
An L˚ Algorithm for Deterministic Weighted Regular Languages
Clemente Pasti Talu Karagöz Anej Svete

Franz Nowak Reda Boumasmoud Ryan Cotterell
{clemente.pasti, anej.svete, franz.nowak, ryan.cotterell}@inf.ethz.ch

reda.boumasmoud@math.ethz.ch, talukaragoz@gmail.com

Abstract
Extracting finite state automata (FSAs) from
black-box models offers a powerful approach
to gaining interpretable insights into complex
model behaviors. To support this pursuit, we
present a weighted variant of Angluin’s (1987)
L˚ algorithm for learning FSAs. We stay faith-
ful to the original algorithm, devising a way
to exactly learn deterministic weighted FSAs
whose weights support division. Furthermore,
we formulate the learning process in a manner
that highlights the connection with FSA min-
imization, showing how L˚ directly learns a
minimal automaton for the target language.

github.com/rycolab/weighted-angluin

1 Introduction

Learning formal languages from data is a classic
problem in computer science. Unfortunately,
learning only from positive examples is impossible
(Gold, 1978). By granting the learner access
to more than just positive examples, Angluin
(1987) introduced the active learning scheme
L˚, where the learner interacts with an oracle by
asking it queries. Concretely, Angluin’s (1987)
L˚ algorithm learns regular languages in the form
of deterministic finite-state automata (DFSAs)
from membership queries (analogous to asking
for a ground truth label of a string in the training
dataset) and equivalence queries (analogous to
asking whether a hypothesis is correct).

Weighted formal languages, where strings are
assigned weights such as probabilities or costs, nat-
urally generalize membership-based (boolean) for-
mal languages. Weighted languages, especially
probabilistic languages, serve as a cornerstone in
the conceptual framework of many NLP problems
(Mohri, 1997). Their significance is twofold: First,
in practical applications, where they underpin algo-
rithms for tasks such as parsing (Goodman, 1996)
and machine translation (Mohri, 1997), and second,
as an analytical framework for better understand-
ing modern language models (Weiss et al., 2018;

Jumelet and Zuidema, 2023; Nowak et al., 2024,
inter alia). This has motivated the development of
various weighted extensions of Angluin’s (1987)
L˚ algorithm. For instance, Weiss et al. (2019) de-
scribes a generalization that (approximately) learns
a probabilistic DFSA by querying a neural lan-
guage model to interpret it. Less faithfully to
the original L˚ algorithm, multiple algorithms for
learning non-deterministic weighted FSAs have
been proposed (Bergadano and Varricchio, 1996;
Beimel et al., 2000; Balle and Mohri, 2012; Balle
et al., 2014; Daviaud and Johnson, 2024; Balle and
Mohri, 2015). These algorithms involve the solu-
tion of a linear system of equations, and therefore
they cannot be used when the underlying algebraic
structure lacks subtraction.

We present a novel weighted generalization of
the L˚ algorithm that learns semifield- weighted
deterministic FSAs. In contrast to other algorithms
inspired by L˚, ours is a more faithful generaliza-
tion of the original learning scheme. We generalize
Angluin’s (1987) original algorithm, resulting in a
familiar procedure that, just like the original, learns
a DFSA exactly in a finite number of steps if the
automaton can be determinized.1 Additionally, we
loosen the requirement for field-weighted FSAs;
our algorithm works for semifield-weighted FSA.
Our exposition further illuminates the connection
between weighted minimization (Hopcroft and
Ullman, 1979; Mohri, 1997) and L˚.

2 Weighted Regular Languages

Semirings and Semifields. Throughout this pa-
per, we fix a semifield K “ pK,‘,b,0,1q, where
K is a set equipped with two associative laws, ‘

and b, along with distinguished elements 0 and 1,
satisfying the following conditions:

1.pK,‘,0q is a commutative monoid,

2.pKzt0u,b,1q is a group,

1All boolean-weighted FSA can be determinized, which is
why Angluin’s (1987) L˚ always halts.
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3.The law b distributes over ‘, so for all
w1, w2, w3 P K, pw1 ‘w2qbw3 “ pw1 bw3q‘

pw2 b w3q and w1 b pw2 ‘ w3q “ pw1 b w2q ‘

pw1 b w3q; and

4.0 acts as an annihilator for b, meaning w b 0 “

0 b w “ 0 for all w P K.

