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Abstract

Fuzzy reasoning is vital due to the frequent
use of imprecise information in daily contexts.
However, the ability of current large language
models (LLMs) to handle such reasoning re-
mains largely uncharted. In this paper, we in-
troduce a new benchmark, FROG, for fuzzy
reasoning, featuring real-world mathematical
word problems that incorporate generalized
quantifiers. Our experimental findings reveal
that fuzzy reasoning continues to pose signif-
icant challenges for LLMs. Moreover, we
find that existing methods designed to enhance
reasoning do not consistently improve perfor-
mance in tasks involving fuzzy logic. Addi-
tionally, our results show an inverse scaling
effect in the performance of LLMs on FROG.
Interestingly, we also demonstrate that strong
mathematical reasoning skills are not necessar-
ily indicative of success on our benchmark1.

1 Introduction

The capability to reason effectively is a critical di-
mension in evaluating the advancements of large
language models (LLMs) (Brown et al., 2020;
Huang and Chang, 2023; Bowen et al., 2024;
Wang et al., 2024b; Zhu et al., 2024). Com-
monly, the progress of advancing reasoning abil-
ities is mainly evaluated on mathematical reason-
ing benchmarks (Xia et al., 2024; Huang et al.,
2024a) like GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), which demands
precise answers derived from clear, rule-based
questions. However, much of human knowledge
and daily decision-making processes are not based
on precision but rather involve handling fuzzy, im-
precise information (Novák, 2015).

Fuzzy reasoning, which deals with uncertain-
ties and perceptual data, differs significantly from
the deterministic processes evaluated in existing

*Corresponding author
1Resource: https://github.com/Nativeatom/FRoG

standard benchmarks. It often relies on natural lan-
guage constructs that do not capture information
with precise granularity (Novák, 2015). For in-
stance, generalized quantifiers (GQs), such as “few”
or “most”, are frequently used in natural language
to introduce vagueness (Mostowski, 1957; Ramo-
towska et al., 2024). An illustrative fuzzy problem
employing GQ might be: “There have been succes-
sive increases of 20% and then most in the price of
gas from the previous month. By what percentage
should a driver reduce gas consumption so that
the expenditure does not change?” Here, the term
“most” introduces ambiguity concerning the extent
of the price increase and necessitates an estimation
of its semantics to solve the problem accurately.

However, such GQ-based fuzzy reasoning prob-
lems are under-explored. Faghihi et al. (2020)
introduces probabilistic fuzzy logic (Yager and
Zadeh, 1992) to enhance reasoning abilities. Exist-
ing works like Saki and Faghihi (2022) investigate
employing fuzzy probabilistic theory in association-
based problems, like the relation between fuzzy
features and labels (e.g. a lot of smoking and can-
cer). The mapping functions to encode fuzzy fea-
tures are either simulated (Faghihi et al., 2020) or
collected from limited data with heuristics (Wang
et al., 2019). Those mapping functions fail to eval-
uate complex, real-world reasoning scenarios and
realistically capture how LLMs utilize fuzzy rea-
soning in practical contexts.

In this paper, we aim to explore reasoning chal-
lenges associated with fuzzy events (Zadeh, 1968),
which are mathematically ambiguous and artic-
ulated through fuzzy expressions of GQs, such
as “most in the price of gas”. Specifically, we
focus on mathematical reasoning problems that
incorporate GQs. To this end, we have devel-
oped FROG, a benchmark for Fuzzy Reasoning
benchmark of Generalized quantifiers, which trans-
forms real-world mathematical problems from
GSM8K (Cobbe et al., 2021) and MathQA (Amini
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Step 1: Find Math Question 
with Percentage Mentions

Question: Here has been successive increases of 20% and then 10% in the price of gas 
from the previous month. By what percentage should a driver reduce gas consumption so 
that the expenditure does not change?

Step 2: Mask the Percentage 
Mention

Answer: 24% Step 3: Search for Nearest 
Quantifiers

Step 4: Construct the FRoG 
TaskA. none B. small amount C. few D. tiny amount A. some  B. few C. tiny amount D. most

Hard choices: Top K Easy choices: Randomly sampled

FRoG

C

Q
FRoG Template

= [MASK]/misleading/X%

Answer

few (7.4%), tiny amount (2.4%), small amount 
(18.3%), none (0.4%), some (22.5%), …

Figure 1: Workflow of FRoG construction.

et al., 2019) datasets into multiple-choice ques-
tions. These questions replace precise numerical
data with GQs, requiring models to apply both pre-
cise reasoning like arithmetic computations and
fuzzy reasoning to estimate the scope of GQs. Our
evaluation of several LLMs reveals that fuzzy rea-
soning remains a significant challenge in FROG,
with an inverse scaling effect observed in over half
of the model families tested. Furthermore, common
methods designed to enhance reasoning capabili-
ties like math-specialized tuning, code-specialized
tuning, and general alignment, do not consistently
improve performance in FROG. Interestingly, we
find that strong mathematical reasoning skills are
not necessarily indicative of success on FROG. We
also outline the primary strategies employed by
LLMs to perform fuzzy reasoning.

