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Abstract

Large language models have seen widespread
adoption in math problem-solving. However, in
geometry problems that usually require visual
aids for better understanding, even the most ad-
vanced multi-modal models currently still face
challenges in effectively using image informa-
tion. High-quality data is crucial for enhanc-
ing the geometric capabilities of multi-modal
models, yet existing open-source datasets and
related efforts are either too challenging for
direct model learning or suffer from misalign-
ment between text and images. To overcome
this issue, we introduce a novel pipeline that
leverages GPT-4 and GPT-4V to generate rel-
atively basic geometry problems with aligned
text and images, facilitating model learning.
We have produced a dataset of 4.9K geome-
try problems and combined it with 19K open-
source data to form our GeoGPT4V dataset.
Experimental results demonstrate that the Ge-
oGPT4V dataset significantly improves the ge-
ometry performance of various models on the
MathVista and MathVision benchmarks. The
code is available at https://github.com/
Lanyu0303/GeoGPT4V_Project.

1 Introduction

With large language models (LLMs) demonstrating
formidable performance, their application in solv-
ing mathematical problems has become an increas-
ingly popular trend (Toshniwal et al., 2024; Wang
et al., 2023b; Gou et al., 2023; Wang et al., 2023a).
Prior research has indicated that humans encounter
a significant reduction in accuracy when resolving
geometric problems devoid of visual aids (Chen
et al., 2021). Thus, the integration of visual infor-
mation from images is imperative for accurately
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solving of such mathematical problems, necessi-
tating the visual perception capabilities of multi-
modal large language models (MLLMs). However,
even the best batch of MLLMs available now (such
as GPT-4V (OpenAI, 2023b), Gemini (Anil et al.,
2023)) still lag significantly behind human perfor-
mance (Wang et al., 2024). Therefore, researchers
are eagerly exploring methods to enhance the geo-
metric capabilities of MLLMs.

To enhance the geometric capabilities of
MLLMs, an important step is to construct corre-
sponding high-quality data (Gao et al., 2023; Zhou
et al., 2023b; Chen et al., 2022). Nevertheless, cur-
rent data often suffer from two main issues. On the
one hand, most open-source datasets are quite chal-
lenging, making it difficult for models to directly
learn geometric capabilities from them (Bengio
et al., 2009; Xu et al., 2020). For instance, the Uni-
GEO (Chen et al., 2022) dataset consists of prob-
lems extracted from high school textbooks, but the
models have not been exposed to the correspond-
ing foundational knowledge. On the other hand,
current data augmentation techniques (Gao et al.,
2023), using ChatGPT-3.5 to adjust numerical val-
ues in the text, fail to harmonize these changes with
the corresponding values in images. Consequently,
mismatches between the altered text and images
can bewilder the model and impede its learning
process (Hessel et al., 2021; Yao et al., 2022).

In this paper, we address the aforementioned
issues by introducing a straightforward and effi-
cient pipeline for generating geometric problem
data. Our objectives are two-fold: (1) to create
geometric problems that facilitate the model’s ac-
quisition of basic geometric concepts, and (2) to
ensure that the image and the text of the generated
geometric problems are well-aligned. In detail, we
first employ GPT-4V to create a collection of sim-
plified geometric problems based on open-source
datasets. Subsequently, we harness the capabilities
of GPT-4 (OpenAI, 2023a) to generate K individ-
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ual pieces of Wolfram1 code for each geometric
problem previously crafted. The code is then exe-
cuted to produce K distinct geometric images. Fi-
nally, GPT-4V is employed to score these images,
allowing us to select the best one that optimally
aligns with the associated textual descriptions.

Through the above pipeline, we generate a
dataset comprising 4.9K geometric problems char-
acterized by simplicity and image-text match-
ing. We then mix our generated problems with
19K problems from open-source datasets to for-
mulate a dataset with various difficulty levels,
named GeoGPT4V. We have conducted compre-
hensive experiments on the geometry problem sub-
set of MathVista (Lu et al., 2024b) and MathVi-
sion (Wang et al., 2024) datasets, two commonly
used datasets for multi-modal math. Our experi-
mental results show that models of various sizes
and types can achieve significant improvements
in geometric capabilities after training with our
dataset (achieving 58.2% and 33.8% relative im-
provement for LLaVA-1.5-7B (Liu et al., 2023b)
and ShareGPT4V-7B (Chen et al., 2023a), re-
spectively, on Geometry problem solving (GPS)
minitest split of MathVista), which validates the
effectiveness of our approach.

In conclusion, the contributions of this paper are
summarized as follows:
• We first introduce a novel pipeline capable of

automatically generating simple geometric data
with aligned image-text pairs.

• We have open-sourced the 4.9K dataset generated
by our pipeline, along with the checkpoints of
models trained on GeoGPT4V, to facilitate the
community’s growth and development.

• Extensive experiments have consistently shown
that GeoGPT4V effectively enhances the multi-
modal geometric capabilities of models of vari-
ous types and sizes.

2 Related Work

In this section, we delve into related studies from
two perspectives: multi-modal large language mod-
els and mathematical problem solving.

Multi-modal Large Language Models. With
the rapid advancement of LLMs, the research com-
munity has started to develop multi-modal exten-
sions of these models, known as MLLMs (Bai

1The Wolfram is a computational language designed to
handle various computing and data analysis tasks, possessing
a formidable capability for geometric visualization.

et al., 2023; OpenAI, 2023b; Liu et al., 2023c).
These MLLMs integrate visual information with
linguistic data, enhancing their capabilities sig-
nificantly (Lu et al., 2024a; Li et al., 2023; Ye
et al., 2023; Dai et al., 2023). Closed-source
models, such as GPT-4V (OpenAI, 2023b), Gem-
ini (Anil et al., 2023), and Qwen-VL-Max (Bai
et al., 2023), have demonstrated remarkable pro-
ficiency in image comprehension and cognitive
tasks. For open-source models, LLaVA (Liu et al.,
2023c,b, 2024) utilizes linear projection to bridge
the visual encoder and the language model, achiev-
ing commendable performance in multi-modal
tasks. Building upon the LLaVA architecture,
ShareGPT4V (Chen et al., 2023a) employs high-
quality instructional data to further enhance model
capabilities. Moreover, InternVL-Chat (Chen et al.,
2023b) upscales its visual encoder to 6 billion pa-
rameters. InternLM-XComposer2 (Dong et al.,
2024) excels in free-form text-image composition
and understanding. Although these MLLMs have
shown powerful visual capabilities, MLLMs still
confront challenges when it comes to mathemati-
cal problem-solving, as highlighted by recent stud-
ies (Wang et al., 2024; Lu et al., 2024b; Yue et al.,
2023).

