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Abstract

Language models will inevitably err in
situations with which they are unfamiliar.
However, by effectively communicating un-
certainties, they can still guide humans toward
making sound decisions in those contexts. We
demonstrate this idea by developing HEAR,
a system that can successfully guide humans
in simulated residential environments despite
generating potentially inaccurate instructions.
Diverging from systems that provide users
with only the instructions they generate, HEAR
warns users of potential errors in its instructions
and suggests corrections. This rich uncertainty
information effectively prevents misguidance
and reduces the search space for users. Evalua-
tion with 80 users shows that HEAR achieves a
13% increase in success rate and a 29% reduc-
tion in final location error distance compared to
only presenting instructions to users. Interest-
ingly, we find that offering users possibilities to
explore, HEAR motivates them to make more
attempts at the task, ultimately leading to a
higher success rate. To our best knowledge, this
work is the first to show the practical benefits of
uncertainty communication in a long-horizon
sequential decision-making problem.1

1 Introduction

Expecting language models to consistently make
accurate predictions in a dynamic world is unreal-
istic (Kalai and Vempala, 2024; Xu et al., 2024).
Evidence shows that these models often falter in
unfamiliar situations (Wu et al., 2023; Dziri et al.,
2024). Given the inherent fallibility of language
models, an important research problem is to enable
these models to successfully assist humans even
when they make errors.

But how is it possible for a model to guide a
human toward the right decisions when it cannot
precisely specify what those decisions are? This

1Our code and data for model and human evaluation are
publicly released at https://lingjunzhao.github.io/HEAR.html.
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Figure 1: HEAR detects errors in a navigation
instruction and suggests corrections. It enables humans
to avoid being misled and efficiently search the
environment, leading to improved performance.

work demonstrates the feasibility of tackling this
problem in a language-guided visual navigation set-
ting. Concretely, we develop HEAR (Hallucination
DEtection And Remedy), a system that aids human
navigation in 3D residential environments using po-
tentially erroneous natural language instructions.
The key to the success of HEAR is its ability to
communicate various types of uncertainty infor-
mation to users. Specifically, HEAR can identify
and highlight potential errors in an instruction, and
suggest possible corrections. This information pre-
vents misdirection and narrows the search space
for users, enabling them to navigate successfully
even when given inaccurate instructions.

To our best knowledge, our work presents the
first study on the effects of uncertainty communica-
tion on human decision making in a long-horizon
task. Although uncertainty communication has
been identified as crucial for AI systems, very few
studies have investigated how uncertainty infor-
mation impacts human decisions. Previous stud-
ies have primarily focused on classification tasks
rather than long-horizon tasks, and on numerical
uncertainty (i.e., probability) rather than verbal un-
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certainties (Vodrahalli et al., 2022; Nizri et al.). By
demonstrating that presenting uncertainties leads to
a substantial performance boost in this navigation
task, we provide strong evidence to support the de-
velopment of these features in sequential decision-
making AI agents.

To build HEAR, we tackle the problem of
detecting and classifying hallucinated phrases in
visually grounded instructions. This problem is
particularly challenging in the environments we
study because of the realisticity and diversity of
the visual scenes. Our solution involves training
two vision-language models: one for hallucination
detection and the other for classification (i.e.,
deciding whether a phrase should be deleted or
replaced). We combine these models to identify
hallucinations in an instruction, as well as score
and rank potential corrections. To train each model,
we fine-tune a large vision-language model (Guhur
et al., 2021) with synthetically created data to
optimize for a contrastive learning objective. We
introduce a practical methodology for generating
synthetic data, combining rule-based approaches
with large language models.

We conduct an evaluation with 80 human users
to measure the effectiveness of HEAR. Our results
demonstrate that incorporating HEAR improves
user navigation outcomes. Specifically, HEAR
increases the likelihood of a user successfully
reaching their destination by 13% and reduces
the average distance to the true destination by
29%. Analyzing human behavior reveals that by
providing useful hints, HEAR motivates humans
to put more effort into solving a task, leading to
a higher success rate.

Interestingly, our results suggest that the uncer-
tainty communication capabilities of a system do
not need to be flawless to boost user performance.
The components of HEAR are all imperfect: the
error detection and correction, and the instruction
generation capabilities are all of reasonable quality,
but not faultless. However, because these capa-
bilities complement one another, and complement
the knowledge of the human user, they ultimately
improve user decisions.

2 Related Work

Grounded instruction generation. Grounded in-
struction generation involves creating language in-
structions for navigation in situated environments,
evolving from simple settings (Anderson et al.,

1991; Goeddel and Olson, 2012; Fried et al., 2018a)
to more complex, photo-realistic simulations (Fried
et al., 2018b; Kamath et al., 2023; Zhao et al.,
2023a). Model-generated instructions can contain
landmark errors (e.g., confusing a bathroom with a
gym) and path errors (e.g., instructing a left turn in-
stead of a right turn) (Wang et al., 2022). Zhao et al.
(2023a) demonstrate a significant gap between the
quality of model- and human-generated instruc-
tions. However, their work is not concerned with
error detection.

