
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 784–801
November 12-16, 2024 ©2024 Association for Computational Linguistics

Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for
Sparse Architectural Large Language Models

Zihan Wang12*, Deli Chen1, Damai Dai1, Runxin Xu1, Zhuoshu Li1, Yu Wu1

1DeepSeek AI
2Northwestern University

{zw, victorchen}@deepseek.com

Abstract

Parameter-efficient fine-tuning (PEFT) is cru-
cial for customizing Large Language Models
(LLMs) with constrained resources. Although
there have been various PEFT methods for
dense-architecture LLMs, PEFT for sparse-
architecture LLMs is still underexplored. In
this work, we study the PEFT method for
LLMs with the Mixture-of-Experts (MoE) ar-
chitecture and the contents of this work are
mainly threefold: (1) We investigate the dis-
persion degree of the activated experts in cus-
tomized tasks, and found that the routing distri-
bution for a specific task tends to be highly con-
centrated, while the distribution of activated
experts varies significantly across different
tasks. (2) We propose Expert-Specialized Fine-
Tuning, or ESFT, which tunes the experts most
relevant to downstream tasks while freezing
the other experts and modules; experimental re-
sults demonstrate that our method not only im-
proves the tuning efficiency, but also matches
or even surpasses the performance of full-
parameter fine-tuning. (3) We further analyze
the impact of the MoE architecture on expert-
specialized fine-tuning. We find that MoE mod-
els with finer-grained experts are more advan-
tageous in selecting the combination of experts
that are most relevant to downstream tasks,
thereby enhancing both the training efficiency
and effectiveness. Our code is available at
https://github.com/deepseek-ai/ESFT.

1 Introduction

As the parameter scale of large language mod-
els (LLMs) continues to increase (Meta, 2024;
Mistral, 2024a; DeepSeek, 2024; Qwen, 2024),
parameter-efficient fine-tuning (PEFT) methods
(Han et al., 2024) are becoming increasingly impor-
tant in adapting pre-trained LLMs to downstream
customization tasks. However, existing works on
PEFT like low-rank adaptation (LoRA) and P-

*Work done during internship at DeepSeek.

Tuning (Hu et al., 2021; Liu et al., 2021) have pri-
marily focused on dense-architecture LLMs, with
research on sparse-architecture LLMs still being
markedly insufficient.

In this work, we focus on exploring PEFT
techniques within the Mixture-of-Experts (MoE)
LLMs (Mistral, 2024b; Databricks, 2024), as in-
troduced in §3.1. Unlike dense models where all
tasks are handled by the same parameters, in the
MoE architecture, different tasks are processed by
distinct activated experts (Lepikhin et al., 2021;
Fedus et al., 2021). Observations indicate that
task specialization in expert systems is the key
to the MoE LLM performance (Dai et al., 2024).
We further illustrate such specialization in §3.2
that experts activated by the same task’s data are
concentrated, while those for different tasks vary
significantly, suggesting MoE models use special-
ized expert combinations to handle different tasks.
Motivated by this, we propose Expert-Specialized
Fine-Tuning (ESFT), as illustrated in §3.3. ESFT
only tunes the experts with the highest affinity to
the task, while freezing the parameters of other
experts and modules.

The primary advantages of ESFT lie in two as-
pects: (1) Maintaining Expert Specialization:
ESFT prevents the decrement of specialization
in full-parameter fine-tuning, where experts not
adept at the task also update their parameters. Ex-
perimental results in §5.1 show that ESFT can
achieve aligned or even superior performance in
downstream tasks compared to full-parameter fine-
tuning, and better maintains performance in gen-
eral tasks. (2) Saving Computation Resources:
ESFT only trains the parameters of the selected
experts, which effectively reduces the storage of
up to 90% and training time up to 30% compared
to full-parameter fine-tuning, as shown in §5.2.

Besides, we delve deeper into the working mech-
anism of the ESFT method. We analyze the ex-
pert selection process in §6.1 and demonstrate how

784

https://github.com/deepseek-ai/ESFT


ESFT leverages specialized experts effectively, as
selecting 5-15% experts can achieve promising per-
formance in different tasks. We investigate the
efficiency of ESFT under different computational
constraints in §6.2, showcasing its ability to lever-
age training resources efficiently compared to other
PEFT methods like LoRA. Our studies in §6.3 an-
alyze the effects of shared and non-shared parame-
ters in the model on specialized and general perfor-
mance, pointing out the priority to selectively train
non-shared parameters in ESFT. Through ablation
studies in §6.4, we highlight the importance of our
expert relevance scores and the fine-grained expert
segmentation architecture.

2 Related Work

2.1 Parameter-efficient fine-tuning for dense
architectural LLMs

The goal of parameter-efficient fine-tuning (Han
et al., 2024) is to efficiently customize LLMs for
downstream tasks, while existing studies primarily
focus on dense architectural LLMs. PEFT meth-
ods for dense models can generally be categorized
into three approaches: (1) Adding new parame-
ters: methods of this kind fix the existing model
parameters and fine-tune the model on a small num-
ber of newly added parameters. Adapter (Houlsby
et al., 2019; Pfeiffer et al., 2020; He et al., 2021;
Wang et al., 2022) and Soft Prompt (Li and Liang,
2021; Liu et al., 2021; Zhang et al., 2023b; Lester
et al., 2021) are two typical representatives of this
category of methods. (2) Selecting existing pa-
rameters: methods of this type fine-tune a lim-
ited part of existing parameters, while keeping the
majority of the other parameters fixed. Based on
whether the trainable parameter space is continu-
ous, these methods can generally be divided into
structured training (Guo et al., 2020; Gheini et al.,
2021; He et al., 2023; Vucetic et al., 2022) and
unstructured training (Liao et al., 2023; Ansell
et al., 2021; Sung et al., 2021; Xu et al., 2021).
(3) Applying low-rank adaptation: LoRA (Hu
et al., 2021; Fomenko et al., 2024) is a widely-
used PEFT method, which decomposes the origin
weight matrices into low-rank components. Sub-
sequent works (Zhang et al., 2023a; Ding et al.,
2023; Lin et al., 2024; Liu et al., 2023; Dou et al.,
2024) have introduced numerous improvements to
the original LoRA method. However, the study of
PEFT in sparse models is still scarce. In this work,
we select and tune part of the experts based on their

downstream task affinity, as a unique selection di-
mension exclusive to the sparse MoE architecture.