Strings and Languages. An alphabet Σ is a
non-empty, finite set of symbols. A string is a
finite sequence of symbols from an alphabet. We
write xy to denote the concatenation of the strings
x and y. Let Σn`1 def

“ tya | y P Σn, a P Σu and
Σ0 def

“ tεu, where ε is the empty string. The Kleene
closure Σ˚ def

“
Ť8

n“0Σ
n of Σ is the set containing

all strings made with symbols of Σ. We further
introduce the set Σďk “

Ťk
n“0Σ

n. Given an alpha-
bet Σ and a semiring xK,‘,b,0,1y, a weighted
formal language is a function L : Σ˚ Ñ K that
assigns weights w P K to strings y P Σ˚. Unless
differently specified, in this paper we will assume
that all weighted languages are semifield-weighted.

Weighted Finite-state Automata. A weighted
finite-state automaton (WFSA) A over a semifield
xK,‘,b,0,1y is a 5-tuple pΣ, Q, δ, λ, ρq where
Σ is an alphabet, Q is a finite set of states, δ is

a set of weighted arcs rendered as p
a{w
ÝÝÑ q with

p, q P Q, a P Σ, and w P K,2 and λ : Q Ñ K and
ρ : Q Ñ K are the initial and final weight function,
respectively. A path π in A is a finite sequence of
contiguous arcs, denoted as

q0
a1{w1
ÝÝÝÑ q1, ¨ ¨ ¨ , qN´1

aN {wN
ÝÝÝÝÑ qN . (1)

We call i pπq “ q0 the initial state of the path, and
f pπq “ qN the final state of the path. The weight
of π is w pπq “ w1 b ¨ ¨ ¨ b wN and its yield is
σ pπq “ a1 ¨ ¨ ¨ aN . With ΠA, we denote the set of
all paths in A, and with ΠAppq the subset of all
paths in A with yield p. A state q is accessible if
there exists a path π with wpπq ‰ 0, λpi pπqq ‰ 0
and f pπq “ q. It is coaccessible if there exists
a path π with wpπq ‰ 0, ρpf pπqq ‰ 0 and
i pπq “ q. A WFSA is trimmed if all its states
are simultaneously accessible and coaccessible.
We say that a WFSA A “ pΣ, Q, δ, λ, ρq is deter-
ministic (a WDFSA) if, for every p P Q, a P Σ,

there is at most one q P Q such that p
a{w
ÝÝÑ q P δ

with w ą 0, and there is a single state qI with
2We do not consider ε-transitions. This is without loss

of generality; any regular language can be represented by an
ε-free automaton (Mohri, 2009, Theorem 7.1).

λ pqIq ‰ 0. In such case, we refer to qI as the
initial state. A WDFSA can have at most one path
yielding a string y P Σ˚ from the initial state qI . A
WDFSA A is said to be minimal if no equivalent
WDFSA with fewer states exists.

Weighted Regular Languages. Every WFSA
A generates the weighted language

LAppq
def
“

à

πPΠAppq

λpi pπqq bw pπq bρpf pπqq (2)

for p P Σ˚. We define the set supppLq “ tp P

Σ˚ | Lppq ‰ 0u to be the support of L. A
weighted language is said to be regular if there
exists a WFSA that generates it. If two WFSAs
generate the same language, they are said to be
equivalent. Finally, a weighted regular language is
said to be deterministic if there exists a WDFSA
that generates it. In contrast to the boolean case,
not every weighted regular language can be
generated by a deterministic WFSA (Allauzen
and Mohri, 2003). Weighted deterministic regular
languages are thus a strict subset of weighted
regular languages. This distinction plays a
critical role in our exposition—we develop a
generalization of Angluin’s (1987) algorithm that
learns weighted deterministic regular languages.

Homothetic equivalence. Let X be a subset of
Σ˚ and xK,‘,b,0,1y a semifield. Let us denote
with LpXq the set of functions XK. We introduce
the equivalence relation

L1 ”X L2 ðñ Dk P Kzt0u : (3)

L1pxq “ k b L2pxq, @x P X

between any two functions L1, L2 in LpXq. We
call this relation homothetic equivalence.

For every string x P Σ˚, we introduce the right
language x´1L : y ÞÑ Lpxyq, and define the fol-
lowing equivalence relation on Σ˚:

x „L z ðñ x´1L ”Σ˚ z´1L (4)

3 Empirical Hankel Systems

Hankel matrices. Let P Ď Σ˚ be a prefix-closed
set of prefixes and let S Ď Σ˚ be a suffix-closed
set of suffixes.3 An empirical Hankel matrix is
a map H : P ˝ Σď1 ˆ Σď1 ˝ S Ñ K. For every
p P P ˝ Σď1 we define the right language map

3A set of strings is prefix-closed (suffix-closed) if it con-
tains all prefixes (suffixes) of each of its elements. In particular
ε P P X S.