Uncertainty communication for human-AI col-
laboration. As AI-assisted decision-making has
become the norm, it is imperative to investigate the
influence of human cognitive biases on their per-
ception of model-generated information (Rastogi
et al., 2022). Several studies have questioned the
necessity of probabilistic calibration, showing that
presenting uncalibrated probabilities may improve
human decisions c(Benz and Rodriguez, 2023; Vo-
drahalli et al., 2022; Nizri et al.). Other research
proposes model designs to better calibrate human
trust (Zhang et al., 2020; Ma et al., 2023; Buçinca
et al., 2021). The experimental settings in all of
these papers focus on classification tasks rather
than long-horizon decision-making tasks, as ex-
plored in this work.

Regarding complementary performance in
human-AI collaboration, Bansal et al. (2021)
famously demonstrate that presenting model-
generated explanations to humans does not en-
able human-AI teams to outperform individual en-
tities. We present a contrasting result, showing that
a complementary performance boost is possible
with careful selection and presentation of model-
generated information.

Hallucination Detection. Neural text generation
models produce hallucinations in textual domains
(Kalai and Vempala, 2024; Müller et al., 2020;
Maynez et al., 2020; Durmus et al., 2020; Liu et al.,
2022) as well as multimodal domains (Wiseman
et al., 2017; Rohrbach et al., 2018; Liu et al., 2024;
Chen et al., 2024). Hallucination detection has
been explored, but primarily for machine transla-
tion (Dale et al., 2023; Xu et al., 2023; Wang and
Sennrich, 2020; Zhou et al., 2021) or summariza-
tion (Falke et al., 2019; Kryscinski et al., 2020;
Chen et al., 2021). Closest to our work is Zhao
et al. (2023b), who study this problem in a similar
visual navigation setting. However, their model
cannot provide correction suggestions, nor do they
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design user interfaces or perform evaluations with
real human users.

3 Problem Setting

We consider the problem of generating language
instructions to guide a human to follow an intended
route in an environment. The concrete goal is to
build a speaker model S(w | r), which takes an in-
tended route r as input and generates a correspond-
ing language instruction w as output (Figure 1).
The instruction w = (w1, . . . , wn) is a sequence
of words (e.g., “Walk past the couch and turn
right. Walk down the hallway and stop in the
bedroom.”). The route r = (o1, a1, . . . ,ol, al)
is a sequence of observations and actions, where
each observation is a collection of RGB images
that capture the view at a location, and each action
represents a transition from one location to another.
The speaker is evaluated through an instruction-
following task, in which a human user receives an
instruction generated by the speaker and follows
it in the corresponding environment. Success is
achieved if the user reaches the final location along
the intended route.

To simulate this problem, we employ the Mat-
terport3D simulator and Room-to-Room (R2R)
dataset (Anderson et al., 2018) for model training
and human experiments. Matterport3D is a photo-
realistic simulator that features images taken from
various real residential buildings. The R2R dataset
contains pairs of route and language instruction.
The instructions contain more than 7,000 object
and direction phrases.

We follow Zhao et al. (2023a) to train a
T5-based (Raffel et al., 2020) speaker model. The
instructions generated by this model often contain
object or directional phrases that are inconsistent
with the scenes along the intended route. We
refer to such phrases as hallucinations. We
categorize hallucinations into two types: intrinsic
hallucination is a phrase that needs to be replaced
because it inaccurately describes an observation
or action (e.g., an instruction says “Walk past the
reception desk and out the door on the right” ,
but on the intended route, the door is on the left);
extrinsic hallucination is a phrase that needs to be
removed because it does not have a correspondence
on the input route (e.g., “Walk through the office
and out of the office. Walk into the hallway and
turn left” , where the second sentence describes a
path that does not exist in the environment). Upon

inspecting 40 sample instructions generated by
our speaker, we find that 67.5% of them have
hallucinations, and that 20.9% of all the object and
direction phrases are hallucinations.

4 HEAR: Hallucination Detection and
Remedy

In this section, we introduce HEAR, which
augments a speaker model by enabling it to (i)
highlight potential hallucinations in an instruction
and (ii) produce a list of plausible corrections for
each hallucination. We expect that (i) would help
a user avoid being misled into incorrect regions,
while (ii) would reduce the effort required to locate
the correct region. We build two models (§ 4.1,
§ 4.2, illustrated in Figure 2) to generate these
pieces of information and design an interface to
effectively convey them to users (§4.4).

4.1 Hallucination Detection

The hallucination detection model predicts hallu-
cinations in an instruction. We adopt the model
from Zhao et al. (2023b) but train it on a different
training set so that it can detect phrases instead of
just tokens as in the original work.

We frame the hallucination detection problem
as a binary classification task: given an input x =
(r,w, i, j) consisting of a route r, an instruction w,
and token indices i, j ∈ {1, · · · , n}(i ≤ j), decide
whether the phrase wi:j = (wi, wi+1, ..., wj) is a
hallucination (more specifically, whether it should
be replaced or removed to make w consistent with
r). For example, in the instruction shown in Fig-
ure 1,w6:7 is predicted to be a hallucination. We
use a combination of a POS tagger2 and GPT-3.5-
turbo to identify the phrases to be classified.

Our model is a classifier PH(y = 1|x =
(r,w, i, j)) that is fine-tuned from the Airbert
model (Guhur et al., 2021)—a vision-language
model pre-trained on a large corpus of captioned
household scenes collected from AirBnB.

