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Abstract
Direct preference optimization (DPO) has
shown to be an effective method for large
language model (LLM) alignment. Recent
works have attempted to apply DPO to mul-
timodal scenarios but have found it challenging
to achieve consistent improvement. Through
a comparative experiment, we identify the un-
conditional preference problem in multimodal
preference optimization, where the model over-
looks the image condition. To address this prob-
lem, we propose MDPO, a multimodal DPO
objective that prevents the over-prioritization of
language-only preferences by also optimizing
image preference. Moreover, we introduce a
reward anchor that forces the reward to be posi-
tive for chosen responses, thereby avoiding the
decrease in their likelihood—an intrinsic prob-
lem of relative preference optimization. Exper-
iments on two multimodal LLMs of different
sizes and three widely used benchmarks demon-
strate that MDPO effectively addresses the un-
conditional preference problem in multimodal
preference optimization and significantly im-
proves model performance, particularly in re-
ducing hallucination.

1 Introduction

Direct preference optimization (DPO) has emerged
as the predominating method for aligning large
language models (LLMs) with human prefer-
ences (Rafailov et al., 2023; Zhao et al., 2024).
Building on its success in the language modality,
recent studies have extended DPO to multimodal
scenarios (Li et al., 2023; Yu et al., 2024a; Zhou
et al., 2024b; Zhao et al., 2023). However, trans-
ferring this approach across modalities presents
significant challenges. Merely substituting textual
preference data with multimodal preference data
does not consistently yield positive outcomes and
can exacerbate issues such as hallucinations (Li
et al., 2023; Sarkar et al., 2024).

While recent efforts in multimodal preference
learning focus on improving performance through

Figure 1: We train Bunny-v1.0-3B (He et al., 2024) on
10K multimodal preference data from Silkie (Li et al.,
2023) with different variants of DPO. We perform DPO
(No Image) where all images are removed from the
preference data. Counterintuitively, the overall score
on the MMHalBench (Sun et al., 2023) for DPO (No
Image) is similar to that of DPO with images. This find-
ing suggests that DPO may suffer from unconditional
preferences, neglecting the visual modality during op-
timization. Our proposed method, MDPO, effectively
addresses this issue and improves model performance.

enhanced multimodal preference data (Li et al.,
2023; Zhao et al., 2023; Xiao et al., 2024; Zhou
et al., 2024b; Pi et al., 2024; Sarkar et al., 2024;
Yu et al., 2024b; Deng et al., 2024), we investi-
gate the pitfalls of multimodal DPO from a differ-
ent perspective. Through controlled comparisons,
we discover that multimodal LLMs can achieve
similar performance even when all images are re-
moved from the multimodal preference data during
DPO (see Fig. 1). This counterintuitive finding
suggests that the failure of DPO in multimodal sce-
narios may not be solely attributed to data quality.
We attribute this to a systematic gap between the
theoretical expectations and practical implementa-
tions of the DPO objective in multimodal settings
(refer to Fig. 2). While DPO aims to compute im-
plicit rewards conditioned on all input modalities, it
may prioritize language-only preferences and over-
look the image condition (i.e., unconditional pref-
erence), leading to suboptimal model performance
and increased hallucination. After applying DPO,
the model may show an increased tendency to ig-
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Figure 2: Overview of MDPO. Top Left: Standard DPO expects the multimodal LLM to learn response preferences
conditioned on both the image and the question. Top Right: However, in practice, the learning process often
disregards the image condition. Bottom: To address this issue, MDPO introduces an additional image preference
learning objective to emphasize the relationship between the image and the response. Furthermore, MDPO
incorporates a reward anchor to ensure that the probability of the chosen response does not decrease.

nore the provided image and generate responses
based solely on the question (illustrated in Fig. 3).

