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Abstract

Foundation models have demonstrated remark-
able capabilities in handling diverse modali-
ties and tasks, outperforming conventional ar-
tificial intelligence (AI) approaches that are
highly task-specific and modality-reliant. In
the medical domain, however, the development
of comprehensive foundation models is con-
strained by limited access to diverse modali-
ties and stringent privacy regulations. To ad-
dress these constraints, this study introduces
a novel knowledge injection approach, FED-
KIM, designed to scale the medical founda-
tion model within a federated learning frame-
work. FEDKIM leverages lightweight local
models to extract healthcare knowledge from
private data and integrates this knowledge into
a centralized foundation model using a de-
signed adaptive Multitask Multimodal Mixture
Of Experts (M3OE) module. This method
not only preserves privacy but also enhances
the model’s ability to handle complex medi-
cal tasks involving multiple modalities. Our
extensive experiments across twelve tasks in
seven modalities demonstrate the effectiveness
of FEDKIM in various settings, highlighting its
potential to scale medical foundation models
without direct access to sensitive data. Source
codes are available at https://github.com/
XiaochenWang-PSU/FedKIM.

1 Introduction

Similar to large language models (Zhao et al., 2023)
and foundation models (Zhou et al., 2023a), med-
ical foundation models (Thirunavukarasu et al.,
2023; Moor et al., 2023) have achieved superior per-
formance of handling diverse modalities and tasks
within the medical domain. These models have
the potential to revolutionize medical diagnostics
and treatment by leveraging data-driven insights
from large volumes of multimodal healthcare data.

*Equal contribution.
†Corresponding author.

Table 1: Summary of medical foundation models.

Medical Foundation Model Modalities Tasks
MMedLM2 (Qiu et al., 2024) Text Question-answering
LLava-Med(Liu et al., 2023a) Text, Image Visual Question-answering
Med-Flamingo(Yang et al., 2023) Text, Image Visual Question-answering
PMC_LLAMA(Lee et al., 2023) Text Question-answering
BiomedGPT(Gu et al., 2021) Text, Image Visual Question-answering
BioMedLM(Lewis et al., 2020) Text Question-answering

GatorTron(Hao et al., 2020) Text

Clinical concept extraction
Medical relation extraction
Semantic textual similarity
Natural language inference
Question-answering

Med-PaLM(Singhal et al., 2022) Text Question-answering
ChatDoctor(Li et al., 2023) Text Question-answering

Due to the sensitive nature of medical data and the
complexity of medical tasks, most existing medical
foundation models usually rely on particular public
medical datasets. This nature results in limitations
of the existing medical foundation models, detailed
as follows:

(1) Unrealistic to conduct large-scale central-
ized training. The centralized training of med-
ical foundation models presents significant chal-
lenges, primarily due to the difficulties in aggre-
gating sensitive healthcare data. Regulations such
as the Health Insurance Portability and Account-
ability Act (HIPAA) in the United States and the
General Data Protection Regulation (GDPR) in the
European Union impose strict privacy restrictions
on the use of personal health information. This
regulatory environment makes it impractical to col-
lect and store large amounts of healthcare data in
a single location, which is typically required for
the effective training of high-performing medical
foundation models.

(2) Limited modality and task adaptability.
Current medical foundation models exhibit a high
degree of specialization, constraining their effec-
tiveness to a narrow range of downstream tasks
within specific modalities, as outlined in Table 1.
For instance, MMedLM (Qiu et al., 2024) is tai-
lored for text, while LLava-Med (Liu et al., 2023a)
focuses on both image and text modalities. In prac-
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Figure 1: Illustration of the proposed FEDKIM. (a) Framework overview, where the proposed FEDKIM contains
client and server updates. (b) Federated knowledge injection, where FEDKIM first aggregates models uploaded
from clients and then injects the aggregated model knowledge into medical foundation model F with three steps.
“PEFT” in Step 3 denotes parameter-efficient fine-tuning.

tical settings, comprehensive medical decisions of-
ten require integrating multiple types of health data
across various tasks. Yet, by being task or modality-
specific, existing models fail to recognize and lever-
age the intricate relationships between different
healthcare data modalities and tasks.

The first limitation prevents training a medi-
cal foundation model from scratch in a central-
ized manner, while the second one exacerbates the
challenge of developing a multimodal, multi-task
medical foundation model. To overcome these
obstacles, a viable solution is to scale existing
medical foundation models and infuse them with
medical knowledge. Given that medical data is
stored on private clients, the federated learning (FL)
paradigm (McMahan et al., 2017; Che et al., 2023;
Zhou et al., 2022) offers a promising approach in
the medical domain (Wang et al., 2022a), which is
a decentralized and collaborative machine learning
method where participants do not need to share
data directly. Although several recent studies on
federated foundation models (Lu et al., 2023; Chen
et al., 2024a) have made progress, they primarily
focus on enhancing services to local clients us-
ing existing foundation models. Importantly, none
have specifically tackled the challenge of inject-
ing novel medical knowledge into existing medical
foundation models in a federated manner.