2 Related Work

Reasoning abilities, involving drawing conclusions
from existing knowledge, are a cornerstone of hu-
man intelligence and are crucial for intricate tasks
like decision-making and solving math word prob-
lems (Yu et al., 2023). Recently, mathematical
problem-solving has become a key dimension in
assessing the reasoning capabilities of LLMs (Xia
et al., 2024; Huang et al., 2024a). Various ap-
proaches have been developed to enhance the math
reasoning ability of LLMs, like prompt-based de-
signs (Chia et al., 2023; Zheng et al., 2023; Chen
et al., 2023a). On the other hand, Taylor et al.
(2022); Lewkowycz et al. (2022); Paster et al.
(2024); Azerbayev et al. (2024) propose data con-
struction for the pertaining stage. And further su-
pervised fine-tuning, instruction tuning or align-
ment methods like Direct Preference Optimization

(DPO, Rafailov et al. (2023)) are used to enhance
the reasoning abilities of LLMs (Yu et al., 2024;
Luo et al., 2023; An et al., 2023; Huang et al.,
2024b; Li et al., 2024; DeepSeek-AI et al., 2024).
Motivated by the fact that external tools are widely
used in NLP tasks, tool integration is introduced
to enhance math reasoning (Mishra et al., 2022;
Gao et al., 2023; Gou et al., 2024a,b; Yue et al.,
2024; Zhou et al., 2024; Zhang et al., 2024a). Chen
et al. (2023b) employs programming methods to
enhance the reasoning ability of LLMs. In FROG,
we build the fuzzy reasoning tasks based on mathe-
matical reasoning problems and explore common
approaches designed to improve reasoning capa-
bilities including math-specialized tuning, code-
specialized tuning, and general alignment.

GQs are widely used to indicate proportions
of predicate satisfaction in communication (Joshi
et al., 2020) and benchmarks (Suhr et al., 2019;
Apidianaki and Garí Soler, 2021). They also con-
tribute as a major source to the deficiencies of NLP
systems like NLI (Cui et al., 2022). Given their
real-world prevalence, we employ GQs as a natural
approach to introduce fuzzy information in FROG.

Existing methods for modeling fuzzy logic in
natural language, as developed by Lee (2004) and
Kapustin and Kapustin (2019), depend on pre-
defined mapping functions to process fuzziness.
Those mapping functions are mostly built from
rule-based heuristics on limited data, or with sim-
ple distribution assumption (e.g. the gaussian dis-
tribution) and hard to be directly on real-world
complex reasoning problems. In FROG, we rely
on LLMs that are pretrained from large-scale real
world text corpora to process the fuzziness of GQs
and conduct complex math reasoning problems.
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3 Benchmark Collection

Problems in FRoG are collected from two math
word problem datasets from the real world:
GSM8K and MathQA. GSM8K includes grade
school math word problems that can be largely
solved with basic arithmetic operations. MathQA
consists of multiple-choice GRE and GMAT-level
math problems. In FROG, we include questions
with percentage mentions, and Figure 1 displays an
overview of the collection workflow. Specifically,

• Step 1: Identifying Mathematical Questions
with Percentage Mentions - We begin by filter-
ing the original questions to include only those
that contain at least one percentage figure, of
which the value is between 0% and 100%.

• Step 2: Masking the Percentage Mention - We
obscure the specific target percentage mention by
replacing it with a [MASK] token to construct a
Mask question. If the original question contains
multiple percentage mentions, each mention is
masked out separately. We also employ two other
masking strategies Mislead and X% where the
target mention is substituted with a misleading
quantifier (with the incorrectness pointed out in
the FRoG template) or X%.

• Step 3: Searching for the Nearest Quantifiers
- The golden choice is selected by finding the
closest GQ according to its average strength pro-
vided in QuRe (Li et al., 2023), a quantifier rea-
soning dataset with human-annotated quantifier
strengths (i.e., few is the closest GQ to 10% in the
running example) that do not include modifiers
like particles that lead to semantic change.

• Step 4: Constructing the FRoG Task - In
FROG, we provide the question and the original
answer to infer which GQ can be filled to rep-
resent the information masked out. This frame-
work is driven by the acknowledgment that it
is more practical to formulate fuzzy reasoning
than directly solve mathematical problems with
GQs. To carefully investigate the performance,
we design the easy and hard mode of choices
depending on the discriminability of misleading
choices. The incorrect choices in FRoG-Hard
are the misleading top GQs in the previous step
(e.g. tiny amount, small amount, none in the run-
ning example), while incorrect choices in FRoG-
Easy are randomly sampled from all misleading
GQs. The original question, original answer and
choices are then assembled through FRoG tem-
plates. We refer to Appendix E for details.
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Figure 2: (Top) quantifier proportions in FROG. (Bot-
tom) percentiles of target percentage mentions catego-
rized by quantifiers. Green and orange lines represent
the means and medians, respectively. The x-axis is
shared between the two figures.

For MathQA data, the original multiple choice
format is omitted in FRoG since there is a negligi-
ble difference in performance between maintaining
the original choice or providing the correct numeric
answer, according to preliminary experiments.

Eventually, FRoG includes 199 questions from
GSM8K and 1,845 questions from MathQA. The
average number of question tokens is 68.2, with
each token separated by a space. And each question
in FRoG contains an average of 1.6 percentage
mentions. The total number of quantifiers involved
in FRoG is 8, and the most common quantifiers
used are few (25.3%), moderate amount (23.8%),
and small amount (19.7%) (see top Figure 2 for
details). The bottom of Figure 2 reveals the target
percentage mentions mapped to each quantifier,
e.g. the mean percentage value and 0.15 for few
and around 0.4 for moderate amount. The mean
strength difference between the golden quantifier
and the incorrect quantifier that is closest to the
target percentage mention is 0.105 in FRoG-Hard.
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Figure 3: The average Mask accuracy in FRoG-Easy and FRoG-Hard of several LLMs sorting in ascending order.
Dots with the same color belong to the same model family. Models with additional pretraining or instruction tuning
do not necessarily perform better. We refer to Figure 5 and Figure 4 for more details.

