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Abstract

Large Language Models (LLMs) have shown
impressive capabilities but also a concerning
tendency to hallucinate. This paper presents
REFCHECKER, a framework that introduces
claim-triplets to represent claims in LLM re-
sponses, aiming to detect fine-grained halluci-
nations. In REFCHECKER, an extractor gen-
erates claim-triplets from a response, which
are then evaluated by a checker against a ref-
erence. We delineate three task settings: Zero,
Noisy and Accurate Context, to reflect vari-
ous real-world use cases. We curated a bench-
mark spanning various NLP tasks and anno-
tated 11k claim-triplets from 2.1k responses
by seven LLMs. REFCHECKER supports both
proprietary and open-source models as the ex-
tractor and checker. Experiments demonstrate
that claim-triplets enable superior hallucination
detection, compared to other granularities such
as response, sentence and sub-sentence level
claims. REFCHECKER outperforms prior meth-
ods by 18.2 to 27.2 points on our benchmark
and the checking results of REFCHECKER are
strongly aligned with human judgments1.

1 Introduction

Large Language Models (LLMs) have sparked a
revolution in Natural Language Processing (NLP),
covering diverse tasks with a unified architec-
ture (Zhao et al., 2023). However, LLMs exhibit a
tendency to generate hallucinated contents that can
be difficult to discern, posing a potential risk of mis-
leading users. (Huang et al., 2023). Consequently,
hallucination detection has received increasing at-
tention (Manakul et al., 2023; Min et al., 2023;
Chern et al., 2023).

Detecting hallucination is essentially a job of
comparing a generated response against a refer-
ence. To this end, several challenges remain, in-

*Work done while at Amazon.
1This work is open sourced at https://github.com/ama

zon-science/RefChecker

… The song 'I Ran (So Far Away)' was originally performed by the 
English new wave band A Flock of Seagulls in 1983. …

The song is 'I Ran (So Far Away)’.
'I Ran (So Far Away)' was originally performed.
'I Ran (So Far Away)' was originally performed by A Flock of Seagulls.
A Flock of Seagulls is an English new wave band.
A Flock of Seagulls performed 'I Ran (So Far Away)' in 1983.

I Ran (So Far Away)   originally performed by   A Flock of Seagulls
I Ran (So Far Away) released in 1983
A Flock of Seagulls    is                                   English new wave band

Figure 1: An example response split into sentence, sub-
sentence (Min et al., 2023), triplets, and the hallucina-
tion 1983. Triplets define the boundary of claims more
clearly, are fine-grained and covers non-overlapping
facts (unlike sub-sentences).

cluding determining the appropriate unit of analy-
sis for comparison and developing a unified, au-
tomated framework that scales detection across
diverse tasks. To address these challenges, exist-
ing work has considered checking hallucinations
at various levels of granularity. Specifically, Lin
et al. (2022) and Li et al. (2023) conduct response-
level checking by taking the whole response as the
checking unit. Manakul et al. (2023) assesses each
sentence in the response for fine-grained evalua-
tion. Min et al. (2023) and Chern et al. (2023)
further extracts short phrases (we term them as
sub-sentences) as the claims, as one sentence may
contain multiple hallucinations, or one hallucina-
tion may span across sentence boundaries.

Existing research, however, leaves several open
issues unaddressed. For instance, response level
checking suffices if the query and response is about
a simple fact, but when responses are complex and
long, it can be uninformative and also cause false-
negative when hallucination is local. This is com-
mon in real-world use cases, for example, the re-
sponse from Llama 2 (Touvron et al., 2023) in our
experiments (described later) contains 150 tokens
on average. Sentence level detection cannot capture
knowledge across sentences, and sub-sentences are
structurally difficult to define, making it challeng-
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Figure 2: The REFCHECKER framework comprises two main components: an extractor denoted as E and a checker
denoted as C. Given a text to be checked, typically a response generated by an LLM, the extractor takes it as input
and generates a set of knowledge triplets, referred to as claim-triplets. Subsequently, the checker assesses each
claim-triplet by comparing it against a reference, assigning a hallucination label based on the evaluation.

ing to form high-quality demonstrations to be used
by LLMs with in-context learning. To address this
challenge, we propose to extract knowledge triplets
as checking units. Triplets are commonly used
for representing knowledge (Ji et al., 2022) which
follow a (subject, predicate, object) struc-
ture. Comparing with other granularities, triplets
exhibit fine-grained and clearly separated seman-
tics as exampled in Figure 1. These triplets are
called claim-triplets.