Hp : Σ
ď1 ˝ S Ñ K, s ÞÑ Hpp, sq. Using homoth-

etic equivalence (Eq. (4)), we introduce the equiva-
lence relation „H on P˝Σď1 for p, q P P˝Σď1 as

p „H q ðñ Hp ”Σď1˝S Hq (5)

We denote p’s equivalence class by
rps “ tq P P ˝ Σď1 | q „H pu.

The naïve Hankel automaton. Given an empiri-
cal Hankel matrix H, consider the map

dH : P ˝ Σď1 Ñ K, p ÞÑ ‘sPSHpp, sq (6)

We introduce it here to streamline the construction
of the naïve Hankel automaton associated with
H; the WFSA4 AH “ pΣ, QH, δH, λH, ρHq with:
(1) States. We define the states QH

def
“ P.

(2) Transitions. For every state p P P and every

symbol a P Σ, let the transition p
a{w
ÝÝÑ p1 be in δH

whenever p a „H p1 and where

w
def
“

#

dHppaq

dHppq
if dHppq ‰ 0,

0 otherwise
(7)

(3) Initial weight. For every state p P P, we
define its initial weight as

λHppq
def
“

#

dHpεq if p “ ε,

0 otherwise
(8)

(4) Final weights. For every state p P P, we
define its final weight

ρHppq
def
“

#

Hpp,εq

dHppq
if dHppq ‰ 0,

0 otherwise
(9)

Empirical Hankel systems.
Definition 1. An empirical Hankel system is a
triplet H “ pP,S,Hq, where P Ď Σ˚ prefix closed,
S Ď Σ˚ a suffix closed, and H : P ˝ Σď1 ˆ Σď1 ˝

S Ñ K is an empirical Hankel matrix that is:
(1.) non-trivial: Hp ‰ 0, for all p P P;
(2.) closed: for every p P P and a P Σ such that
Hpa ‰ 0, there exists q P P such that p a „H q—
in particular, P ˝ Σď1{ „H“ P{ „H; and
(3.) consistent: for every p, q P P

p „H q ñ p a „H q a, @a P Σ. (10)

We define the dimension of an empirical Hankel
system to be dimpHq

def
“ |P{ „H |. Given an em-

pirical Hankel matrix H : P ˝Σď1 ˆΣď1 ˝S Ñ K
4This automaton is not necessarily determinisitc.

and a weighted language L, we say that L contains
H if Hpp, sq “ Lppsq for every p P P ˝ Σď1 and
s P Σď1 ˝ S. Likewise, we say that a WFSA A
contains H if the language LA contains H.

We define a partial order on the set of empir-
ical Hankel systems as follows: given two em-
pirical Hankel systems H1 “ pP1,S1,H1q and
H2 “ pP2,S2,H2q, we define H1 ĺ H2, if
P1 Ă P2, S1 Ă S2 and H1pp, sq “ H2pp, sq

for any pp, sq P P1 ˝ Σď1 ˆ S1 ˝ Σď1.

3.1 Minimal Hankel Automaton
Theorem 1 (AH is transition-regular). Let H “

pP, S,Hq be an empirical Hankel system. The
equivalence relation „H on AH is transition-
regular (see Def. 2), which means that for every
p P P and every a P Σ:

1. There exists r P P such that p
a{w1
ÝÝÝÑ r P δH for

some w1 P Kzt0u.
2. If q P P is another prefix with p „H q, then:
(a) for all r P P:

p
a{w1
ÝÝÝÑ r P δH ðñ q

a{w2
ÝÝÝÑ r P δH

and: (i) r „H pa „H qa, (ii) w1 “ w2.
(b) λHppq “ λHpqq and ρHppq “ ρHpqq.

Proof. Fix a prefix p P P and a symbol a P Σ.
1. Since H is closed, there exists r P P and k P

Kzt0u such that Hr “ k b Hpa, which implies,

by definition of AH, that p
a{w1
ÝÝÝÑ r P δH for some

w1 P K. Since H is non-trivial, dHprq “ k b

dHppaq ‰ 0, and so w1 “
dHppaq

dHppq
‰ 0.

