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Abstract

The performance of large language models
(LLMs) is significantly influenced by the qual-
ity of the prompts provided. In response, re-
searchers have developed enormous prompt
engineering strategies aimed at modifying the
prompt text to enhance task performance. In
this paper, we introduce a novel technique
termed position engineering, which offers a
more efficient way to guide large language mod-
els. Unlike prompt engineering, which requires
substantial effort to modify the text provided to
LLMs, position engineering merely involves al-
tering the positional information in the prompt
without modifying the text itself. We have eval-
uated position engineering in two widely-used
LLM scenarios: retrieval-augmented genera-
tion (RAG) and in-context learning (ICL). Our
findings show that position engineering sub-
stantially improves upon the baseline in both
cases. Position engineering thus represents a
promising new strategy for exploiting the capa-
bilities of large language models.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) have demonstrated significant strides
towards achieving artificial general intelligence.
These models exhibit a wide range of capabilities,
such as in-context learning (Brown et al., 2020),
answering questions based on documents (Lewis
et al., 2020; Guu et al., 2020), solving complex
mathematical problems (Frieder et al., 2024), and
generating code (Romera-Paredes et al., 2024; Ma
et al., 2023).

When utilizing LLMs, user prompts are inputted,
converted into sequences of tokens, and then pro-
cessed through multiple attention layers (Vaswani
et al., 2017). These attention layers employ two
types of information derived from the token se-
quences: (i) Semantic information, where the to-
kens are converted into text embeddings, and (ii)
Positional information, where the indices of the

tokens are converted into positional embeddings
(Vaswani et al., 2017; Su et al., 2024). The atten-
tion mechanism then combines the semantic and
positional information to predict the distribution of
the next token in the sequence.

\ Para 1 \ Rephrased Para 1
— [[sentz ]["sent2 |["Sents
\ Para 2 \ Para 2
(a) Prompt engineering
\ Para 1 \ Para 1
—  [[PHTokens

PH Tokens

\ Para 2

\ Para 2 \ Sent 1

(b) Position engineering

Figure 1: Comparison of prompt engineering and posi-
tion engineering. "Para" refers to paragraphs, and "Sent"
to sentences in prompts. Prompt engineering involves
either adding, replacing, or removing paragraphs and
sentences from prompts. In contrast, the proposed posi-
tion engineering maintains the original prompt text but
incorporates placeholder tokens instead. These place-
holders are not involved in the computation of attention
scores, thus the computation overhead is not increased.
However, they do hold position indices, thereby affect-
ing the position information of other tokens in the text.

Extensive research has been conducted on mod-
ifying prompt text to alter semantic information,
aiming to boost task performances. For instance,
few-shot prompting is introduced, enabling LL.Ms
to learn new tasks in an in-context manner (Brown
et al.,, 2020). Moreover, the Chain-of-Thought
methodology has been introduced to enhance
LLMs’ reasoning abilities by prompting them to
produce intermediate tokens (Wei et al., 2022; Ko-
jima et al., 2022). Additionally, Automatic Prompt
Engineer has been developed to autonomously de-
sign the prompting text for better task-specific per-
formance (Zhou et al., 2022).

In this study, we investigate the potential of
improving performance by solely modifying po-

7333

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 7333-7345
November 12-16, 2024 ©2024 Association for Computational Linguistics



sitional information, without any semantic infor-
mation change. For the first time, we reveal that
downstream task performance can be significantly
enhanced by simply adjusting the positional indices
of tokens, without modifying the text itself.

As illustrated in Figure 1, our approach involves
the introduction of placeholder tokens to modify
positional information. These placeholder tokens
do not contribute to the computation of attention
scores; however, they do occupy token indices.
Consequently, the relative position of other to-
kens is altered, which could optimize the atten-
tion weights among different segments within the
prompts. We refer to this approach as position
engineering, highlighting the exclusive focus on
manipulating positional information.

We propose a simple yet effective method based
on brutal force to discover the optimal placeholder
token number for each downstream task, and exper-
iment it within two prevalent scenarios of LLMs:
Retrieval-Augmented Generation (RAG) and In-
Context Learning (ICL). Our method significantly
enhances performance in both tasks, achieving up
to a 15.4% absolute increase in accuracy for RAG
and a 3.6% absolute increase for ICL. We also dis-
cover that the same placeholder number can con-
sistently improves the RAG’s performance for dif-
ferent datasets and models.