Mathematical Problem Solving. The remark-
able reasoning capabilities of LLMs have spurred
researchers to harness them for solving mathemati-
cal problems (Zhou et al., 2023a; Shao et al., 2024;
Lightman et al., 2023; Zhao et al., 2023). In the
realm of pure text-based mathematical tasks, Wiz-
ardMath (Luo et al., 2023) enhances model perfor-
mance by refining instructions through a process of
downward and upward instruction evolution. Meta-
Math (Yu et al., 2023) approaches the challenge by
bootstrapping mathematical questions and rewrit-
ing them from various perspectives to improve un-
derstanding and problem-solving. However, as pre-
vious studies have found, humans’ accuracy signif-
icantly decreases when solving geometry problems
without images (Chen et al., 2021). Therefore, ge-
ometry problems necessitate the visual perception
abilities of multi-modal models to fully compre-
hend and solve them. UniGeo (Chen et al., 2022)
addresses this by compiling geometry problems
from high school textbooks and introducing a uni-
fied multitask geometric transformer framework to
tackle calculation and proving problems simulta-
neously in the form of sequence generation. G-
LLaVA (Gao et al., 2023) leverages ChatGPT-3.5
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QA Example from Geometry3K

Q:The height of a 
triangle is 5 
centimeters more 
than its base. The area 
of the triangle is 52 
square centimeters. 
Find the base.

A:8

Easier QA Example

Q:Given an 
equilateral triangle
where the base is 8 
cm and the height 
is 13 cm, how do 
you calculate its 
area?

A:(8 * 13) / 2 = 52
square centimeters.

K Wolfram Code

baseLength = 8; 
heightLength = 13; 
v1 = {0, 0};
v2 = {baseLength, 0};
v3 = {baseLength/2, heightLength};
triangle = Graphics[{Line[{v1, v2, v3, 
v1}]}];
……

Easier QA with the Best Image

Q:Given an 
equilateral triangle 
where the base is 8 
cm and the height 
is 13 cm, how do 
you calculate its 
area?

A:(8 * 13) / 2 = 52
square centimeters.

Q:Given an 
equilateral triangle 
where the base is 8 
cm and the height is 
13 cm, how do you 
calculate its area?

A:(8 * 13) / 2 = 52
square centimeters.

Easier QA with K Images

: QA Generator
: Code Generator
: Code Executor
: Image Scorer

GPT-4 Wolfram

Figure 1: Pipeline of our geometric data generation. During the first step, we employ GPT-4V to generate
simplified geometric question-answer pairs based on open-source datasets. We highlight the simplified parts
compared to the original questions. During the second step, we employ GPT-4 to generate K Wolfram code for
each question-answer pair. During the third step, we execute K code to obtain K images. During the fourth step,
we employ GPT-4V to score the degree of alignment between the generated images and the questions. We choose
the image with the highest score. Finally, we can obtain simplified and image-text matching geometric problems.

to create geometric question-answer pairs and to
rewrite the textual content within questions. Nev-
ertheless, this approach of textual rewriting alone
may result in discrepancies between images and
text, leading the model to produce incorrect or un-
realistic outputs (Liu et al., 2023a). This highlights
the ongoing challenge of aligning textual and visual
information in multi-modal mathematical problem-
solving.

3 Method

In this section, we will elaborate on the pipeline
we have constructed. An overview of our pipeline
is depicted in Figure 1. Specifically, our process
includes: (1) generating new question-answer pairs
(Section §3.1), (2) producing corresponding geo-
metric images (Section §3.2), and (3) scoring and
filtering based on the image-text matching degree
(Section §3.3).

Formally, the original data from the open-source
datasets can be represented as D = {Q,A, I},
where Q represents the question, A represents the
answer, and I represents the image.

3.1 Question-Answer Pairs Generation
Due to the prevalence of more challenging geomet-
ric problems in open-source datasets, to facilitate

our model’s learning of basic geometric concepts,
we initially simplify these difficult problems to gen-
erate easier geometric question-answer (QA) pairs.

In detail, we utilize GPT-4V (OpenAI, 2023b) to
generate QA pairs from the dataset D = {Q,A, I}.
We instruct GPT-4V to craft simplified problems
that are derived from the original geometric QA
pairs to acquire QA pairs containing fundamental
geometric concepts. In detail, we prompt GPT-4V
to consider these three perspectives: (1) generat-
ing lead-up problems, (2) generating sub-problems,
and (3) incorporating the conclusions from the an-
swer into the conditions of the question, which can
reduce the complexity of the question. To prevent
GPT-4V from generating the same simplified ques-
tions, we also ask GPT-4V to generate questions
that are as diverse as possible. Additionally, for
efficiency, the instruction also asks GPT-4V to gen-
erate textual descriptions of images aimed at sup-
porting the subsequent phase of image generation.
The detailed prompt can be found in Appendix C.1.

In practice, we generate N (N = 3) new data
points based on a single original data point to im-
prove efficiency and reduce API costs. After this
phase, the data we obtain can be formally repre-
sented as D̃1 = {Q̃, Ã, D̃es} where D̃es repre-
sents the image description.
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3.2 Geometric Images Generation

It is important to highlight that the newly generated
QA pairs may not correspond directly to the origi-
nal images, which could hurt the model’s learning
process. To ensure congruity between the textual
content and the visual aspects, it is essential to pro-
duce new images that align with the generated QA
pairs. To address this issue, we employ Wolfram, a
powerful software tool capable of executing code
to generate geometric images.

In detail, we utilize GPT-4 (OpenAI, 2023a) to
generate Wolfram code based on the dataset D̃1.
Firstly, we feed the questions, answers, and image
descriptions as prompts to GPT-4 to generate Wol-
fram code. During the generation process, we in-
struct GPT-4 to explicitly name all variables within
the code, with the aim of facilitating a clearer un-
derstanding and assisting GPT-4 in recognizing the
relationships between code elements and the given
questions. The detailed prompt can be found in
Appendix C.2. Finally, we execute the Wolfram
code, resulting in the generation of new images.

In practice, it is noticed that employing GPT-4
to generate code is unstable. Thus, we generate K
(K = 3) distinct code from the same data to in-
crease the probability of obtaining the correct code.
Consequently, we can obtain K distinct images
corresponding to K code. It can be represented as
D̃2 = {Q̃, Ã, Ĩ(1), Ĩ(2), . . . , Ĩ(K)}, where Ĩ(i) rep-
resents the i-th image generated for each question.