To tackle this new challenge, in this paper,
we propose a novel approach: Federated Knowl-

edge Injection for Medical foundation models
(FEDKIM), as shown in Figure 1. FEDKIM adopts
a flexible design, allowing it to incorporate vari-
ous types of medical modalities to handle a vari-
ety of medical tasks. Considering the real-world
scenarios, FEDKIM deploys the medical founda-
tion model only on the server side and leverages
lightweight local models along with classic fed-
erated learning approaches to extract healthcare
knowledge from private data.

To effectively inject extracted medical knowl-
edge into the foundation model, FEDKIM uses
knowledge-rich parameters from the modality-
specific encoders updated from the local end. To
be specific, FEDKIM integrates this knowledge us-
ing parameter-efficient fine-tuning technique with
a novel multitask multimodal mixture of expert
module, namely M3OE. M3OE adaptively selects
appropriate expert systems for handling specific
tasks in given modalities, enabling FEDKIM to
deal with tasks in complex medical contexts.

Our experiments across 12 healthcare tasks with
7 modalities demonstrate the effectiveness of FED-
KIM, providing a solid foundation for future ex-
ploratory research on the medical knowledge injec-
tion problem.

2 The proposed FEDKIM Framework

In this section, we first introduce the setup of the
medical knowledge injection task (Section 2.1).
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Next, we describe the proposed method, FED-
KIM. As depicted in Figure 1, FEDKIM consists
of two main components: knowledge extractors
(Section 2.2), which are deployed on local clients,
and a knowledge injector (Section 2.3), which is
deployed on the server.

2.1 Framework Setups

2.1.1 Client Setups

The goal of this work is to scale and enhance
the predictive ability of medical large language
models (LLMs) by incorporating medical knowl-
edge from private client data in a federated man-
ner. To achieve this, we employ N clients,
each representing a hospital or a medical insti-
tute holding private medical data Dn. We assume
that the private dataset Dn contains all medical
modalities {M1, · · · ,MM} and can perform all
tasks {T1, · · · , TT }. Each client trains a model
fn = [ENCn();DECn()] using the data Dn, where
ENCn() is the set of multimodal encoders and
DECn() is the set of multi-task decoders/predictors.
Thus, the model parameters θn of fn can be divided
into θenc

n for the encoder and θdec
n for the decoder,

which will be further uploaded to the server.

2.1.2 Server Setups

We deploy a generative medical foundation
model on the server, denoted as F . We
aim to inject medical knowledge represented by
{θenc

1 , · · · ,θenc
N } into F and simultaneously up-

date {θenc
1 , · · · ,θenc

N } by absorbing new knowl-
edge from F . These updated encoders and the
aggregated decoders will then be distributed to the
corresponding clients for learning in the next com-
munication round. To facilitate the updates of client
parameters, we place a small amount of public data
on the server, denoted as Dp.

2.2 Client Updates – Knowledge Extraction
from Private Clients

This framework allows each client to handle T
tasks simultaneously. Although these tasks have
different training data, the modalities are partially
shared, which motivates us to design a simple client
model with M modality-specific encoders and T
task-specific decoders. Details of the encoders are
listed in Appendix D. We then use the following

loss to train each client model:

min
θn

Ln :=
1

T

T∑

t=1

1

|Dt
n|

∑

(xt
i,y

t
i)∈Dt

n

ℓt(fn(x
t
i;θn),y

t
i),

(1)

fn(xi;θn) = DECn,t(ENCn,m(xi;θ
enc
n,m);θdec

n,t ), (2)

where Dt
n is the task-specific dataset, xt

i and yt
i

are the data features and the corresponding ground
truths, and ℓt is the loss function for a specific task,
such as cross-entropy. ENCn,m ⊆ ENCn is the
encoder for modality Mm with parameters θenc

n,m.
DECn,t ⊆ DECn is the decoder for the t-th task
with parameters θdec

n,t . The number of modality-
level encoders in ENCn,m is determined by the
input data, while amount of tasks determines the
number of task-oriented decoders. After the local
training, we will upload the encoder and decoder
parameters θenc

n and θdec
n to the server.

2.3 Server Updates – Knowledge Injection
into Medical LLM

2.3.1 Knowledge Aggregation
We assume that the predictive ability of F is bet-
ter than the uploaded decoders {θdec

1 , · · · ,θdec
N },

and useful knowledge is primarily contained in
the encoders {θenc

1 , · · · ,θenc
N }. Thus, on the

server side, we aim to inject medical knowledge
{θenc

1 , · · · ,θenc
N } into the LLM F with the help

of public data Dp. Before the injection, we first
aggregate knowledge uploaded from each client
in traditional federated learning manners such as
FedAvg (McMahan et al., 2017) or FedProx (Li
et al., 2020), i.e.,

θe = fFL([θ
1
e, · · · ,θM

e ]),

θd = fFL([θ
1
d, · · · ,θM

d ]),
(3)

where fFL can be flexibly replaced with any fed-
erated learning methods, such as personalized FL
methods (Jiang et al., 2019; T Dinh et al., 2020),
differential privacy-based FL methods (Hu et al.,
2020; El Ouadrhiri and Abdelhadi, 2022), or adap-
tive FL methods (Reddi et al., 2020; Wang et al.,
2022c,b).