In this paper, we propose MDPO, a multimodal
DPO objective that utilizes conditional preference
optimization on images to prevent the overly priori-
tization of language-only preferences. As depicted
in Fig. 2, in addition to the original preference pairs
contrasting responses, MDPO introduces new pref-
erence pairs contrasting images. The rejected im-
age is derived from the original (i.e., chosen) image
by reducing effective visual information. This ap-
proach, combined with the standard DPO objective,
encourages the multimodal LLM to simultaneously
emphasize both visual and language features. Fur-
thermore, we observe that DPO often experiences
a decrease in the likelihood of chosen responses
in multimodal scenarios despite an increase in the
implicit reward. To address this, MDPO incorpo-
rates a reward anchor that maintains the likelihood
of chosen responses by regularizing the reward to
be positive.

To validate the effectiveness of MDPO, we con-
duct experiments using Bunny-v1.0-3B (He et al.,
2024) and LLaVA-v1.5-7B (Liu et al., 2024a).
Both automatic and human evaluations on MMHal-
bench (Sun et al., 2023), Object HalBench (Yu
et al., 2024a), and AMBER (Wang et al., 2023)

consistently demonstrate that MDPO outperforms
standard DPO in multimodal scenarios, effectively
reducing hallucinations across varying model and
data scales. Detailed analyses reveal that con-
ditional preference plays a crucial role in en-
hancing the effectiveness of DPO for multimodal
LLMs. Fine-grained and qualitative studies fur-
ther illustrate that MDPO significantly improves
the model’s ability to comprehend images and mit-
igates language biases in model responses.

Our contributions are three-fold. First, we iden-
tify unconditional preference towards the visual
modality as a primary reason for the pitfalls of DPO
in multimodal LLMs. Second, we propose MDPO,
a multimodal DPO objective that incorporates con-
ditional preference optimization and anchored pref-
erence optimization to mitigate these pitfalls. Third,
we verify the effectiveness of MDPO across dif-
ferent model and data scales. Using MDPO, we
achieve the best-performing 3B multimodal LLM
in terms of reducing hallucinations.

2 The Pitfall of Preference Optimization

In this section, we first introduce the background
of DPO (§2.1) and then delve into the issue of un-
conditional preference in multimodal DPO (§2.2).
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Figure 3: Qualitative Results from MMHalBench. Top: When trained with standard DPO, Bunny often assumes
the image description in the question is correct, responding accordingly, even if the question contains an adversarial
premise regarding the image. In contrast, MDPO identifies the false premise in the question by referencing the
image. Bottom: Bunny trained with standard DPO may disregard the image and provide an educated guess for the
answer. Conversely, MDPO delivers a correct answer that is conditioned on the image.

2.1 Background: Preference Optimization

Preference optimization seeks to align LLMs with
human preferences, thereby enhancing their capa-
bilities to respond to human needs. In the context of
LLMs, it aims to encourage the model to learn that,
for a given question q, the response yw chosen by
the evaluator is preferred over the rejected one yl.
DPO is the predominant method for this purpose.
Derived from reward modeling in RLHF (Ouyang
et al., 2022), it seeks to maximize the difference be-
tween the reward for the chosen response r(q, yw)
and that for the rejected response r(q, yl). Specifi-
cally, given a model to be optimized πθ and a refer-
ence model πref, which is typically initialized from
a supervised finetuning model, DPO formulates the
reward as follows:

r(q, y) = β log
πθ(y|q)
πref(y|q)

+ Z(q),

where Z(q) is a partition function, β is a hyper-
parameter that controls the deviation from the ref-
erence model. Then, based on the Bradley-Terry
model (Bradley and Terry, 1952), the preference
optimization objective becomes:

LDPO = − log σ
(
β log πθ(yw|q)

πref(yw|q) − β log πθ(yl|q)
πref(yl|q)

)
,

which is essentially maximizing

σ(r(q, yw)− r(q, yl)).

In the multimodal scenario, each instance in the
preference data contains an image m, in addition
to q, yw, and yl, and the preference label is decided
based on both the image and the question. DPO
expects the multimodal LLM to learn to maximize

σ(r(m, q, yw)− r(m, q, yl)),

and the objective becomes:

LDPOm = − log σ
(
β log πθ(yw|m,q)

πref(yw|m,q) − β log πθ(yl|m,q)
πref(yl|m,q)

)
.