2.2 Coarse- and Fine-grained MoE LLMs

Compared to dense LLMs (e.g., LLaMA series,
Meta, 2023b,a), MoE LLMs (e.g., Mixtral series,
Mistral, 2024a,b) can increase model size while
saving training and inference costs. Based on the
granularity of experts, existing large MoE mod-
els can generally be divided into two categories:
coarse- and fine-grained expert LLMs. Most exist-
ing MoE LLMs (Lepikhin et al., 2021; Fedus et al.,
2021; Roller et al., 2021; Dai et al., 2022; Shen
et al., 2024) have coarse-grained experts where the
number of experts is very limited. For example, 2
out of 8 experts are activated for Mixtral MoE se-
ries (Mistral, 2024a,b) and Grok-V1 (XAI, 2024).
As a result, a single expert has to learn complicated
patterns from different domain tasks simultane-
ously. To address this issue, DeepSeek MoE (Dai
et al., 2024) has introduced fine-grained expert
segmentation. In the DeepSeek-V2 (DeepSeek,
2024), there are as many as 162 experts, with 8
active experts (8 out of 66 experts are activated for
the DeepSeek-V2-Lite). The fine-grained division
of experts ensures a high degree of specialization
among the experts. Moreover, the specialized ex-
pert system enables the selection of experts that
are most relevant to the task for efficient tuning.

3 Methods

3.1 Preliminaries: Mixture-of-Experts for
Transformers

Mixture-of-Experts (MoE) for Transformers re-
place Feed-Forward Networks (FFNs) with MoE
layers. Each MoE layer consists of multiple experts
structurally identical to a FFN. Tokens are assigned
to and processed by a subset of the most relevant
experts based on their affinity scores, ensuring com-
putational efficiency in MoE layers. The output
hidden state hl

t of the t-th token in the l-th MoE
layer is computed as:

hl
t =

N∑

i=1

(
gi,tFFNn

i (u
l
t)
)
+ ul

t, (1)

gi,t =

{
si,t, si,t∈TopK({sj,t|1⩽j⩽N},K),

0, otherwise,
(2)

si,t = Softmaxi
(
ul⊤
t eli

)
, (3)

785



Trainable ModulesFrozen Modules

Training Task

Transformer Block × L

Feed-Forward 

Layer

Attention & Norm

Low Rank Adaptation (LoRA)Full-Parameter Fine-Tuning (FFT)

Input 𝐮𝑡

Output 𝐡𝑡
′

Training Task

Transformer Block × L

Feed-Forward 

Layer

Attention & Norm

Pretrained

Weights
LoRA - A

LoRA - B

Transformer Block × L

Expert-Specialized Fine-Tuning (ESFT)

Training Task

Feed-Forward 

Layer

Attention & Norm

…

Router

1 2 𝑁𝑟

Top-𝐾𝑟

3

E
x
p
er

ts

1……

1……

1……

1……

Input 𝐮𝑡

Output 𝐡𝑡
′

Figure 1: Comparison between Expert-Specialized Fine-Tuning (ESFT) and other fine-tuning methods. FFT trains
all parameters. LoRA combines pre-trained weights with low-rank matrices to reduce training costs. ESFT only
trains a subset of experts in a Mixture-of-Expert (MoE) architecture, optimizing efficiency and task specialization.

where N denotes the total number of experts,
FFNi(·) is the i-th expert FFN, gi,t denotes the gate
value for the i-th expert, si,t denotes the token-to-
expert affinity, TopK(·,K) denotes the set com-
prising K highest affinity scores among those cal-
culated for the t-th token and all N experts, and eli
is the centroid of the i-th expert in the l-th layer.

Recently, DeepSeekMoE (Dai et al., 2024)
proposes enhancements to the MoE architecture
through several techniques, including (1) Fine-
grained segmentation, segmenting each expert into
multiple smaller ones and keeping the same frac-
tion of experts to process each token, allowing
specialization in different knowledge types while
maintaining the same computational cost. (2)
Shared expert isolation, leveraging shared experts
that process all tokens to capture common knowl-
edge, reducing parameter redundancy and enhanc-
ing efficiency. The output of an MoE layer in
DeepSeekMoE is:

hl
t=

Ks∑

i=1

FFNs
i (u

l
t)+

N∑

i=1

(gi,tFFNn
i (u

l
t))+ul

t,

(4)

gi,t =

{
si,t, si,t∈TopK({sj,t|1⩽j⩽N},K−Ks),

0, otherwise,
(5)

where Ks is the number of shared experts, FFNs
i

and FFNn
i denote the shared and non-shared ex-

perts, respectively. Each expert is segmented into
m ones, with N and K also multiplied by m times
compared to the coarse-grained architecture.

3.2 Probing Task-Specific Expert
Specialization in MoE Models

Despite the significant success of MoE LLMs, a
clear understanding of the underlying mechanism

remains elusive. We conduct probing experiments
to understand how non-shared experts are utilized
across various tasks. These tasks, as detailed in
§4.1, include general domains like math and code,
as well as specialized domains like intent recog-
nition, summarization, legal judgment prediction,
and translation. These experiments reveal the ex-
pert specialization in MoE models in two aspects:

Expert Routing is Concentrated in the Same
Task We investigate the distribution of normal-
ized gate values, i.e., the sum of all expert-token
gate values for each expert, divided by the total
across all experts. Figure 2 displays this distribu-
tion, where the experts are sorted by their normal-
ized values from high to low. The figure shows
that a small subset of experts handles the majority
of gate values, indicating the model’s and concen-
trated expert allocation for a specific task.

Active Experts Vary Significantly across Tasks
We investigate the joint distribution of experts
across tasks. Figure 3 shows a heatmap of the
shared Top-6 experts for two independent data sam-
ples per task averaged across layers. This indicates
the degree of overlap of experts used within the
same task or between different tasks. Off-diagonal
values are near 0, and diagonal values are near 6,
indicating that the same task uses similar experts,
while different tasks use different sets.

3.3 Expert-Specialized Fine-tuning (ESFT)

The highly specialized expert system suggests that
different experts can be optimized for specific tasks.
Inspired by this, we propose Expert-Specialized
Fine-Tuning (ESFT) for MoE LLM customization,
which selectively fine-tunes the most relevant ex-
perts for downstream tasks to enhance computa-

786



1 2 4 8 16 32 64
Experts

0.00

0.05

0.10

0.15

0.20
N

or
m

al
iz

ed
 A

ve
ra

ge
 G

at
e 

Va
lu

e Intent
Summary
Law
Translation
Math
Code
Uniform

Figure 2: Top Expert distribution for specific tasks.
Shaded areas represent variance across layers. The
figure shows that few experts handle most gate values,
highlighting expert specialization for different tasks.

Figure 3: The average number of shared Top-6 routed
experts across tasks. The values are averaged by layer,
indicating that the sets of experts used for the same task
are consistent while different tasks are distinct.

tional efficiency and maintain expert specialization.
Figure 1 illustrates the differences between our
method and existing methods. Below, we intro-
duce our method step by step.

Data Sampling We randomly sample a subset
Ds = {(xi, yi)}Ns

i=1 from the training data D =
{(xi, yi)}Ni=1 for expert selection, where xi and yi
denote the input and label, respectively. Empir-
ically, we find that a subset of 32 concatenated
samples, each with a fixed length of L = 4096, is
robust enough to select the most relevant experts
for a task. We detail this claim in Appendix C.