2.3.2 Knowledge Injection
Effectively injecting medical knowledge θe is chal-
lenging since the LLM F cannot directly use these
diverse modality-specific encoders. To solve this
challenge, we leverage a straightforward yet ef-
fective feature alignment strategy that follows the
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training of LLaVA (Liu et al., 2024) by concatenat-
ing the modality embeddings with the task prompt.
Subsequently, we embed our original Multimodal
Multi-tasking Mixture Of Experts (M3OE) into
the medical foundation model. M3OE allows the
medical foundation model F to adaptively select
specific expert system given different combination
of tasks and modalities. Next, we detail the process
of knowledge injection.

Step 1: Feature Alignment. For each input data
(xt

j ,y
t
j) ∈ Dt

p from the t-th task, we first obtain
its feature representations using the aggregated en-
coders θe, i.e., etj = [e1j ; · · · ; eMj ] = g(θe(x

t
j)),

where g(·) is the linear mapping function. We also
embed the task prompt Pt using the encoder of F ,
i.e., pt = EMBF (Pt)., where EMBF () is the text
embedding layer of F . Then, the concatenation
of the data feature etj and the task prompt feature
pt will be used as the input of the encoder of F ,
denoted as ht

j = [etj ;p
t].

Step 2: Multimodal Multi-tasking Mixture of
Experts (M3OE). A naive solution is directly using
the aligned feature ht

j to generate the output. How-
ever, such a naive end-to-end fine-tuning approach
not only has weak distinguishability of different
tasks but also ignores the generalization ability of
FEDKIM to unseen tasks, even though the modal-
ities have been encountered already. To address
this issue, we develop a Multimodal Multi-tasking
Mixture Of Experts (M3OE) module to allow FED-
KIM to distinguish tasks dynamically.

M3OE takes both the task description T t and the
modality descriptions Mt associated with Task T t

as inputs to compute the relevance of each expert
for the given task and modality, where Mt is the
concatenation of descriptions of all modalities con-
cerning Task T t. T t and Mt are firstly encoded
by the embedding layer of the foundation model F ,
and subsequently processed to output weights for
expert selection as follows:

αt = softmax
(
MLP

(
Pooling

(
βt))) ,

βt =
(WqEMBF (Mt))(WkEMBF (T t))⊤√

dk
WvEMBF (T t)

(4)

where αt ∈ RP and P is the number of experts.
Wq, Wk, and Wv denote the attention matrices,
and dk is the dimension size.

The proposed M3OE effectively integrates the in-
jected knowledge managed by two separate routers,
resulting in a more streamlined and contextually
aware computation of weights. The output, αt, rep-

resents the attention-weighted selection of experts
optimized for both the modality and the specific
task. This approach provides the flexibility needed
to handle complex medical scenarios by selecting
the appropriate experts based on the context.

Step 3: LoRA-M3OE based Parameter-Efficient
Fine-tuning. Finally, we generate the representa-
tion of each layer in F for the forward pass based
on LoRA (Hu et al., 2022) and the learned M3OE
weight using Eq. (4) as follows:

ctj = WFht
j +

P∑

p=1

αt
p(BpAph

t
j), (5)

where WF denotes the frozen parameters of F ,
BpAp denotes the lower-rank adaptation module
serving as the p-th expert system. We will fine-tune
the proposed FEDKIM using the final output from
F and the ground truth yt

j . The design balances
efficacy and efficiency during knowledge injection,
allowing FEDKIM to decently handle the complex
nature of medical applications.

During the training, modality-specific encoders
θe gradually align with the medical LLM F that
contains abundant knowledge acquired through pre-
training. The alignment indicates prior knowledge
in F is also extracted during injection, in the form
of adjusted parameters restored in encoders. To
benefit local models and boost knowledge injection
in the next round, FEDKIM passes the updated
encoders θe and the aggregated decoders θd back
to local ends and performs the knowledge-driven
iterative training until convergence.

3 Experiment Setup

3.1 Task Introduction
In this study, we have training tasks and validation
tasks across different datasets and data modalities.
To provide a clear illustration, we present them in
Table 2.
Training Task. To examine the utility of the pro-
posed FEDKIM, we leverage four classification
tasks across six modalities to federatedly inject
medical knowledge into the selected foundation
model through multi-task training. Details regard-
ing these tasks are available in Appendix A. As
emphasized in Section 2, we perform training on
this suite of tasks in a multi-task pattern.
Validation Task. Typical medical foundation mod-
els, such as MMedLM2 (Qiu et al., 2024), of-
ten struggle with handling unseen tasks involving
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novel modalities. To evaluate the extent to which
knowledge injection enables the medical founda-
tion model to tackle unseen tasks, we compile five
classification tasks (ECD, SP, PED, AD, and EBD)
and three generation tasks (MR, SNC, and MS).
Details on these tasks are provided in Appendix B.