4 Experiment

We evaluated several open-sourced LLMs, in-
cluding Llama-2 (Touvron et al., 2023), CodeL-
lama (Rozière et al., 2024), Llemma (Azerbayev
et al., 2024), Llama-3 (AI, 2024), Mistral (Jiang
et al., 2023), Qwen-1.5 (Bai et al., 2023), Tulu-
2 (Ivison* et al., 2023), WizardLM (Xu et al.,
2024), WizardMath (Luo et al., 2023) and Yi-
Chat (Young et al., 2024) on our FRoG benchmark.
Specifically, we would like to investigate the fol-
lowing three research questions:

1. Are existing reasoning enhancement methods
remain effective in FROG?

2. Can the scaling law be observed in FROG?

3. Is the mathematical reasoning strength trans-
ferrable to FROG?

We employ the greedy decoding strategy with
max tokens being 1,000, and temperature being 0.9
in experiments. The LLMs are instructed with task
instructions (see Appendix F) and 5 demonstra-
tions (Brown et al., 2020) with manually created
chain-of-thought (Wei et al., 2022b) solutions to as-
sist the reasoning procedure. The experiments are
conducted on NVIDIA A100 80GB GPUs, each
experiment can be finished within 2 hours.

Moreover, we investigate the sensitivity of differ-
ent masking strategies. Specifically, we compare
the performance between the Mask and Mislead or
X% task by computing the Pearson and Spearman
correlation of their accuracy. The results in Table 1

indicate strong positive correlations between the
performance of Mask and Mislead or X%, meaning
that LLMs are not sensitive to the masking strategy
in FROG. We also do not observe strong correlation
between accuracy and length of the generation. We
choose the Mask task as the major task thereafter.

Task Pearson Spearman

Mislead 0.966/0.935 0.895/0.683

X% 0.988/0.980 0.958/0.889

Table 1: The Pearson and Spearman correlation between
performance of different task and Mask. The two values
corresponds to FRoG-Easy and FRoG-Hard, and all
p values are smaller than 0.01. The performance of
Mislead and X% are strongly correlated to Mask.

4.1 Overall Result
The result on FRoG is displayed in Figure 3. In
general, the accuracy of all models is around 0.05
and 0.45 (and mostly between 0.15 and 0.3), indi-
cating that the fuzzy reasoning is a challenging task
for the current LLMs. Moreover, models with small
model sizes can demonstrate suprisingly strong
performance in FRoG compared to models much
larger, e.g. Tulu-2-DPO-7B outperforms Tulu-2-
70B, Llama-2-70B and WizardLM-70B.

4.2 Fine-grained Evaluation and Analysis
4.2.1 Q1: Are existing reasoning enhancement

methods remain effective in FROG?
Instruction-tuning (Wei et al., 2022a; Ouyang et al.,
2024) is demonstrated to further boost the abilities
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Figure 4: Comparison between different chat and base models of Mask on FROG. The solid and dashed lines
represent the hard and random modes, respectively. Instruction-tuning does not necessarily improve the performance
in FRoG . The results of qwen-1.5-72b are full of punctuations and therefore omitted.

of LLMs (Zhang et al., 2023; Hu et al., 2024). It
is employed to improve the usability and safety
of LLM systems (e.g., the chat model Touvron
et al. (2023); Wang et al. (2024a)), open-ended
generations without sacrificing task-specific abili-
ties (Ivison* et al., 2023) or mathematical reason-
ing abilities (Bai et al., 2023; Tang et al., 2024;
Zhou and Zhao, 2024). Moreover, Zhang et al.
(2024b) demonstrates consistent performance gain
of LLMs on reasoning by instruction-tuning on
code data, and the mathematical reasoning ability
can be enhanced by introducing a continuous pre-
training stage on mathematical tokens (Luo et al.,
2023; Azerbayev et al., 2024).

We explore whether the effectiveness of con-
tinuous pretraining on math or code data, as well
as general alignment tuning methods can be ex-
tended to fuzzy reasoning in FROG. In this re-
gard, we selectively compare the performance
of sevel models WizardLM, Qwen-1.5, Tulu-2,
Llama-2, and Llama-3, and their instruction-tuning
or aligned versions: WizardMath (based on Wiz-
ardLM), CodeLlama (based on Llama-2), and
Llemma (based on CodeLlama).

Math-specialized Tuning The results are demon-
strated in Figure 5, where we observe that the accu-
racy of all LLMs are less than 30% and the mathe-
matical continuous training does not bring univer-
sal benefits in FRoG since WizardLM outperforms
WizardMath in FROG. Besides, the scaling benefit
of Llemma on the FRoG-Easy (5.2% gain) does
not comparably extend to the FRoG-Hard (1.5%).

Code-specialized Tuning CodeLlama does not
outperform Llama-2 in FROG, meaning continuous
pretraining on code does not directly benefit fuzzy
reasoning tasks. In fact, the domain shift from pro-

7 13 70
0.18

0.20

0.22

0.24

0.26

wizardlm wizardmath
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llama-2
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Figure 5: Impacts of continuous pretraining on mathe-
matical data of LLMs on the performance of FROG. The
solid and dashed lines represent FRoG-Hard and FRoG-
Easy respectively. The result of CodeLlama (70B) is
emitted for illustration due to its poor performance.

gramming to natural language largely impacts the
performance. The largest CodeLlama (70B) eval-
uated directly generates code snippet most of the
time, leading to the poor performance on FROG.