2. (a.i) By definition of AH, if p
a{w1
ÝÝÝÑ r is in

δH, then p a „H r for some r P P. Now, let
q P P such that p „H q. By consistency of H, we

have q a „H p a „H r and so q
a{w2
ÝÝÝÑ r P δH for

some w2 P K. The reverse follows similarly.
2. (a.ii) Let us show w2 “ w1. By assump-

tion, we know that there exists k P Kzt0u such
that Hppsq “ k b Hqpsq @s P Σď1 ˝ S. Hence
dHppaq “ ‘sPSHppasq “ k b dHpqaq and
dHppq “ ‘sPSHppsq “ k b dHpqq. Accordingly,
dHppq ‰ 0 ðñ dHpqq ‰ 0 and in which case

w1 “
dHppaq

dHppq
“

dHpqaq

dHpqq
“ w2 (11)

2. (b) If p „H q, then we have

ρHppq “
Hppεq

dHppq
“

�k b Hqpεq

�k b dHpqq
“ ρHpqq (12)

The computation for λHppq follows similarly. ■



Theorem 2 (The empirical Hankel Automaton
rAH). Let H “ pP, S,Hq be an empirical Hankel

system and let rAH be the quotient of AH modulo
the transition-regular equivalence relation „H as
defined in Def. 3. Then:
(1) The weighted automaton rAH is trimmed and
deterministic.
(2) L

rAH
ppsq “ Hpp, sq for all p P P and s P S,

meaning that rAH contains H.

Proof. (1) Since the automaton is built on an empir-
ical Hankel system, by definition, every p is the pre-
fix of a string x “ ps, such that Hpp, sq ‰ 0 for
at least one s P S, hence p is accessible and coac-
cessible. This shows that AH is trimmed, and so is
rAH. Determinism and (2) follow from Lem. 1. ■

Theorem 3 (Minimality of rAH).
(i) For any p, q P P, we have

p „H q ðñ p „L
rAH

q (13)

(ii) P{ „H“ supppL
rAH

q{ „L
rAH

.

(iii) Any automaton that contains H must have at
least |P{ „H | “ |Q

rAH
| states.

(iv) Let A1 be a WDFSA that contains H. Then,
LA1pxq “ LAH

pxq, @x P supppLAH
q. If A1 is

not equivalent to AH, then

|QA1 | ě |P{ „H | ` 1.

(v) In particular, rAH is minimal.

Proof.
(i) (ð). If p´1L

rAH
”Σ˚ q´1L

rAH
, then restrict-

ing the two maps to Σď1 ˝ S shows that we also
have Hp ”Σď1˝S Hq. (ñ). Clearly, p „H q
implies rps “ rqs.
(ii) From (i), we have that the restriction

tp´1L
rAH

: p P Pu ↠ (14)

tp´1H “ p´1L
rAH

|S : p P Pu

provides a natural surjection. Let x P supppL
rAH

q

and πx its path in rAH. Let px “ fpπxq P P be the
final state of πx in AH. Thus, by definition, we
have p´1

x L
rAH

”Σ˚ x´1L
rAH

. Accordingly, the
natural projection map P Ñ supppL

rAH
q{ ”Σ˚

is surjective, and hence we have a bijection
P{ „L

rAH
» supppL

rAH
q{ ”Σ˚ . Since in (i) we

showed P{ „H» P{ „L
rAH

, we conclude

P{ „H“ supppL
rAH

q{ „L
rAH

(15)

(iii) Let A1 be any WDFSA that contains H.
Clearly, we have p „LA1 q ñ p „H q, hence we
have a surjective map P{ „LA1↠ P{ „H, which
shows

|QA1 | ě |P{ „LA1 | ě |P{ „H | “ |Q
rAH

| (16)

(iv) Consider the sub-WDFSA A1
P Ă A1 with

states

Q1
P “ tq P QA1 | q “ f pπpq for p P Pu (17)

Clearly A1
P contains H. In addition, because H

is closed and consistent, A1
P and AH have the

same transitions (not necessarily same weights).
We hence have LA1

P
“ LAH

. In other words,

LA1pxq “ LAH
pxq for all x P suppp rAHq.

Accordingly, if LA1 ‰ LAH
, then there ex-

ists x P supppLA1qzsupppLAH
q and rxs P

psupppLA1q{ „LA1 qzpsupppLAH
q{ „LA1 q. Thus:

|QA1 | ě |supppLA1q{ „LA1 |

ě |supppLAH
q{ „LA1 | ` 1

ě |supppLAH
q{ „LAH

| ` 1

“ |P{ „H | ` 1

(v) If in particular, A1 is any WDFSA equivalent
to rAH, then by (iii) |QA1 | ě |Q

rAH
|. ■

Corollary 1 (Termination). Let H be an empirical
Hankel system and A1 any automaton that contains
it. If |QA1 | “ |P{ „H |, then LAH

“ LA1 .