For each instruction, we wrap the phrases
to be classified between a pair of special
tokens ([BH] and [EH]). For example, if
wi:j is classified, the instruction becomes
[ w1, . . . , [BH], wi, ..., wj , [EH], . . . , wn ]. The
model takes as input this annotated instruction and
the visual route and outputs a score s(x). The hal-
lucination confidence is calculated as PH(x) =
σ(s(x)), where σ is the sigmoid function. The

2https://spacy.io
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Figure 2: Our hallucination detection model (top) and hallucination type classification model (bottom). Each model
takes a language instruction and a visual route as input and predicts a binary label. For hallucination detection, the
label is whether a phrase is a hallucination. For hallucination-type classification, the label is whether a hallucination
is extrinsic (needed to be replaced) or extrinsic (needed to be removed). Each model is built on top of a pre-trained
vision-language model and is fine-tuned using contrastive learning. The first model is used to decide which phrases
to highlight in an instruction, and the two models are combined to score and rank possible corrections.

model is trained with a contrastive objective (Ma-
jumdar et al., 2020) on pairs of positive and nega-
tive examples (described in §4.3).

4.2 Correction Suggestion
For each phrase wi:j classified as hallucination by
PH , we compute the top-K correction suggestions.
To do so, we first generate a set of candidate
corrections {ŵm

i:j}Mm=1 (this procedure will be
described in § 4.3). For example, in Figure 1,
{ŵm

6:7} is {turn right, walk straight}. A special
token [REMOVE] represents the deletion of the
phrase. We train a hallucination-type classification
model, which allows us to rank these candidates
and choose the top K.

Ranking suggestions. As mentioned in §3, we
categorize hallucinations into two types: intrinsic
and extrinsic. Let zx denote the hallucination type
of a phrase x; zx = 1 if x is an intrinsic hallu-
cination. We learn a binary classifier to estimate
PI(z = 1 | x, yx = 1) where yx = 1 indicates
that x is a hallucination. Let x = (r,w, i, j) and x̂
be the corrected version of x obtained by replacing
wi:j with a candidate correction ŵi:j . We compute
a score R(x̂) for every candidate (the higher is the
better). We consider two cases. If x̂ indicates a
replacement, we define R(x̂) as:

PI(z = 1 | x, yx = 1) · PH(y = 1 | x̂) (1)

where the first term computes how likely x
necessitates a replacement, while the second
term captures how good the proposed replace-
ment x̂ is. If x̂ indicates a deletion, we set
R(x̂) = PI(z = 0 | x, yx = 1), which estimates
the probability that x is an extrinsic hallucination
(thus requiring deletion).

Hallucination type classification. The model PI

uses the same model architecture and is trained in
a similar fashion as the hallucination model PH .
However, it solves a different problem: determin-
ing the type of a hallucination rather than identi-
fying whether a phrase is a hallucination. This
is achieved by training on a different dataset, as
described in §4.3.

4.3 Dataset Creation

To train the models described in previous sections,
we construct training datasets with positive and
negative examples, defined by the specific classifi-
cation problem. We also create a set of candidate
corrections for each predicted hallucination. As
human-labeled training data is costly to obtain, we
synthetically create training data by taking human-
generated instructions in the R2R training set and
perturbing them using rule-based procedures and
GPT models.

Training data for hallucination detection. For
this problem, the negative examples are instructions
from the R2R training set (Anderson et al., 2018),
which are assumed to contain no hallucinations. To
create a positive example from a negative example
denoted by x− = (r,w−, i, j)}, we perturb the
instruction w− in various ways. Following Zhao
et al. (2023b), we focus on three types of intrinsic
hallucinations: room, object, and direction. We
create a room hallucinations by replacing a room
phrase with another randomly chosen from a pre-
composed list, and generate an object hallucination
by replacing an object phrase with another that
appears in the same instruction. For directions,
since one can be expressed in various ways (e.g.
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go straight is the same as proceed forward), we
leverage GPT-3.5-turbo to modify them, using the
following prompt (the few-shot examples are not
shown for brevity; the full prompt is in §A.1):

SYSTEM: Find a directional word/phrase in the
original instruction, and substitute it with a com-
pletely different directional word/phrase, so a per-
son following the modified instruction would go in
a different direction from the original instruction.
Craft three modified instructions for each original
instruction, and utilize the <s></s> tag pair to high-
light the directional word/phrase you’ve modified
in both the original and modified instructions.
Input: Walk out of the bedroom and turn left.
Output: <original1> walk <s> out of </s>
the bedroom and turn left . </original1>
<modified1> walk <s> around </s> the bed-
room and turn left . </modified1>

Meanwhile, an extrinsic hallucination in an in-
struction is constructed by inserting a sentence
taken from the same or a different instruction into a
randomly selected beginning-of-sentence location
within the instruction.

Multiple hallucinations are created within an in-
struction, but only one is wrapped by the [BH] [EH]
tags for classification. We also add hallucinations
to the negative example, but ensure that the span
enclosed by [BH] [EH] is not a hallucination.

Training data for hallucination-type classifica-
tion. For this dataset, both the positive and neg-
ative examples contain hallucinations, but the en-
closed spans in the positive examples are intrinsic
hallucinations, while those in the negative exam-
ples are extrinsic hallucinations. We apply the ap-
proach used in the detection problem to synthesize
hallucinations.