3.2 Data Partition

For each training task, we divide the data into four
parts in a ratio of 7:1:1:1. Specifically, 70% of the
data, Dn, is private data evenly distributed to N
clients for training local models. Another 10% of
the data is public data, Dp, placed on the server for
tuning the foundation model. An additional 10%
of the data is development data, Dd, kept on the
server as a validation set. The remaining 10% of
the data, Dt, is used as testing data for these tasks.
More details regarding the data distribution can be
found in Appendix C.

3.3 Baselines

Since the task of medical knowledge injection is
novel and unexplored, there are no existing base-
lines. Therefore, we establish our own baselines,
detailed as follows:
FedPlug. FedPlug acquires modality-specific en-
coders through the federated learning process de-
scribed in Section 2.2 . These encoders are then
integrated into the foundation model for fine-tuning.
By aligning multimodal medical input with the se-
mantic space of the foundation model, FedPlug
enables the model to handle multiple modalities.
Throughout this process, only the aggregated en-
coders are trainable.
FedPlugL. Building on the FedPlug framework,
FedPlugL incorporates the Low-Rank Adaptation
(LoRA) technique (Hu et al., 2022) to better inte-
grate multimodal features into the semantic space
of the large language model (LLM), thereby opti-
mizing the federated learning process. In addition
to the trainable encoders in FedPlug, each layer of
the LLM is equipped with a tunable LoRA module.

3.4 FL Backbone Approaches

We implement our FEDKIM based upon the fol-
lowing backbone approaches:
FedAVG (McMahan et al., 2017) is a conven-
tional federated learning method, producing a
global model by aggregating distributed models

[θ1, · · · ,θM ] as follows:

favg([θ
1, · · · ,θM ]) =

1

N

N∑

n=1

θn.

FedProx (Li et al., 2020) aims to extend FedAvg
by regularizing each local loss function with an L2

term as follows:

min
θn

Jn(θ
n;θ∗) = Ln(θ

n) +
λ

2
||θn − θ∗||2, (6)

where θ∗ is the global model, Ln(·) is the corre-
sponding loss function, and λ is the hyperparameter
for weighting.
MMedLM-21 (Qiu et al., 2024) is an advanced
unimodal Large Language Model. Benefiting from
multilingual pre-training, MMedLM-2 achieves the
state-of-the-art performance in multiple question
answering tasks, thus selected as the backbone of
our foundation model deployed on the server.

3.5 Implementation Details
All experiments were conducted in an Ubuntu
20.04 environment using two NVIDIA A100 GPUs.
We utilized MMedLM-2, the aforementioned state-
of-the-art pre-trained medical language model, as
the target of medical knowledge injection. The
learning rate was set to 5 × 10−4 for the founda-
tion model and 1 × 10−4 for the local models. λ
for FedProx was set to 1 × 10−4. Cross-entropy
loss was used for training the local models, while
the foundation model was optimized using general
autoregressive loss. The number of clients N was
set to 5, and the number of experts P was set to 12
for FEDKIM. To ensure a fair comparison, we set
the number of communication rounds to 10 for all
methods involved in the comparison.

4 Performance Evaluation

We examine our proposed FEDKIM from the zero-
shot evaluation (subsection 4.1) and fine-tuning
evaluation (subsection 4.2) perspectives.

4.1 Zero-shot Evaluation
In the zero-shot evaluation, there is no overlap be-
tween the training tasks and evaluation tasks, which
targets at examining the zero-shot capability of the
medical foundation models enabled by FEDKIM.
The experiment results on unseen tasks are shown
in Figure 2, with FedAvg (Figure 2a) and FedProx

1https://huggingface.co/Henrychur/MMedLM2
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Table 2: Tasks and modalities in this study.
Task Type Task Modality

Image Signal Vital signs Lab events Input Output Text

Training

COVID-19 Detection (CD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Lung Opacity Detection (LOD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

ECG Abnormal Detection (EAD) ✗ ✓ ✗ ✗ ✗ ✗ ✗

Mortality Prediction (MP) ✗ ✗ ✓ ✓ ✓ ✓ ✗

Validation

Enlarged Cardiomediastinum Detection (ECD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Pleural Effusion Detection (PED) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Atelectasis Detection (AD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Ectopic Beats Detection (EBD) ✗ ✓ ✗ ✗ ✗ ✗ ✗

Sepsis Prediction (SP) ✗ ✗ ✓ ✓ ✓ ✓ ✗

MedVQA-RAD (MR) ✓ ✗ ✗ ✗ ✗ ✗ ✓
MedVQA-Slake (MS) ✓ ✗ ✗ ✗ ✗ ✗ ✓
Signal Noise Clarification (SNC) ✗ ✓ ✗ ✗ ✗ ✗ ✓

ECD
(max: 64.53)

SP
(max: 95.00)

MR
(max: 17.94)

SNC
(max: 12.20)

MS
(max: 2.93)

PED
(max: 50.43)

AD
(max: 51.28)

EBD
(max: 50.00)

MMedLM2
FedPlug
FedPlugL
FedKIM

(a) FedAvg-based Knowledge Injection Performance.