Expert Relevance Score We propose two meth-
ods to calculate the relevance of an expert to a task
based on its affinity to the sample tokens, defined
as average gate score and token selection ratio,
respectively. Both methods assess each expert’s
relevance to downstream tasks and can be chosen
based on task-specific experimental performance.

Average Gate Score (ESFT-Gate) This score
calculates the average affinity of expert ei to all
tokens in the sampled data. It is defined as:

gli =
1

Ns

Ns∑

j=1

1

Lj

Lj∑

k=1

gli,k, (6)

where Lj is the length of the input sequence xj in
the sampled data Ds.

Token Selection Ratio (ESFT-Token) This
score calculates the ratio of tokens for which expert
ei is selected. It is defined as:

rli =
1

Ns

Ns∑

j=1

1

Lj

Lj∑

k=1

1

(
gli,k > 0

)

K
, (7)

where 1
(
gli,k > 0

)
is an indicator that equals 1 if

the gate score gli,k is positive, and 0 otherwise. K
is the number of experts selected per token.

Expert Selection and Fine-tuning For each
MoE layer l, we select a subset of experts to be fine-
tuned based on their relevance scores. We define
a threshold p ∈ (0, 1] as a hyperparameter con-
trolling the proportion of total relevance scores to
be included in the selected subset. For each layer
l, we select a minimal set of top-scored experts
El

s whose cumulative relevance score exceeds the
threshold p, satisfying:

∑

i∈El
s

Rl
i ⩾ p, (8)

where Rl
i is the relevance score (either rli or gli) of

expert i in layer l. During training and inference,
tokens can be assigned to any expert. However,
only the selected experts El

s in each layer can be
updated; other experts and modules remain frozen.

4 Experiment Setup

4.1 Main Evaluation
We evaluate our ESFT method on two common
LLM customization scenarios: (1) improving the
model’s specific ability in a domain where the
model may already have decent performance; (2)
adapting the model to a possibly narrow but un-
familiar specialized task.

4.1.1 Tasks for Model Enhancement
We choose two domain-specific tasks, i.e., Math
and Code, to evaluate how our method can enhance

787



the model’s existing abilities. The two domains are
widely concerned in current LLM research and
suitable for evaluation, as many pre-trained mod-
els can perform decently, while there is significant
potential for improvement through further train-
ing. We assess our method’s effectiveness through
performance gains.

For the Math domain, we use MetaMathQA (Yu
et al., 2023) for training and use GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021a)
for evaluation. For the Code domain, We train the
model on the Python subset of the enormous evol-
codealpaca dataset (Luo et al., 2023) to simulate
a more concentrated LLM customization scenario,
and assess its performance on HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021).

4.1.2 Tasks for Model Adaptation
We select four specialized tasks to evaluate how
our method can facilitate language models to adapt
to an unfamiliar downstream task, covering a di-
verse range of abilities that most models can excel
at after training but not without training: (1) Text-
to-JSON Intent Recognition in the BDCI-21 Smart
HCI NLU Challenge1, which requires converting
text instructions into JSON format for home ap-
pliances. (2) Text Summarization in the BDCI-
21 Summarization Challenge2, which summarizes
customer service call transcripts. (3) Legal judg-
ment Prediction in the the BDCI-21 Law Event
Prediction Challenge3, where the “case description”
and “judgment” are repurposed as a legal judgment
prediction task. (4) Low-resource Translation in
the ChrEn dataset (Zhang et al., 2020), translating
the minority Cherokee to English. Examples of the
tasks are shown in Appendix A.

To measure model performance, for the text-to-
JSON task, we calculate the exact match between
model output and reference answer; for other tasks,
we employ GPT-4 to score model output between
0 and 10 given reference answer4. All evaluations
use few-shot examples.

4.2 General Ability Evaluation
We select a broad range of benchmarks to evaluate
the extent to which the models’ general abilities are
preserved after training on new tasks. These bench-
marks include MMLU (Hendrycks et al., 2021b),

1https://www.datafountain.cn/competitions/511
2https://www.datafountain.cn/competitions/536
3https://www.datafountain.cn/competitions/540
4The exact version we use is gpt-4-1106-preview. The

evaluation instructions are in Appendix G.

TriviaQA (Joshi et al., 2017), HellaSwag (Zellers
et al., 2019), ARC-Challenge (Clark et al., 2018),
IFEval (Zhou et al., 2023), CEval (Huang et al.,
2023), and CLUEWSC (Xu et al., 2020), covering
comprehensive model ability evaluations across
various domains including natural language under-
standing, question answering, instruction follow-
ing, and common sense reasoning.

4.3 Backbone Model and Training Settings

We use the backbone architecture of DeepSeek-V2-
Lite (DeepSeek, 2024) for all experiments. The
model includes a fine-grained set of 66 experts for
each transformer layer. This makes it uniquely suit-
able at the time of this study for our method, which
benefits from expert specialization. We train the
model on a carefully curated alignment dataset that
excludes math and code data and take the result-
ing checkpoint as our vanilla model for subsequent
experiments. This alignment phase can activate
model ability across various domains while keep-
ing Math/Code ability as elementary to better ver-
ify the performance gains of our method in these
two fields.

We adopt two baselines: Full-Parameter Fine-
Tuning (FFT) and Low-Rank Adaptation (LoRA,
Hu et al., 2021). For LoRA, we add low-rank ma-
trices to all parameters for training except token
embeddings and the language modeling head. We
maintain a 1:1 ratio for task-specific data and align-
ment data for all methods, which we find is highly
effective in preserving general abilities obtained
from the alignment phase for FFT and LoRA. How-
ever, for our ESFT method, not adopting this data
mixing strategy may even better maintain general
ability. We detail this in Appendix F. All experi-
ments are done on the HFAI cluster5 with 2 nodes
of 8x Nvidia A100 PCIe GPUs.

For hyperparameter settings, all methods use a
batch size of 32 and a sequence length of 4096 for
training. For every task, we set the maximum steps
of training to 500, and evaluate the model every
100 steps. The learning rates are set to 3e-5, 1e-4,
and 1e-5 for FFT, LoRA, and ESFT, respectively,
based on a hyperparameter search in {1e-5, 3e-
5, 1e-4, 3e-4}. The LoRA rank is set to 8 and
scaling is set to 2, following Hu et al. (2021). The
threshold p is set to 0.1 for ESFT-Gate and 0.2
for ESFT-Token, respectively. §6.2 shows how we
determine the threshold for ESFT.

5https://doc.hfai.high-flyer.cn/index.html

788

https://www.datafountain.cn/competitions/511
https://www.datafountain.cn/competitions/536
https://www.datafountain.cn/competitions/540
https://doc.hfai.high-flyer.cn/index.html


Math Ability Code Ability Specialized Tasks

MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average

Vanilla LM 19.6 55.9 42.1 44.6 16.8 58.6 17.1 14.5 33.6

FFT 23.4 66.4 42.1 42.2 78.8 69.4 47.0 38.4 51.0
LoRA 20.6 58.9 39.6 44.8 67.8 64.7 39.7 23.1 44.9
ESFT-Token (Ours) 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.4
ESFT-Gate (Ours) 23.2 64.9 43.3 41.8 78.6 65.8 49.1 35.2 50.2

Table 1: Main performance comparison across methods and tasks. Best or near-best results are shown in bold and
second-best results are underlined. Our method ESFT provides a strong balance of performance across diverse
tasks, rivaling FFT and surpassing LoRA, particularly in specialized task domains.