3.3 Scoring and Filtering

After generating K images using Wolfram for each
question, we need to select the most suitable one
to be used as the final image in our dataset.

Concretely, we employ GPT-4V to assign a score
ranging from 0 to 1 that reflects the degree of cor-
respondence between an image generated for the
question and the question itself; a higher score sig-
nifies a stronger alignment. To augment the scoring
proficiency of GPT-4V, drawing inspiration from
the Chain-of-Thought (Wei et al., 2022) , we in-
struct GPT-4V to articulate the rationale underlying
its evaluation before determining the ultimate score.
The detailed prompt can be found in Appendix C.3.

Finally, for each question associated with K dis-
tinct generated images, we obtain K corresponding
scores. For each question, we retain the image with
the highest score as Ĩ . Note that, if this score is less
than 0.9, we consider that the image for this ques-
tion has not been well-generated, and we discard

the question. Consequently, we compile a dataset
D̃ = {Q̃, Ã, Ĩ} that consists of questions that are
simpler and exhibit a stronger alignment between
the images and the associated text.

4 Data Analysis

Datasets Samples
Open-source Datasets
ChartQA 7398
UniGEO-Calculation 3499
Geometry3K 2101
GeoQA+ 6026

Generated Datasets
UniGEO-Proving_Enhanced 1810
Geometry3K_Enhanced 1909
GeoQA_Enhanced 1212

Table 1: The datasets used in the GeoGPT4V dataset.
Column “Samples” is the number of image-text pairs
in each dataset. It is worth noting that we only use the
training sets of open-source datasets.

In this section, we will present a comprehensive
statistical analysis (Section §4.1) and a GPT-4V-
based evaluation (Section §4.2 §4.3) of the datasets
generated through our pipeline. Due to space con-
straints, we also present the results of the human
evaluation in Appendix E

4.1 Datasets
In this study, to minimize costs, we selected the
first 1,500 samples from the training sets of the
UniGEO-Proving (Chen et al., 2022), Geome-
try3K (Lu et al., 2021), and GeoQA (Chen et al.,
2021) to create UniGEO-Proving_Enhanced, Ge-
ometry3K_Enhanced, and GeoQA_Enhanced for
validating the effectiveness of our method. Sub-
sequently, we combine the generated geometric
problems with those from open-source datasets,
including ChartQA (Masry et al., 2022), UniGEO-
Calculation (Chen et al., 2022), the original Geom-
etry3K (Lu et al., 2021), and GeoQA+ (Cao and
Xiao, 2022), to form a new dataset with various
difficulty levels, dubbed GeoGPT4V. A detailed
breakdown of the datasets is provided in Table 1.

4.2 Difficulty Evaluation
As mentioned in Section §3, our pipeline will take
original data D as input and output generated data
D̃. We aim to generate easier data than the original
one to facilitate model learning of basic geometric
knowledge. This section demonstrates the efficacy
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of our pipeline by comparing the difficulty levels
of D and D̃.

We initiate this by forming a data pair P1 =
{D, D̃} and utilize GPT-4V to assess the relative
difficulty of the data points. To mitigate the bias
that GPT-4V may have due to the presentation or-
der, we also consider the pair P2 = {D̃,D}, ob-
tained by swapping the order of the data points. If
GPT-4V produces different outputs based on P1

and P2, we conclude that the difficulty of D and
D̃ is equal. A detailed prompt can be found in
Appendix C.4.

In practice, we randomly sample 500 pairs of
generated and corresponding original data points.
The outcome, presented in Figure 2a, reveals that
over 80% of the questions in the generated dataset
are of equal or lesser difficulty compared to the
original questions. This indicates that our pipeline
is successful in generating data that is simpler than
the original dataset.

4.3 Image-text Matching Evaluation

As mentioned in the previous section, the align-
ment between text and images is a critical aspect of
geometric problem data. To illustrate that the gen-
erated images are better suited for the simplified
problems than the original images, we replace the
generated images with the original image for each
question, resulting in new data D̃′ = {Q̃, Ã, I}.
Consequently, in this section, we will compare the
level of image-text matching in our generated data
D̃ with D̃′ and the QA data produced by prior
methods – G-LLaVA (Gao et al., 2023). Similar
to the score function in Section §3.3, we employ
GPT4-V to score the degree of alignment between
the images and the questions.

In detail, we randomly select 500 data points for
each dataset and show the average scores of the
three datasets in Figure 2b. The results indicate
that our generated data, D̃, exhibits a significantly
higher degree of image-text matching than D̃′, as
well as the dataset enhanced by G-LlaVA (0.9636
for D̃, 0.7276 for D̃′, and 0.6754 for G-LlaVA).
Moreover, it is observed that G-LlaVA’s image-text
matching score is the lowest, which confirms our
hypothesis that simply scaling the size of numbers
within problems is an inappropriate approach.

5 Experiment

In this section, we conduct experiments to answer
the following research questions (RQ):

41%

44%

15%

Easier Harder

Equal

Difficulty Comparison

(a)

0.6754
0.7276

0.9636

0

0.2

0.4

0.6

0.8

1

G-LLaVA Original Images Generated Images

Average Image-Text Matching Score

(b)

Figure 2: The data analysis results. This chart illus-
trates the simplicity and image-text matching attributes
of our dataset. Figure (a) is a comparison chart of the
difficulty between the generated and original data. In
this figure, “Easier” represents that the generated data
is easier than the original data; “Harder” represents
that the generated data is harder than the original data;
“Equal” represents that the generated and original data
have the same difficulty level. Figure (b) shows the
average image-text matching scores for the three data
types. “Generated Images” represents our generated
data. “Original Images” represents the data obtained
by replacing generated images in generated data with
original images.

• RQ1: Can GeoGPT4V dataset improve geomet-
ric capabilities of different models?

• RQ2: Are the generated images better than the
original images for model learning?

• RQ3: Is it necessary to score and filter the gener-
ated images?

• RQ4: Is the improvement solely due to the origi-
nal dataset?