2.2 Problem: Unconditional Preference

Recent studies have found inconsistent improve-
ments in model capabilities when applying DPO
to multimodal LLMs, often attributing this issue
to the quality of preference data (Li et al., 2023;
Sarkar et al., 2024). However, our controlled ex-
periments suggest that the problem arises because
DPO does not effectively utilize the visual modal-
ity in the preference dataset. To explore this, we
introduce a variant called DPO (No Image), which
is trained on the preference dataset with the visual
signal removed, forcing the model to maximize
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σ(r(q, yw)− r(q, yl)) without visual cues. We ap-
ply both DPO and DPO (No Image) to the Bunny-
v1.0-3B model and 10K preference instances from
the LLaVA-Instruct (Liu et al., 2024b) subset of
Silkie (Li et al., 2023). Results shown in Fig. 1
indicate that DPO (No Image) performs similarly,
or even slightly better, than DPO on MMHalBench.
This finding underscores the issue of unconditional
preference learned by multimodal LLMs during
DPO, where the model may disregard image infor-
mation, as illustrated in Fig. 2.

3 MDPO

In this section, we introduce MDPO, an improved
DPO approached dedicated to multimodal prefer-
ence alignment. As depicted in Fig. 2, MDPO intro-
duces two additional preference optimization objec-
tives to DPO: conditional preference optimization
to address the issue of ignoring visual information
(see §3.1), and anchored preference optimization to
prevent a decrease in the likelihood of the chosen
response (see §3.2).

3.1 Conditional Preference Optimization
We propose a conditional preference optimization
objective to address the issue of ignoring visual
information in preference data. The core idea is
to construct preference data where the image is
the only variable, forcing the model to determine
the preference label based on visual information.
Specifically, given a pair of tuples (mw, q, yw) and
(ml, q, yw), where mw is more compitible with q
and yw than ml, the conditional preference opti-
mization objective is formulated as:

LCoPO = − log σ
(
β log πθ(yw|mw,q)

πref(yw|mw,q) − β log πθ(yw|ml,q)
πref(yw|ml,q)

)
.

The challenge then lies in constructing appropriate
pairs of mw and ml. On the one hand, ml should
contain different visual information from mw to
make it less compatible. On the other hand, it
should also share some common features with mw

to serve as a hard negative. We find that a straight-
forward strategy, using the original image as m and
creating ml by randomly cropping less than 20%
of the original image, yields the best performance,
as shown in §4.4.

To summarize, the standard DPO objective max-
imizes σ(r(mw, q, yw) − r(mw, q, yl)), while the
conditional preference optimization objective max-
imizes σ(r(mw, q, yw) − r(ml, q, yw)). The two
objectives work in collaboration to ensure that the

multimodal LLM captures preferences based on
both visual and language cues. Notably, while we
focus on the multimodal setting, this conditional
preference optimization could be beneficial to other
preference optimization scenarios involving multi-
ple input components. In such settings, DPO may
also ignore specific input components and encour-
age the model to learn unconditional preferences.

3.2 Anchored Preference Optimization

We also observe that the likelihood of the chosen
response often decreases during the optimization
process of DPO. This occurs because the standard
DPO objective only encourages the model to learn
a relative preference. Without further regulariza-
tion, the model may reduce the likelihood of the
chosen response to enlarge the likelihood gap be-
tween the chosen and rejected responses. This can
harm model performance, as the chosen responses
are often of high quality. To address this problem,
we add an anchor to the preference optimization,
forcing the reward of the chosen response to be
higher than a specific value: σ(r(mw, q, yw)− δ)
with δ as the anchor value. The corresponding
objective is

LAncPO = − log σ
(
β log

πθ(yw|mw, q)

πref(yw|mw, q)
− δ

)
.