CLUEWSC TriviaQA IFEval MMLU CEval HellaSwag ARC Average

Vanilla LM 81.5 67.7 42.5 57.5 59.9 74.0 53.7 62.4

FFT 80.9 ± 1.1 65.9 ± 0.7 34.2 ± 4.1 55.5 ± 1.0 58.8 ± 0.9 67.9 ± 3.8 48.4 ± 2.4 58.8 ± 1.3
LoRA 74.3 ± 7.7 63.4 ± 5.4 38.7 ± 2.5 55.5 ± 1.2 57.0 ± 1.5 72.8 ± 1.9 51.8 ± 2.3 59.1 ± 2.5
ESFT-Token 80.9 ± 0.9 66.7 ± 1.8 40.7 ± 1.3 57.1 ± 0.5 59.6 ± 0.8 72.3 ± 3.6 52.9 ± 1.5 61.5 ± 1.1
ESFT-Gate 81.4 ± 1.1 66.5 ± 2.3 40.2 ± 1.5 57.0 ± 0.4 59.5 ± 0.8 68.2 ± 9.9 51.5 ± 3.1 60.6 ± 2.3

Table 2: General ability performance comparison across methods and tasks. The performance for a task is averaged
across all training experiments, followed by the standard deviation across tasks. Best or near-best results are shown
in bold. Our method ESFT consistently achieves good performance among all tasks.

5 Results

5.1 Benchmark Performance Results

The results in Table 1 and Table 2 demonstrate sev-
eral conclusions. All methods can improve model
performance in customization tasks compared to
the vanilla model, while they may cause a perfor-
mance decrease in general tasks. Generally, the
performance increase is higher in model adapta-
tion tasks than in model enhancement tasks.

For customization ability evaluation, ESFT sur-
passes LoRA significantly and is competitive with
FFT. As shown in Table 1, ESFT-Token and ESFT-
Gate achieve near-best results in model enhance-
ment tasks like Math, and ESFT-Gate achieves the
best performance in the Humaneval task. ESFT
also excels in model adaptation tasks, with ESFT-
Gate achieving near-best performance in 3 tasks
out of 4. Notably, ESFT-Gate’s average of 50.2
is competitive compared to FFT’s 51.0, slightly
better than ESFT-Token’s 49.4, and significantly
surpasses LoRA’s 44.9. This demonstrates that
finding task-relevant experts can efficiently adapt
the model for efficient customization.

For general ability evaluation, ESFT consis-
tently outperforms FFT and LoRA by showing
less performance degradation. As illustrated in Ta-
ble 2, ESFT-token performs better than ESFT-gate,
with average scores of 61.5 and 60.6, respectively.
The results demonstrate a wide range of retention

in tasks such as TriviaQA and IFEval, surpassing
FFT’s 58.8 and LoRA’s 59.1. Both methods retain
performance better than LoRA and FFT, highlight-
ing their effectiveness in maintaining general task
performance6. Analyses in §6.3 indicate that such
degradation on general tasks for FFT and LoRA
may result from training shared parameters.

5.2 Computational Efficiency Results

The results in Figure 6 demonstrates that ESFT
exhibits several advantages in terms of training
time and storage space requirements:

Training Time The average training time for
ESFT-Token and ESFT-Gate is 19.8 minutes and
20.9 minutes, respectively. The FFT method takes
significantly longer at 28.5 minutes. Although
LoRA achieves a shorter training time of 16.5 min-
utes, our methods are relatively close.

Storage Space The average storage space of pa-
rameters trained is 2.57 GB for ESFT-Token and
3.20 GB for ESFT-Gate, while FFT demands a
substantial 28.6 GB. Although LoRA requires less
storage, ESFT performs significantly better than
LoRA in downstream task performance.

6We further investigate Math and Code performance of
the models trained on specialized tasks in Appendix H. FFT
and LoRA exhibit even more severe degradation, while ESFT
shows a minimal performance drop.

789



Figure 4: Number of experts trained in ESFT across layers and tasks. Earlier computed layers are numbered smaller.
Most tasks and layers train 5-15% of experts, demonstrating ESFT’s effectiveness in selecting task-related experts.

Figure 5: Computational efficiency results. Blue bars
show the training time and green lines show storage
space, where ESFT both perform high efficiency.

In summary, ESFT demonstrates excellent per-
formance in training time and storage space, signif-
icantly outperforming FFT. Furthermore, as shown
in Table 3, ESFT requires much fewer trainable pa-
rameters compared to FFT, resulting in lower GPU
memory usage. These advantages show ESFT’s
power in efficient language model customization.

6 Analysis

In this section, we investigate the expert selection
process of ESFT in §6.1, and demonstrate the per-
formance of ESFT and LoRA under different com-
putational constraints in §6.2. We analyze the ef-
fects of training shared and non-shared parameters
in §6.3, and conduct ablation studies in §6.4 to ver-
ify the importance of our expert relevance scores
and model structure of fine-grained experts.

6.1 ESFT Leverages Specialized Experts
Effectively

We analyze the number of experts ESFT trains
across tasks and layers to understand its expert
selection process. Results are shown in Figure 4.

From the results, we have several observations:
(1) The average number of experts used per task
across layers ranges from 2 to 15 out of 66, indi-
cating ESFT can have 75%-95% fewer trainable
parameters than FFT. (2) ESFT-Token generally
employs fewer experts while better maintaining
general performance, comparable to ESFT-Gate in
tasks like Math, Intent, and Law. (3) The number
of experts varies by task, with more specialized
tasks like Math and Translation using fewer ex-
perts; our method’s performances for these tasks
exceed LoRA to the greatest extent, indicating that
our method is especially suitable for more special-
ized tasks. (4) For most tasks, few experts are
chosen in the middle layers, indicating that expert
distribution is more concentrated in these layers.

6.2 ESFT Leverages Training Resources
Efficiently

Both ESFT and LoRA have a training efficiency
hyperparameter (p for ESFT and rank for LoRA).
Increasing its value would raise computational re-
source usage and potentially improve performance.
To understand how ESFT and LoRA perform un-
der different efficiency settings, we evaluate bench-
mark performance on the Math task. We set rank ⩽
512 for LoRA as a higher value will result in more
trainable parameters than FFT. Figure 6 illustrates
both specialized and general ability under different

790



Non-shared
Experts

Shared
Experts

Non-expert
Parameters

Trainable
Parameters

Specialized
Ability

General
Ability

Average

ALL ✓ ✓ 15.7B 51.0 58.8 54.9
Relevant ✓ × 1.85B 49.8 60.7 55.3
Relevant × × 1.4B 49.4 61.5 55.4

× ✓ × 450M 47.4 61.2 54.3
× ✓ ✓ 1.3B 49.0 60.0 54.5

Relevant ✓ ✓ 2.7B 50.8 60.3 55.6

× × × - 33.8 62.4 48.1

Table 3: Comparisons of different model configs based on whether training shared or non-shared parameters.
Results include trainable parameters and performance of specialized and general abilities. The best or near-best
results excluding the non-training setting are shown in bold.