5.1 Experimental Setup

Benchmarks. We utilize two widely used bench-
marks, which encompass numerous multi-model
geometric problems, to evaluate the effectiveness
of our proposed GeoGPT4V dataset. The detailed
information of these benchmarks is as follows:

• MathVista (Lu et al., 2024b) is a mathematical
reasoning benchmark in visual contexts. It in-
cludes diverse visual contexts, such as natural
images, geometry diagrams, charts, etc. Math-
Vista includes multiple-choice questions as well
as open-ended questions. The MathVista test
set comprises 5141 examples without ground
truth answers and provides 1000 examples with
ground truth answers known as MathVista test-
mini.
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Model Size MathVista MathVision
GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

LLaVA-1.5 7B 20.67∗ 20.92∗ 20.80∗ 7.1 7.1 7.7 10 15.6 10.2 9.8 5.3 4.8 8.62
LLaVA-1.5 13B 24.04∗ 23.85∗ 23.95∗ 14.3 9.1 13.5 5.6 10.4 12.6 14.7 11.5 10.7 11.38

LLaVA-1.5-G 7B 32.69 32.22 32.46 9.52 16.88 9.62 21.11 19.08 11.06 17.15 9.43 15.48 14.37
LLaVA-1.5-G 13B 36.54 37.24 36.89 15.48 14.29 12.50 18.89 19.65 13.60 18.49 9.02 11.31 15.14

ShareGPT4V 7B 21.63∗ 20.50∗ 21.07∗ 3.6 10.1 11.5 14.4 16.2 11.8 12.3 9.8 11.3 11.22
ShareGPT4V 13B 27.4∗ 27.62∗ 27.51∗ 15.5 10.7 11.5 8.9 11.6 13 17.4 10.3 12.5 12.38

ShareGPT4V-G 7B 32.69 31.80 32.25 11.90 12.99 9.62 16.67 17.34 13.60 17.59 10.25 11.31 13.47
ShareGPT4V-G 13B 43.27 42.26 42.77 22.62 9.74 13.46 11.11 19.08 15.80 13.81 9.02 13.69 14.26

InternVL† 40B 61.1 61.1 61.10 16.67∗ 12.99∗ 15.38∗ 13.33∗ 4.62∗ 5.60∗ 6.46∗ 9.84∗ 10.71∗ 10.62∗

InternVL-G† 40B 64.42 63.60 64.01 16.67 18.18 13.46 16.67 23.12 18.40 18.93 11.89 23.21 17.84

Closed-source Models

Qwen-VL-Plus - 38.5 39.3 38.90 17.9 12.7 15.4 8.9 11.6 6.4 10.0 14.3 11.31 12.06
Qwen-VL-Max - - - - 19.1 16.9 16.4 12.2 13.3 14.2 19.8 11.5 17.3 15.61
Gemini-1.0-Pro - 40.4 41.0 40.70 10.7 20.1 20.2 21.1 19.1 19.0 20.0 14.3 20.8 18.37
Gemini-1.0-Ultra - 56.2 55.6 55.90 - - - - - - - - - -
GPT-4V - 50.5 51.0 50.75 32.1 21.1 22.1 14.4 22.0 22.2 20.9 23.8 25.6 22.69

Table 2: Overall results of different models on the MathVista and MathVision. We present the detailed scores
for all the tasks related to geometry such as “GPS” and “AnaG”, as well as the average score over these tasks in two
benchmarks denoted as “AVG”. Due to limited space, we utilize abbreviations for these geometry-related tasks and
illustrate the detailed task name in the Appendix A. For the model trained with GeoGPT4V, score increases are
marked in red compared to the original model. ∗ indicates our re-implemented test results missed in benchmarks or
origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus. The suffix “-G” to the model
name indicates a model trained on the GeoGPT4V. For better comparison, we also demonstrate results for five
representative closed-source MLLM models.

• MathVision (Wang et al., 2024) is a more chal-
lenging multi-modal mathematical benchmark
than MathVista. It categorizes all mathematical
problems into five difficulty levels and 16 dis-
tinct tasks. MathVision also consists of multiple-
choice questions and open-ended questions. The
MathVision test set comprises 3040 examples
with ground truth answers.

Evaluation Method. We strictly follow the eval-
uation method proposed in MathVista (Lu et al.,
2024b) and MathVision (Wang et al., 2024). Firstly,
we utilize ChatGPT-3.5 to extract the ultimate re-
sponse from model outputs in MathVista, while
employing regular expressions with MathVision
for the same purpose. Consequently, we report the
accuracy of the answers as the score for perfor-
mance evaluation, with a maximum possible score
of 100.

Baseline Models. We train the following main-
stream open-source models using our proposed Ge-
oGPT4V dataset, with model sizes including 7B,
13B, and 40B.

• LLaVA-1.5 (Liu et al., 2023c,b) utilizes linear

layers to connect the vision encoder and the large
language model (LLM). In the pre-training stage,
LLaVA-1.5 keeps the vision encoder and the
LLM frozen, and only trains linear layers. In the
fine-tuning stage, it freezes the vision encoder
and trains the linear layers and the LLM.

• ShareGPT4V (Chen et al., 2023a) has an archi-
tecture similar to LLaVA’s. However, in the pre-
training stage of ShareGPT4V, both the vision
encoder and the language model remain unfrozen.
The training data is high-quality, detailed descrip-
tion data generated by GPT-4V.

• InternVL-Chat-V1.2-Plus (Chen et al., 2023b)
utilizes the InternViT (Chen et al., 2023b) as its
visual encoder, which has 6 billion parameters.
What’s more, it scales LLM to 34B and utilizes a
fine-tuning dataset with 12 million samples.

Implementation Details. For data generation,
we employ the “gpt-4-vision-preview” and “gpt-4-
1106-preview” API provided by OpenAI for GPT-
4V and GPT-4. For model training, all the models
are trained on NVIDIA A100 GPUs with PyTorch
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Model
MathVista MathVision

GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

LLaVA-1.5-7B 20.67∗ 20.92∗ 20.80∗ 7.1 7.1 7.7 10 15.6 10.2 9.8 5.3 4.8 8.62

- Image Generation 30.77 30.96 30.87 8.33 14.94 8.65 15.56 17.34 12.20 14.48 7.79 19.05 13.15
- Image Scoring 33.65 31.80 32.73 9.52 15.48 9.62 20.00 17.34 12.20 15.59 6.56 15.48 13.54

GeoGPT4V 32.69 32.22 32.46 9.52 16.88 9.62 21.11 19.08 11.06 17.15 9.43 15.48 14.37

Table 3: Ablation for image generation and image scoring. “- Image Generation” denotes the exclusion of
newly generated geometric images. “- Image Scoring” signifies the random selection of generated images, rather
than utilizing GPT4V to score and choose them. For comparison, we also represent the results from the official
LLaVA-1.5-7B model in the first line and GeoGPT4V in the last line. Bold results indicate the best results for all
models. ∗ indicates our re-implemented test results missed in benchmarks or origin papers.

version 2.0.1. To ensure a fair comparison, we keep
the training parameters consistent with those spec-
ified by the model’s original authors and train the
models for one epoch. Detail training parameters
are demonstrated in Appendix B.

