improving its qual-
ity to train a replacement model for each module.
Compared to random or label-conditioned synthetic
noise models used in previous work, we found the
noise characteristics of GPT-3.5-annotated text data
to be far more complex. With ALC3, we achieve
the same performance as ground truth data using
human feedback on a fraction of the dataset. We
found this fraction to be 17-24% less than the frac-
tion of misannotated data for three unique tasks
spanning different levels of complexity and data
sizes, and ≈ 16% better than previous methods.

6 Limitations and Future Work

Most publicly available datasets have small text
lengths while real applications may involve much
longer (conversational) texts. Deploying an AI
system and collecting real datasets is outside the
scope of this paper. In future work, we will apply
ALC3 to datasets created using data traces obtained
from a deployed Jill Watson (Kakar et al., 2024) to
evaluate its performance after replacing LLM calls
with smaller fine-tuned models.

Most commercial conversational AI agents al-
low users to provide feedback through a thumbs-
up/down button and this feedback may be accom-
modated as a signal for misannotation prediction.
We leave this as an open problem for future work.

We used only GPT-3.5 as LLM for annotations.
While our results should generalize to different
LLMs since this only affects the initial parameters
of our experiments (i.e. the noise level of the la-
belled datasets), more insights could be gained by
testing with other LLMs.

References
Lingjiao Chen, Matei Zaharia, and James Zou. 2023.

How Is ChatGPT’s Behavior Changing over Time?
arXiv:2307.09009. ArXiv: 2307.09009v2.

Mohamed Farouk Abdel Hady and Friedhelm
Schwenker. 2013. Semi-supervised Learning.
Handbook on Neural Information Processing -
Intelligent Systems Reference Library, Springer,
49:215–239. Publisher: Springer, Berlin, Heidelberg
ISBN: 9783642366567.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS Spoken Language Sys-
tems Pilot Corpus. Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised Dense Informa-
tion Retrieval with Contrastive Learning. Transac-
tions on Machine Learning Research.

Sandeep Kakar, Pratyusha Maiti, Pratyusha Nandula,
Gina Nguyen, Karan Taneja, Aiden Zhao, Vrinda
Nandan, and Ashok Goel. 2024. Jill Watson: Scaling
and Deploying an AI Conversational Agent in Online
Classrooms. In Intelligent Tutoring Systems 2024.

Giannis Karamanolakis, Subhabrata Mukherjee, Guo-
qing Zheng, and Ahmed Hassan Awadallah. 2021.
Self-Training with Weak Supervision. Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 845–863. ArXiv: 2104.05514v1.

Jan Kremer, Fei Sha, and Christian Igel. 2018. Ro-
bust Active Label Correction. In Proceedings of the
Twenty-First International Conference on Artificial
Intelligence and Statistics, pages 308–316. PMLR.
ISSN: 2640-3498.

Minzhi Li, Taiwei Shi, Caleb Ziems, Min-Yen Kan,
Nancy Chen, Zhengyuan Liu, and Diyi Yang. 2023.
CoAnnotating: Uncertainty-Guided Work Allocation
between Human and Large Language Models for
Data Annotation. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1487–1505, Singapore. Associa-
tion for Computational Linguistics.

Shao-Yuan Li, Ye Shi, Sheng-Jun Huang, and Songcan
Chen. 2022. Improving deep label noise learning
with dual active label correction. Machine Learning,
111(3):1103–1124.

C.-C ; Lin, A Y Q ; Huang, S J H A Yang, Andreas
Kanavos, Hao-Chiang Koong Lin, Chien-Chang
Lin, Anna Y Q Huang, and Stephen J H Yang.
2023. A Review of AI-Driven Conversational Chat-
bots Implementation Methodologies and Challenges
(1999–2022). Sustainability, MDPI, 15(5). Pub-
lisher: Multidisciplinary Digital Publishing Institute.