Figure 6: Comparison of three methods under different training efficiency settings on the Math task. The x-axis
shows the average trainable experts per layer for ESFT and rank for LoRA, indicating the ratio of trained parameters.
The y-axis represents specialized and general ability. Markers on the lines indicate p or rank values. ESFT
consistently outperforms LoRA in both specialized and general ability.

training efficiency settings.
From the results, we can conclude: (1) All three

methods show a trade-off between training effi-
ciency and performance. Increasing trained param-
eters (p for ESFT and rank for LoRA) before a
certain point can improve performance. (2) Both
ESFT-Token and ESFT-Gate outperform LoRA at
any point, demonstrating higher specialized ability
and more stable general ability. (3) ESFT-Token
peaks in both specialized and general ability at
p=0.5, while ESFT-Gate peaks at p=0.3 for spe-
cialized and p=0.1 for general ability. (4) ESFT-
Token and ESFT-Gate performance saturates at
p=0.2 and p=0.1, respectively, indicating that most
expert choices may be less relevant to task perfor-
mance. We delve deeper into this in Appendix E.

6.3 Selectively Training Non-Shared
Parameters is the Key to ESFT

In our proposed ESFT method, we only fine-tune
a subset of non-shared experts. This section pro-
vides detailed discussions of several variants of our
method that may also train shared parameters. The
variables are based on: (1) whether training non-
shared experts or a task-relevant subset of them

(we use the Token Selection Ratio and set p=0.2);
(2) whether training shared experts; (3) whether
training other shared parameters including gates,
attention layers, and embeddings.

The results are shown in Table 3. We report
average trainable parameters across all tasks, per-
formance of specialized and general abilities, and
their average. Detailed numbers for all benchmarks
are shown in Appendix D. From the results, we can
draw several conclusions:

Specialized performance increases as train-
able parameters increase. The rank of trainable
parameters from 450M to 15.7B highly aligns with
the rank of specialized ability from 47.4 to 51.0.
This suggests that increasing trainable parameters
is effective in enhancing specialized performance.

General performance decreases as trainable
shared parameters increase. Whether relevant
non-shared experts are trained or not, general per-
formance decreases from 61.5 to 60.3, or from 62.4
to 60.0, respectively, as we train shared experts
and/or non-expert parameters. As the complete
set of non-shared experts is trained, general perfor-
mance decreases further from 60.3 to 58.8. This
suggests that training shared parameters is more

791



Math Ability Code Ability Specialized Tasks

MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average

ESFT-Token 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.4
∆ of rand -1.0 -3.7 -2.5 0.2 -2.6 -1.7 1.3 -13.5 -2.8

ESFT-Gate 23.2 64.9 43.3 41.8 78.6 65.8 49.1 35.2 50.2
∆ of rand -1.7 -3.2 -4.3 1.6 -5.0 0.3 -2.9 -20.4 -4.4

Table 4: Performance comparison between original experts and random experts. Replacing high-affinity experts
with random ones significantly harms model performance across different tasks.

1 2 4
Group Size

14

16

18

20

22

24

Pe
rf

or
m

an
ce

 (M
AT

H
)

Performance

FFT MATH
ESFT-Token MATH
ESFT-Gate MATH
FFT GSM8K
ESFT-Token GSM8K
ESFT-Gate GSM8K

1 2 4
Group Size

4

8

16

32

64

Av
er

ag
e 

N
um

be
r o

f E
xp

er
ts Average Number of Experts

FFT Experts
ESFT-Token Experts
ESFT-Gate Experts

40

45

50

55

60

65

70

Pe
rf

or
m

an
ce

 (G
SM

8K
)

Figure 7: Experiment results for grouped experts. As
the experts become more coarse-grained, ESFT de-
grades more severely than FFT.

likely to cause overfitting and forgetting on general
tasks compared to training non-shared parameters.

It is highly prioritized to train task-relevant
non-shared experts. Training relevant experts
achieves at least 55.3, while other settings achieve
at most 54.9, even with higher demands of up to
15.7B parameters. Therefore, fine-tuning these ex-
perts is highly prioritized for model customization.

We propose two major training strategies based
on these conclusions:

1. Prioritize specialized ability: Train all
shared parameters and task-relevant non-
shared experts to maximize the enhancement
of specialized performance.

2. Balance specialized and general ability,
and computational efficiency: Train only
task-relevant non-shared experts to minimize
parameter costs while maximizing the main-
tenance of general ability.

6.4 Analysis of Key Modules in ESFT
In this section, we analyze and demonstrate that the
effectiveness of our method lies in two modules:
(1) our proposed expert relevance score functions
and (2) the fine-grained expert segmentation of the
MoE model architecture.

Expert Relevance Score Function In this work,
we propose Average Gate Score and Token Selec-
tion Ratio as expert relevance score functions to

filter relevant experts for different tasks. To demon-
strate their effectiveness, we replace the experts
obtained from these functions with random experts
while keeping the number of activated experts per
layer the same. Results in Table 4 show that replac-
ing relevant experts with random ones significantly
decreases task performance, demonstrating the ef-
fectiveness of our scoring function.

Fine-Grained Expert Segmentation of the
MoE Model We use the fine-grained segmented
DeepSeek-V2 model as our backbone. To demon-
strate t the effectiveness of this fine-grained seg-
mentation, we use greedy search (as detailed in
Appendix B) to group experts, simulating coarse-
grained segmentation. Experts in the same group
share the average affinity score. We maintain the
computational cost by selecting a constant 1/8 of
experts for each token. Experiment results of
the Math domain in Figure 7 show that as the
group size increases, our method’s performance de-
creases more severely than FFT, while the training
cost (i.e., trainable experts) rises. These findings
indicate that our method, and even effective LLM
customization, highly rely on a fine-grained MoE
LLM architecture with more specialized experts.

7 Conclusion

In this work, we study parameter-efficient fine-
tuning methods for sparse large language models
with the Mixture of Experts (MoE) architecture.
We first observe that tasks from different domains
are handled by distinct combinations of experts.
We then propose selecting the most relevant experts
for downstream tasks using two metrics: average
gate score and token selection ratio. Experimental
results show that our method significantly reduces
training costs while matching or surpassing full
parameter fine-tuning results. Further analysis con-
firms that our method enhances the specialization
of the expert system within the MoE architecture.