Using claim-triplets, we build REFCHECKER

(Figure 2), a fully automated framework that scales
hallucination detection across different tasks. RE-
FCHECKER consists of two main components: an
extractor and a checker. The extractor generates
claim-triplets from the response and the checker
evaluates each of the claim-triplets by comparing
them with the reference. In contrast to recent
work that only differentiates factual and non-factual
claims, the checker in REFCHECKER also consid-
ers unverifiable claims when the reference is insuf-
ficient for checking. Both the extractor and checker
supports proprietary (e.g. GPT-4 (OpenAI et al.,
2023)) and open-source models (e.g. Mistral (Jiang
et al., 2023) and RoBERTa (Liu et al., 2019) based
models).

Existing datasets such as SelfCheckGPT (Man-
akul et al., 2023), FActScore (Min et al., 2023) and
FacTool Chern et al. (2023) can be used to evalu-
ate REFCHECKER. However, they only offer sen-
tence or sub-sentence level metrics, which do not
fully cover the functions of REFCHECKER. We cu-
rate a comprehensive dataset, KNOWHALBENCH,
on which we can benchmark hallucination under
different context quality and availability. Using
KNOWHALBENCH, we conducted human evalua-
tion on 2,100 responses from 7 LLMs. We anno-

tated 11k claim-triplets with 95% Inter-Annotator
Agreement on 23% of the annotations (due to re-
source limitations). Compared with these datasets,
it covers a more diverse range of domains and tasks,
with more LLMs and responses evaluated (see Ta-
ble 1). As expected, we found by human evalua-
tion that hallucination is the most pronounced (cf.
Appendix A.4) when LLMs are asked to generate
responses solely from its memory (Zero Context),
followed by responding to noisy references in RAG
(retrieval augmented generation) setting (Shuster
et al., 2021) (Noisy Context) and finally when ref-
erences are more or less noise-free (Accurate Con-
text). With KNOWHALBENCH, our experiments
show that checking with claim-triplets gains 4 to 9
points of improvement over other granularity (cf.
Sec. 6.1) and REFCHECKER achieves 18.2 to 27.2
points of improvement over the best alternative
(Sec. 6.3).

Our key contributions include:

• Claim-triplet formulation: Checking with
the novel “claim-triplets” outperforms other
granularities by up to 9 points, pinpointing
factual inconsistencies within responses.

• Comprehensive benchmark: We developed
a robust benchmark covering three classes of
real-world LLM tasks with 11k manually an-
notated claim-triplets across 7 LLMs.

• Automatic checking framework: Our RE-
FCHECKER framework extracts and verifies
claim-triplets, boosting consistency by 6.8 to
26.1 points over prior methods and works with
both proprietary and open-source models.
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Method Context Setting Claim Extraction Checking Benchmark
Claim Extractor Label Checker Domain Task Evaluated Responses

SelfCheckGPT Zero Context Sentence - 3-way GPT Wikipedia Bio Generation 238 from GPT-3
FActScore Zero Context Sub-sentence GPT Binary GPT Wikipedia Bio Generation 505 from 3 LLMs

FacTool Zero Context

Sub-sentence
Snippet

Statement
Tuple

GPT Binary GPT

Wikipedia
Python
Math

Sci. Text

QA
Code Generation
Math Problems

Sci. Review

514 from ChatGPT

REFCHECKER

Zero Context
Noisy Context

Accurate Context
Triplet

GPT
Mixtral*
Mistral*

3-way

GPT
AlignScore*

NLI*
RepC*

Wikipedia
Web

QA
RAG

Summarization
IE

2,100 from 7 LLMs

Table 1: A comparison of REFCHECKER with previous approaches for hallucination detection. The “*” symbols
alongside the extractors and checkers indicate that these models are open-sourced. REFCHECKER uses triplets as
the claims instead of sentences or sub-sentences. The REFCHECKER benchmark covers more context settings and
more diverse tasks. The human evaluation covers more LLMs and responses. REFCHECKER pipeline supports both
proprietary and open-source models, facilitating broader adoption across various applications.

2 Related work

We undertake a review of prior work relevant to
our study and compare them with REFCHECKER.
The comparative analysis with three representative
methods is encapsulated in Table 1.