5.2 Main Results (RQ1)

We evaluate the performance of various open-
source models on MathVista testmini (short as
MathVista) and MathVision test (short as MathVi-
sion) benchmarks after training on the GeoGPT4V
dataset to demonstrate our proposed method’s ef-
fectiveness. For convenience, we append the suffix
“-G” to the model name to indicate a model trained
on the GeoGPT4V dataset, such as “LLaVA-1.5-
G”. Since our method focuses on geometric data,
we present detailed scores for all the tasks related to
geometry and the average score over these tasks in
Table 2. The complete set of scores can be found in
Appendix D.1 and D.2. In Appendix D.3, we com-
pare the geometric capabilities of our best model,
InternVL-Chat-V1.2-Plus-GeoGPT4V, with other
open-source and closed-source models.

The experimental results from Table 2 indicate
that our dataset can effectively improve different
models’ geometric capabilities. First of all, our pro-
posed GeoGPT4V has exhibited an improvement in
the average scores across all geometry-related tasks
on both MathVista and MathVision benchmarks, in-
dicating that GeoGPT4V can enhance the model’s
general geometry performance. Moreover, our pro-
posed GeoGPT4V has brought improvements to
most geometry-related tasks in both benchmarks
in all scales and types of models. Furthermore,
our GeoGPT4V significantly bridges the gap in
geometric capabilities between open-source and
closed-source models, except InternVL-Chat-V1.2-
Plus, which has already employed a substantial

amount of customized fine-tuning datasets.

5.3 In-depth Analysis

To comprehensively analyze the effectiveness of
GeoGPT4V, we design a series of analyzing ex-
periments from various perspectives. Firstly, we
design ablation experiments from the standpoint
of the efficacy of generating new geometric im-
ages and selecting generated images with GPT4V
scores. Subsequently, we conduct experiments to
demonstrate the substantial performance improve-
ment brought by GeoGPT4V stemming from the
generated data rather than the utilization of open-
source data. Due to resource and space limitations,
we leverage LLaVA-1.5-7B for analytical experi-
ments and conduct evaluations on both MathVista
and MathVision.

5.3.1 Effect of Generating New Images (RQ2)

We validate the effectiveness of the newly gener-
ated geometric images by replacing the images
generated in GeoGPT4V with their original coun-
terparts and training the model on them. In detail,
we first substitute the newly generated images from
GeoGPT4V with the original images while retain-
ing the simplified questions generated, formulating
a new dataset denoted as D̃′. Subsequently, we
train the LLaVA-1.5-7B model on D̃′ and compare
its geometric capabilities with the model trained on
GeoGPT4V.

Based on results demonstrated in Table 3, we
have following observations: Firstly, the model
trained on D̃′ exhibits inferior performance com-
pared to the model trained on GeoGPT4V, indicat-
ing the effectiveness of the newly generated images.
Secondly, the model trained on D̃′ demonstrates
stronger performance than the model trained with-
out the use of D̃′, thereby validating the efficacy of
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Name Base Replace Mix

Datasets

ChartQA ChartQA ChartQA
UniGeo-Calculation UniGeo-Calculation UniGeo-Calculation
Geometry3K Geometry3K_Replace Geometry3K_Mix
GeoQA+ GeoQA+_Replace GeoQA+_Mix
UniGeo-Proving UniGeo-Proving_Replace UniGeo-Proving_Mix

Table 4: Dataset settings for experiments comparing open-source data and generated data. The suffix “Replace”
indicates that we replace the corresponding original data with generated data. The suffix “Mix” indicates that we
mix the original data with generated data.

Datasets
MathVista MathVision

GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

Base 29.33 28.03 28.68 10.71 15.91 8.65 12.22 16.67 11.80 13.59 8.20 16.07 12.65
Replace 33.17 32.64 32.91 7.14 14.94 6.73 20.00 20.81 10.80 15.14 10.25 14.29 13.34
Mix 33.52 34.31 33.92 11.90 15.58 10.58 14.44 17.34 12.40 14.48 9.43 16.07 13.58

Table 5: Comparison of the effects with and without using the generated datasets. Bold results indicate the
best results for all models.

the easier QA pairs generated by our pipeline.

5.3.2 Is Scoring Necessary? (RQ3)
As mentioned in Section §3.3, K images are scored,
and the one with the highest score is selected from
this set. To demonstrate the necessity of scoring,
we formulate a new dataset D̃′′ by directly mod-
ifying the selection method to randomly choose
from the K images while keeping all other aspects
unchanged. Consequently, we analyze the perfor-
mance of the LLaVA-1.5-7B trained on D̃′′.

According to results demonstrated in Table 3,
we can find that the model trained on D̃′′ exhibits
inferior performance on most tasks compared to the
model trained on GeoGPT4V. The results indicate
that the quality of the images obtained via ranking
surpasses those chosen randomly in overall aspects..
It is also worth noting that the model trained on
D̃′′ performs better on a few tasks, possibly due to
the relative similarity of the generated images in
these tasks. While using GPT-4V for selection may
introduce bias, random selection has the potential
to enhance diversity.

5.3.3 Are the Open-source Datasets Enough?
(RQ4)

To demonstrate that the performance improvements
brought by GeoGPT4V are not solely reliant on
open-source data, we compare the performance of
models trained using various combinations of open-
source and our generated data. In detail, as illus-
trated in Table 4, we construct three tiers of datasets.
Firstly, we combine all open-source datasets to cre-

ate the “Base” dataset. Subsequently, we replace
the original data from the “Base” dataset with the
data generated by our pipeline, resulting in the “Re-
place” dataset. Lastly, we mix the generated data
with all the data from the “Base” dataset to form
the “Mix” dataset. It is notable that GeoQA is a
subset of GeoQA+. Thus we only use GeoQA+ in
these three dataset settings, rather than using both
GeoQA+ and GeoQA.

We finetune LLaVA-1.5-7B separately on these
three datasets and evaluate their performance in
Table 5, with observations as follows: Although
the “Base” dataset, constructed using open-source
data, provides moderate geometric capabilities, our
“Replace” and “Mix” datasets exhibit even greater
enhancements in geometric performance. This not
only demonstrates the effectiveness of the data gen-
erated by our pipeline but also indicates that the im-
provements afforded by GeoGPT4V are not solely
derived from open-source data.