792



Acknowledgement and Limitations

We would like to thank Xingkai Yu for helping
to organize the ESFT open-source training code.
Due to the limitation of the availability of other
fine-grained MoE models, our method was only
tested on the DeepSeek-V2-Lite MoE model. The
conclusions drawn from this model require further
validation when applied to other contexts. Besides,
due to the lack of parameter-wise and structurally
aligned MoE models with different expert granu-
larities, we used a simulation approach by bind-
ing several groups of experts to compare coarse-
grained and fine-grained MoE methods.

References
Alan Ansell, Edoardo Maria Ponti, Anna Korhonen,

and Ivan Vulić. 2021. Composable sparse fine-
tuning for cross-lingual transfer. arXiv preprint
arXiv:2110.07560.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Trevor Cai, Anselm Levskaya, Charles Sutton,
et al. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Maarten Dehghani, Pieter Abbeel, Deepak Pathak,
Brandon Sanders, Vishal Katarkar, Zareen Xu, et al.
2021. Evaluating large language models trained on
code. In NeurIPS.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Gsm8k: A dataset for
grade school math problem solving. In NeurIPS.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models. CoRR, abs/2401.06066.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang
Sui, Baobao Chang, and Furu Wei. 2022. Stable-
moe: Stable routing strategy for mixture of experts.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 7085–7095. Association for Com-
putational Linguistics.

Databricks. 2024. Dbrx: Resources and code examples.

DeepSeek. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
CoRR, abs/2405.04434.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. Loramoe: Alleviate world knowledge forget-
ting in large language models via moe-style plugin.
Preprint, arXiv:2312.09979.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. CoRR,
abs/2101.03961.

Vlad Fomenko, Han Yu, Jongho Lee, Stanley Hsieh,
and Weizhu Chen. 2024. A note on lora. arXiv
preprint arXiv:2404.05086.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. 2021.
Cross-attention is all you need: Adapting pretrained
transformers for machine translation. arXiv preprint
arXiv:2104.08771.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
CoRR, abs/2403.14608.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao,
and Bohan Zhuang. 2023. Sensitivity-aware visual
parameter-efficient fine-tuning. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision, pages 11825–11835.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring mathematical problem
solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Dan Hendrycks, Collin Burns, Steven Basart, et al.
2021b. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations (ICLR).

793

http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/V1/2022.ACL-LONG.489
https://doi.org/10.18653/V1/2022.ACL-LONG.489
https://github.com/databricks/dbrx
https://arxiv.org/abs/2312.09979
https://arxiv.org/abs/2312.09979
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961


Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023.
C-Eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. arXiv preprint
arXiv:2305.08322.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Compre-
hension. arXiv e-prints, arXiv:1705.03551.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021.
OpenReview.net.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for genera-
tion. arXiv preprint arXiv:2101.00190.

Baohao Liao, Yan Meng, and Christof Monz. 2023.
Parameter-efficient fine-tuning without introducing
new latency. arXiv preprint arXiv:2305.16742.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang,
Yasha Wang, and Hong Mei. 2024. Lora dropout as
a sparsity regularizer for overfitting control. arXiv
preprint arXiv:2404.09610.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2023.
Moelora: An moe-based parameter efficient fine-
tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-
tuning v2: Prompt tuning can be comparable to fine-
tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Meta. 2023a. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288.

Meta. 2023b. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.

Meta. 2024. Llama 3 model card.

Mistral. 2024a. Cheaper, better, faster, stronger: Con-
tinuing to push the frontier of ai and making it acces-
sible to all.

Mistral. 2024b. Mixtral of experts. CoRR,
abs/2401.04088.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Qwen. 2024. Introducing qwen1.5.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models. CoRR, abs/2106.04426.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin.
2024. Jetmoe: Reaching llama2 performance with
0.1m dollars. CoRR, abs/2404.07413.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34:24193–24205.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam
Ziaeefard, James J Clark, Brett H Meyer, and War-
ren J Gross. 2022. Efficient fine-tuning of bert mod-
els on the edge. In 2022 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1838–
1842. IEEE.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022. Adamix: Mixture-of-adapter for
parameter-efficient tuning of large language models.
arXiv preprint arXiv:2205.12410, 1(2):4.

XAI. 2024. Grok open release.

Liang Xu, Hai Hu, Xuanwei Zhang, et al. 2020. Clue:
A chinese language understanding evaluation bench-
mark. arXiv preprint arXiv:2004.05986.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. arXiv
preprint arXiv:2109.05687.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

794

https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://mistral.ai/news/mixtral-8x22b
https://mistral.ai/news/mixtral-8x22b
https://mistral.ai/news/mixtral-8x22b
https://qwenlm.github.io/blog/qwen1.5
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/2106.04426
https://doi.org/10.48550/ARXIV.2404.07413
https://doi.org/10.48550/ARXIV.2404.07413
https://github.com/xai-org/grok-1


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Com-
putational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers,
pages 4791–4800. Association for Computational
Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget allocation
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

Shiyue Zhang, Benjamin Frey, and Mohit Bansal. 2020.
Chren: Cherokee-english machine translation for
endangered language revitalization. In EMNLP2020.

Zhen-Ru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu
Wang, Jun Huang, and Songfang Huang. 2023b.
Towards adaptive prefix tuning for parameter-
efficient language model fine-tuning. arXiv preprint
arXiv:2305.15212.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. Preprint, arXiv:2311.07911.

795

https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911


Appendix

A Examples for Specialized Tasks

Table 5 presents task examples as prompts and cor-
responding reference responses for each special-
ized task, including intent recognition, text sum-
marization, legal judgment prediction, and low-
resource translation.

B Strategy for Grouping Experts

To group experts together and simulate coarse-
grained mixture-of-experts transformer models, we
calculate expert similarity and group the experts by
maximizing in-group similarities using a greedy
search algorithm.

We sample data from the alignment dataset, con-
taining 32 samples each with a sequence length of
4096, to calculate the similarity between experts.
We initialize a co-occurrence matrix for all expert
pairs as a zero matrix. For each pair of experts
that occur simultaneously in a token’s Top-6 ex-
pert choices, we increment their score by 1 in the
matrix. After iterating through the dataset, we cal-
culate the similarity between each pair of experts
i and expert j using the cosine similarity between
the vectors of row i and row j in the matrix.

To obtain an expert grouping strategy through
greedy search, we calculate the average intra-group
similarity (the average pairwise similarity of all ex-
perts within the group) for all possible K-expert
groups (where K is the group size, either 2 or 4)
from the 64 non-shared experts out of the 66 ex-
perts in each layer. We then select the K-expert
group with the highest score. For the remaining
unselected experts, we repeat this process until all
experts are selected and grouped.

C Analysis of Expert Affinity Sample Size

To evaluate the amount of data needed to identify
the most relevant experts for a task, we indepen-
dently sample two sets of data from the training set
for each of the six tasks and calculate the shared
Top-6 experts between the two sets. The results
are shown in Figure 8. As the sample size reaches
217 (i.e., 32 samples with a sequence length of
4096), all tasks exhibit a high number of shared
experts between the two samples. This indicates
that the sample size is sufficiently large to select
the top-relevant experts for the tasks.