General Alignment The results are shown in Fig-
ure 4. In general, the performance on FRoG-Easy
(dashed lines) is better than FRoG-Hard (real lines)
among all the models. Regarding the difference be-
tween the base models and their instruction-tuned
versions, the benefit of instruction-tuning substan-
tially diminishes from FRoG-Easy to FRoG-Hard
in Llama-2, Qwen-1.5 and Llama-3. Lastly, the
inverse scaling effect displays on Llama-2, Qwen-
1.5 and Tulu-2. In FRoG-Easy, the perfromance of
4 base models adhere to the scaling law, whereas
the instruction-tuned models display inverse scal-
ing effect except Llama-3. In FRoG-Hard, Llama-2
demonstrates inverse scaling effect in both base and
chat models. Conversely, Qwen-1.5 and Llama-3
consistently exhibit scaling phenomenon in both
base and chat models. The Tulu-2 base model ad-
heres to the scaling law, while the Tulu-2-DPO
model display the inverse scaling effect.
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Figure 6: The performance of different LLMs on all FRoG tasks with different masking strategies and difficulties.
The solid lines represent models that demonstrate inverse scaling phenomenon, and crossings represent the perfor-
mance of other models. The green line represents the performance of GPT-3.5-turbo-1106. More than 50% of the
model families demonstrate the inverse scaling effect.

4.2.2 Q2: Can the scaling law be observed in
FROG?

Scaling law is introduced in Kaplan et al. (2020) to
suggest the phenomenon that LLMs can achieve en-
hanced task performance by scaling up model sizes.
However, the scaling law does not hold univer-
sally. For example, the inverse scaling phenomenon
can be observed when LLMs are instructed to
choose which information can help to answer a
question (McKenzie et al., 2023), which is simi-
lar to the design of FRoG tasks. Here, we list the
performance of all models evaluated on FRoG in
Figure 6. Each line highlights an observed inverse
scaling effect (less than 1 point performance gain
by scaling model sizes). It turns out that 8 out
of the 15 model families evaluated demonstrate in-
verse scaling effect in FROG, crossing base models,
continuous trained models and instruction-tuned
models.

We further provide a case study of Qwen-1.5-
Chat for its large number of open-resourced check-
points and superior performance in mathematical
reasoning. The results in Figure 7 show that the
performance gap between FRoG-Easy and FRoG-

1.84 7 14 32 72
qwen-1.5-chat
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0.20

0.25

0.30

Model Parameters (Billion)

Ac
cu
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cy

Figure 7: The accuracy of Mask of Qwen-1.5-Chat mod-
els, the real and dashed lines represent the hard and easy
split, respectively.

Hard increases starting Qwen-1.5-4B-Chat, and the
performance becomes saturated with a model of 7
billion parameters or larger. Moreover, the perfor-
mance gain of scaling model parameters diminishes
after 14 billion model parameters. Inverse scaling
happens on the side of models smaller than 7 bil-
lion and larger than 32 billion parameters. Models
with fewer than 14 billion parameters are very un-
stable, displaying poor performance (below 25%)
and convoluted accuracy. Notably, the 4B model
exhibits the poorest performance of all the models
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in FRoG-Easy and FRoG-Hard. Models with over
14 billion parameters, however, attain comparable
performance in FRoG-Easy.

4.2.3 Q3: Is the mathematical reasoning
strength transferrable to FROG?

Mathematical reasoning has become a key signal
for reasoning capabilities of LLMs (Huang et al.,
2024a). To proxy the fuzzy reasoning ability un-
der the precise setting, we design a mask_percent
baseline that substitutes the misleading choices
into their corresponding mean average strengths
in QuRe and the correct choice being the exact
value of the target percentage mention. Therefore,
the original Mask task (denoted as mask_quant) is
transformed into figuring out the hidden percentage
information in precise reasoning, with the predic-
tions still reflect the preference over the quantifiers.
For example, the mask_percent choices of question
in Figure 1 are A 0.4%, B 18.3%, C 10%, D 2.4%
under the hard mode.

The results are demonstrated in Figure 8, where
GPT-4-turbo and Llama-3-Instruct are the best per-
formed commercial or open-resourced model in
both mask_percent and mask_quant. CodeLlama-
70B and Tulu-2-7B achieve minimal accuracy in
both precise reasoning (nearly 0%) and fuzzy rea-
soning (lower than 10%) tasks, which attributes
to their programming or web content style out-
puts. The accuracy of mask_percent of a model
is significantly higher than the mask_quant alter-
natives in most of the cases. But the advances

of mask_percent by scaling up model parame-
ters are hard to transfer to the mask_quant task
in FROG. In fact, among the 11 open-sourced
models that achieve higher than 40% accuracy
in the mask_percent setting, their accuracies in
mask_quant are all lower than 30%. Take Tulu-
2-DPO models for instance, even though the
mask_percent performance improves by scaling the
model size, the performance of those models drops
significantly and the scaling effect shrinks drasti-
cally when shifted to the mask_quant task. Specifi-
cally, we observe that models with a larger number
of parameters are more likely to receive a larger
accuracy drop when shifted from mask_percent to
mask_quant. The average accuracy drop of models
smaller than 10 billion parameters is 6.8% com-
pared to 16.9% of models of larger sizes, indicating
that successfully solving a reverse mathematical
(precise) reasoning problem does not necessarily
reflect equivalent competences in solving FRoG
problems with fuzziness introduced by GQs.