9027

https://arxiv.org/abs/2307.09009
https://doi.org/10.1007/978-3-642-36657-4_7/COVER
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://link.springer.com/chapter/10.1007/978-3-031-63028-6_7
https://link.springer.com/chapter/10.1007/978-3-031-63028-6_7
https://link.springer.com/chapter/10.1007/978-3-031-63028-6_7
https://github.com/
https://proceedings.mlr.press/v84/kremer18a.html
https://proceedings.mlr.press/v84/kremer18a.html
https://doi.org/10.18653/v1/2023.emnlp-main.92
https://doi.org/10.18653/v1/2023.emnlp-main.92
https://doi.org/10.18653/v1/2023.emnlp-main.92
https://doi.org/10.1007/s10994-021-06081-9
https://doi.org/10.1007/s10994-021-06081-9
https://doi.org/10.3390/SU15054012
https://doi.org/10.3390/SU15054012
https://doi.org/10.3390/SU15054012

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605.

OpenAI. 2022. Introducing ChatGPT.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
ChatGPT a General-Purpose Natural Language Pro-
cessing Task Solver? In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1339–1384.

Umaa Rebbapragada, Carla E. Brodley, Damien Sulla-
Menashe, and Mark A. Friedl. 2012. Active Label
Correction. In Proceedings of the 2012 IEEE 12th
International Conference on Data Mining, ICDM ’12,
pages 1080–1085, USA. IEEE Computer Society.

B. Settles. 2009. Active Learning Literature Survey.
Computer Sciences Technical Report, University of
Wisconsin-Madison, 1648.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI Tasks with ChatGPT and its Friends
in Hugging Face. In Thirty-seventh Conference on
Neural Information Processing Systems.

Significant Gravitas. 2023. Auto-GPT: An Autonomous
GPT-4 Experiment (GitHub).

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and
Kiyoharu Aizawa. 2018. Joint Optimization Frame-
work for Learning with Noisy Labels. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5552–5560, Salt Lake City,
UT. IEEE.

Karan Taneja, Pratyusha Maiti, Sandeep Kakar, Pranav
Guruprasad, Sanjeev Rao, and Ashok K. Goel. 2024.
Jill Watson: A Virtual Teaching Assistant Powered
by ChatGPT. In Artificial Intelligence in Education,
pages 324–337.

Karan Taneja, Harshvardhan Sikka, and Ashok Goel.
2022a. A Framework for Interactive Knowledge-
Aided Machine Teaching. arXiv:2204.10357. ArXiv:
2204.10357v1.

Karan Taneja, Harshvardhan Sikka, and Ashok Goel.
2022b. Human-AI Interaction Design in Machine
Teaching. Communication in Human-AI Interaction
Workshop, IJCAI 2022.

Anthony Tellez. 2023. These Major Companies—From
Snap To Salesforce— Are All Using ChatGPT.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, and others. 2022. LaMDA: Language
Models for Dialog Applications. ArXiv:2201.08239
[cs].

Erik F Tjong, Kim Sang, and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
Conference on Natural Language Learning at HLT-
NAACL, pages 142–147.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA:
Open and Efficient Foundation Language Models.
ArXiv:2302.13971 [cs].

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Kun Yi and Jianxin Wu. 2019. Probabilistic End-to-
end Noise Correction for Learning with Noisy La-
bels. IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7010–7018. ArXiv:
1903.07788v1.

Zhi-Hua Zhou. 2018. A Brief Introduction to Weakly
Supervised Learning. National Science Review, 5:44–
53.

9028

http://jmlr.org/papers/v9/vandermaaten08a.html
https://openai.com/blog/chatgpt
https://aclanthology.org/2023.emnlp-main.85.pdf
https://aclanthology.org/2023.emnlp-main.85.pdf
https://aclanthology.org/2023.emnlp-main.85.pdf
https://doi.org/10.1109/ICDM.2012.162
https://doi.org/10.1109/ICDM.2012.162
https://doi.org/10.1.1.167.4245
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://doi.org/10.1109/CVPR.2018.00582
https://doi.org/10.1109/CVPR.2018.00582
https://doi.org/10.1007/978-3-031-64302-6_23
https://doi.org/10.1007/978-3-031-64302-6_23
https://arxiv.org/abs/2204.10357
https://arxiv.org/abs/2204.10357
http://arxiv.org/abs/2206.05182
http://arxiv.org/abs/2206.05182
https://www.forbes.com/sites/anthonytellez/2023/03/03/these-major-companies-from-snap-to-instacart--are-all-using-chatgpt/?sh=5ba557e34132
https://www.forbes.com/sites/anthonytellez/2023/03/03/these-major-companies-from-snap-to-instacart--are-all-using-chatgpt/?sh=5ba557e34132
https://doi.org/10.48550/arXiv.2201.08239
https://doi.org/10.48550/arXiv.2201.08239
http://lcg-www.uia.ac.be/conll2003/ner/
http://lcg-www.uia.ac.be/conll2003/ner/
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://openaccess.thecvf.com/content_CVPR_2019/papers/Yi_Probabilistic_End-To-End_Noise_Correction_for_Learning_With_Noisy_Labels_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Yi_Probabilistic_End-To-End_Noise_Correction_for_Learning_With_Noisy_Labels_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Yi_Probabilistic_End-To-End_Noise_Correction_for_Learning_With_Noisy_Labels_CVPR_2019_paper.pdf
https://doi.org/10.1093/nsr/nwx106
https://doi.org/10.1093/nsr/nwx106