4 A Weighted L˚ Algorithm

Like Angluin (1987), we assume we have access to
an oracle that answers the following queries about
a deterministic regular language L‹ : Σ˚ ÑK:
(1) Membership query: What is the weight
L‹ ppq of the string p P Σ˚?
(2) Equivalence query: Does a hypothesis au-
tomaton rAH generate L‹? If it does not, the oracle
provides a counterexample, which is a string t
such that L

rAH
ptq ‰ L‹ptq.

At a high level, the algorithm iteratively constructs
empirical Hankel systems of increasing dimensions
that capture observed patterns of the target lan-
guage L‹. Once sufficient observations are accu-
mulated, the automaton derived from these Hankel
systems will generate exactly L‹.

4.1 The Learning Algorithm
Our weighted L˚ algorithm, with its main loop
detailed in Alg. 1, employs the subroutines
outlined in Alg. 2.



Algorithm 1 The Weighted L˚ algorithm. Initially,
the empirical Hankel matrix H is set to the zero
matrix and the sets P, S to tεu.

1. def L˚ (O):
2. while true :
3. while true :
4. if H is not consistent :
5. MAKECONSISTENTpO,Hq

6. else if H is not closed :
7. MAKECLOSEDpO,Hq

8. else : break
9. H Ð REMOVENULLROWSpHq

10. rAH Ð MAKEAUTOMATONpHq

11. if EQUIVALENTpO, rAHq : return rAH

12. else :
13. p Ð COUNTEREXAMPLEpO, rAHq

14. for t “ 1 to |p| ` 1 :
15. P Ð P Y tpătu

16. COMPLETEpO,Hq

Initialization. P and S are initialized as tεu and
the H to the zero matrix.

Handling inconsistencies. MAKECONSISTENT

in Line 7 of Alg. 1 looks for rows p,p1 P P that
make H non-consistent, i.e., Hpa ıΣď1˝S Hp1a:
It normalizes a row Hpa as Hpa

dHppaq
(Alg. 2, Line 5),

which allows testing homothetic equivalence
with equality.5 For every s P S that makes H
inconsistent, as is added to S. This results in the
new equivalence classes rps and rp1s because Hp

and Hp1 do not match anymore on the column
indexed by as. See Lem. 2 for more details.

Closing H. MAKECLOSED (Alg. 1, Line 7;
Alg. 2) adds to P the missing prefixes required to
make H closed. This results in the new equivalence
class rpas. See Lem. 2 for more details.

Filling out H. COMPLETE fills the empty entries
of H by asking membership queries to the oracle.

Handling inconsistencies, closing H, and filling
H is carried out by the inner while loop (Lines 3 to
8) of Alg. 1 until H is both closed and consistent.

Generating rAH. When H is closed and consis-
tent, Alg. 1 first removes 0-rows from the matrix
to obtain an empirical Hankel system, then it gen-
erates the empirical Hankel automaton rAH, and
lastly submits an equivalence query to the oracle

5When the entire row Hpa is zero, we do not normalize;
this is omitted in the pseudocode for brevity.

Algorithm 2 Subroutines of Alg. 1.
1. def MAKECONSISTENTpO,Hq:
2. for xp,p1y P P ˆ P :
3. if Hp ”Σď1˝S Hp1 :
4. for xa, sy P Σ ˆ S :

5. if Hpapsq

dHppaq ‰
Hp1apsq

dHpp1aq
:

6. S Ð S Y tasu

7. COMPLETEpO,Hq

8. def MAKECLOSEDpO,Hq:
9. for xp, ay P P ˆ Σ :

10. if Ep1 P P s.t. Hpa ”Σď1˝S Hp1 :
11. P Ð P Y tpau

12. COMPLETEpO,Hq

13. def COMPLETEpO,Hq:
14. for p P P ˝ Σď1 :
15. for s P Σď1 ˝ S :
16. Hpp, sq Ð MEMBERSHIPpO,psq

(Line 11). If the oracle answers positively, Alg. 1
halts and returns rAH. Otherwise, the oracle pro-
vides a counterexample, which is added to P along
with its prefixes. H is then updated through mem-
bership queries (Lines 13 to 16). The algorithm
continues until H is closed and consistent again.