Generating sets of candidate corrections. We
generate a set of candidate corrections for each
predicted hallucination. The candidate corrections
for a room or an object hallucination are all the
rooms and objects provided by the Matterport3D
simulator. For directions, we ask GPT-4 to generate
candidates, using the following prompt (the few-
shot examples are not shown; the full prompt is in
§A.1):

SYSTEM: Find directional words/phrases in the
instruction and use <original> </original> tags to
mark them, and list all the possible substitutions to
change the meaning completely with <modified>
</modified> tags, so that a person following the
substituted instruction would go in a different di-
rection from the original instruction. Use <sep>
to separate each substitution, and do not mark the
nouns.
Input: Walk out of the bedroom and turn left.
Output: walk <original1> out of </original1>
<modified1> into <sep> around <sep>
to the left of <sep> to the right of </modi-

fied1> the bedroom and <original2> turn left
</original2> <modified2> go straight <sep>

turn right <sep> turn around </modified2>
.

On average, we generate 47.6 candidates for
each room or object hallucination and 5.9 candi-
dates for each direction hallucination.

4.4 Designing Communication Interface

We build on top of the interface developed by Ku
et al. (2021) and Zhao et al. (2023a) which allows a
human to follow a language instruction to interact
with a Matterport3D environment. We augment the
interface to display highlights and suggestions for
potential hallucinations. This section discusses our
design principle; more details and a visualization
of the interface are given in §A.5.

Our system generates a lot of information that
can potentially be communicated to users. Decid-
ing what piece of information to present and how to
present it is vital to the success of the system. We
choose not to present model probabilities to users
because they can be miscalibrated and even if they
are, different people might interpret them differ-
ently (Vodrahalli et al., 2022). Instead, we convey
binary predictions of hallucinations through high-
lights. To do so, we select a decision threshold for
the hallucination detection model to maximize its
F-1 score on a manually annotated development set.
If all phrases in a clause are highlighted, we simply
highlight the entire clause and treat the clause as a
single hallucination. For each instruction, we high-
light at most three hallucinations predicted by the
model, which is approximately the average number
of hallucinations in an instruction detected by our
human annotators.

For suggestions, because their presence can be
overwhelming, we display them only when the user
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deliberately seeks them out. Initially, the user sees
only the instruction (potentially with hallucination
highlights). We instruct them to click on a high-
lighted phrase if they also suspect it to be a hal-
lucination and want to view possible corrections.
If that happens, a drop-down menu will appear,
displaying the top three suggestions in descending
order by the score produced by our ranking models.
The user can click on a suggestion to apply it to the
instruction, which closes the drop-down menu. We
explicitly instruct users to correct the instruction to
encourage them to consider the suggestions.

A complication we encounter is to decide how
much information about the true final location
should be revealed to the users. If users do not
know the true final locations, they cannot correct
the instructions. However, if the location is com-
pletely revealed to them, the influence of the in-
structions on their behavior is significantly weak-
ened, undermining the purpose of our study. To
address this issue, we introduce a Check button,
which enables the human to verify whether they
have reached the final location. The button enables
users to correct instructions while also retaining
their reliance on instructions. In addition, analyz-
ing user button usage uncovers interesting insights
about their behavior.

5 Experiments

The questions that we aim to answer are:
(Q1) Can HEAR reliably detect hallucinations and

provide reasonable suggestions?
(Q2) Does providing hallucination highlights and

suggesting corrections improve human navi-
gation performance?

(Q3) What are the effects of highlights and sugges-
tions on human behavior?

To answer Q1, we evaluate HEAR intrinsically
with human-annotated data. To answer Q2 and
Q3, we conduct a human evaluation with various
systems, including ablated versions of HEAR and
an oracle human-based system.

Data. To train the hallucination detection model,
we synthetically generate a training set with
164,939 pairs of positive and negative examples
(§4.3), which are created from the Room-to-Room
(R2R) (Anderson et al., 2018) train set (4,675
routes, each route has 3 human-annotated instruc-
tions). To train the hallucination type classification
model, we generate 117,357 pairs of positive and
negative examples, created from the R2R train set.

For both evaluations, we first use a speaker
model (§ 3) to generate instructions describing
routes from the R2R validation seen split. For
intrinsic evaluation and model selection, we ran-
domly select and annotate 40 routes from the split
as our Dev Set. For human evaluation, we use
the 75 test routes from previous work (Zhao et al.,
2023a,b) as our Test Set. There is no overlap be-
tween the Dev Set and the Test Set.

5.1 Intrinsic Evaluation: Hallucination
Detection and Correction Suggestion

Annotation. We manually annotate hallucina-
tions in the instructions generated by the speaker
model, with mutual agreement from two of the
authors. We also annotate corrections for those
spans that we label hallucinations. In the end,
we create intrinsic evaluation datasets consisting
of 376 examples from the Dev Set for model
selection; and 625 examples from the Test Set for
testing, as well as used by the Oracle system for
human evaluation (§5.2).

Systems. We implemented the following ap-
proaches (detailed hyperparameters in §A.3):
(a) HEAR is our final system described in §4.1,

§4.2, and §4.3.
(b) HEAR-SameEnvSwap is similar to HEAR but

the strategy to create room and object hallu-
cinations is slightly different. Instead of fol-
lowing the procedure described in §4.3, we
swap objects and rooms with those in the same
environment (more details in §A.2).