In all, our contributions can be summarized as
follows:

* For the first time, we discover that different
downstream tasks’ performances can be im-
proved by merely changing the positional in-
formation in prompts.

* We propose a method to help find a better
positional information setting.

* We demonstrate that RAG performance can
be consistently improved by a universal posi-
tional information setting on different datasets
and models.

2 Methodology

2.1 Preliminary

In this section, we provide a brief overview of how
large language models (LLMs) integrate position
information. Let {t;}), represent the input to-
kens to language models, and let {e;}}¥; denote
the corresponding token embeddings. Initially, the

attention layer computes q, k, v:

dm = fg(€m,m)
ky, = fr(en,n) (1
v, = fo(en,n)

where m and n are the position indices of tokens.

The self-attention is then calculated as follows:

Q;rnkn
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mn =
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n=1

where a,, 5, is a scalar capturing the attention score
between m-th token in the query and n-th token in
the value and key sets. d denotes the dimension of
the attention layer, and o,, indicates the output for
the m-th query token.

Absolute positioning is initially introduced by
incorporating a positional embedding vector py,
which is related to m and n (Vaswani et al., 2017):

fo(em,m) = Wq(em + pm)
fk(ena n) = Wk<en + pn) 3)
fv(en7 n) = Wv<en + pn)
The 2¢ and 27 + 1 dimension of the positional em-
bedding p,, is calculated as follows:
2%
Pn,2i = sin(n/100004)
24
Pn,2i+1 = cos(n/100004 )
Recently, RoPE adopts the relative position in-
formation instead of the absolute information (Su
et al., 2024). It utilizes a specifically designed ma-
trix RY, of dimensions d x d and parameterized

by i, to modify the query and key vectors in the
following manner:

fq(em7 m) - R’rdanem
fe(en,n) = RIW,e,, 5)
f’U(eTL7 n) - ern
The matrix R? has a unique property, namely
(R?)TR;I = R;-l_i, which leads to:
ankn = en W RL_, Wie, ©6)

“)

Consequently, in Equation (2), the model solely
focuses on the relative position n — m, instead of
the absolute positions n and m. RoPE has been
adopted by recent LLMs, including Llama, Llama2
and Mistral (Touvron et al., 2023a,b; Jiang et al.,
2023).
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2.2 Altering Position Information in Prompts

The performance of LLMs is significantly influ-
enced by the quality of the prompts used. To
enhance the effectiveness of these prompts, re-
searchers have developed a wide range of prompt
engineering strategies. This refinement process in-

volves transforming the initial input tokens {t;},

into revised inputs {g}é\le, which necessitates

modifications to the text. For instance, the Zero-
shot chain-of-thought technique enhances the rea-
soning abilities of LLMs by appending the sentence
"Let’s think step by step." to the prompts (Kojima
et al., 2022).

In this paper, we propose a novel methodology
termed "position engineering" to further exploit the
capabilities of LLMs. Unlike prompt engineering,
position engineering requires no modification to the
input tokens themselves. Instead, it solely modifies
the position information utilized in Equation (1).
Through empirical experiments, we have discov-
ered that such adjustments to position information
can significantly improve performance. Formally,
we aim at discovering a position editing function,
7(+) : N = N, that boosts LLM performance. This
function changes the token position information,
which is incorporated into the model as shown be-
low:

qv\n = fq(emaT(m)>
1/(; = fk(enaT(n)) (7)

‘/f\n = fv(em T(n))

We impose a condition on 7 that Vi > j,7(i) >
7(j). This requirement ensures that: (1) No two
distinct tokens are assigned the same new position
index, and (2) The causality in language modeling
remains intact, meaning only query vectors with a
larger index can access the key and value vectors
with an equal or smaller index.