6 Conclusion

In this study, we propose a novel pipeline to en-
hance the geometric capabilities of MLLMs. We
have proposed data generation methods for multi-
modal geometric tasks involving problem simpli-
fication and the generation of images that match
newly generated text. Specifically, we use GPT4V
and GPT4 to generate sub-problems or lead-up
problems for given geometric tasks, along with
the corresponding Wolfram code that can be ex-
ecuted to generate geometric images. Based on
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the pipeline, we have generated 4.9K simplified
and image-text matching geometric problems. We
mix our generated data with 19K open-source data
to formulate a dataset with various difficulty lev-
els, named GeoGPT4V. After training on the Ge-
oGPT4V dataset, various models have improved ge-
ometric scores on both MathVista and MathVision
benchmarks. The extensive experimental results
demonstrate the effectiveness of the GeoGPT4V
dataset. We have open-sourced the GeoGPT4V
dataset and the checkpoints of models trained on
the GeoGPT4V dataset, with the aim of fostering
the community’s growth.

Limitations

This paper focuses on the generation of geometric
images. We employ GPT-4 to generate Wolfram
code, which can be executed to generate images.
However, this approach is unstable and may result
in poor image quality. That’s why we use GPT-4V
to score the images, which leads to more API calls
and increased costs.

What’s more, this paper only considers simpli-
fying open-source geometric problems. However,
generating more complex problems is also worth
considering, as it will generate more complex geo-
metric images and help models improve complex
reasoning capabilities. Our future work will ex-
plore the more accurate generation of complex ge-
ometric images.

Finally, multi-modal mathematics is not limited
to geometric problems. It also includes tasks such
as chart question answering and function question
answering. Generating richer charts and function
images is also part of our future exploration work.
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A Detailed Task Information

Table 6 shows the correspondence between abbre-
viations and detailed task names.

B Training Parameters

We keep the same parameters as those specified by
the model’s original authors. Detail parameters are
shown in Table 7.

C Prompts

C.1 Prompt for Question-Answer Pairs
Generation

Table 8 shows the prompt for question-answer pairs
generation. We prompt GPT-4V to generate simpli-
fied geometric problems based on the open-source
datasets.

C.2 Prompt for Wolfram Code Generation

Table 9 shows the prompt for Wolfram code gener-
ation. We prompt GPT-4 to generate the Wolfram
code based on the information from the question,
the answer, and the image description.

C.3 Prompt for Scoring

Table 10 shows the prompt for scoring. We prompt
GPT-4V to score the degree of alignment between
the images and the questions.
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C.4 Prompt for Difficulty Comparison
Table 11 shows the prompt for difficulty compar-
ison. We employ GPT-4V to determine which of
the two problems is more difficult.

D Detailed Evaluation Results

D.1 MathVista Results
We show full MathVista testmini results in Table 12.
Although our method focuses on geometric prob-
lems, the GeoGPT4V dataset can still improve the
overall scores of various models, except InternVL-
Chat-V1.2-Plus, which has already employed a cus-
tomized fine-tuning dataset with 12 million sam-
ples.

D.2 MathVision Results
We show full MathVision test results in Table 13.
We can find that the GeoGPT4V dataset can im-
prove the scores of most tasks on MathVision for
various models. The results demonstrate the effec-
tiveness of the GeoGPT4V dataset.

D.3 Comparison with Other Models
We compare the performance of our best model,
InternVL-Chat-V1.2-Plus-GeoGPT4V, with other
open-source and closed-source models regarding
geometric capabilities. Detailed results are in Ta-
ble 14.

For MathVista, our best model achieves the best
geometric scores among all models. For MathVi-
sion, our best model achieves the highest scores for
average score and most geometric scores among
open-source models. The experimental results
demonstrate the effectiveness of the GeoGPT4V
dataset.

E Human Evaluation of the Generated
Data

In addition to using GPT-4V to evaluate the data we
generated, we hired two annotators with sufficient
professional knowledge to manually evaluate the
data we generated. The following are the evaluation
results for difficulty and image-text matching.

E.1 Difficulty Comparison
We randomly selected 200 generated questions and
their corresponding original questions, and asked
annotators to compare the difficulty between the
generated question and the original question. We
display the results in Figure 3a, and the inner agree-
ment between the two annotators is 0.74. In the

Figure, "Easier" indicates that the generated ques-
tion is easier than the original question, with other
symbols following the same pattern. Based on
the experimental results, 77.75% of the generated
questions are easier or of the same difficulty as the
original ones, which indicates that our pipeline can
reduce the difficulty of the questions.

E.2 Image-text Matching Comparison
We randomly selected 200 generated questions and
their corresponding original images, and asked an-
notators to judge which image, the generated one or
the original one, better matches the generated ques-
tion. We display the results in Figure 3b, and the
inner agreement between the two annotators is 0.78.
In the Figure, "Original" indicates that the original
image better matches the question text, with other
symbols following the same pattern. Based on the
experimental results, we can observe that the gen-
erated images match the generated questions better
than the original images.

Manual Difficulty Comparison

47.25%

Easier

30.5%

22.25%

Equal

Harder

(a)

Manual Image-text Matching Comparison

Original

Generated
Equal

53%

39%

8%

(b)

Figure 3: The manual data analysis results. Figure (a)
is a manual comparison chart of the difficulty between
the generated and original data. In this figure, “Easier”
represents that the generated data is easier than the orig-
inal data; “Harder” represents that the generated data
is harder than the original data; “Equal” represents that
the generated and original data have the same difficulty
level. Figure (b) is a manual comparison chart of the
image-text matching between the generated and original
images. In this figure, “Original” represents that the
original image better matches the question text; “Gener-
ated” represents that the generated image better matches
the question text; “Equal” represents that the generated
image and the original image match the text to the same
degree.