A Extension to Generative Models

To generalize our approach to generative tasks, we
can use the conditional probability of generated
text given a text input.

P (y|x) = P (y1, . . . , yn|x) = P (y1:n|x)
For decoder models, sampling is performed

auto-regressively by assuming P (y1, . . . , yn|x) =
P (y1|x) · P (y2|y1, x) . . . P (yn|y1:n−1, x). After
model training with a dataset of input and output
texts, the probability of misannotation can be cal-
culated as usual.

m(x, y1:n) = 1− P (y1:n|x)
1
n

Since generative tasks are far more complex
than discriminative tasks, one can expect that the
amount of data required to train a model for mis-
annotation prediction for generative tasks will be
much larger than data size required for discrimina-
tive tasks. Further, obtaining human feedback or
creating a reasonable proxy for human feedback
for generative tasks is another difficult challenge.
In future work, we will examine the data size re-
quired to effectively perform annotation prediction
for different generative tasks.

In previous work in human-in-the-loop learn-
ing for generative tasks, Reinforcement Learning
with Human Feedback (RLHF) used for ChatGPT
(OpenAI, 2022) provides an answer to a part of
the problem but doesn’t address how to select use-
ful examples where human-feedback will be most
helpful in terms of improving model performance.

B Training Details

The training details for models for each task are
provided in Table 3.

C GPT-3.5 Prompts for Evaluation Tasks

C.1 ATIS
ATIS (Airline Travel Information System) Intent
Classification dataset (Hemphill et al., 1990) is
labeled with 17 unique intents with one or more
intents assigned to user queries. There are only 40
examples with multiple labels. We removed them
from the dataset leading to a single-label classifi-
cation task. We provided GPT-3.5 with the system
message below to instruct it for classification.

‘role’: ‘system’
‘content’: ‘Your task is to classify the query into
possible classes.’

Along with the system message, we provide the
user message to describe the problem, the input
text, and the output format.

‘role’: ‘user’
‘content’: ‘Classes:

[Class 1]: [class description],
...
[Class 17]: [class description],
Query:
[input text]
Answer exactly one of [class names separated

by commas].’

A few examples of classes and their descriptions
are as follows:

1. ‘aircraft’: ‘This intent is associated with
queries that seek information specifically
about an aircraft, such as its features, type,
or specifications.’

2. ‘flight’: ‘This intent covers general queries
related to flights, including information about
schedules, availability, or any other flight-
related inquiries.’

3. ‘flight time’: ‘Queries with this intent typi-
cally seek information about the duration or
specific timing of a flight.’

4. ‘cheapest’: ‘This intent indicates queries that
focus on finding the most economical or low-
cost options, such as the cheapest flights or
fares.’

5. ‘ground fare’: ‘Queries with this intent are
related to ground fares or transportation costs,
such as taxi fares or shuttle services.’

To retrieve the intent from the output, we iterate
over the intents and use the first found intent in the
output text.

C.2 CoNLL
To extract named entities from examples in CoNLL
2003 dataset (Tjong et al., 2003), we provided GPT-
3.5 with one example of entity recognition output
to describe the output pattern. First, we used the
user message below to provide the types of entities
that need to be extracted.

‘role’: ‘system’
‘content’: ‘Your task is to extract named enti-
ties of type Person, Location, Organization and
Miscellaneous.’