The concept of position engineering can be also
explained through placeholder tokens. Placeholder
tokens are defined as tokens that are excluded the
computation of attention scores, yet they are al-
located position indices. To elaborate, when the
calculation of a, 5 is undertaken as described in
the Equation (2), and either the m-th or n-th token
is identified as a placeholder, the conventional com-
putation is bypassed, and a5, is set to 0. While
placeholder tokens do not directly influence the
attention scores at their positions, they do alter
the position indices of other input tokens. As de-
picted in Figure 1b, the insertion of placeholder

tokens between sentences 1 and 2 affects the rela-
tive positional information between them, which in
turn influences the calculation of attention scores
between tokens of the two sentences. The con-
nection between the position editing function and
the placeholder tokens can be described as follows:
Employing a position editing function 7 translates
to adding 7(i + 1) — 7(¢) — 1 placeholder tokens
after the i-th token, and specifically, adding 7(0)
placeholder tokens before the 0-th token.

2.3 Position Engineering

Consider a particular task defined by (@, A), for
which a training set {(Q;, Az‘)}@'IL has been sam-
pled according to the task distribution I'. We trans-
form each question (); into its corresponding text
prompt P;. A large language model M is utilized,
which operates based on the prompt F;, and its
output is evaluated through a scoring function r,
denoted as (M, P;). To potentially enhance the
performance, a position editing function might be
applied to each question prompt. This function is
assumed to be parameterized by a vector 8, and is
denoted as 7p,.9. After the application of the po-
sitional editing function, a new score is generated,
formulated as (M, P;, 7p,.9).

For instance, in retrieval-augmented generation
(RAG) tasks, the prompt F; is typically composed
of three segments: the instruction, the documents,
and the question. It can be possible to define
0 = [01,62], while 0; translates to inserting 6
placeholder tokens between the instruction and the
document segment, and - translates to inserting
placeholder tokens between the document segment
and the question.

Formally, prompt engineering is framed as an op-
timization problem. We aim at finding the optimal
0 that maximizes the score:

N

. 1
0 = arg;naxﬁ ;T(M, P, tp.9)  (8)

In this research, we utilize a basic algorithm for
tackling the optimization problem by initially defin-
ing a limited number of candidates for 8 and assess-
ing each candidate’s score via brute force. Notably,
since @ is a numeric vector, the search process
can be accelerated by adopting various optimizers,
such as Gaussian processes of Bayesian optimiza-
tion (Srinivas et al., 2010). The exploration of more
sophisticated optimization methods will be consid-
ered in future works.
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3 Experiments

In this section, we present our experiments and
findings for position engineering. We evaluate
two prevalent tasks for LLMs, namely Retrieval-
Augmented Generation (RAG) and In-context
Learning (ICL). Our primary testing model is
Llama2-13B-chat (Touvron et al., 2023b), although
we also expand our experiments to include addi-
tional models in the Appendix.

3.1 Position Engineering for RAG

Datasets: To explore the effectiveness of posi-
tion engineering on RAG tasks, we utilize four
open-domain QA datasets: NQ open (Lee et al.,
2019), EntityQuestions (Sciavolino et al., 2021),
TrivialQA (Joshi et al., 2017), and WebQuestions
(Berant et al., 2013). These datasets each include a
training and an evaluation (or test) set, with each set
comprising a series of question-and-answer pairs.
From the original training set of each dataset, we
randomly select 300 QA pairs to serve as our train-
ing set for position engineering. Similarly, we ran-
domly select 2,000 pairs from their original test sets
to constitute our test set. In cases where a dataset
lack a test set, we utilize its evaluation set instead.
The Contriever model, which has been fine-tuned
on the MS-MARCO dataset, is employed as the
retrieval model (Izacard et al., 2021). We employ
document passages from Wikipedia as our source
for retrieval, with each passage containing a total
of 100 words (Karpukhin et al., 2020). k£ document
passages, specifically k£ = 1, 3, 5, are retrieved, and
subsequently concatenated and fed into LLMs. Our
evaluation metric is the best exact match accuracy,
judging whether any correct answer is in the out-
put, which is a common practice in previous works
(Kandpal et al., 2023; Mallen et al., 2023).

Search Space: We adopt the following prompt
template for all RAG experiments. The prompt
template is divided into three segments. The first
segment provides instructions for the task; the sec-
ond segment presents a list of retrieved documents,
each accompanied by its title and a passage; and
the third segment combines the instruction with a
specific question. These segments are referred to
as the instruction segment, the document segment,
and the question segment for convenience.