In this way, we introduce absolute reward regu-
larization to the preference optimization process,
effectively avoiding the likelihood decrease of the
chosen response. The anchor is decided based on
the data properties and expected model behavior.
While we keep it simple in the default setting of
MDPO, one can always change the anchor values
and set multiple anchors for different purposes. The
anchor can also be added to the rejected response
in the opposite direction, forcing its reward to be
lower than a specific value. We compare other
anchors in §4.4.

The objective of MDPO is a combination of the
standard DPO, conditional preference optimization,
and anchored preference optimization:

LMDPO = LDPOm + LCoPO + LAncPO.

4 Experiment

In this section, we begin with the experimental
setup (§4.1). Then we present the main results on
three benchmarks (§4.2) and the human evaluation

8081



MMHalBench Object HalBench AMBER

Score ↑ HalRate ↓ CHAIRs ↓ CHAIRi ↓ CHAIRs ↓ Cover. ↑ HalRate ↓ Cog. ↓
Referenced Results (Not Directly Comparable)

GPT-4V (Achiam et al., 2023)†♯ 3.49 0.28 13.6 7.3 4.6 67.1 30.7 2.6

LLaVA-v1.5-7B (Liu et al., 2024a)‡♯ 2.11 0.54 53.6 25.2 7.8 51.0 36.4 4.2
+ HACL (Jiang et al., 2024)‡ 2.13 0.50 - - - - - -
+ POVID (Zhou et al., 2024b)♯ 2.08 0.56 48.1 24.4 - - - -
+ OPERA (Huang et al., 2024)♯ 2.15 0.54 45.1 22.3 - - - -
+ VCD (Leng et al., 2024)♯ 2.12 0.54 48.8 24.3 - - - -
+ EOS (Yue et al., 2024)‡♯ 2.03 0.59 40.3 17.8 5.1 49.1 22.7 2.0
+ HA-DPO (Zhao et al., 2023)‡♯ 1.97 0.60 39.9 19.9 6.7 49.8 30.9 3.3
+ HALVA (Sarkar et al., 2024)‡ 2.25 0.54 - - 6.6 53.0 32.2 3.4

LLaVA-v1.5-13B (Liu et al., 2024a)† 2.42 - 46.3 22.6 7.8 51.0 36.4 4.2
+ RLHF-V (Yu et al., 2024a)† 2.81 0.49 12.2 7.5 6.3 46.1 25.1 2.1
+ HSA-DPO (Xiao et al., 2024)† 2.61 0.48 5.2 3.2 2.1 47.3 13.4 1.2
+ HALVA (Sarkar et al., 2024)‡ 2.58 0.45 - - 6.4 52.6 30.4 3.2

Qwen-VL-Chat (Bai et al., 2023)† 2.89 0.43 36.0 21.3 6.6 53.2 31.0 2.9
+ Silkie-80K (Li et al., 2023)† 3.01 0.41 25.3 13.9 5.4 55.8 29.0 2.0

3B Multimodal LLMs

Bunny-v1.0-3B (He et al., 2024) 2.11 0.58 43.0 8.9 9.8 75.6 64.9 6.0
+ DPO 2.28 0.56 44.3 7.6 7.9 74.1 58.9 4.8
+ MDPO 2.96 0.42 27.0 4.6 4.9 67.4 37.7 2.4

7B Multimodal LLMs

LLaVA-v1.5-7B (Liu et al., 2024a) 2.19 0.57 54.7 15.9 7.4 51.8 34.7 4.1
+ DPO 2.14 0.65 49.0 13.0 6.5 55.1 34.5 2.3
+ MDPO 2.39 0.54 35.7 9.8 4.4 52.4 24.5 2.4

Table 1: Main results of Bunny-v1.0-3B and LLaVA-v1.5-7B trained with different preference optimization
objectives. We report overall score and hallucination rate (HalRate) on MMHalBench, CHAIR scores at both
response and object levels on Object HalBench, along with CHAIR scores, object coverage (cover.), hallucination
rate (HalRate), and cognition (Cog.) on AMBER. The best result for each metric in each group is in bold. For
reference, we also provide additional results using various multimodal LLMs, preference data, and learning
objectives, although these are not directly comparable. Results from contemporary work focusing on multimodal
preference data: †Xiao et al. (2024), ‡Sarkar et al. (2024), and ♯Yu et al. (2024b).