ECD
(max: 62.39)

SP
(max: 97.00)

MR
(max: 33.85)

SNC
(max: 30.68)

MS
(max: 7.60)

PED
(max: 58.12)

AD
(max: 58.94)

EBD
(max: 50.40)

MMedLM2
FedPlug
FedPlugL
FedKIM

(b) FedProx-based Knowledge Injection Performance.

Figure 2: Performance comparison between FEDKIM and baselines on the zero-shot evaluation.

(Figure 2b) as the backbone federated approaches.
We use black •, orange, blue, and green curves
to denote MMedLM2, FedPlug, FedPlugL, and
FEDKIM, respectively. Accuracy for classification
tasks and BLEU for generation tasks are used for
visualization. Based on the experiment results, we
provide the observations and discussion below:

(1) The original foundation model MMedLM2
fails to do the zero-shot evaluation on the unseen
tasks in the training process. This is due to its
extremely limited multimodal capabilities.

(2) FedPlug, which only incorporates the feder-
ated encoder, performs the worst across all tasks,
regardless of the type. This observation under-
scores the necessity of effectively utilizing public
data to align the medical foundation model with
external knowledge. Without proper integration,
external knowledge—although derived through
federated approaches on vast amounts of private
data—cannot be directly assimilated into the medi-
cal foundation model.

(3) Even though FedPlugL approaches FED-

KIM’s performance on several tasks, it still falls
short, particularly in generation tasks like Med-
VQA. This indicates that the knowledge injected
through FedPlug+LoRA does not fully generalize
to unseen tasks, as training was exclusively per-
formed on classification tasks. In contrast, FED-
KIM, despite also being trained on classification
tasks, achieves better performance on these tasks
and maintains superior capability in handling un-
seen classification tasks. Comparing our FED-
KIM with FedPlugL, FEDKIM shows the supe-
rior performance on all the tasks, especially on
the tasks of SNC (↑ 82.36% with FedAvg), PED
(↑ 43.92% with FedAvg), and AD (↑ 48.12%). On
the other tasks, such as MR, EBD, and ECD, these
approaches reach closed performance. This success
is attributed to the M3OE module, which enables
FEDKIM to adaptively select appropriate experts
to jointly handle novel tasks based on the context.
Furthermore, our proposed FEDKIM works well
with the federated backbones of FedAvg and Fed-
Prox. It also generally maintains the advantages of
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a more advanced federated learning method (Fed-
Prox) over the vanilla approach. Comparing Fig-
ure 2a and Figure 2b, the performance with Fed-
Prox generally outperforms the one with FedAvg
on different tasks, such as PED ↑ 15.25%.

These observations further show the adaptability
of FEDKIM to enable medical foundation models
to have zero-shot capability across different tasks
and federated learning frameworks.

4.2 Fine-tuning Evaluation
While injecting medical knowledge into founda-
tion models demonstrates the potential for handling
unseen tasks, it remains uncertain whether the en-
hanced foundation model can also perform well on
previously encountered tasks. To address this, we
conducted a fine-tuning evaluation, with the train-
ing process detailed in Section 3.1 considered as
fine-tuning for these tasks. The test sets for these
tasks were used for evaluation, and the fine-tuning
results are presented in Table 3. For a compre-
hensive evaluation, we utilize accuracy, precision,
recall, and F1 score as metrics for these tasks.

Compared to the experiments on unseen tasks,
it is evident that the knowledge-injected medical
foundation model performs significantly better on
familiar tasks. This showcases the explicit utiliza-
tion of knowledge acquired through federated train-
ing. Similar to the zero-shot evaluation, approaches
combined with FedProx consistently outperform
those with FedAvg, underscoring the importance of
effective knowledge extraction during the injection
process.

Furthermore, FEDKIM consistently outperforms
the two baselines, FedPlug and FedPlugL. This
competitive performance validates the design and
effectiveness of the M3OE module.

4.3 Ablation Study
We conduct ablation studies on the COVID-19 de-
tection and enlarged cardiomediastinum detection
tasks to assess the impact of each module within
our proposed FEDKIMin both fine-tuning and zero-
shot settings. Retaining all other modules as in the
main experiments, we explore the following vari-
ant settings: (1) FEDKIMpub: Instead of utilizing
knowledge from private datasets Dn, this configura-
tion solely leverages public dataset Dp for central-
ized training. Consequently, the federated training
module discussed in Section 2.2 is excluded, with
the encoder θe updated exclusively through public
training as detailed in Section 2.3. (2) FEDKIMT :

This variant omits the task description module that
guides the expert selection process, testing the im-
portance of task-specific information in routing the
mixture of experts. (3) FEDKIMM: Similarly, we
remove the modality description module to exam-
ine its influence on expert selection.

The results of the ablation studies are presented
in Table 4 and Table 5. They indicate that each
component significantly enhances FEDKIM’s per-
formance. Specifically, a substantial decline in
performance with FEDKIMpub highlights the cru-
cial role of knowledge injected from local clients
through federated learning. This locally enriched
encoder allows the medical foundation model to
better adjust to unseen modalities, thereby enhanc-
ing its effectiveness compared to models trained
without this knowledge. Moreover, the absence
of task or modality descriptions diminishes FED-
KIM’s ability to manage specific tasks through
multi-task training, validating the design of the
M3OE module. This module equips FEDKIM to
effectively navigate complex healthcare scenarios
that involve diverse tasks and modalities. In sum-
mary, the synergistic integration of local knowl-
edge, along with the task and modality description
modules, crucially bolsters the performance of our
proposed FEDKIM.