‘ Instruction ‘ ‘ Instruction ‘

Document 1
Document 2
Document 3

04 PH Tokens

i Document 1
Document 2
Document 3

Op PH Tokens

Figure 2: Position Engineering for RAG. In the figure,
the term "PH tokens" refers to the placeholder tokens in-
troduced in Section 2.2. We investigate a defined search
space, with inserting 6 4 placeholder tokens between the
instruction and document segments, and 6 placeholder
tokens between the document and question segments.
Both 64 and g range from {0, 100, ..., 2500}, subject
to 64 + 05 < 2500.

The prompt template for RAG:

Answer the question based on the given
documents (some of which might be
irrelevant). Only give me the answer and
do not output any other words.

Document (Title: {title}) {passage}
Document (Title: {title}) {passage}
Document (Title: {title}) {passage}

Answer the question based on the given
documents (some of which might be
irrelevant). Only give me the answer and
do not output any other words.

Question: {question}

Answer:

As presented in Figure 2, our study explores
the methodology of position engineering for RAG
by strategically inserting 64 placeholder tokens
between the instruction and document segments,
and 6p placeholder tokens between the document
and question segments. To narrow down the search
space, the values of 64 and fp are limited to a
predefined set {0, 100, ..., 2500}. Additionally, we
impose a restriction that 4 + 05 < 2500, due
to the constraints of the context window size. We
evaluate the performance of all combinations on
the training set with the Llama2-13B-chat model,
and then apply the best configuration to the test set.

Results: Table 1 displays the results for RAG, in-
dicating that position engineering substantially en-
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Dataset NDoc Baseline Position Engineering AbsImpr. 67 0%
NQ Open 1 0.341 0.435 +9.5% 2,000 400
NQ Open 3 0.424 0.490 +6.6 % 2,100 300
NQ Open 5 0.452 0.501 +5.0% 1,600 600

EntityQuestions 1 0.452 0.511 +5.8% 1,400 500
EntityQuestions 3 0.501 0.531 +3.0% 1,200 300
EntityQuestions 5 0.535 0.558 +2.3% 1,300 400
TrivialQA 1 0.582 0.657 +7.5% 1,300 200
TrivialQA 3 0.646 0.697 +5.1% 1,500 300
TrivialQA 5 0.669 0.698 +2.9% 2,300 200
WebQuestions 1 0.319 0.473 +15.4% 1,900 500
WebQuestions 3 0.410 0.507 +9.7 % 2,100 400
WebQuestions 5 0.434 0.514 +8.1% 1,600 800

Table 1: The test results for RAG. We initially examine all possible combinations to determine the optimal
configuration on the training set, which is denoted as 6% and #7%. This optimal configuration is then applied on the
test set, and the results are presented in the table. The baseline is 84 = 6 = 0. The term "Abs Impr." represents
absolute accuracy improvement in percentage. The Llama2-13B-chat model is utilized for the experimentation.

hance the RAG’s performance across all settings.
The most notable improvement is 15.4%, observed
in the WebQuestions dataset with a single retrieved
document. The best-performing parameters, 0%
and 67, reveal a consistent trend: 6% tends to be a
large number, usually in the range of 1,000 to 2,000,
while 0% is a smaller figure, ranging between 200
and 600.

3.2 Universal Position Configuration for RAG

It has been observed that the most effective position
configurations, represented as 6% and 07 in Section
3.1, demonstrate a consistent trend across all exam-
ined datasets. In this section, we aim to determine
a single position setting that can enhance RAG per-
formance universally across different datasets and
various numbers of retrieved documents.

Given that absolute accuracy scores vary across
datasets, we adopt the percentile value of the accu-
racy score as a metric to assess each position setting.
In this context, we define "experiment setting" as
the combination of one dataset and a specific num-
ber of retrieved documents, and "position setting"
as a specific pair of 04 and 0. For every exper-
iment setting, we accumulate the scores from all
position settings. The effectiveness of each posi-
tion setting is then evaluated based on its percentile
ranking, which varies from 0 to 100, within the
experiment setting. Finally, The overall efficacy
of a position setting is determined by averaging its
percentile rankings across all experiment settings.