Theorem 4. Let K be a semifield and Σ an alpha-
bet. Let O be an oracle for a deterministic regular
language L‹ : Σ˚ Ñ K, whose minimal WDFSA
has N states. Then, Alg. 1 returns a minimal
WDFSA generating L‹ in time O

`

N5M2|Σ|2
˘

,
where M is the length of the longest counterexam-
ple that O can provide.

Proof. See App. B. ■

5 Conclusion

We introduce a weighted L˚ algorithm, an oracle-
based algorithm for learning weighted regular lan-
guages, building upon the paradigm pioneered by
Angluin (1987). While similar methods have been
proposed before, our method is novel in that it
learns an exact deterministic WFSA, akin to the
original Angluin’s (1987) unweighted version.

Limitations

One of the limitations of weighted L˚ is that it re-
quires an oracle capable of answering membership
and equivalence queries. However, in the case we
want to use L˚ to study a language model, this is



the ideal setting, as we can use the language model
itself as the oracle (Weiss et al., 2018; Okudono
et al., 2019; Weiss et al., 2019). Another limitation
to the applications of our work is that not every
language model is efficiently representable as a
finite-state machine. For instance, Merrill (2019)
shows that LSTMs are strictly more powerful than
FSAs. Therefore, in practice, one may have to use
a simplified abstraction of the model one aims to
learn (Weiss et al., 2019), inevitably reducing the
model’s expressivity.

Acknowledgements

Ryan Cotterell acknowledges support from the
Swiss National Science Foundation (SNSF) as part
of the “The Nuts and Bolts of Language Models”
project. Anej Svete is supported by the ETH AI
Center Doctoral Fellowship.

References
Cyril Allauzen and Mehryar Mohri. 2003. Efficient

algorithms for testing the twins property. Jour-
nal of Automata, Languages and Combinatorics,
8(2):117–144.

Dana Angluin. 1987. Learning regular sets from queries
and counterexamples. Information and Computation,
75(2):87–106.

Borja Balle, Xavier Carreras, Franco M. Luque, and Ari-
adna Quattoni. 2014. Spectral learning of weighted
automata. Machine Learning, 96(1):33–63.

Borja Balle and Mehryar Mohri. 2012. Spectral learning
of general weighted automata via constrained matrix
completion. In Advances in Neural Information Pro-
cessing Systems, volume 25.

Borja Balle and Mehryar Mohri. 2015. Learning
weighted automata. In Algebraic Informatics, pages
1–21. Springer International Publishing.

Amos Beimel, Francesco Bergadano, Nader H. Bshouty,
Eyal Kushilevitz, and Stefano Varricchio. 2000.
Learning functions represented as multiplicity au-
tomata. J. ACM, 47(3):506–530.

Francesco Bergadano and Stefano Varricchio. 1996.
Learning behaviors of automata from multiplicity
and equivalence queries. SIAM Journal on Comput-
ing, 25(6):1268–1280.

Laure Daviaud and Marianne Johnson. 2024. Feasabil-
ity of learning weighted automata on a semiring.
Preprint, arXiv:2309.07806.

E Mark Gold. 1978. Complexity of automaton identi-
fication from given data. Information and Control,
37(3):302–320.

Joshua Goodman. 1996. Parsing algorithms and metrics.
In 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 177–183, Santa Cruz,
California, USA. Association for Computational Lin-
guistics.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages, and Com-
putation. Addison-Wesley Publishing Company, Inc.

Jaap Jumelet and Willem Zuidema. 2023. Transparency
at the source: Evaluating and interpreting language
models with access to the true distribution. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 4354–4369, Singapore.
Association for Computational Linguistics.

William Merrill. 2019. Sequential neural networks as
automata. In Proceedings of the Workshop on Deep
Learning and Formal Languages: Building Bridges,
pages 1–13, Florence. Association for Computational
Linguistics.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

Mehryar Mohri. 2009. Weighted Automata Algorithms,
pages 213–254. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Franz Nowak, Anej Svete, Alexandra Butoi, and Ryan
Cotterell. 2024. On the representational capacity of
neural language models with chain-of-thought rea-
soning. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12510–12548, Bangkok,
Thailand. Association for Computational Linguistics.