(§4.3) of MDPO. We further provide in-depth anal-
ysis (§4.4) and fine-grained results (§4.5). Finally,
we conduct a qualitative study (§4.6).

4.1 Experimental Setup

Models. We apply MDPO on two multimodal
LLMs in different sizes. Bunny-v1.0-3B (He et al.,
2024) is a 3B model building upon SigLIP (Zhai
et al., 2023) and Phi-2 (Javaheripi et al., 2023). It
is pretrained on 2M image-text pairs and finetuned
on 695K instruction tuning data. LLAVA-v1.5-7B
(Liu et al., 2024a) is a 7B model based on CLIP
(Radford et al., 2021) and Vincuna (Chiang et al.,
2023). It is pretrained on 558K image-text pairs
and finetuned on 665K instruction tuning data.

Preference Data. We sample 10K preference data
from Silkie (Li et al., 2023) with instructions from

LLaVA-Instruct-150K (Liu et al., 2024a) for train-
ing. The original Silkie dataset contains 80K prefer-
ence data collected on 12 multimodal LLMs. While
the original Silkie paper explores the effect of ex-
treme data size, we follow the majority of prior
works using around 10K data for preference opti-
mization (Sun et al., 2023; Zhao et al., 2023).

Evaluation Benchmarks. We evaluate the perfor-
mance of MDPO on three widely used benchmarks
for multimodal LLMs with a special focus on hal-
lucination. MMHalBench (Sun et al., 2023) is a
practical question answering benchmark contain-
ing eight question categories and 12 object top-
ics. Following the official setting, we use GPT4
(Achiam et al., 2023) to assess the overall quality
of responses with a score betwen zero and six, and
the hallucination rate. Object HalBench (Rohrbach
et al., 2018) is a widely adopted benchmark to as-
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Figure 4: Human evaluation on MMHalBench.

sess object hallucination. We follow the setting of
Yu et al. (2024a) to augment the benchmark with
eight diverse prompts and evaluating on 300 in-
stances. We report the CHAIR scores (Rohrbach
et al., 2018) assessing hallucination rate of response
level (CHAIRs) and object level (CHAIRi). AM-
BER (Wang et al., 2023) is a multimodal LLM
hallucination benchmark with fine-grained object
annotation. We focus on the generative task con-
sisting of 1K images. Using the official evaluation
tool, we report a variant of CHAIR score, object
coverage, rate of hallucinated responses, and hallu-
cination rate overlapping with human cognition.

Baselines. We primarily compare MDPO with
standard DPO. The standard DPO baseline shares
the same training process, data, and hyper-
parameters, despite different learning objectives.
We further provide the results of other multimodal
LLMs for reference, although they are not directly
comparable due to different base models, prefer-
ence data, and alignment methods. This group
contains GPT-4V (Achiam et al., 2023), LLaVA-
v1.5-13B (Liu et al., 2024a), Qwen-VL-Chat (Bai
et al., 2023), POVID (Zhou et al., 2024b), HACL
(Jiang et al., 2024), OPERA (Huang et al., 2024),
VCD (Leng et al., 2024), EOS (Yue et al., 2024),
HA-DPO (Zhao et al., 2023), HALVA (Sarkar et al.,
2024), RLHF-V (Yu et al., 2024a), HSA-DPO
(Xiao et al., 2024), and Silkie (Li et al., 2023).
Some of them are contemporary works to ours.