2500

80
2000

60
1500

65

1000 40

500 20

0 500 1000 1500 2000 2500
64

Figure 3: We visualize the average percentile values for
each positional configuration (64,65). These values
are initially obtained by aggregating all accuracy scores
for a given dataset and a specific number of retrieved
documents, and calculate the percentile scores. Subse-
quently, they are averaged across all configurations, as
detailed in Section 3.2.

The baseline configuration without position en-
gineering (04 = Op = 0) achieves an average per-
centile of 31.6. This suggests that approximately
68% of configurations can surpass the baseline per-
formance by simply adjusting positional informa-
tion. The visualization of averaged percentiles for
all position settings is provided in Figure 3.

Generally, it is advantageous to select a 6 4 value
within the range of 1300 to 2000, and set 6 3 within
the range of 300 to 500. Setting fp to an exces-
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sively high figure (for instance, more than 1500)
significantly deteriorates performance, possibly be-
cause it leads to the neglect of document informa-
tion in prompts. Moreover, for each specified 6,
an increase in 6 4 is generally associated with better
performance.

On the training set, 4 = 1900, 0p = 400 ex-
hibits the highest percentile value of 92.9. We
apply this configuration to the test set across all
datasets and retrieved document numbers. Results
presented in Table 2 demonstrate that it leads to a
universal performance improvement. In Appendix
A.1, we also demonstrate that such configuration
remains effective for other models.

Dataset N Doc Abs Impr.
NQ Open 1 +9.6%
NQ Open 3 +7.1%
NQ Open 5 +4.9%

EntityQuestions 1 +5.6%
EntityQuestions 3 +3.4%
EntityQuestions 5 +1.9%
TrivialQA 1 +8.1%
Trivial QA 3 +4.9%
TrivialQA 5 +3.2%
WebQuestions 1 +14.8%
WebQuestions 3 +9.4%
WebQuestions 5 +9.1%

Table 2: The universal position configuration, §4 =
1900, 5 = 400, is tested on the test split of all datasets
employing the Llama2-13B-chat model. The Table
presents the absolute accuracy improvements over the
baseline configuration (4 = 6 = 0).

3.3 Without the instruction segment

From Figure 3, it is observed that a larger 6,4 is
preferred for optimal performance. 64 represents
the gap between the instruction segment and the
document segment. A larger 64 reduces the in-
struction segment’s impact. This raises the ques-
tion of whether eliminating the instruction segment
entirely could further enhance performance. To
explore this, we conduct tests, and the outcomes
are presented in Table 3. It is discovered that the
performance of removing the instruction segment
is comparable to the baseline setting. The most sig-
nificant improvement, a 2% increase, is observed
with the WebQuestions dataset when one retrieved
document is utilized. However, the enhancement

Dataset N Doc Baseline No Inst.
NQ Open 1 0.341 0.353
NQ Open 3 0.424 0.417
NQ Open 5 0.452 0.449

EntityQuestions 1 0.452 0.454
EntityQuestions 3 0.501 0.492
EntityQuestions 5 0.535 0.532
Trivial QA 1 0.582 0.582
TrivialQA 3 0.646 0.650
Trivial QA 5 0.669 0.668
WebQuestions 1 0.319 0.335
WebQuestions 3 0.410 0.410
WebQuestions 5 0.434 0.440

Table 3: We test the RAG performance without the in-
struction segment on the Llama2-13B-chat model. The
results are comparable to the baseline, with a slight im-
provement ranging from 1% to 2% on the NQ Open
and WebQuestions datasets when a single document is
retrieved.

from position engineering in the same experiment
setting is 15.4%. Thus, to achieve the best perfor-
mance, it is essential to lessen but not eliminate the
effect of the instruction segment, a goal that is easy
for position engineering, but difficult to accomplish
by prompt engineering.