(c) One-stage HEAR combines hallucination de-
tection and type classification into a single
model (more details in §A.2). This model can
directly score each correction suggestion.

(d) Random samples a label uniformly at random
among all possible labels, where the labels are
{yes, no} for hallucination detection, and are
the set of all possible 3-element subsets of the
candidate set for correction suggestion.

Metrics. We compute macro-averaged F-1 for
hallucination detection and compute Recall@3
for correction suggestion, which is the empirical
chance that the gold correction appears in the top-3
suggestions ranked by a system.

Main results (Table 1). All the learned models
substantially outperform the random baseline. In
particular, the R@3 metrics of these models are in
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Dev Test

System F-1 R@3 F-1 R@3

Random 42.6 47.8 43.8 50.4
HEAR-SameEnvSwap 64.8 75.0 69.1 78.7
One-stage HEAR 62.8 82.7 60.9 86.2
HEAR (final) 63.4 88.4 66.5 70.6

Table 1: Intrinsic evaluation of HEAR and our baseline
systems. The decision threshold for each system
is selected to maximize the F-1 score on the Dev
Set. R@3 computes how often the top-3 correction
suggestions contain the gold annotated correction.

the range of 70-90%, showing that they have a high
potential to aid humans.

The results in hallucination detection show a
clear trend, HEAR-SameEnvSwap is the best
model in terms of F-1 score, followed by HEAR
and finally one-stage HEAR. This indicates that the
data-creation strategy in the HEAR-SameEnvSwap
training set is beneficial. Meanwhile, the perfor-
mance of one stage HEAR is low, possibly because
it has twice as few parameters as the other two mod-
els. The results in correction suggestion recall are
more nuanced: HEAR is best on Dev but one-stage
HEAR is superior on Test. HEAR-SameEnvSwap
outperforms others in hallucination detection, but
its underperformance in correction suggestion indi-
cates that the probabilities output by its hallucina-
tion detection module are not reliable.

Considering the average of F-1 and R@3, HEAR
is the best performing model on the Dev set. There-
fore, we select it for evaluation with human users.

5.2 Extrinsic Evaluation with Human
Followers

Setup. We evaluate five systems:
(a) No communication only tells the user that the

instruction may be imperfect. It does not pro-
vide highlights and suggestions, and is similar
to the system in Zhao et al. (2023a).

(b) HEAR (no suggestion) tells the user that the
instructions can be imperfect, highlights po-
tential hallucinations, and tells the user that
those phrases are potential errors. It does not
provide suggestions. This system is similar to
Zhao et al. (2023b).

(c) HEAR is our final system, which adds to (b)
the ability to suggest the top three corrections
for each predicted highlight. We choose to
present the top three suggestions to balance
the system’s recall performance with user

mental load.
(d) Oracle (no suggestion) is similar to (b) but

highlights are annotated by the authors.
(e) Oracle is similar to (c), but highlights and

corrections are annotated by the authors.
It displays two instead of three candidate
suggestions: the original phrase and the gold
correction.

We evaluate each system on 18 routes randomly
chosen from the Test Set. For each route and each
system, we recruit five human users using Amazon
Mechanical Turk and ask them to follow the
instruction generated by the system to describe the
route. Users are paid $4.10 for each session, which
involves performing 7 navigation tasks and takes
on average 19 minutes to complete. One of the
tasks is a quality-control task that appears in every
session. We analyze only sessions in which the user
passes this task. After completing a session, users
can provide feedback on the system. We ensure
that each user encounters each route only once
to prevent them from memorizing it. In total, we
recruit 80 users and evaluate 525 navigation tasks.

Metrics. We evaluate navigation performance us-
ing standard metrics of the R2R task:
(a) Success rate (SR ↑): fraction of examples in

which the user’s final location is within 3m of
the true goal;

(b) Navigation error (DIST ↓): distance between
the user’s final location and the true goal.

After a user has finished navigating, we ask for
their subjective judgements about the route and the
instruction, specifically:
(a) Is the instruction easy to follow?
(b) Are you confident the path you followed is the

intended path?
(c) Is the task mentally demanding?

For each question, we use 5-point Likert scale to
ask for a rating on the affirmative statement (e.g.,
I am confident that I traversed the path that the
AI system tried to describe).

HEAR enhances user navigation performance.
As seen in Figure 3, compared to no communi-
cation, simply highlighting potential errors using
HEAR increases user success rate (+6.7%) and
decreases navigation error (-1.9m). These results
confirm that error highlights can effectively com-
pensate for the deficiencies of the instruction gen-
eration model. A user described the effects of high-
lights as follows: “highlights help me know if the
instructions were going to be wrong. It made it
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Walk through the open door and
turn left
turn right (*)
turn around
None of above

turn right              

(a) Highlights and suggestions directs a user to correctly
make a left turn (blue). With only highlights, another user
mistakenly turns right (red).

Walk past the reception desk 
[DELETED]
and out the door on the right (*)
None of above

and out the door on the right

(b) A user successfully reaches the destination solely with
the highlight (blue), while another fails upon receiving
additional suggestions (red). While the highlight and the
top suggestion ([delete]) are incorrect, they appear to rein-
force each other, making the user believe that the highlight
is correct and go in the alternative direction.

Figure 4: Example success and failure cases of HEAR (more in §A.7).