4.3 Case Study

Lastly, we are interested in the working mechanism
that LLMs pose in conducting fuzzy reasoning in
FROG. We randomly sample 50 results from GPT-
4-turbo in FRoG-Hard, and demonstrate examples
in Table 2. The mechanism of LLMs to solve fuzzy
reasoning can be summarized as follows: firstly,
the LLMs attempt to locate the target percentage
value in three major patterns:
(1) Precisely solving the target percentage mention.
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Ex1: Kelly has had 3 pay cuts in her salary in the past 6 months. If the first pay cut was 8%, the second pay cut was
14%, and the third was [MASK]. What will be the percentage decrease, if the salary is decreased in a single shot? If the
answer to the question is 35.12%, then please select the quantifier that is closest to the meaning of [MASK] from the
following choices. [18%]
A. few B. some C. tiny amount D. small amount

Suppose that Kelly’s initial salary is 100 units for simplicity. After the first pay cut of 8%, her salary becomes 92 units.
The second pay cut of 14% reduces her salary further to 92 * (1 - 0.14) = 79.12 units. Let the third pay cut be x%.
Therefore, her salary becomes 79.12 * (1 - x%) after the third cut.
We need to find x such that the overall reduction is equivalent to a single reduction of 35.12%. This means the final
salary should be 100 * (1 - 0.3512) = 64.88 units.
Setting up the equation: 79.12 * (1 - x/100) = 64.88.
Solving for x: (1 - x/100) = 64.88 / 79.12 ≒ 0.8202, hence x/100 = 1 - 0.8202 = 0.1798 or x = 17.98%.
Knowing the value of x, we can compare it to the options given:

- A few (typically refers to a small number, but greater than ‘tiny amount’)
- Some (could imply a moderate to considerable amount, usually more ambiguous)
- Tiny amount (implies very small, likely less than our calculated 17.98%)
- Small amount (suggests a non-trivial but not large percentage)

Between these choices, ’small amount’ best describes a reduction of 17.98%, as it’s significant but not very large or tiny.
Therefore, the best choice is D. small amount.

Ex2: The average price of a decoration piece has increased over the years. If from 1990 to 1996, the price of the
decoration piece increased by [MASK] and from 1996 to 2001 it increased by 20%, what is the price of the decoration
piece in 2001 if the price in 1990 was $11500? If the answer to the question is $15594, then please select the quantifier
that is closest to the meaning of [MASK] from the following choices. [13%]
A. some B. tiny amount C. few D. small amount

First, we need to calculate the price of the decoration piece in 1996 based on an unknown percentage increase from 1990.
Let the percentage increase from 1990 to 1996 be x%.
If the price in 1990 was $11500, then the price in 1996 after x% increase would be $11500 * (1 + x/100).
From 1996 to 2001, the price increased further by 20%, so the price in 2001 would be: $11500 * (1 + x/100) * 1.2
The final value is given as $15594. So we have: $11500 * (1 + x/100) * 1.2 = $15594
Solving for x: (1 + x/100) = $15594 / ($11500 * 1.2); (1 + x/100) = $15594 / $13800; (1 + x/100) ≒ 1.13;
x/100 = 0.13 x = 13%
So, the price increased by 13% from 1990 to 1996.
Given the choices of ’some,’ ’tiny amount,’ ’few,’ and ’small amount,’ a 13% increase is not negligible but is not very
large either. Among the provided options, ’small amount’ seems to be the closest match to a 13% increase.
Therefore, the answer is D. small amount.

Table 2: Sampled results in FRoG-Hard. The target percentage mention lies in the brackets, the correct answer is
underscored and the prediction is bolded. The explicit quantifier estimation stage is highlighted.

(2) Reaching a percentage value that is close to the
target percentage mention.
(3) Incomplete solution (e.g. unsolved equations).
After solving the target percentage mention, the
LLMs select their preferred quantifiers through a
quantifier estimation stage, which can be implicit.
Such implicit reasoning procedure is also studied in
precise math reasoning (Deng et al., 2023, 2024).

For example in Ex1 of Table 2, the model firstly
solves the target percentage value with satisfying
precision (17.98%), and then conduct a quantifier
estimation stage before deciding the quantifier se-
lection. Note that this quantifier selection stage is
not always explicit (e.g. Ex2). We include more
examples in Appendix C.

In general, the target percentage value can be
located with satisfying precision (within 1% error)
52% of the time (still lower than the mask_percent
setting where the target percentage value is pro-
vided as a candidate choice), with only 61% of

them lead to the final correctness of the problems.
It indicates the complexity of conducting fuzzy rea-
soning even with the target percentage value given.

Moreover, 15 of the 50 predictions show explicit
quantifier estimation by comparing or estimating
the strengths of quantifiers, but only 5 of them lead
to the correct quantifier predictions, meaning that
precisely solving the target percentage value is in-
sufficient to conduct fuzzy reasoning. Meanwhile,
there are 15 cases where models select the correct
quantifier without explicit quantifier estimations,
indicating that models may rely on implicit mecha-
nisms in conducting fuzzy reasoning.

Note that even though models within the same
model family but with different number of param-
eters can figure out the target percentage mention
correctly or close enough, their interpretation of
quantifiers can make a difference in the final pre-
diction, we refer to Appendix D for examples.
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5 Conclusion

The fuzzy reasoning ability is an under-explored
direction of the reasoning ability of LLMs. To
measure the fuzzy reasoning ability of LLMs, we
collect a fuzzy reasoning benchmark FRoG that is
based on generalized quantifiers. The experimental
results show that fuzzy reasoning remains challeng-
ing for current LLMs, and an inverse scaling effect
is observed on the performance of FROG. Besides,
prevailing reasoning enhancement approaches in-
cluding continuous pretraining, instruction tun-
ing and general alignment may not stay effective
on fuzzy reasoning of FROG. Lastly, LLMs can
demonstrate diverse behaviors in fuzzy reasoning.
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A Quantifier Semantics in FROG

To further measure the difficulty of FRoG ques-
tions, we introduce the relative distance between
the target percentage value and the GQ choices.
Specifically, given a question, the value of target
percentage mention p, the mean strength of the
golden GQ choice qg and the mean strength of the
incorrect GQ choice qm that is closest to p, the
relative distance RelDist is calculated by

RelDist =
abs(qg − p)

abs(qg − p) + abs(qm − p)

where abs(∗) represents the operation of comput-
ing the absolute value. Here, RelDist indicates the
proportional closeness of p to qg and lower is better.
The average RelDist is 0.3 in FROG. 21.3% ques-
tions have RelDist smaller than 0.2, 63.8% have
RelDist smaller than 0.4, and all questions have
RelDist smaller than 0.5. The average RelDist by
generalized quantifiers is listed in Table 3.