Figure 8: Results of the shared Top-6 routed experts in
two independent samples of a task. The x-axis repre-
sents the sample size, and the y-axis shows the shared
Top-6 routed experts averaged by model layers.

D Detailed Results for Ablations on
Training Shared Parameters

We present two tables that summarize the perfor-
mance of various methods with different configura-
tions for training shared or non-shared parameters.
Table 6 shows results on general tasks, and Table 7
focuses on specialized tasks. The results indicate
that training only task-relevant non-shared experts
consistently maintains the best general task perfor-
mance. Additionally, training task-relevant non-
shared experts and all shared parameters yields the
best specialized task performance, short of full-
parameter fine-tuning.

E Qualitative Examples of the Expert
Choices

We present qualitative examples of the amount that
routed experts are trainable among all tokens for
each task in Figure 9. Each subfigure demonstrates
examples drawn from a task. Deeper tokens in-
dicate more trainable experts across all 26 layers
(top-6 experts per layer). The parameter p is set
to 0.2 for the token selection ratio. Results show
that our method, even handling only about 20% of
expert choices, covers a wide range of key task-
relevant words.

For example, in the Intent recognition task, the
deepest tokens are “意图” (Intent); in the legal
judgment task, the deepest tokens include “婚后”
(Post-marriage), “要求”(request), “原告” (plain-
tiff) and “被告” (defendant); in the Math task, the
deepest tokens are mainly numerical tokens such
as “3”, “5”, “6” and “7”; in the Code task, the deep-

796



Table 5: Examples for different specialized tasks.

Non-
shared

Shared Non-
expert

CLUEWSC TriviaQA IFEval MMLU CEval HellaSwag ARC Average

ALL ✓ ✓ 80.9 ± 2.2 65.9 ± 1.5 34.2 ± 8.1 55.5 ± 1.9 58.8 ± 1.7 67.9 ± 7.4 48.4 ± 4.7 58.8 ± 2.5
Relevant ✓ × 80.9 ± 2.1 66.1 ± 4.4 42.4 ± 3.0 56.8 ± 1.0 58.9 ± 1.6 67.8 ± 20.4 52.1 ± 5.7 60.7 ± 4.4
Relevant × × 80.9 ± 1.8 66.7 ± 3.5 40.7 ± 2.6 57.1 ± 1.0 59.6 ± 1.5 72.3 ± 7.0 52.9 ± 3.0 61.5 ± 2.3
× ✓ × 81.1 ± 3.4 66.7 ± 4.2 41.2 ± 1.6 56.9 ± 1.2 58.9 ± 1.6 71.3 ± 14.1 52.6 ± 5.6 61.2 ± 3.3
× ✓ ✓ 79.5 ± 4.4 65.8 ± 5.0 41.4 ± 3.2 56.2 ± 1.6 58.6 ± 1.7 67.5 ± 20.7 51.2 ± 4.1 60.0 ± 4.4

Relevant ✓ ✓ 80.4 ± 4.1 66.3 ± 4.1 41.1 ± 5.0 56.7 ± 1.2 59.0 ± 1.9 67.5 ± 20.3 51.5 ± 4.6 60.3 ± 4.6

× × × 81.5 67.7 42.5 57.5 59.9 74.0 53.7 62.4

Table 6: Performance of general tasks across methods based on whether training shared or non-shared parameters.
The performance for a task is averaged across all training experiments, followed by the standard deviation across
tasks. Best or near-best results are shown in bold.

est tokens are key words like “const”, or important
commentary words like “Fetch the list of IDs”.

F The Impact of Mixing Alignment Data
for Training

We adopt a 1:1 ratio for downstream task data and
alignment data for all methods during training to
better maintain general task performance. This
manual ratio is kept constant to avoid the signif-
icant additional costs associated with fine-tuning
the ratio for each task.

In this section, we present performance compar-
isons across various methods and tasks to reveal the
impact of mixing alignment data during training.
Table 9 presents the performance on downstream
specialized tasks, and Table 10 shows the perfor-
mance on general tasks.

The results indicate that FFT and LoRA benefit
from the inclusion of alignment data, leading to

improved performance in general tasks while only
slightly decreasing performance in downstream
tasks. Conversely, our ESFT method does not
exhibit the same advantage. Specifically, mixing
alignment data does not result in performance in-
creases in either general or downstream tasks. The
findings suggest that ESFT is inherently capable of
adapting to downstream tasks without significant
performance degradation in general tasks, even
without added alignment data. This highlights the
robustness and adaptability of ESFT in diverse task
settings.

G Evaluation Instructions for Specialized
Tasks

Table 11 presents the detailed criteria to evaluate
specialized tasks including text summarization, le-
gal judgment prediction, and low-resource trans-
lation. Each task includes specific instructions on

797



Non-shared Shared Non-expert Math Ability Code Ability Specialized Tasks

MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average

ALL ✓ ✓ 23.4 66.4 42.1 42.2 78.8 69.4 47.0 38.4 51.0
Relevant ✓ × 23.8 65.7 40.2 43.8 80.4 67.3 42.4 35.1 49.8
Relevant × × 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.4

× ✓ × 22.7 64.5 37.2 44.0 73.6 68.3 42.7 26.0 47.4
× ✓ ✓ 23.4 66.6 41.5 44.4 81.0 66.7 39.0 29.5 49.0

Relevant ✓ ✓ 24.8 66.0 42.1 43.2 82.2 69.5 46.4 32.2 50.8

× × × 19.6 55.9 42.1 44.6 16.8 58.6 17.1 14.5 33.6

Table 7: Performance of specialized tasks across methods based on whether training shared or non-shared parameters.
Best or near-best results are shown in bold.

Math Ability Code Ability

MATH GSM8K HumanEval MBPP Average

Vanilla LM 19.6 55.9 42.1 44.6 40.5

FFT 15.1 ± 0.3 40.3 ± 5.3 30.2 ± 4.4 40.6 ± 3.9 31.5 ± 2.5
LoRA 11.8 ± 0.6 36.1 ± 4.4 27.9 ± 2.3 36.6 ± 2.6 28.1 ± 2.0
ESFT-Token 19.4 ± 0.8 55.2 ± 0.7 39.5 ± 1.0 44.8 ± 0.8 39.7 ± 0.4
ESFT-Gate 19.5 ± 0.3 55.1 ± 1.3 39.3 ± 1.3 45.3 ± 0.6 39.8 ± 0.6

Table 8: Math and Code performance comparison across methods trained on specialized tasks. Best or near-best
results are shown in bold. ESFT retains performance significantly better compared to FFT and LoRA.

assessing predicted answers against reference an-
swers, focusing on aspects such as content accu-
racy, completeness, relevance, and consistency.

H Evaluating Math and Code as General
Tasks

We investigate the Math and Code performance
of models trained on adaptation tasks (i.e., Intent,
Summary, Law, Translation), as these domains re-
flect the model’s general ability if not specifically
trained on them. We report numbers with the set-
ting of training on only downstream task data. Re-
sults in Table 8 show that FFT and LoRA would
lead to significant performance drops in the Math
and Code domain, having average performance
drops of 9.0 and 12.4, respectively. Notably, our
ESFT method retains performance significantly
better compared to FFT and LoRA, with an aver-
age performance drop of less than 1.0.