Easy to Confident Mental
System follow? ↑ on actions? ↑ burden? ↓
No communication 3.7 3.8 3.6
HEAR (no suggestion) 3.5 3.9 3.5
HEAR 4.0 4.2 ‡ 3.5
Oracle (no suggestion) 3.9 3.8 3.6
Oracle 4.1† 4.1† 3.7

Table 2: User subjective ratings of systems after com-
pleting navigation sessions. The symbols ‡ and † indi-
cate results that are significantly higher than those of the
“No communication” system in the first row, with p <
0.004 (Bonferroni correction for 12 tests comparing 4
systems with “No communication”) and p < 0.05, re-
spectively, as determined by a two-related-sample t-test.

easier to know where to go back to and retrace
steps in order to go to the right place”. User perfor-
mance is further improved with suggestions gener-
ated by HEAR (+2. 2% in SR and -0.1m in DIST).
Figure 4a shows an example where a user who
is provided with both highlights and suggestions
successfully reaches the target destination, whereas

another user who is shown only highlights does not.
Another notable pattern, shown in Figure 3 (mid-

dle), is that adding highlights and suggestions sub-
stantially decreases the variance of the navigation
error. This indicates that highlights and suggestions
effectively reduce the search space of the users.

HEAR receives favorable subjective ratings.
As shown in Table 2, users find the instructions
generated by HEAR (and Oracle systems) easier
to follow and report greater confidence in their
actions. Despite being asked to correct errors in
the instructions, users do not report a significant
increase in mental load.

HEAR improves user persistence in completing
tasks. Figure 3 (rightmost) shows that users, on
average, use the Check button more often when
provided with highlights and suggestions. This
result suggests that these features incentivize
users to make more attempts to solve the task
and consequently become more successful. We
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hypothesize that by suggesting possibilities for
exploration, users can avoid blind searches,
making them more willing to invest effort. In
contrast, without highlights and suggestions, users
lack direction and may give up more quickly. They
may perceive an entire instruction as incorrect and
believe that the correct instruction could be entirely
different from the current one, leading them to feel
there is no hope in searching without further clues.

Better highlights and suggestions further im-
prove user performance. Figure 3 shows that
users benefit from a better hallucination detection
model; they achieve a higher success rate (+5.5%)
and a smaller navigation error (-1.3 m) when Ora-
cle highlights are given, compared to when HEAR
highlights are presented.

User performance is also enhanced when using
an improved correction suggestion model: +10.0%
in success rate and -1.9m in navigation error when
using Oracle suggestions compared to when using
HEAR suggestions. Figure 4b illustrates how a user
is misled by incorrect highlights and suggestions.

6 Conclusion

We present a novel approach to enhance human
task performance by effectively communicating
model uncertainties. By encouraging users to
refine AI-generated solutions, our approach offers
an alternative to the conventional method that
focuses on directly improving AI autonomous
capabilities while overlooking human capabilities.
To fully unlock the potentials of AI technologies,
we advocate for viewing AI systems not as
independent problem solvers, but as assistants and
collaborators of humans.

While our research primarily addresses
language-guided visual navigation, the insights
gained are broadly applicable to other vision-
language tasks. Specifically, we have demonstrated
that: (i) it is feasible to generate meaningful
error highlights and correction suggestions for
vision-language models, and (ii) presenting these
highlights and suggestions to human users can
improve their decision-making. Moreover, our
methods for creating synthetic errors and correc-
tion suggestions using rules and large language
models are generalizable to various contexts.

Limitations

Due to cost constraints, the scale of our human
evaluation is limited. We prioritize having

more annotators evaluate each route over having
more routes. Furthermore, the assessment of
cognitive load in the human evaluation study is
not sufficiently robust; we plan to administer other
schemes, such as the NASA Task Load Index
(Hart, 2006), in future work.

Before using the navigation interface, users
watch a video tutorial that explains the components
of the interface and the associated questions. How-
ever, this could be improved by incorporating a
warm-up practice session to help users become
more familiar with the interface.

Another limitation of our human study is
that we cannot determine how much of the
performance improvement can be attributed to
specific highlights and their associated correction
suggestions, as task performance is assessed solely
based on how close users are to the true final
location. Additionally, we do not record the time
when the Check button is pressed, which prevents
us from analyzing the distribution of button presses
throughout a navigation process.
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A Appendices

A.1 GPT for Dataset Creation

The following prompt is given to GPT-3.5-turbo to create direction hallucinations in instructions (§4.3):