B FRoG Performance

The performance of FRoG on three masking strate-
gies is listed in Table 4, the best performing model,
GPT-4-turbo has below 50% accuracy across differ-
ent settings. The results of inverse scaling effect are
summarized in Table 5 where one check represents
an inverse scaling effect observed.

C Additional Case Studies

We list additional examples from GPT-4-turbo on
FRoG-Hardin Table 6, where Ex1, Ex2 and Ex3

QUANTIFIER RELDIST

all 0.276
most 0.249
moderate amount 0.311
some 0.276
small amount 0.364
few 0.293
tiny amount 0.255
none 0.211

Table 3: The average RelDist by generalized quantifiers
in FROG. All quantifiers have RelDist lower than 0.4.

represents the three primary fuzzy reasoning strate-
gies in Section 4.3 respectively. For example, in
Ex2, the model solves the target percentage men-
tion with 30% instead of 20%, but still select the
correct quantifier. And in Ex3, the model skips the
step of dividing 70 by 127 and directly estimate the
GQ preference from it.

D Quantifier Understanding Across Scale

We demonstrate examples from Qwen-1.5-Chat
in FRoG-Hardwhere models of different number
of parameters hold different understanding of GQ
semantics in Table 7. Take Ex1 for example, The
7B, 14B and 72B version of Qwen-1.5-Chat all
compute the target target mention 0.5 correctly,
but reaching to different GQ preferences (small
amount, moderate amount and some) regarding
interpreting the target percentage value. We list the
exploration of aligning model behavior to specific
quantifier interpretation as future work.

E FRoG Templates

We list the FRoG templates employed in Table 8.

F Instruction

We list the FRoG instruction employed in Table 9.
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MODEL #PARAM. MASK MISLEAD X%

GPT-4-turbo - 33.7 / 48.1 34.7 / 44.0 37.5 / 49.8

GPT-3.5-turbo-1106 - 20.4 / 31.2 22.6 / 27.8 23.5 / 31.6

Llama-2-7b 7B 22.5 / 21.9 21.5 / 22.8 22.4 / 23.7
Llama-2-7b-Chat 7B 24.3 / 26.8 26.9 / 24.7 23.7 / 25.0

Llama-2-13b 13B 23.8 / 25.4 23.9 / 24.7 22.7 / 23.2
Llama-2-13b-Chat 13B 25.6 / 26.6 23.9 / 24.8 26.0 / 27.7

Llama-2-70b 70B 24.0 / 27.5 23.2 / 25.7 23.2 / 27.4
Llama-2-70b-Chat 70B 25.3 / 31.9 26.5 / 29.8 26.5 / 28.5

CodeLlama-7b 7B 21.7 / 23.0 21.7 / 21.7 24.4 / 23.8
CodeLlama-34b 34B 22.6 / 26.9 21.6 / 23.9 23.6 / 26.3
CodeLlama-70b 70B 7.5 / 8.1 6.6 / 7.2 7.0 / 7.8

Llama-3-8b 8B 22.9 / 26.6 21.9 / 24.4 23.8 / 24.9
Llama-3-8b-Instruct 8B 20.7 / 22.8 16.9 / 17.9 18.9 / 23.0

Llama-3-70b 70B 27.3 / 36.0 23.2 / 29.9 28.0 / 33.8
Llama-3-70b-Instruct 70B 28.0 / 42.9 25.7 / 39.0 29.0 / 42.1

Llemma-7b 7B 23.5 / 23.4 23.4 / 22.4 23.6 / 24.2
Llemma-34b 34B 25.0 / 28.6 23.9 / 23.2 24.6 / 27.9

Mistral-7b 7B 24.7 / 25.0 22.3 / 25.0 24.1 / 25.2
Mixtral-8x7b 56B 23.4 / 29.1 25.1 / 27.2 24.8 / 28.8

Olmo-1b 1B 18.5 / 17.9 18.1 / 18.0 17.6 / 18.3
Olmo-7b 7B 22.7 / 22.6 21.3 / 20.6 21.5 / 23.2

Qwen-1.5-1.8b 1.8B 19.1 / 20.9 17.6 / 18.8 21.0 / 20.2
Qwen-1.5-1.8b-Chat 1.8B 21.4 / 19.1 20.3 / 18.9 21.5 / 19.3

Qwen-1.5-4b-Chat 4B 15.5 / 18.3 19.2 / 18.3 17.7 / 19.1

Qwen-1.5-7b 7B 21.5 / 26.3 22.1 / 25.0 23.2 / 27.5
Qwen-1.5-7b-Chat 7B 20.7 / 25.1 18.3 / 21.5 21.7 / 24.4

Qwen-1.5-14b 14B 23.3 / 28.6 23.2 / 29.4 24.0 / 29.6
Qwen-1.5-14b-Chat 14B 23.6 / 32.1 23.7 / 29.0 25.8 / 32.5

Qwen-1.5-32b 32B 26.5 / 29.7 21.8 / 25.3 25.4 / 30.4
Qwen-1.5-32b-Chat 32B 25.4 / 32.6 19.1 / 22.9 24.5 / 32.4