761



Abbreviation Task
MathVista

FQA Figure Question Answering
GPS Geometry Problem Solving
MWP Math Word Problem
TQA Textbook question answering
VQA Visual Question Answering
ALG Algebraic Reasoning
ARI Arithmetic Reasoning
GEO Geometry Reasoning
LOG Logical Reasoning
NUM Numeric Commonsense
SCI Scientific Reasoning
STA Statistical Reasoning

MathVision

Alg Algebra
AnaG Analytic Geometry
Ari Arithmetic
CombG Combinatorial Geometry
Comb Combinatorics
Cnt Counting
DescG Descriptive Geometry
GrphT Graph Theory
Log Logic
Angle Metric Geometry - Angle
Area Metric Geometry - Area
Len Metric Geometry - Length
SolG Solid Geometry
Stat Statistics
Topo Topology
TransG Transformation Geometry

Table 6: Correspondence between abbreviations and
detailed task names in MathVista and MathVision
benchmarks.
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Parameters LLaVA-1.5 ShareGPT4V InternVL-Chat-V1.2-Plus

Train Epochs 1 1 1
Global Batch Size 128 128 128
Learning Rate 2e−5 2e−5 1e−5

Learning Rate Schedule cosine decay cosine decay cosine decay
Weight Decay 0 0 0.05
Warmup Ratio 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW
Tune Visual Encoder False False False
Tune MLP True True True
Tune LLM True True True

Table 7: Training parameters of different models. To make a fair comparison, we keep the training parameters
consistent with those specified by the model’s original authors and train the models for one epoch.

Please act as a question generator.
Give you a question and its answer, along with a corresponding image for the question; please generate new questions
and provide new answers in English. The new questions and new answers must meet the following conditions:
1. The new questions are slightly easier than the original ones but shouldn’t be too simple.
2. Do not merely rephrase the question; you must reduce its difficulty level.
3. The new question must include a detailed description of the information in the image, which must be detailed enough
to allow others to redraw the image based on the description.
5. The questions should be as diverse as possible.
6. The new answers must be correct.
Some useful tips:
1. You can incorporate information from the original answer into the question.
3. You can generate lead-up problems for the original problem.
5. You can generate sub-problems for the original problem.
4. Imagine that others cannot see the image corresponding to the new question; you must describe it using words.
5. For each question, consider it as a standalone item. Others can only view one question at a time, so avoid using
phrases like "similar to the previous question" or references such as "New_Image 1".
Come up with three diverse questions and answers.
Input format:
Question: <question example>
Answer: <answer example>
You must follow this output format:
New_Question: <new question example>
New_Answer: <new answer example>
Image_Description: <new image description example>

Table 8: Prompt for Question-Answer Pairs Generation. We prompt GPT-4V to generate simplified questions.
We also prompt GPT-4V to generate questions that are as diverse as possible to prevent GPT-4V from generating the
same questions.
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You are a teacher creating an exam, and you need to draw images for the questions on the exam.
Give you a question, an answer, and an image description, and generate the image corresponding to the question using
Mathematica code. Your code must meet the following conditions:
1. Only use the “Export” command at the end of the code to save the generated image to “/temp/image.png”.
2. The image should be clear and correspond to the question, with particular attention to shape and angle.
3. You only need to generate the image; there is no need to solve the problem.
4. All variables in the code should be named for easy understanding; avoid using terms such as “C” directly.
Some useful tips:
1. Focus on the image description.
2. You can use the information from the question and answer to help you generate code.
Come up with one code.
Input format:
Question: <question example>
Answer: <answer example>
Image description: <image description example>
You must follow this output format:
Code: <code example>

Table 9: Prompt for Wolfram Code Generation. When prompting GPT-4, we integrate both image descriptions
and question-answer data to refine code generation. Additionally, we prompt GPT-4 to ensure variable naming
within the code for clarity, aiming to enhance GPT-4’s grasp of the code’s relationship to the query at hand.

Please act as a scorer.
Give you a description, along with an image. Please evaluate the degree of match between the image and the description
and give a score. The evaluation process must meet the following conditions:
1. The score is a decimal between 0 and 1.
2. The score reflects the degree of image-description match.
3. If the image and the image description do not match, the score should be low.
4. The score should be lower if the image is not clear enough or difficult to understand.
5. The image should be rated low if it contains only text and numbers, with no geometric shapes or chart forms.
6. The image must have clear shapes and labels.
Some useful tips:
1. Don’t always give high scores.
2. Only give high scores when the image and the description match very well.
3. You can use two decimal places to represent your score.
Come up with one score.
Input format:
Image description: <image description example>
You must follow this output format:
Reason: <your reason example>
Score: <score example>

Table 10: Prompt for Scoring. We employ GPT-4V to score the degree of alignment between the generated images
and the questions. Specifically, the score is a decimal that ranges from 0 to 1. We also prompt GPT-4V to give a
reason first and then give a final score, hoping this can enhance the accuracy of scoring.
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Please act as a difficulty level evaluator.
Give two geometric data, each consisting of a question, an answer, and an image.
Please compare these two questions to determine which one is more difficult.
If the first one is more difficult, output “1”; if the second one is more difficult, output “2”.
Some useful tips:
1. You should consider the complexity and difficulty of the questions and images.
2. Don’t automatically assume that multiple-choice questions are easier.
3. A shorter answer does not mean it’s easier.
Input format:
Question_1: <the first question>
Answer_1: <the first answer>
Question_2: <the second question>
Answer_2: <the second answer>
The first image corresponds to the first question, and the second image corresponds to the second question.
You can only output the number “1” or “2”.

Table 11: Prompt for Difficulty Comparison. We prompt GPT-4V to determine which of the two questions is
more difficult. We instruct GPT-4V not to simplistically assume that multiple-choice questions or shorter answers
imply an easier question.

Model Size All FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA

LLaVA-1.5 7B 25.1∗ 23.79∗ 20.67∗ 12.90∗ 39.24∗ 32.40∗ 24.20∗ 22.10∗ 20.92∗ 16.22∗ 18.75∗ 36.89∗ 22.26∗

LLaVA-1.5 13B 27.3∗ 22.68∗ 24.04∗ 16.67∗ 42.41∗ 35.75∗ 27.40∗ 24.93∗ 23.85∗ 18.92∗ 25.00∗ 39.34∗ 22.59∗

LLaVA-1.5-G 7B 30.7 28.25 32.69 18.28 42.41 34.64 32.38 25.78 32.22 32.43 23.61 42.62 26.58
LLaVA-1.5-G 13B 32.2 28.25 36.54 19.89 41.14 37.99 35.23 28.05 37.24 27.03 26.39 42.62 27.57

ShareGPT4V 7B 27.3∗ 21.93∗ 21.63∗ 19.35∗ 43.04∗ 36.31∗ 24.91∗ 27.20∗ 20.50∗ 18.92∗ 22.92∗ 40.16∗ 21.93∗

ShareGPT4V 13B 30.4∗ 23.97∗ 27.40∗ 25.81∗ 43.67∗ 36.87∗ 28.83∗ 31.16∗ 27.62∗ 10.81∗ 26.39∗ 41.80∗ 26.91∗