Input: Walk out of the bedroom and turn left. Walk into the kitchen and stop by the counter.
Output: (1) <original1> walk out of the bedroom and <s>turn left</s> . walk into the kitchen and stop by the counter .
</original1> <modified1> walk out of the bedroom and <s>turn right</s> . walk into the kitchen and stop by the counter .
</modified1>
(2) <original2> walk <s>out of</s> the bedroom and turn left . walk into the kitchen and stop by the counter . </original2>
<modified2> walk <s>around</s> the bedroom and turn left . walk into the kitchen and stop by the counter . </modified2>
(3) <original3> walk out of the bedroom and turn left . walk <s>into</s> the kitchen and stop by the counter . </original3>
<modified3> walk out of the bedroom and turn left . walk <s>out of</s> the kitchen and stop by the counter . </modified3>
Input: Walk straight and turn left. Walk down the hallway and stop in the first doorway on your left.
Output: (1) <original1> walk straight and turn left . walk <s>down</s> the hallway and stop in the first doorway on your left .
</original1> <modified1> walk straight and turn left . walk <s>up</s> the hallway and stop in the first doorway on your left .
</modified1>
(2) <original2> walk straight and turn left . walk down the hallway and stop in the first doorway <s>on your left</s> . </original2>
<modified2> walk straight and turn left . walk down the hallway and stop in the first doorway <s>to your right</s> . </modified2>
(3) <original3> walk straight and turn right . walk down the hallway and stop in the <s>first</s> doorway on your left .
</original3> <modified3> walk straight and turn right . walk down the hallway and stop in the <s>second</s> doorway on your
left . </modified3>
Input: Exit the bathroom. Walk forward and go down the stairs. Stop four steps from the bottom.
Output: (1) <original1> exit the bathroom . walk <s>forward</s> and go down the stairs . stop four steps from the bottom .
</original1> <modified1> exit the bathroom . walk <s>backward</s> and go down the stairs . stop four steps from the bottom .
</modified1>
(2) <original2> <s>exit</s> the bathroom . walk forward and go down the stairs . stop four steps from the bottom . </original2>
<modified2> <s>enter</s> the bathroom . walk forward and go down the stairs . stop four steps from the bottom . </modified2>
(3) <original3> exit the bathroom . walk forward and go down the stairs . stop four steps from the <s>bottom</s> . </original3>
<modified3> exit the bathroom . walk forward and go down the stairs . stop four steps from the <s>top</s> . </modified3>
Input: walk through open door, turn left, walk toward fireplace turn right, stop outside doorway.
Output: (1) <original1> walk through open door , turn left , walk toward fireplace turn right , stop <s>outside</s> doorway .
</original1> <modified1> walk through open door , turn left , walk toward fireplace turn right , stop <s>inside</s> doorway .
</modified1>
(2) <original2> walk through open door , <s>turn left</s> , walk toward fireplace turn right , stop outside doorway . </original2>
<modified2> walk through open door , <s>go straight</s> , walk toward fireplace turn right , stop outside doorway . </modified2>
(3) <original3> walk through open door , turn left , walk <s>toward</s> fireplace turn right , stop outside doorway . </original3>
<modified3> walk through open door , turn left , walk <s>away from</s> fireplace turn right , stop outside doorway . </modified3>

The following prompt is given to GPT-4 to generate candidate direction corrections (§4.3):

SYSTEM: Find directional words/phrases in the instruction and use <original> </original> tags to mark them, and list all the
possible substitutions to change the meaning completely with <modified> </modified> tags, so that a person following the
substituted instruction would go in a different direction from the original instruction. Use <sep> to separate each substitution,
and do not mark the nouns.
Input: Walk out of the bedroom and turn left. Walk into the kitchen and stop by the counter.
Output: walk <original1> out of </original1> <modified1> into <sep> around <sep> to the left of <sep> to the right of
</modified1> the bedroom and <original2> turn left </original2> <modified2> go straight <sep> turn right <sep> turn around
</modified2> . walk <original3> into <original3> <modified3> out of <sep> pass </modified3> the kitchen and <original4> stop
by <original4> <modified4> walk pass <sep> walk away from </modified4> the counter .
Input: Walk straight and turn left. Walk down the hallway and stop in the first doorway on your left.
Output: <original1> walk straight </original1> <modified1> turn left <sep> turn right <sep> turn around </modified1> and
<original2> turn left </original2> <modified2> turn right <sep> go straight <sep> turn around </modified2> . <original3>
walk down </original3> <modified3> stop in <sep> walk away from </modified3> the hallway and <original4> stop in
</original4> <modified4> go into <sep> turn left at <sep> turn right at <sep> walk away from </modified4> the <original5>
first </original5> <modified5> second <sep> third <sep> fourth <sep> last </modified5> doorway <original6> on your left
</original6> <modified6> on your right <sep> straight ahead </modified6> .
Input: Exit the bathroom. Walk forward and go down the stairs. Stop four steps from the bottom.
Output: <original1> exit </original1> <modified1> enter </modified1> the bathroom . <original2> walk forward </original2>
<modified2> go backward <sep> turn left <sep> turn right </modified2> and <original3> go down </original3> <modified3> go
up <sep> stop by <sep> walk away from </modified3> the stairs . stop <original4> four </original4> <modified4> one <sep>
two <sep> three </modified4> steps from the <original5> bottom </original5> <modified5> top </modified5> .
Input: walk through open door, turn left, walk toward fireplace turn right, stop outside doorway.
Output: <original1> walk through </original1> <modified1> walk past </modified1> open door , <original2> turn left
</original2> <modified2> turn right <sep> turn around <sep> go straight </modified2> , <original3> walk toward </original3>
<modified3> walk away from </modified3> fireplace <original4> turn right </original4> <modified4> turn left <sep> turn
around <sep> go straight </modified4> , stop <original5> outside </original5> <modified5> inside </modified5> doorway .
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Hyperparameter Value

Learning rate 10−5

Batch size 128
Optimizer AdamW
Training iterations 5× 105

Maximum instruction length 60
Image feature size 2048
Embedding dropout 0.1
Hidden size 768
Transformer layers 12
Transformer dropout rate 0.1
Number of parameters 250M
Computation and training time RTX A4000: ∼72h

Table 3: The hyperparameters of the hallucination detection and hallucination type classification models.