3.4 Position Engineering for ICL

Datasets: To explore the impact of positional en-
gineering on ICL tasks, we employ two datasets:
TREC (Li and Roth, 2002; Hovy et al., 2001) and
SST2 (Socher et al., 2013). The TREC dataset in-
cludes a variety of questions, with the aim being
to categorize these questions into 6 coarse and 50
fine-grained question types. We focus on the 6
coarse question types. The SST2 dataset contains
movie reviews, with the objective being to cate-
gorize these reviews as either positive or negative.
For our training set, we randomly choose 300 sam-
ples from the original training sets of TREC and
SST2. For our test set, we utilize TREC’s entire
500-sample test set. For the SST2 dataset, due to
the lack of labels in its original test set, we use
all 842 samples from its validation set as our test
set. For each sample tested, we randomly select 3
examples of each label from the training set as the
in-context demonstrations, leading to 18 examples
for TREC and 6 for SST2. The exact match score
is adopted as the evaluation metric.
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Dataset Baseline Position Engineering AbsImpr. 67 67 .. 0%
TREC 0.692 0.728 +3.6 % 0 40 0
SST2 0.915 0.935 +1.9% 0 0 100

Table 4: The test results for ICL. We initially examine all possible combinations to determine the optimal configura-

tion on the training set, which is denoted as (6%, 67 . ,,

0%). This optimal configuration is then applied on the test set,

and the results are presented in the table. The baseline is 8 4 = 6,,,;4 = 05 = 0. The term "Abs Impr." represents
absolute accuracy improvement in percentage. The Llama2-13B-chat model is utilized for this experimentation.

Search Space: The prompt template provided be-
low is designed for evaluating performance on the
SST?2 dataset and is divided into three sections: an
initial instruction segment that outlines the task,
a middle segment that provides examples demon-
strating the task, and a final segment that com-
bines the instruction with a query. These segments
are referred to as the instruction segment, the ex-
ample segment, and the query segment, respec-
tively. For the TREC dataset, we employ a similar
prompt template, altering only the terms "Review"
to "Question" and "Sentiment" to "Question Type"
with Llama2-13B-chat.

To investigate the impact of position engineer-
ing, we conduct experiments by inserting 6 4 place-
holder tokens between the instruction and example
segments, @ placeholder tokens between the ex-
ample segment and the query segment, and 6,,,;4
placeholder tokens among the examples, as de-
picted in Figure 4. The candidate value set of
04 and 0p is set to {0,100, ...,600}, and while
Omia 1s set to {0, 20, ..., 100}. We evaluate the per-
formance of all possible combinations within the
training set and apply the optimal configuration to
the test set.

The prompt template for the SST2 dataset:

Please determine the Sentiment of a Review
according to the examples below.

Review: {query}
Sentiment: {label}

Review: {query}
Sentiment: {label}

Review: {query}
Sentiment: {label}

Now, you are given the following Review.
Review: {query}

Please output its Sentiment according to
the examples. Only output its Sentiment
without outputing anything else.
Sentiment:

Instruction Instruction

| |

‘ Example 1 ‘ 0, PH Tokens
‘ Example 2 ‘ — Example 1

‘ Example 3 ‘ mia PH Tokens
’ Query ‘

(7]
0,ia PH Tokens

Example 3

Op PH Tokens

Example 2 ‘

|
|
|
|
|
|
|
|
|

Query

Figure 4: Position Engineering for ICL. In the figure,
the term "PH tokens" refers to the placeholder tokens in-
troduced in Section 2.2. We investigate a defined search
space, with inserting 6 4 placeholder tokens between the
instruction and document segments, 6z placeholder to-
kens between the document and question segments, and
0miaq placeholder tokens among the examples. The can-
didate value set of 84 and 05 is set to {0, 100, ..., 600},
and while 6,,;4 is set to {0, 20, ..., 100}.

Results: The results for ICL are presented in Ta-
ble 4, indicating an enhancement in performance
across both datasets, with an absolute 3.6% im-
provement observed on the TREC dataset and an
absolute 1.9% improvement on the SST2 dataset.
The optimal position settings, represented as 6%,
5.and 67 ... vary between datasets. Specifically,
TREC requires adjusting 6,,;4 to 40, with 6 4 and
0p set to 0, whereas SST2 requires setting 0p to

100, with 84 and 6,,,;4 to O.