Takamasa Okudono, Masaki Waga, Taro Sekiyama, and
Ichiro Hasuo. 2019. Weighted automata extraction
from recurrent neural networks via regression on state
spaces. Preprint, arXiv:1904.02931.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. Ex-
tracting automata from recurrent neural networks us-
ing queries and counterexamples. In Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 5247–5256. PMLR.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2019.
Learning deterministic weighted automata with
queries and counterexamples. In Advances in Neural
Information Processing Systems, volume 32.

https://jalc.de/issues/2003/issue_8_2/abs-117.pdf
https://jalc.de/issues/2003/issue_8_2/abs-117.pdf
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/s10994-013-5416-x
https://doi.org/10.1007/s10994-013-5416-x
https://proceedings.neurips.cc/paper_files/paper/2012/file/700fdb2ba62d4554dc268c65add4b16e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/700fdb2ba62d4554dc268c65add4b16e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/700fdb2ba62d4554dc268c65add4b16e-Paper.pdf
https://doi.org/10.1007/978-3-319-23021-4_1
https://doi.org/10.1007/978-3-319-23021-4_1
https://doi.org/10.1145/337244.337257
https://doi.org/10.1145/337244.337257
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X
https://arxiv.org/abs/2309.07806
https://arxiv.org/abs/2309.07806
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.3115/981863.981887
https://en.wikipedia.org/wiki/Introduction_to_Automata_Theory,_Languages,_and_Computation
https://en.wikipedia.org/wiki/Introduction_to_Automata_Theory,_Languages,_and_Computation
https://en.wikipedia.org/wiki/Introduction_to_Automata_Theory,_Languages,_and_Computation
https://doi.org/10.18653/v1/2023.findings-emnlp.288
https://doi.org/10.18653/v1/2023.findings-emnlp.288
https://doi.org/10.18653/v1/2023.findings-emnlp.288
https://doi.org/10.18653/v1/W19-3901
https://doi.org/10.18653/v1/W19-3901
https://aclanthology.org/J97-2003
https://aclanthology.org/J97-2003
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.18653/v1/2024.acl-long.676
https://doi.org/10.18653/v1/2024.acl-long.676
https://doi.org/10.18653/v1/2024.acl-long.676
https://arxiv.org/abs/1904.02931
https://arxiv.org/abs/1904.02931
https://arxiv.org/abs/1904.02931
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf


A Transition-regular Equivalence Relations on Automata

Definition 2. Let A “ pΣ, Q, δ, λ, ρq be a WFSA. An equivalence relation „ on Q is transition-regular
if, for any states p, q P Q, whenever p „ q, we have:

• Outgoing Transition Consistency: For every symbol a P Σ, if there exists a state r P Q such that

p
a{w1
ÝÝÝÑ r P δ with weight w1 ‰ 0, then

– there must exist a transition q
a{w2
ÝÝÝÑ r P δ with w2 “ w1.

– for any other state r1 P Q such that p
a{w1

1
ÝÝÝÑ r1 P δ we must have r „ r1.

• Initial and Final Weight Consistency: The initial and final weights of p and q are identical:

λppq “ λpqq (18a)

ρppq “ ρpqq. (18b)

Definition 3. Let A “ pΣ, Q, δ, λ, ρq be a WFSA. Given a transition-regular equivalence relation „ on
Q, we define the quotient automaton rA “ p rQ,Σ, rδ, rλ, rρq as follows:

• States: The state set of the quotient automaton is rQ “ Q{ „ .

• Transitions: Define the transition set rδ as follows. For each equivalence class rps P rQ and each

symbol a P Σ, if there exists a state q P Q such that p
a{w
ÝÝÑ q P δ, then there is a corresponding

transition
rps

a{w
ÝÝÑ rqs P rδ,

where rqs denotes the equivalence class of q.

• Initial and Final Weights: Define the initial and final weight functions for each equivalence class
rps P rQ as:

rλprpsq “ λppq,

rρprpsq “ ρppq.

Lemma 1. The quotient automaton rA is deterministic and it generates the following weighted language:

LAppq “ |ΠA ppq|L
rAppq, @p P Σ˚. (19)

Proof. The proof is straightforward.
■

B Proof of Thm. 4

Theorem 4. Let K be a semifield and Σ an alphabet. Let O be an oracle for a deterministic regular
language L‹ : Σ˚ Ñ K, whose minimal WDFSA has N states. Then, Alg. 1 returns a minimal WDFSA
generating L‹ in time O

`

N5M2|Σ|2
˘

, where M is the length of the longest counterexample that O can
provide.

B.1 Terminination
We begin by stating the following lemma

Lemma 2 (Number of equivalence classes increases). When Alg. 1
(1) adds a suffix to S because H is not consistent,
(2) adds a prefix to P because the table is not closed,
(3) adds a prefix to P because the oracle replied with a counterexample,



the number of equivalence classes P{ „H increases.