5 Related Work

Medical Foundation Models. Foundation mod-
els, known for their vast parameters and training
datasets, have demonstrated impressive capabili-
ties across domains (Touvron et al., 2023; Zhou
et al., 2023a; Yang et al., 2024; Li et al., 2024a;
Abbasian et al., 2024), and are becoming increas-
ingly prevalent in healthcare. Thirunavukarasu et
al. (Thirunavukarasu et al., 2023) highlight the po-
tential of large language models (LLMs) in clini-
cal settings. Moor et al. (Moor et al., 2023) pro-
pose a generalist medical AI for diverse tasks us-
ing multimodal data. Specialized medical foun-
dation models have been developed for disease
detection (Zhou et al., 2023b), cancer biomarker
identification (Pai et al., 2024), echocardiogram
interpretation (Christensen et al., 2024), image seg-
mentation (Zhang et al., 2023a), and precision on-
cology (Truhn et al., 2024). Despite these advance-
ments, this area remains relatively unexplored com-
pared to the general domain (Wang et al., 2024a),
primarily due to the complexity inherent in health-
care data (Wang et al., 2023, 2024b).

8147



Table 3: Fine-tuning evaluation for training tasks. ✗ denotes incapacity.

Task Method LLM FedAvg FedProx
Metric MMedLM-2 FedPlug FedPlugL FEDKIM FedPlug FedPlugL FEDKIM

Covid-19
Detection

Accuracy ✗ 98.34 94.21 98.48 86.11 95.73 98.98
Precision ✗ 96.07 99.27 96.61 65.09 99.32 98.28
Recall ✗ 97.44 77.78 97.44 97.72 83.76 97.72
F1 ✗ 96.75 87.22 97.02 78.13 90.88 98.00

Lung
Opacity

Detection

Accuracy ✗ 95.48 85.45 94.99 93.13 78.64 95.10
Precision ✗ 98.22 99.85 98.32 93.74 72.20 97.15
Recall ✗ 92.95 74.03 91.90 92.95 95.58 93.27
F1 ✗ 95.51 83.69 95.00 93.35 82.26 95.17

ECG
Abnormal
Detection

Accuracy ✗ 43.15 42.28 44.75 45.25 50.94 58.46
Precision ✗ 56.97 82.61 61.11 60.85 58.01 58.46
Recall ✗ 11.22 1.49 13.80 17.80 58.20 100.00
F1 ✗ 18.74 2.93 22.52 27.55 58.10 73.78

Mortality
Prediction

Accuracy ✗ 84.11 53.63 90.01 82.41 91.42 89.99
Precision ✗ 16.35 10.96 35.88 13.87 47.57 36.97
Recall ✗ 21.43 63.04 23.29 16.64 15.22 27.33
F1 ✗ 18.55 18.67 28.24 15.13 23.06 31.43

Table 4: Ablation study results in the fine-tuning setting.

Setting Accuracy Precision Recall F1
FEDKIMpub 94.07 90.63 85.47 87.98
FEDKIMT 98.34 96.28 97.12 96.70
FEDKIMM 98.41 97.13 96.58 96.86
FEDKIM 98.48 96.61 97.44 97.02

Table 5: Ablation study results in the zero-shot setting.

Setting Accuracy Precision Recall F1
FEDKIMpub 59.82 54.43 84.40 66.19
FEDKIMT 61.11 55.80 79.82 65.66
FEDKIMM 60.26 66.00 30.28 41.51
FEDKIM 61.54 55.13 93.58 69.39

Federated Fine-tuning with Foundation Mod-
els. Fine-tuning foundation models (FMs) with
task-specific data is essential for improved perfor-
mance in specialized tasks. Federated Learning
(FL) supports this by utilizing locally stored data
and distributed computational resources. Research
in this field includes full tuning (Deng et al., 2023;
Fan et al., 2023), partial tuning (Peng et al., 2024;
Marchisio et al., 2022; Khalid et al., 2023), and
parameter-efficient fine-tuning (PEFT) (Lu et al.,
2023; Zhang et al., 2023b). Notably, (Lu et al.,
2023) involves clients hosting FMs and exchang-
ing adapters with the server, which aggregates and
redistributes them. Similarly, FedPETuning (Zhang
et al., 2023b) shares parts of client models for pre-
trained language models in FL. Unlike these stud-
ies, which require clients to have FMs, our ap-
proach positions the medical FM on the server,
facilitating collaborative enhancement of medical
FM models without accessing local data.
Parameter-efficient Fine-tuning on Foundation
Model Full-parameter Fine-Tuning of foundation
models, while promising in terms of performance

enhancement, requires extremely extensive com-
putational resources. Consequently, researchers
have investigated Parameter-efficient Fine-tuning
(PEFT) techniques. PEFT methods aim to adapt
pre-trained models to specific tasks using a mini-
mal number of additional parameters. Low-Rank
Adaptation (LoRA) (Hu et al., 2022), a widely
recognized PEFT method, reduces the number of
trainable parameters by factorizing weight matri-
ces into low-rank representations, achieving signif-
icant parameter efficiency. Additionally, previous
studies have utilized modular approaches, such as
adapters (Gao et al., 2023) and the Perceiver Re-
sampler (Alayrac et al., 2022), to adapt new modal-
ities to foundation models.