We observe a significant performance drop when
0 is set within the {200, 300, ..., 600} range, mir-
roring the trends observed in RAG tasks where
a high 0p value leads to poor outcomes. 6p
can be interpreted as a parameter to adjust the
impact of the example segment. In the case of
SST2, which involves classifying sentiments of re-
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views—a domain that LL.Ms might have common
knowledge—the choice of 07 = 100 is intended
to slightly reduce the example segment’s influence.
For TREC, which requires LLMs to learn ques-
tion types from examples, maintaining 03 = 0 is
optimal.

4 Discussion

We hypothesize that position engineering serves as
a technique to finely adjust the attention weights
assigned to different segments within prompts. By
extending the positional gap between two segments,
the interaction between them is lessened, thereby
increasing the attention allocated to other segments.
For example, in RAG experiments, an increased
value of 0 4 could potentially reduce the impact of
the instruction segment while amplifying the at-
tention allocated to the retrieved documents. It is
important to note, however, that the initial instruc-
tion remains essential, as evidenced in Section 3.3.
Position engineering offers a nuanced approach to
adjusting the weights of different blocks without
the need for direct addition or removal of text.
Position engineering offers several advantages:
(1) It is easier to optimize due to its numerical
search space {6}, in contrast to prompt engineer-
ing, which requires searching over a more complex
text space. (ii) It is computationally efficient, as al-

known as in-context learning (Brown et al., 2020).
Additionally, Chain-of-Thought prompting encour-
ages LLMs to produce intermediate tokens, thereby
improving their reasoning capabilities (Wei et al.,
2022; Kojima et al., 2022). Another technique,
Retrieval-Augmented Generation (RAG), involves
retrieving relevant document passages and incorpo-
rating them into the prompts (Lewis et al., 2020). It
has been discovered that the RAG performance can
be improved by adding random documents to the
mix of relevant documents (Cuconasu et al., 2024),
a technique that is relevant to our study. How-
ever, this approach demands significant additional
computational resources. In contrast, our proposed
method does not require extra computation.

Positional Information in LLMs: Positional em-
bedding has been introduced to integrate the po-
sition information of tokens within the attention
layers (Vaswani et al., 2017). Initially, this con-
cept relied on absolute position indices. However,
subsequent developments have introduced methods
based on relative positions, such as the relative po-
sitional encodings in Transformer-XL (Dai et al.,
2019), and RoPE (Su et al., 2024). ALiBi is a differ-
ent method for integrating positional information
into LLMs (Press et al., 2022), which does not uti-
lize embeddings but introduces a fixed bias based
on relative positions during the computation of at-

ing the position indices input into LLMs, without
increasing the overall computational overhead. (iii)
It is orthogonal to prompt engineering, meaning
the two approaches can be effectively combined.

Future works may advance in the following di-
rections. Firstly, investigating the internal dynam-
ics of LLMs can enhance our understanding of po-
sition engineering’s underlying mechanisms. Sec-
ondly, employing more sophisticated optimizers,
such as Gaussian processes or multi-armed ban-
dits, could reduce the search time and discover
more refine-grained position editing functions. Fi-
nally, the exploration of merging position engineer-
ing with prompt engineering could harness the full
power of LL.Ms.

5 Related Works

Prompt engineering: Prompt engineering has
emerged as a technique to enhance the performance
of LLMs by modifying the instructions given to
them. For instance, few-shot prompting allows
LLMs to learn from demonstrations, a process also

modifying positional embeddings to increase the
context window size in LLMs (Ding et al., 2024;
Peng et al., 2024). Apart from positional embed-
dings, the performance of LLMs has been found to
correlate with document positions in prompts. In
RAG tasks, documents that are positioned in the
middle are often more neglected than those at the
beginning or the end (Liu et al., 2024). However,
to the best of our knowledge, there has been no
similar effort on improving task performance by
modifying positional indices.