9029

ATIS CoNLL QNLI

Model Name distilbert-base-uncased roberta-base albert-large-v2
Trainable Parameters 67M 124M 17M
Training examples 4,952 14,041 104,743
Epochs 9 6 3
Batch Size 16 16 16
Optimizer AdamW AdamW AdamW
Learning Rate 1e-4 (constant) 2e-5 (constant) 1e-5 (constant)
Warmup Steps 155 439 0

Table 3: Training details for ATIS, CoNLL and QNLI tasks.

Next, we use the user message below to provide
an example and the input text from which entities
need to be extracted. We use the same NER exam-
ple below for every input.

‘role’: ‘user’
‘content’: ‘Example input:

“Mercury was born Farrokh Bulsara in Stone
Town in the British protectorate of Zanzibar
(now part of Tanzania) on 5 September 1946
."
Example output:
“[Mercury](Person) was born [Farrokh Bul-

sara](Person) in [Stone Town](Location) in
the [British](Miscellaneous) protectorate of
[Zanzibar](Location) (now part of [Tanza-
nia](Location)) on 5 September 1946 ."
Input:
[input text]’

To parse the output, we use regex to extract entity
types and align words in the input and output to get
classification for each token.

C.3 QNLI

QNLI (Question-Answering Natural Language In-
ference) dataset (Wang et al., 2018) has pairs of
questions and passages based on the Stanford Ques-
tion Answering Dataset and the label 0 if the pas-
sage answers the question and 1 otherwise. We use
the system message below to prime GPT-3.5 with
the task.

‘role’: ‘system’
‘content’: ‘Your task is to solve a textual entail-
ment task.’

Next, we use the following user message to give
the input question and passage and prompt GPT-3.5
to say ‘YES’ if the passage can answer the question

and ‘NO’ otherwise.

‘role’: ‘user’
‘content’: ‘Question:[input question]

Passage: [input passage]
Can the given passage be used to answer the

question?
Answer exactly YES or NO (capitalized).’

Finally, we label the example with 0 if ‘YES’ is
present in the output and 1 otherwise.

D Misannotation Prediction for CoNLL

For CoNLL, each sentence is provided with a list
of tokens and token-level classification. But we
perform misannotation prediction (MP) on the sen-
tence level since the human annotators evaluate the
complete sentence and assign named entity types
based on the context. Therefore, we use combine
the probabilities of token-level misannotations into
a sentence-level misannotation probability. Let jth
token of sentence xi be wj with named entity label
y
wj

i . Let there be Li tokens in the sentence xi.
An example is correctly annotated if all the to-

kens in the sentence are correctly labeled. There-
fore, the probability of correct sentence-level anno-
tation is the product of token-level probabilites.

pθ(yi|xi) =
∏

1≤j≤Li

pθ(y
wj

i |xi)

But leads to a lower probability for longer sen-
tences. To normalize for length, we use the follow-
ing equation:

pθ(yi|xi) =
(∏

1≤j≤Li

pθ(y
wj

i |xi)
)1/Li

which is the geometric mean of token-level prob-
abilities.

9030

E Noise Models

For random noise, we randomly select examples
for the noising process. For each selected example,
we change the label to any other label with equal
probability. In other words, we assume that each
example is equally likely to be mislabeled and each
label is equally likely to be replaced by another
label. (Kremer et al., 2018) uses this process to add
noise to clean datasets for experimentation.

For label-conditional noise, we first train a clas-
sification head on top of the BERT model (‘bert-
base-uncased’ on HuggingFace) and use its prob-
ability outputs on training examples to calculate
label transition probabilities. For each label, we
calculate the transition probabilities by averaging
the output distribution of examples with that label.
After this, we randomly select examples for nois-
ing and change their labels based on the transition
probabilities. This process assumes that each exam-
ple is equally likely to be noisy but noisy label is
conditionally dependent on the true label. Li et al.
(2022) use the same process for introducing noise
into clean datasets in their experiments.

For input-conditional noise, we use the same
BERT + fine-tuned classification head model to
calculate the output probabilities of each example.
We iterate over the dataset to sample new labels
for each example based on its output probability
distribution. We iterate over random permutations
of the dataset multiple times but only sample new
labels for unchanged examples. This is repeated
until the required number of noisy examples is
achieved. In this process, an example is likely
to be mislabeled with probability proportional to
1 − pθ(yi|xi). Further, the new label is sampled
with probability proportional to pθ(y ̸= yi|xi).

9031