Qwen-1.5-72b-Chat 72B 26.4 / 31.8 22.3 / 25.6 25.1 / 34.1

Tulu-2-7b 7B 6.6 / 6.2 8.5 / 6.4 7.6 / 7.3
Tulu-2-DPO-7b 7B 24.6 / 28.2 23.4 / 24.9 23.9 / 26.1

Tulu-2-13b 13B 22.2 / 24.2 18.8 / 21.6 21.4 / 24.2
Tulu-2-DPO-13b 13B 25.6 / 26.2 20.3 / 21.3 24.1 / 25.2

Tulu-2-70b 70B 25.3 / 26.6 23.7 / 23.5 26.2 / 28.9
Tulu-2-DPO-70b 70B 26.3 / 29.1 21.4 / 26.0 24.9 / 29.6

WizardLM-7b∗ 7B 21.0 / 21.6 18.2 / 17.6 19.9 / 20.7
WizardMath-7b∗ 7B 18.0 / 20.1 17.6 / 18.2 18.2 / 17.4

WizardMath-13b∗ 13B 21.6 / 22.4 20.4 / 21.4 21.9 / 23.4

WizardLM-70b∗ 70B 24.0 / 26.7 23.6 / 26.0 25.1 / 27.4
WizardMath-70b∗ 70B 22.8 / 24.3 20.1 / 20.8 21.0 / 22.5

Yi-6b-Chat 6B 23.4 / 25.4 20.4 / 21.3 20.9 / 24.5
Yi-34b-Chat 34B 20.0 / 27.5 24.0 / 28.3 22.2 / 26.9

Table 4: Performance on FROG. ∗number of demonstrations is reduced to 3 avoid outputs truncated by length limits.
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MODEL BACKBONE [MASK] MISLEAD X%

Tulu-2 Llama
Tulu-2-DPO Llama ✓ ✓ ✓ ✓ ✓ ✓
WizardLM Llama
WizardMath Llama ✓ ✓ ✓ ✓ ✓
Llama-2 Llama-2 ✓ ✓ ✓ ✓
Llama-2-Chat Llama-2 ✓ ✓ ✓ ✓ ✓
CodeLlama Llama-2 ✓ ✓ ✓ ✓ ✓ ✓
Llemma Llama-2 ✓ ✓
Llama-3 Llama-3
Llama-3-Instruct Llama-3
Mistral Mistral ✓ ✓
Olmo Olmo
Qwen-1.5 Qwen-1.5 ✓ ✓ ✓
Qwen-1.5-Chat Qwen-1.5 ✓ ✓ ✓ ✓ ✓ ✓
Yi-Chat Yi ✓

Table 5: Inverse scaling checkbox, the two checks represent inverse scaling effect (less than 1 point performance
gain by scaling model sizes) observed on FRoG-Easy (left) and FRoG-Hard (right) respectively.
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Ex1: From the sale of sleeping bags, a retailer made a gross profit of [MASK] of the wholesale cost. If each sleeping bag
was sold for $28, what was the wholesale cost per bag?
If the answer to the question is 24.78, then please select the quantifier that is closest to the meaning of [MASK] from the
following choices. [13%]
A. some B. small amount C. few D. tiny amount

Suppose the gross profit percentage is x and the wholesale cost is W per bag. Then the selling price (SP) per bag is $28,
and the actual relation can be established using: SP = W + x% of W 28 = W + (x/100) * W 28 = W(1 + x/100) W = 28 /
(1 + x/100)
Given that W is $24.78, 24.78 = 28 / (1 + x/100) 1 + x/100 = 28 / 24.78 x/100 = (28 / 24.78) - 1 x/100 = 1.13 - 1 x/100 =
0.13 x = 13
Therefore, the gross profit percentage is 13%. This percentage is a moderate amount, not minimal, nor very large.
Checking the choices, none represent precisely ’13%’, but thinking about its relative value:
- ‘some’ generally suggests a moderate, indefinite amount
- ‘small amount’, ‘few’, and ‘tiny amount’ suggest smaller proportions
Thus, among all the choices, ‘some’ is the best fit for representing a gross profit of 13% of the wholesale cost.

Ex2: A shopkeeper has 280 kg of apples. He sells 30% of these at 20% profit and the remaining 60% at [MASK] profit.
Find his % profit on total. If the answer to the question is 24%, then please select the quantifier that is closest to the
meaning of [MASK] from the following choices. [20%]
A. some B. moderate amount C. small amount D. few

The shopkeeper has 280 kg of apples. 30% of these apples sold at 20% profit means 0.3 * 280 = 84 kg sold at 20% profit.
The remaining 60% sold at an unknown percentage, x, of profit is 0.6 * 280 = 168 kg.
To find the total profit percentage on the whole 280 kg:
1. Calculation for profit from the first 84 kg: Profit = 20% of 84 kg = 0.2 * 84 = 16.8 kg equivalent profit.
2. Calculation for profit from the remaining 168 kg: Profit = x% of 168 kg = 0.01x * 168 = 1.68x kg equivalent profit.
Now, total profit from 280 kg = (16.8 + 1.68x) kg.
Total profit percentage = (Total profit / Total kg) * 100 = [(16.8 + 1.68x) / 280] * 100 = (0.06 + 0.006x) * 100 = 6 + 0.6x.
Given the problem, the total profit percentage is 24%: 6 + 0.6x = 24 0.6x = 24 - 6 0.6x = 18 x = 18 / 0.6 x = 30%.
So, the remaining 60% of apples were sold at 30% profit. Looking at the choices given for the interpretation of [MASK],
the closest to a 30% profit level among the options provided is "moderate amount", considering it reflects a sizable yet
not excessively high-profit margin.