Implementation Details. We train all the mod-
els for 3 epochs with a batch size of 32. We use
a learning rate of 0.00001, a cosine learning rate
scheduler, and a warmup ratio of 0.1. We set the β
of preference optimization to 0.1. Following prior
work (Zhao et al., 2023; Li et al., 2023), we use
LoRA (Hu et al., 2021) to tune the model. Specifi-
cally, we set the α to 128 and rank to 64 for LoRA.
MDPO and standard DPO share the same configu-
ration above. For MDPO, we set δ = 0 by default.

4.2 Main Results

Tab. 1 presents the main results. On all three bench-
marks, MDPO consistently performs better than

Figure 5: Impact of data scale on the performance
of standard DPO and MDPO, using Bunny as the base
model. We assess the overall score and hallucination
rate on MMHallBench. MDPO is effective across dif-
ferent scales, whereas standard DPO does not exhibit a
scaling effect in multimodal scenarios.

DPO for Bunny and LLaVA. Notably, MDPO en-
hances the 3B model (Bunny) with 10K preference
data to be comparable to a stronger 7B base model
(Qwen-VL-Chat) trained with DPO on 80K data.
The former preference data is only a subset of the
latter. This result highlights that a proper objective
can be more important than data scale and diver-
sity in multimodal preference optimization. More-
over, MDPO is specifically effective in reducing
hallucination, which aligns with the objective of
conditional preference optimization. While MDPO
may lead to a decrease in object coverage, this de-
crease is minor given the significant improvement
in overall quality and reduction in hallucination.

4.3 Human Evaluation

To further verify the effectiveness of MDPO, we
conduct human evaluation on MMHalBench, in
which we ask domain experts to pick the better
response generated by Bunny trained with either
DPO or MDPO. The results are presented in Fig. 4.
Overall, responses from MDPO are of better or
same quality on 89% instances compared to DPO.
In contrast, DPO only achieves better performance
on 11% instances.

4.4 Analysis

MDPO is effective across different scales of pref-
erence data. We assess the overall score and
hallucination rate on MMHallBench, as shown in
Fig. 5. We find that MDPO is effective and con-
sistently outperforms DPO across different data
scales, demonstrating that our conditional prefer-
ence method enhances multimodal preference opti-
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MMHalBench Object HalBench

Score HalRate CHAIRs CHAIRi

mDPO 2.96 0.42 27.0 4.6
- conditional 2.36 0.53 40.3 7.1
- anchored 2.50 0.48 34.3 5.7
- both (i.e., DPO) 2.28 0.56 44.3 7.6

Table 2: Ablation results on MDPO with conditional
preference or/and anchored preference removed.
While both components are essential in MDPO, an-
chored preference alone brings only slight improvement
over DPO. This indicates that conditional preference is
crucial in multimodal scenarios.

MMHalBench Object HalBench

Score HalRate CHAIRs CHAIRi

Random image 2.81 0.46 40.7 6.6
Crop 0-20% 2.96 0.42 27.0 4.6
Crop 20%-50% 2.92 0.42 33.7 5.4
MoCo v2 2.82 0.44 32.3 5.9

Table 3: Comparison of strategies to create rejected
images in MDPO. Among all the strategies, the de-
fault strategy in MDPO, Cropping 0-20% of the chosen
images, retains some similarities with the original im-
ages but contains insufficient visual information, thereby
providing effective preference optimization signals. In
contrast, random images are too easy to identify, while
MoCo v2’s data augmentation (Chen et al., 2020) may
not produce clearly worse images.

mization. Additionally, we observe that MDPO’s
performance increases with the scale of data, while
DPO does not exhibit a scaling effect. This indi-
cates that MDPO better utilizes multimodal pref-
erence data compared to DPO. Specifically, DPO
struggles to fully leverage multimodal preference
data, and its neglect of the visual modality cannot
be mitigated by merely increasing the size of the
preference data.