Researchers have explored combining the Mix-
ture of Experts (Jacobs et al., 1991) concept
with Low-Rank Adaptation (LoRA) for Parameter-
efficient Fine-tuning (PEFT) (Li et al., 2024b; Wu
et al., 2023). To guide the selection of experts in
complex scenarios, they have leveraged modality
information (Luo et al., 2024; Li et al., 2024c),
instructions (Chen et al., 2023, 2024b; Wu et al.,
2023; Li et al., 2024b), or pre-defined task IDs (Liu
et al., 2023b). However, these MOE methodologies
do not specifically address the complex, modality-
diverse scenarios found in the healthcare domain.

6 Conclusion

This work introduces the concept of knowledge in-
jection into medical foundation models, emphasiz-
ing its critical role and potential in the development
of comprehensive medical models. We propose
a novel approach, FEDKIM, designed to extract
and inject healthcare knowledge into foundation
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models, thereby enhancing their ability to handle
multiple tasks and modalities. FEDKIM leverages
flexible federated learning techniques to extract
knowledge from distributed medical data. The ex-
tracted knowledge is then injected into the foun-
dation model using our proposed adaptive M3OE
module. Our exhaustive experimental results on 12
tasks and 7 modalities demonstrate the effective-
ness of FEDKIM in diverse settings, showcasing its
excellent capability in handling either encountered
or unseen healthcare tasks. This study validates the
potential of injecting knowledge into foundation
models using federated learning, providing a cru-
cial solution for developing a healthcare foundation
model without accessing sensitive data.

7 Limitations

This work explores the problem of medical knowl-
edge injection within the PEFT framework. Due
to current computational limitations, we have not
yet combined Full-parameter Fine-Tuning with our
proposed FEDKIM. Additionally, our study utilizes
MMedLM2, which has 7 billion parameters, but
injecting knowledge into larger foundation models
is restricted by available computational resources.
In future research, we plan to investigate the inte-
gration of knowledge injection with Full-parameter
Fine-Tuning. We also aim to evaluate the efficacy
of our approach on larger medical foundation mod-
els to further validate its scalability and potential.
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A Details of Training Tasks

COVID-19 Detection (CD) involves identifying
COVID-19 symptoms from X-ray images using the
COVQU dataset (Rahman et al., 2021) to evaluate
the model’s ability to interpret medical images.
Lung Opacity Detection (LOD) uses chest X-
ray images to classify lung opacity based on data
from the RSNA Pneumonia Detection Challenge
2018 (rsn), annotated by medical practitioners.
ECG Abnormal Detection (EAD) is an unimodal
binary classification task that determines abnormal
patterns in 10-second, 12-lead ECG signals from
PTB-XL database (Wagner et al., 2020).
Mortality Prediction (MP) predicts ICU patient
survival or death using multimodal dynamic fea-
tures vital signs, lab tests, input and output, with
data sourced from MIMIC-III (Johnson et al.,
2016).

B Details of Validation Tasks

Enlarged Cardiomediastinum Detection
(ECD) (Irvin et al., 2019) aims to assess the
presence of an enlarged cardiomediastinum using
medical images from clinical evaluations. This
task measures the model’s capability to interpret
radiographic data effectively.
Sepsis Prediction (SP) aims to forecast the like-
lihood of sepsis during ICU stays, testing the
model’s ability to understand various clinical fea-
tures. These features are identical to those used
in the mortality prediction task, extracted from
the MIMIC-III database through the preprocess-
ing pipeline (van de Water et al., 2024).
Medical Visual Question Answering on RAD
(MR) involves using both visual images and textual
questions as inputs to generate answers. This task
evaluates the model’s ability to align text and image
modalities within the medical domain. The VQA-
RAD dataset is utilized for this task (Lau et al.,
2018).
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Table 6: Details about the datasets.

Task Type Task Total Samples Private
Clients

Public
(Server)

Development Testing

Training
Tasks

Lung Opacity Detection 18,406 12,880 1,849 1,841 1,836
COVID-19 Detection 13,808 9,665 1,380 1,380 1,383
ECG Abnormal Detection 21,797 15,259 2,179 2,180 2,179
Mortality Prediction 38,129 26,690 3,812 3,812 3,813

Validation

Enlarged Cardiomediastinum Detection 234 ✗ ✗ ✗ 234
Pleural Effusion Detection 234 ✗ ✗ ✗ 234
Atelectasis Detection 234 ✗ ✗ ✗ 234
Sepsis Prediction 1,000 ✗ ✗ ✗ 1,000
MedVQA-RAD 1,000 ✗ ✗ ✗ 1,000
MedVQA-Slake 1,000 ✗ ✗ ✗ 1,000
Signal Noise Clarification 1,000 ✗ ✗ ✗ 1,000
Ectopic Beats Detection 2,000 ✗ ✗ ✗ 2,000

Table 7: Single task fine-tuning evaluation.