System Success Rate ↑ Navigation Error ↓ Checks

No communication 68.9 ± 7.1 6.6 ± 1.6 2.9 ± 0.6
HEAR (no suggestion) 75.6 ± 6.6 4.7 ± 1.2 3.4 ± 0.7
HEAR 77.8 ± 6.3 4.6 ± 1.2 4.1 ± 0.8
Oracle (no suggestion) 81.1 ± 6.0 † 3.4 ± 0.9 † 3.5 ± 0.7
Oracle 87.8 ± 5.0 ‡ 2.7 ± 0.7 ‡ 3.6 ± 0.6

Table 4: Performance measured by success rate (SR ↑) and navigation error (DIST ↓), and the number of check-
button clicks recorded when human users perform navigation tasks with different assistant systems. The error bars
after ± represent 85% confidence intervals. The symbols ‡ and † indicate results that are significantly higher than
those of the “No communication” system in the first row, with p < 0.004 (Bonferroni correction) and p < 0.05,
respectively, as determined by a two-related-sample t-test.

A.2 Model Variants

HEAR-SameEnvSwap. This system is identical to HEAR, but the synthetic hallucinations are created
using different strategies. In the case of object hallucination, rather than swapping two objects within the
same instruction, we replace an object in the instruction with another object randomly selected from those
encountered along the described route. For room perturbation, instead of replacing a room mentioned in
the instructions with another room from a list, we substitute it with another room that exists in the same
environment.

One-stage HEAR. This underlying model of this system is similar to the hallucination detection model
of HEAR. But its positive examples contain instructions with an empty token [REMOVE]. For example:

Positive: Go forward toward the windows. Exit [BH] [REMOVE] [EH] to living room.
Negative: Go forward toward the windows. Exit [BH] exercise room [EH] to living room.
Thus, instead of using two models as in HEAR, we can use this single model to score any correction,

including deletion corrections. Concretely, with this model, we simply set the score function R(x̂) =
1− P (y = 1 | x̂) where P (y = 1 | x̂) is the probability output by the model. The training data of this
model contain 216,323 pairs of positive and negative examples.

A.3 Hyperparameters and Tools

The hyperparameters and computation cost of the HEAR’s two models are listed in Table 3 (they have the
same architecture and are trained in the same way). Other baseline models (§A.2) also have the same
hyperparameters. We implement our models with Pytorch 1.7.1, Huggingface Transformers 4.5.1, NLTK
3.6.7, and use SciPy 1.6.0 for our result analyses.
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Figure 5: Introductory page of the human navigation task. A video instruction is provided.

A.4 Main Result Table

Table 4 shows human navigation performance when using different assistant systems, which corresponds
to the charts in Figure 3.

A.5 Human Evaluation

Figure 6 shows the user interface of the HEAR and the Oracle systems. Figure 7 presents the interface
of the HEAR (no suggestion) and Oracle (no suggestion) systems. Figure 8 is the interface of No
communication. The interfaces are adapted from Zhao et al. (2023a) with the MIT License and Pangea3

with the Apache License v2.0. Before starting a task, we provide the user with a video instruction that
shows them how to use the interface (Figure 5). After they complete the task, we record their route, the
number of times they click on the Check button, and their subjective ratings. User participants must be at
least 18 years old and speak English. The intended use of the system is first explained to them, and if they
consent to perform the task, then they will be taken to the interface.

This study has been approved by the Institutional Review Board (IRB). For data anonymization, we
removed the only PII information, the Amazon Mechanical Turk ID, after collecting the data. This
information will also be removed in the future dataset release and replaced with serial numbers that do
not reveal the identities of the participants. The dataset will be released under MIT license terms that are
compatible with those of the tools used to create it and will be intended for research usage. We do not
identify any potential risk to participants or the general public in releasing our dataset.

3https://github.com/google-research/pangea
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Figure 6: The interface used by the HEAR and Oracle systems.

A.6 Check Button Usage
In Figure 9, we show the number of checks when users succeed or fail. We observe that highlights and
suggestions increase the number of checks in both cases.

A.7 Qualitative example (Figure 10)

733



Figure 7: The interface used by the HEAR and Oracle systems without correction suggestions.
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Figure 8: The interface without highlights and suggestions (no communication).
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Figure 9: Number of check-button clicks when users succeed and fail on the task.
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Walk forward and turn left . Walk forward and exit the building

(a) A qualitative example where our system accurately highlights a hallucinated direction and helps a user navigate successfully.
Another user, who is not given the highlight, follows the instruction and takes the wrong turn.

walk past the couch and turn right             . walk down the hallway and 
stop in the bedroom… turn left

turn right (*)
[DELETED]
None of above

turn right                  

(b) Accurate highlights from our system help a user to cor-
rectly go straight. Although the suggestions are not accu-
rate, it can still enable the user to make the right decision.

walk past the couch and stop in front of             the tv .
in front of (*)
next to
away from
None of above

in front of                  

(c) In this case, the correct instruction is: walk past the
couch and stop in front of the bed. Inaccurate highlight
generated by our system leads the user to the wrong
location.

Figure 10: Additional qualitative examples. The true route and the target destination are marked by a blue arrow
and a green box, respectively. The user’s route is indicated by a red arrow.
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