Proof.
(1) If the empirical Hankel matrix is not consistent, MAKECONSISTENT (Alg. 1, Line 5) finds two prefixes
p,p1 P P such that Hp ” Hp1 but Hpa ı Hp1a. Then it searches for a tuple pa, sq, a P Σ, s P Σď1 ˝ S
that makes the relation Hpa ” Hp1a false, and adds as to S. After adding as to S, we have that Hp ı Hp1 ,
and therefore the equivalence class rps is divided in two different ones.
(2) If H is not closed, MAKECLOSED (Alg. 1, Line 7) finds p P P and a P Σ such that Hpa ı Hp1 for
every p1 P P and adds pa to P. Since there was no p1 in P such that p1 „H pa, it follows that a new
equivalence class rpas is added to P{ „H.
(3) When the Oracle replies negatively to the equivalence query, the counterexample t, together with
its prefixes, is added to P. We show that even in this case, dimpHq increases. Let H and H

t denote
the empirical Hankel system before and after adding t, and let rAH and rAHt denote the corresponding
empirical Hankel automaton in each case. We note that both rAH and rAHt contain H and therefore by
Thm. 3—since the automata are not equivalent— rAt

H must have at least one more state than rAH. By
construction of the empirical Hankel automaton, we know that this implies that dimpHq increases. ■

Let pHk “ pPk,Sk,Hkqqkě0 be the sequence of empirical Hankel systems constructed at each iteration
of the main loop of Alg. 1. By Lem. 2, this sequence is increasing; that is, Hk ĺ Hk`1 for all k ě 0.
Let A‹ denote any minimal automaton for the target language L‹. On the one hand, we know that the
automaton A‹ contains Hk for all k ě 0. On the other hand, by Lem. 2, there exists n P N such that
dimpHnq “ |Pn{ „AHn

| “ |QA‹ |. Therefore, by applying Cor. 1, we conclude that L‹ “ LAHn
.

Consequently, after a finite number of iterations, the oracle will respond positively to the equivalence
query, causing the algorithm to halt. Furthermore, we observe that the inner loop of Alg. 1 executes at
most |QA‹ | times, as dimpHq increases at every step by Lem. 2, and at each iteration, A‹ continues to
contain H.

B.2 Run-Time
First, we note that since L‹ always contains H, by Lem. 2 any of the following events can only occur at
most N times in total, where N is the number of states of the minimal automaton accepting L‹: i) we
add a prefix because the table is not closed, ii) we add a suffix because the table is not consistent, iii) we
add a counterexample because the oracle replies negatively to the equivalence query. Then, let us give a
bound on the size of the prefix and suffix sets:

• |P| P O pNMq, in fact initially P “ tεu, and P can be incremented at most N times because the
matrix is not consistent and at most NM times because the oracle replies with a counterexample,
where M is the length of the longest counterexample.

• |S| P O pNq, in fact initially S “ tεu, and S can be incremented at most N times.
Next, we shall analyze the runtime of the operations executed during the main loop of Alg. 1.
• MAKECONSISTENT P O

`

|P|2|S|2|Σ|2
˘

• MAKECLOSED P O
`

|P|2|S||Σ|2
˘

• COMPLETE P O
`

|P||S||Σ|2
˘

• MAKEAUTOMATON P O p|P| ` |P||Σ|q,
In the analysis above we used the fact that the map dH : P ˝ Σď1 Ñ K is fixed for every empirical

Hankel matrix and can be precomputed in time O
`

|P||S||Σ|2
˘

and reused multiple times.
We note that each of these operations can be executed at most N times before the algorithm halts, and

therefore—by substituting in the bounds for P and S—we compute the total runtime of Alg. 1 as:

O
`

N
`

N4M2|Σ|2 ` N3M2|Σ|2 ` N2M |Σ|2 ` N2M |Σ| ` MN ` NM |Σ|
˘˘

(20a)

“ O
`

N5M2|Σ|2
˘

(20b)

We note an important distinction between our weighted version of L˚ and Angluin’s (1987). In fact, in
the weighted case, we need to make sure that the empirical Hankel matrix has a column for every element
Σď1 ˝ S and not only for S. This is a fundamental step to enforce that the relation „H is transition regular



(Thm. 1), and it is related to the fact that in the weighted case, we don’t seek language equality, but rather
equality modulo multiplication by a constant k.
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