798



Math Ability Code Ability Specialized Tasks

MATH GSM8K HumanEval MBPP Intent Service Law Translation Average

FFT 26.1 70.4 51.2 42.6 78.8 72.8 45.6 34.4 52.7
+ mix data -2.7 -4.0 -9.1 -0.4 0.0 -3.4 1.4 4.0 -1.7
LoRA 21.8 57.8 42.1 42.6 78.2 66.4 46.0 21.8 47.1
+ mix data -1.2 1.1 -2.5 2.2 -10.4 -1.7 -6.3 1.3 -2.2
ESFT-Token 25.2 64.8 42.1 43.8 78.0 67.4 47.2 31.9 50.0
+ mix data -2.6 1.2 -0.6 -1.2 -2.4 -2.0 -1.5 4.3 -0.6
ESFT-Gate 24.1 64.9 42.1 44.6 77.2 68.4 43.6 32.8 49.7
+ mix data -0.9 0.0 0.0 -2.8 1.4 -2.6 0.9 2.4 0.5

Table 9: Downstream task performance comparison across methods and tasks with and without mixing data from
the alignment phase. Results show that mixing alignment data leads to a minor performance decrease for most
methods.

CLUEWSC TriviaQA IFEval MMLU CEval HellaSwag ARC Average

Vanilla LM 81.5 67.7 42.5 57.5 59.9 74.0 53.7 62.4

FFT 76.8 ± 1.7 62.4 ± 10 28.4 ± 5.1 55.5 ± 1.1 58.4 ± 0.4 74.6 ± 3.2 53.6 ± 3.1 58.5 ± 2.5
+ mix data 4.1 3.5 5.8 0.0 0.4 -6.7 -5.2 0.3
LoRA 60.2 ± 27 61.2 ± 4.0 33.4 ± 6.1 52.3 ± 3.3 55.3 ± 2.3 71.5 ± 2.5 50.7 ± 2.2 55.0 ± 4.6
+ mix data 14.1 2.2 5.3 3.2 1.7 1.3 1.1 4.1
ESFT-Token 80.0 ± 2.5 67.5 ± 0.3 41.9 ± 0.8 57.3 ± 0.2 60.2 ± 0.5 74.5 ± 0.7 54.9 ± 0.7 62.3 ± 0.5
+ mix data 0.9 -0.8 -1.2 -0.2 -0.6 -2.2 -2.0 -0.8
ESFT-Gate 80.2 ± 1.6 67.6 ± 0.3 40.8 ± 2.4 57.3 ± 0.3 59.9 ± 0.4 74.3 ± 0.9 55.1 ± 0.9 62.2 ± 0.5
+ mix data 1.2 -1.1 -0.6 -0.3 -0.4 -6.1 -3.6 -1.6

Table 10: General task performance comparison across methods and tasks with and without alignment data mixing.
Results show that mixing alignment data improves FFT and LoRA in general tasks, but not our ESFT method. It
showcases that ESFT can adapt to downstream tasks directly with minimal performance loss in general tasks.

799



Task Evaluation Instruction

Summary 请你进行以下电话总结内容的评分。请依据以下标准综合考量，以确定预测答案与标准答案之
间的一致性程度。满分为10分，根据预测答案的准确性、完整性和相关性来逐项扣分。请先
给每一项打分并给出总分，再给出打分理由。总分为10分减去每一项扣除分数之和，最低可
扣到0分。请以“内容准确性扣x分，详细程度/完整性扣x分，...，总分是：x分"为开头。 1. 内
容准确性： -预测答案是否准确反映了客户问题或投诉的核心要点。 -是否有任何关键信息被
错误陈述或误解。 2. 详细程度/完整性： -预测答案中包含的细节是否充分，能否覆盖标准答
案中所有重要点。 -对于任何遗漏的关键信息，应相应减分。 3. 内容冗余度： -预测答案是
否简洁明了，和标准答案风格一致，不存在冗余信息。 - 如果预测答案过长或与标准答案风
格不一致，需相应减分。 4. 行动指令正确性： -预测答案对后续处理的建议或请求是否与标
准答案相符。 -如果处理建议发生改变或丢失，需相应减分。预测答案：{prediction}参考答
案：{ground_truth}

Law 请你进行以下法案判决预测内容的评分。请依据以下标准综合考量，以确定预测答案与标准答
案之间的一致性程度。满分为10分，根据预测答案的准确性、完整性和相关性来逐项扣分。请
先给每一项打分并给出总分，再给出打分理由。总分为10分减去每一项扣除分数之和，最低可
扣到0分。请以“相关性扣x分，完整性扣x分，...，总分是：x分"为开头。 1. 相关性：预测答
案与标准答案的相关程度是最重要的评分标准。如果预测的判决情况与标准答案完全一致，即
所有事实和结果都被精确复制或以不同但等效的方式表述，则应给予高分。若只有部分一致或
存在偏差，则根据一致的程度适当扣分。如果没有预测判决内容，扣10分。 2. 完整性：评估
预测答案是否涵盖了所有标准答案中提到的关键点，包括但不限于当事人、具体金额、责任判
定、费用承担等。如果遗漏重要信息，则应相应扣分。 3. 准确性：检查预测答案中提及的细
节、数字、日期和法律依据是否与标准答案保持一致。任何错误信息均需扣分，并且严重错误
应该导致更多的扣分。 4. 客观性与专业性：预测答案应客观反映法案内容并使用恰当的法律
术语。主观臆断或非专业表达需酌情扣分。预测答案：{prediction}参考答案：{ground_truth}

Translation You are an expert master in machine translation. Please score the predicted answer against the standard
answer out of 10 points based on the following criteria: Content accuracy: Does the predicted answer
accurately reflect the key points of the reference answer? Level of detail/completeness: Does the
predicted answer cover all important points from the standard answer? Content redundancy: Is the
predicted answer concise and consistent with the style of the standard answer? Respond following the
format: "Content accuracy x points, level of detail/completeness x points, ..., total score: x points".
The total score is the average of all the scores. Do not give reasons for your scores. Predicted answer:
{prediction} Reference answer: {ground_truth}

Table 11: Task instructions for model performance evaluation. The placeholder {prediction} and {ground_truth}
represent model prediction and reference answer, respectively.

800



(a) Intent recognition (b) Low-resource translation

(c) Text summarization (d) Legal judgment prediction

(e) Math domain (f) Code domain

Figure 9: Examples for our ESFT method showing the proportion of trainable routed experts among all tokens
for each task. Deeper tokens indicate more trainable experts across all 26 layers (top-6 experts per layer). The
parameter p is set to 0.2 for the token selection ratio. Results show that our method, even handling only about 20%
of expert choices, covers a wide range of key task-relevant words.

801