Ex3: A candidate appearing for an examination has to secure [MASK] marks to pass paper i. But he secured only 45
marks and failed by 25 marks. What is the maximum mark for paper i? If the answer to the question is 127, then please
select the quantifier that is closest to the meaning of [MASK] from the following choices. [55%]
A. moderate amount B. some C. all D. most

The candidate secured 45 marks and failed by 25 marks. This means the passing mark for paper I is 45 marks + 25 marks
= 70 marks.
Since the maximum mark for paper I is given to be 127, the passing mark (70 marks) out of the maximum (127 marks)
represents more than 50% but significantly less than 100%. This suggests a quantifier that indicates a majority but not
the entirety or something overly general.
Among the choices:
A. moderate amount - This generally indicates a reasonable or average proportion, not specifically majority.
B. some - Generally refers to an unspecified quantity, not necessarily a majority.
C. all - This would indicate the entirety, which is not suitable here as 70 is less than 127.
D. most - This generally refers to the majority or the largest part but not the entirety, fitting the criterion where 70 is
more than half of 127 but not all of it.
Therefore, ‘most’ is the quantifier that is closest to the meaning required for the passing marks in the context given. ####
D

Table 6: Extra sampled results from GPT-4-turbo in FROG, where explicit quantifier estimation is highlighted.
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Ex1 Mary can do a piece of work in 12 days. rosy is [MASK] more efficient than mary. the number of days taken by
rosy to do the same piece of work is? If the answer to the question is 8, then please select the quantifier that is closest to
the meaning of [MASK] from the following choices. [50%]
A. moderate amount B. some C. most D. small amount

[Qwen-1.5-72B-Chat] If Mary takes 12 days to complete the work, Rosy, who is more efficient, will take less time.
Let’s say Mary’s efficiency is 1 unit of work per day, then Rosy’s efficiency is Mary’s plus [MASK] units. If Rosy is ‘x’
times more efficient than Mary, her efficiency would be (1+x) units per day.
Since the work is the same for both, we can equate the efficiency in terms of time:
Mary: 1 unit/day * 12 days = 12 units
Rosy: (1+x) units/day * d days = 12 units
Solving for d, we have 12 / (1 + x) = d
Given the answer is 8 days for d, we can plug this value back into the equation to find x:
12 / (1 + x) = 8
1 + x = 12 / 8
1 + x = 1.5
x = 0.5
Since 0.5 represents a "small amount" more efficiency, the answer is D. small amount. #### D

[Qwen-1.5-14B-Chat] Suppose Mary’s work efficiency is ‘M’ days’ work. Then, Rosy’s efficiency is ‘M + [MASK]’
days’ work. Given, Rosy can complete the work in ’X’ days.
So, (M + [MASK]) * X = M * 12
Given X = 8 days, we can find what [MASK] represents:
12M / X = M + [MASK]
12 / 8 = 1 + [MASK]
[MASK] = 12 / 8 - 1
[MASK] = 3/2 - 1
[MASK] = 1/2
This means Rosy is half as efficient as Mary, or in other words, she takes twice the time. This corresponds to a "moderate
amount" of difference because, compared to ‘most’ or a large amount, which would be a huge difference, a small amount
wouldn’t result in Rosy taking twice as much time. The other options are ‘some’ or ‘tiny amount’, which are not as
accurate as ‘moderate amount’ in this context because they could mean a lesser extent of efficiency difference.
Therefore, the answer is A. moderate amount

[Qwen-1.5-7B-Chat] Rosy is ‘x’ times more efficient than Mary. So, the time taken by Rosy is 12 / (1 + x) days.
We are given that 12 / (1 + x) = 8.
Let’s solve for x: (1 + x) = 12 / 8 = 1.5
Simplifying x, x = 0.5.
This means that Rosy is half as efficient as Mary. So, ‘some’ is the closest quantifier choice for ‘most’. If x were to be a
tiny portion, this would not make sense. Therefore, the answer is ‘some’ (or B). #### B

Table 7: Examples of Qwen-1.5-Chat models on FRoG where models of different parameters compute similar
percentage values about the target percentage mention, but holding different opinions about the quantifier choice.
The explicit quantifier estimation is highlighted.
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Prompt Templates for FRoG Problems

Given the (Question, Original Answer) of the original benchmark, the FRoG problems can be constructed with the
following templates.

### Problem Template
Question:
{FRoG Question}
Answer:
Let’s think step by step

### FRoG Question Template
[MASK]:
{Question}
{Choices}
If the answer to the question is {Original Answer}, then please select the quantifier that is closest to the meaning of
[MASK] from the following choices.

[Mislead]:
{Question}
{Choices}
If the answer to the question is {Original Answer}, and {Mislead Quantifier} in the question is not correct, please select
the most appropriate quantifier from the following choices.

[X%]:
{Question}
{Choices}
If the answer to the question is {Original Answer}, then please select the most appropriate quantifier that is closest to
the meaning of X% from the following choices.

[Mask Percentage]:
{Question}
{Choices}
If the answer to the question is {Original Answer}, then please select the percentage value that is closest to the meaning
of [MASK] from the following choices.

Table 8: Prompt template for FRoG problems.

Instruction used for FRoG Evaluation

You are an expert in mathematical reasoning and generalized quantifier reasoning. Here you are asked to answer
one mathematical question based on real-life scenarios with a description starting with ’Question:’ For example, the
question may describe the driving experience of a person. Your answer will start with ’Answer: let’s think step by step’.

You will also be provided with four possible choices, please select the choice that is closest to your estimation of the
answer.

The answer needs to include necessary reasoning steps to demonstrate your thinking procedure, and the final result of
your calculation is demonstrated at the end of your answer starting with ‘####’.

Here are some examples starting with ‘Question: ’ for your reference.

Table 9: Instruction employed in FRoG evaluation.
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