6 Conclusion

In this study, we introduce position engineering, an
innovative technique to enhance task performances
of LLMs by merely altering the position informa-
tion in the prompts. Our experimentation with posi-
tion engineering across a range of tasks and models
demonstrates its effectiveness. This approach pro-
vides a new avenue for maximizing the capabilities
of LLMs.
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7 Limitations

Our method needs an explicit search process to
discover the optimal position setting for a given
task. Such search process will cost computation
resource and time. Sometimes, the search process
can be omitted if a universal good positional set-
ting exists, e.g. the universal setting for RAG tasks
with Llama2-13B-chat model. Besides, the inter-
nal mechanism of position engineering remains
unclear. We hypothesize that position engineer-
ing serves as a technique to finely adjust the atten-
tion weights assigned to different segments within
prompts. Future efforts can be made to further
investigate it.
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A Appendix
A.1 Applying the Universal RAG Configuration to Other Models

Dataset N Llama2-7B Mistral-7B
NQ Open 1 +8.9% +2.2%
NQ Open 3 +4.6% +0.2%
NQ Open 5 +1.0% -0.3%

EntityQuestions 1 +7.1% +0.8%
EntityQuestions 3 +5.8% -0.1%
EntityQuestions 5 +0.9% -0.4%
Trivial QA 1 +7.9% +3.1%
Trivial QA 3 +4.0% +0.7%
Trivial QA 5 +1.6% +0.5%
WebQuestions 1 +18.5% +3.8%
WebQuestions 3 +10.0% +2.2%
WebQuestions 5 +5.9% 0.0%

Table 5: We evaluate the universal position configuration for RAG, as identified in Section 3.2 with 84 = 1900 and
0p = 400, across the test splits of all datasets employing the Llama2-7B-chat and Mistral-7B-instruct-v0.2 models.
The results showcase the absolute accuracy improvements over the baseline configuration, where 6 4 and 6p are
both set to 0.

In Section 3.2, we identified a universal position configuration,f 4 = 1900 and 3 = 400, on RAG tasks
for the Llama2-13B-chat model. In this section, we further investigate whether such configuration remains
effective for other models by applying it to the Llama2-7B-chat (Touvron et al., 2023b) and Mistral-7B-
instruct-v0.2 (Jiang et al., 2023) model. The configuration is evaluated on the test splits across all datasets,
with the results presented in Table 5. The findings indicate a consistent enhancement in the performance
with the Llama2-7B-chat model under the universal position configuration. It is noteworthy that this
configuration is initially identified with the Llama2-13B-chat model, suggesting that the Llama2-7B-chat
model exhibits similar positional characteristics with Llama2-13B-chat. Furthermore, the Mistral-7B-
instruct-v0.2 model also demonstrates consistent performance improvements when utilizing a single
retrieved document. However, the performance gains become inconsistent with the use of multiple
retrieved documents, indicating a potential need for model-specific adjustments.

A.2  Applying Position Engineering to Non-RoPE Models

In our previous evaluation section, Llama2-13B-chat was utilized as the primary model for testing. This
model employs RoPE (Su et al., 2024) to integrate positional information. Furthermore, in this section,
we aim to assess the effectiveness of position engineering using models with a different method for
incorporating positional information. To this end, we apply position engineering to BLOOMZ-7b1
(Muennighoff et al., 2023) under the same experimental settings for the ICL tasks. BLOOMZ-7b1 is
an instruction-fined version of BLOOM (Le Scao et al., 2023), which incorporates position information
using ALiBi (Press et al., 2022). Unlike RoPE, ALiBi introduces a fixed position-related bias term during
the computation of attention scores.

Specifically, we follow the search space in Figure 4 for ICL tasks. We determine the optimal position
configuration on the training dataset by evaluating all configuration candidates in the search space,
subsequently applying this configuration to the test set. Both the training and test sets remain the same
with the previous settings. The results are presented in Table 6. Notably, there is a significant improvement
in ICL tasks, with the SST2 dataset showing an absolute improvement of 11.0%. It demonstrates that
position engineering can be also effective in non-RoPE models.
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Dataset Baseline Position Engineering Abs Impr. 6% 67 0%y

mid
TREC 0.724 0.782 +5.8% 0 0 200
SST2 0.836 0.946 +11.0% 0 20 500

Table 6: We apply position engineering to the BLOOMZ-7b1 model on ICL tasks. The same search space setting is
employed as shown in Figure 4. 0%, 0" ... and 0% is the optimal configuration identified in the training set, which
is then applied on the test set. The baseline is 4 = 0,,,;4 = 0 = 0. The term "Abs Impr." represents absolute
accuracy improvement in percentage compared to the baseline.
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