Both designs in MDPO are effective, with con-
ditional preference being more crucial. We con-
duct an ablation study to evaluate the contributions
of each component in MDPO, as shown in Tab. 2.
While both anchored preference and conditional
preference enhance the overall performance of
MDPO, the results indicate that conditional prefer-
ence leads to greater improvements than anchored
preference. This suggests that conditional prefer-
ence is the key factor in enhancing the effectiveness
of DPO in multimodal scenarios, ensuring that the
model better utilizes the visual modality.

Using hard negative images for rejection im-

MMHalBench Object HalBench

Anchor Score HalRate CHAIRs CHAIRi

yw 2.96 0.42 27.0 4.6
yw & yl 2.98 0.39 29.3 5.0
yw & yl & ml 2.85 0.4 34.7 6.1

Table 4: Comparison of anchors used in MDPO.
MDPO adds an anchor to regularize the r(mw, q, yw) to
be positive by default. Adding additional anchors to reg-
ularize the rewards of instances with rejected responses
(yl) or images (ml) to be negative does not show an
obvious improvement.

proves preference optimization. We evaluate
MDPO with different methods for constructing the
rejected image, as shown in Tab. 3. Among all the
strategies, the default strategy in MDPO, which in-
volves cropping 0-20% of the chosen images, con-
sistently outperforms the others. This indicates that
using hard negative images, which retain some sim-
ilarities with the original images but also have parts
erased, provides effective preference optimization
signals. In contrast, random images are too easy
to identify, while MoCo v2’s data augmentation
(Chen et al., 2020) is for creating similar images.

Adding anchors to rejected responses or im-
ages brings litter improvement. In MDPO, we
introduce an anchor to regularize r(mw, q, yw)
to be positive by default. We also experi-
mented with adding additional anchors to regu-
larize r(mw, q, yl) and r(ml, q, yw) to be negative.
However, the additional anchors do not yield signif-
icant improvements. The results, shown in Tab. 4,
indicate that only using the anchor on r(mw, q, yw)
is sufficient. Adding anchors to rejected responses
or images may complicate the training process with-
out providing clear advantages.

4.5 Fine-grained Results

We further compare the fine-grained results of DPO
and MDPO on MMHalBench. As shown in Tab. 5,
among the eight question categories, MDPO out-
performs standard DPO on six of them. MDPO
shows significant improvement particularly on ad-
versarial questions with false premises about im-
ages. MDPO can identify the incorrect information
in the question according to the image, while DPO
fail to do so. These results also show the advantage
of MDPO under various practical scenarios.
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overall attribute adversarial comparison counting relation environment holistic other

Bunny 2.11 3.92 0.83 2.17 2.33 2.67 2.25 1.75 1.00
+ DPO 2.28 3.25 1.50 1.42 2.50 2.67 4.25 1.75 0.92
+ MDPO 2.96 3.08 4.17 2.00 3.50 3.25 4.08 2.17 1.42

Table 5: Fine-grained results on MMHalBench with a maximum score of six. MDPO outperforms standard DPO
on six out of eight types of questions, showing significant improvement particularly on adversarial questions with
false premises about images.

4.6 Qualitative Study
In Fig. 3, we compare the When trained with stan-
dard DPO, Bunny often assumes the image descrip-
tion in the question is correct, responding accord-
ingly, even if the question contains an adversarial
premise regarding the image. In contrast, MDPO
identifies the false premise in the question by refer-
encing the image. Moreover, Bunny trained with
standard DPO may disregard the image and pro-
vide an educated guess for the answer. Conversely,
MDPO delivers a correct answer that is conditioned
on the image.