Task Method LLM FedAvg FedProx
Metric MMedLM-2 FedPlug FedPlugL FEDKIM FedPlug FedPlugL FEDKIM

COVID-19
Detection

Accuracy ✗ 92.34 99.56 99.57 84.16 95.66 98.91
Precision ✗ 93.59 98.87 99.15 77.27 84.18 100.00
Recall ✗ 74.92 99.43 99.15 53.27 98.68 95.73
F1 ✗ 79.15 99.14 99.15 63.07 90.85 97.82

Lung
Opacity

Detection

Accuracy ✗ 89.42 51.69 94.93 91.23 90.90 93.63
Precision ✗ 84.69 51.74 93.60 87.76 88.06 92.55
Recall ✗ 97.16 99.79 96.85 96.52 95.37 95.37
F1 ✗ 90.50 68.10 95.19 91.93 91.57 93.94

ECG
Abnormal
Detection

Accuracy ✗ 43.15 48.79 58.46 45.25 50.80 58.00
Precision ✗ 56.97 65.02 58.46 60.85 58.47 58.34
Recall ✗ 11.22 26.82 100.00 17.80 54.67 98.51
F1 ✗ 18.74 37.98 73.78 27.55 56.51 73.28

Mortality
Prediction

Accuracy ✗ 84.11 91.67 64.16 82.41 90.98 57.38
Precision ✗ 16.35 43.24 12.86 13.87 40.68 13.25
Recall ✗ 21.43 14.91 56.21 16.64 14.91 72.98
F1 ✗ 18.55 22.18 20.94 15.13 21.82 22.42

Signal Noise Clarification (SNC) is a generative
task that focuses on accurately describing noise in
ECG signals based on corresponding textual ques-
tions. The data is extracted from an existing ECG
question-answering dataset (Oh et al., 2024). The
signals are recorded in 12 channels and last for 10
seconds, similar to the ECG Abnormal Detection
task.

Pleural Effusion Detection (PED) (Irvin et al.,
2019) is derived from the CheXpert dataset and in-
volves using X-ray images to identify the presence
of pleural effusion, testing the model’s ability to
interpret radiographic data.

Atelectasis Detection (AD) (Irvin et al., 2019) also
uses X-ray images from the CheXpert dataset to
detect atelectasis, evaluating the model’s capability
in analyzing medical images.

Medical Visual Question Answering on Slake
(MS) (Liu et al., 2021) utilizes both visual images
and textual questions from the SLAKE dataset to
generate answers, assessing the model’s proficiency
in aligning text and image modalities in the medical
domain.
Ectopic Beats Detection (EBD) aims to identify
ectopic beats in ECG signals sourced from the PTB-
XL database (Wagner et al., 2020).

C Dataset Details

For tasks involved in training, we adopt the data
partition setup detailed in Section 3.2. For tasks
utilized in zero-shot evaluation, we select a subset
of corresponding datasets to facilitate the inference
efficiency. We cover 1,000 randomly sampled sam-
ples for the tasks of Sepsis Prediction, MedVQA-

8153



Slake, MedVQA-RAD, Signal Noise Clarification.
For Ectopic Beats Detection, we cover 1,000 posi-
tive cases and 1,000 negative cases randomly sam-
pled from the dataset, as the original annotations
concerning ectopic beats are highly sparse. For
Enlarged Cardiomediastinum Detection, Pleural
Effusion Detection and Atelectasis Detection, we
leverage an existing validation set, which involves
234 samples. Statistics about the datasets leveraged
in this study are available in Table 6.

D Modality Encoding

We list all encoders along with corresponding
modalities in Table 8. Note that all these encoders
can be flexibly replaced with other qualified en-
coders under the framework of FEDKIM.

Table 8: Details of modality-specific encoders.

Modality Encoder
Image Deit-tiny (Touvron et al., 2021)
Signal CNN (LeCun et al., 1998)

Vital Sign Transformer (Vaswani et al., 2017)
Lab Results Transformer (Vaswani et al., 2017)

Input Transformer (Vaswani et al., 2017)
Output Transformer (Vaswani et al., 2017)

E Single-task Fine-tuning Evaluation

In addition to the evaluation discussed in Sec-
tion 4, another auxiliary topic worth investigat-
ing is whether FEDKIM can enhance a model’s
performance on a single task. This is particularly
meaningful for practitioners who aim to address
a specific task, given the scarcity and specializa-
tion often associated with medical data. Therefore,
we designed a single-task fine-tuning evaluation,
where FEDKIM is applied to the foundation model
for each individual training task. The experimental
results are presented in Table 7.

The results verify that FEDKIM, benefiting from
a well-designed knowledge injection strategy, out-
performs both baselines in most tasks. This explo-
ration demonstrates the applicability of FEDKIM
even when tasks for injection are limited, thereby
broadening its application scope in complex medi-
cal scenarios.
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