ShareGPT4V-G 7B 30.4 26.77 32.69 20.97 40.51 34.08 31.67 26.91 31.80 21.62 20.83 40.98 25.52
ShareGPT4V-G 13B 34.1 27.51 43.27 23.12 43.04 36.87 39.86 29.18 42.26 27.03 24.31 44.26 27.57

InternVL† 40B 59.9 51.7 61.1 79.6 52.5 57.0 54.5 63.2 61.1 16.2 48.6 55.7 60.8
InternVL-G† 40B 56.2 46.10 64.42 75.27 51.90 45.81 57.30 54.96 63.60 18.92 39.58 53.28 55.81

Table 12: Overall results of different models on the MathVista. For the model trained with GeoGPT4V, score
increases are marked in red compared to the original model. ∗ indicates our re-implemented test results missed
in benchmarks or origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus. The suffix
“-G” to the model name indicates a model trained on the GeoGPT4V. We present the detailed score for all the tasks
such as “FQA” and “GPS”, as well as the overall (All) score for the benchmark. Due to limited space, we utilize
abbreviations for the tasks and illustrate the detailed task name in the Appendix A.

Model Size All Alg AnaG Ari CombG Comb Cnt DescG GrphT Log Angle Area Len SolG Stat Topo TransG

LLaVA-1.5 7B 8.52 7.0 7.1 10.7 7.1 4.8 10.5 7.7 10.0 9.2 15.6 10.2 9.8 5.3 8.6 4.4 4.8
LLaVA-1.5 13B 11.12 7.0 14.3 14.3 9.1 6.6 6.0 13.5 5.6 13.5 10.4 12.6 14.7 11.5 13.8 13.0 10.7

LLaVA-1.5-G 7B 12.89 8.41 9.52 9.29 16.88 6.55 10.45 9.62 21.11 12.61 19.08 11.06 17.15 9.43 13.79 13.04 15.48
LLaVA-1.5-G 13B 13.98 9.28 15.48 16.43 14.29 10.71 10.45 12.50 18.89 11.76 19.65 13.6 18.49 10.25 13.79 17.39 13.10

ShareGPT4V 7B 10.53 5.5 3.6 12.9 10.1 4.8 7.5 11.5 14.4 10.9 16.2 11.8 12.3 9.8 15.5 17.4 11.3
ShareGPT4V 13B 11.88 7.5 15.5 16.4 10.7 8.9 9.0 11.5 8.9 7.6 11.6 13.0 17.4 10.3 8.6 8.7 12.5

ShareGPT4V-G 7B 12.80 7.83 11.9 15.00 12.99 5.95 7.46 9.62 16.67 15.97 17.34 13.60 17.59 10.25 15.52 8.70 11.31
ShareGPT4V-G 13B 12.63 8.41 22.62 15.00 9.74 6.55 8.96 13.46 11.11 15.13 19.08 15.80 13.81 9.02 6.90 13.04 13.69

InternVL† 40B 9.18∗ 8.41∗ 16.67∗ 8.57∗ 12.99∗ 9.52∗ 10.45∗ 15.38∗ 13.33∗ 11.76∗ 4.62∗ 5.60∗ 6.46∗ 9.84∗ 12.07∗ 21.74∗ 10.71∗

InternVL-G† 40B 16.12 9.57 16.67 15.00 18.18 10.71 10.45 13.46 16.67 16.81 23.12 18.4 18.93 11.89 6.90 13.04 23.21

Table 13: Overall results of different models on the MathVision. For the model trained with GeoGPT4V, score
increases are marked in red compared to the original model. ∗ indicates our re-implemented test results missed
in benchmarks or origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus. The suffix
“-G” to the model name indicates a model trained on the GeoGPT4V. We present the detailed score for all the tasks
such as “Alg” and “AnaG”, as well as the overall (All) score for the benchmark. Due to limited space, we utilize
abbreviations for the tasks and illustrate the detailed task name in the Appendix A.
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Model Size
MathVista MathVision

GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

InternVL-G† 40B 64.42 63.6 64.01 16.67 18.18 13.46 16.67 23.12 18.40 18.93 11.89 23.21 17.84

Open-source Models

LLaVA-1.5 13B 24.04∗ 23.85∗ 23.95∗ 14.3 9.1 13.5 5.6 10.4 12.6 14.7 11.5 10.7 11.38
ShareGPT4V 13B 27.4∗ 27.62∗ 27.51∗ 15.5 10.7 11.5 8.9 11.6 13 17.4 10.3 12.5 12.38
G-LLaVA‡ 13B 56.25∗ 51.88∗ 54.07∗ 9.52∗ 7.79∗ 8.65∗ 7.78∗ 8.67∗ 12.20∗ 10.02∗ 7.38∗ 8.93∗ 8.99∗

InternLM-VL† 7B 63.0 62.3 62.65 15.5 15.3 14.4 22.2 19.7 15.6 15.0 11.9 15.5 16.12
InternVL† 40B 61.1 61.1 61.1 16.67∗ 12.99∗ 15.38∗ 13.33∗ 4.62∗ 5.60∗ 6.46∗ 9.84∗ 10.71∗ 10.62∗

Closed-source Models

Qwen-VL-Plus - 38.5 39.3 38.90 17.9 12.7 15.4 8.9 11.6 6.4 10.0 14.3 11.31 12.06
Qwen-VL-Max - - - - 19.1 16.9 16.4 12.2 13.3 14.2 19.8 11.5 17.3 15.61
Gemini-1.0-Pro - 40.4 41.0 40.70 10.7 20.1 20.2 21.1 19.1 19.0 20.0 14.3 20.8 18.37
Gemini-1.0-Ultra - 56.2 55.6 55.90 - - - - - - - - - -
GPT-4V - 50.5 51.0 50.75 32.1 21.1 22.1 14.4 22.0 22.2 20.9 23.8 25.6 22.69

Table 14: Overall results of our best model and other open-source and closed-source models on the MathVista
and MathVision. We present the detailed score for all the tasks related to geometry such as “GPS” and “AnaG”,
as well as the average score over these tasks in two benchmarks denoted as “AVG”. Due to limited space, we
utilize abbreviations for these geometry-related tasks and illustrate the detailed task name in the Appendix A. Bold
results indicate the best results for all models, and the red results indicate the best results among the open-source
models. ‡indicates our re-implemented model without an official checkpoint. ∗ indicates our re-implemented test
results missed in benchmarks or origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus.
InternLM-VL†represents the abbreviation for InternLM-XComposer2-VL. The suffix “-G” to the model name
indicates a model trained on the GeoGPT4V.
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