5 Related Work

Reinforcement learning from human feed-
back (RLHF; Christiano et al. 2017; Ouyang et al.
2022) has proven to be an effective approach
for aligning LLMs with human values. Direct
preference optimization (DPO; Rafailov et al.
2023), which involves directly optimizing LLMs
based on human preferences, has been widely
adopted in RLHF due to its strong performance
and the elimination of the need for a separate
reward model. Significant efforts have been made
to further enhance the efficacy and efficiency of
DPO, which can be categorized into algorithmic
and data-related advancements. On the algorithmic
side, various approaches aim to improve the
efficiency of DPO. For example, ORPO (Hong
et al., 2024) models preferences using an odds
ratio and combines instruction fine-tuning and
preference optimization into a unified training
process. Methods such as CPO (Xu et al., 2024a),
TPO (Saeidi et al., 2024), and SimPO (Meng
et al., 2024) simplify DPO by eliminating the
use of a reference model, thereby reducing com-
putational and memory overhead. Additionally,
IPO (Azar et al., 2024) addresses the issue of
reward overfitting in DPO. On the data side,
approaches such as KTO (Ethayarajh et al., 2024)
and NCA (Chen et al., 2024) seek to overcome
DPO’s requirement for paired preference data by
designing optimization goals that can also utilize

unpaired data. Iterative DPO (Xu et al., 2023; Yuan
et al., 2024; Xiong et al., 2024) and SPPO (Wu
et al., 2024) propose sampling preference data in
an on-policy manner, achieving better results than
off-policy DPO. WPO (Zhou et al., 2024a) adapts
off-policy data to resemble on-policy data by
reweighting preference pairs. More closely related
to our work, studies by Park et al. (2024) and Dong
et al. (2024) address the reward hacking problem
in textual preference optimization, where human
preference may be biased towards longer outputs.
They propose to calibrate the rewards in DPO with
respect to output length. In this work, we discover
a novel challenge in multimodal DPO, where
preference optimization often neglects images. We
then propose a solution to this problem through
conditional preference optimization.

In multimodal scenarios, recent works mainly
focus on creating multimodal preference data (Li
et al., 2023; Zhao et al., 2023; Xiao et al., 2024;
Zhou et al., 2024b; Pi et al., 2024; Sarkar et al.,
2024; Yu et al., 2024b; Deng et al., 2024). These
efforts include collecting human preference (Sun
et al., 2023; Yu et al., 2024a), preference from
advanced multimodal LLMs (Li et al., 2023; Yu
et al., 2024b), and preference from the model to
align itself (Deng et al., 2024). In terms of learn-
ing objectives, recent works mainly follows DPO
for LLMs (Li et al., 2023; Zhao et al., 2023; Zhou
et al., 2024b). Some also apply reinforcement learn-
ing (Sun et al., 2023; Jing and Du, 2024) and con-
trastive learning (Sarkar et al., 2024; Jiang et al.,
2024). Our work studies an overlooked but crucial
problem in the multimodal DPO objective.

6 Conclusion

We propose MDPO, a preference optimization
method dedicated to multimodal scenarios. MDPO
leverages conditional preference optimization to
encourage multimodal LLMs to capture prefer-
ence labels based on both visual and language
cues. It further introduces anchored preference
optimization to prevent the likelihood of preferred
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responses from decreasing. Experiments show that
MDPO consistently enhances multimodal LLM
performance and reduces hallucination across dif-
ferent model sizes on three widely used bench-
marks. Our method could be extended to reduce
hallucinations and enhance trustworthiness across
broader multimodal data and scenarios, including
multiple images (Wang et al., 2024), videos (Li
et al., 2024), in-context learning (Xu et al., 2024b),
and risk-sensitive domains (Chaves et al., 2024).
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Limitation

While we have conducted comprehensive experi-
ments to show the effectiveness of MDPO, there
are still several limitations. First, experiments on
more multimodal LLMs will provide further ev-
idence on the advantages and disadvantages of
MDPO, specifically on models across various sizes
and different architectures. Second, we focus on
the unconditional preference problem in multi-
modal preference optimization. However, many
contemporary studies have explored enhancing
DPO from other perspectives, which may be com-
plementary to ours. We leave the analysis of com-
bining methods for future work. Third, while we
have evaluated MDPO on three benchmarks, they
still represent a limited range of tasks and settings
compared with the numerous scenarios in the real
world. Further evaluation on more benchmarks can
deepen our understanding of the proposed method.
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