Hallucination in LLMs. Hallucinations, which
frequently occur in NLP tasks like summariza-
tion (Maynez et al., 2020; Cao et al., 2022), ma-
chine translation (Guerreiro et al., 2023a,b), dialog
systems (Honovich et al., 2021; Dziri et al., 2022)
and RAG (Shuster et al., 2021), can be categorized
to factuality hallucinations and faithfulness hallu-
cinations (Huang et al., 2023). Factuality halluci-
nations involve claims contradicted by real-world
facts, while faithfulness hallucinations are incon-
sistent with the input content. Recent research
on hallucination detection primarily concentrates
on factuality hallucinations, such as SelfCheck-
GPT (Manakul et al., 2023), FActScore (Min et al.,
2023) and FacTool (Chern et al., 2023). We address
both factuality and faithfulness hallucinations and
further categorizing them into three contextual set-
tings to align with real-world use cases.

Granularity of Claims. Claims are pivotal for
evaluating responses generated by LLMs. Re-
sponse level checking (Lin et al., 2022; Li et al.,
2023) is too coarse-grained for long-form re-
sponses. For fine-grained detection, sentence
level (Manakul et al., 2023) and sub-sentence level
checking (Min et al., 2023; Chern et al., 2023)
have been proposed. However, these approaches
still face limitations, as discussed in Sec. 1. In this
paper, we employ knowledge triplets, which have
been widely adopted as claims or facts (Li et al.,
2022) for entailment reasoning (Liang et al., 2022;

Arakelyan et al., 2021). Extracted claim-triplets
provide a structured framework for defining claim
granularity.

Hallucination Checking. One line of work
for hallucination checking focuses on reference-
free checking. They mainly depend on self-
contradiction (Mündler et al., 2023) or uncer-
tainty (Zhang et al., 2023b) of the LLMs, or
self-consistency between randomly sampled re-
sponses (Manakul et al., 2023; Chen and Mueller,
2023; Zhang et al., 2023a). The effectiveness
of these methods depends on the LLM-based
checker’s capability and requires multiple response
samples, which is costly. REFCHECKER is aligned
with another line of work which requires references
to check with (Min et al., 2023; Chern et al., 2023).
In addition, REFCHECKER adopts a 3-way classi-
fication framework to cover unverifiable claims as
opposed to the binary classification used in previ-
ous work, which can only distinguish factual and
non-factual claims.

Hallucination Detection Benchmarks. The ex-
isting benchmarks for hallucination detection pri-
marily focus on response-level detection (Lin et al.,
2022; Yang et al., 2023), or limited to specific
domains and tasks (Manakul et al., 2023; Min
et al., 2023), or solely address factuality hallucina-
tions (Chen et al., 2023; Chern et al., 2023; Wang
et al., 2023). In contrast, our proposed benchmark
offers a broader scope, encompassing a diverse
range of tasks and domains. Moreover, our human
evaluation process involves a more extensive exam-
ination of various LLMs with more responses.
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LLMQuestion Response

Zero Context
Questions for factual knowledge,

e.g. Wikipedia

Supporting Evidence

LLMQuestion Response

Noisy Context
Retrieval-Augmented Generation

(RAG)

Retrieved Documents

…

LLMQuestion Response

Accurate Context
E.g., summarization, closed-QA, 

information extraction

User-provided Document
Reference Reference Reference

Figure 3: Illustration of three settings of context, tasks and references. Zero Context is about seeking factual
knowledge from the internal memory of the LLMs. Noisy Context has context information retrieved from a
knowledge source, which is a RAG use case. Accurate Context has context provided in the input prompt. For Noisy
and Accurate Context, we take the input context as the reference.

3 Preliminaries

Hallucinations are claims made by LLMs not sup-
ported by factual knowledge, which we refer to as
references; detecting hallucinations involves com-
paring the claims against the references. This pro-
cess depends on context settings, the granularity of
checking and the definition of hallucinations. We
discuss them in turn.

Context settings. We differentiate three context
settings covering various tasks and employ differ-
ent benchmarks for each setting as shown in Fig-
ure 3.

Zero Context (ZC) Tasks in this setting can be re-
ferred to as closed-book question answering which
requires the LLM to respond solely based on its
internal knowledge. Therefore, in principle, refer-
ences should be in the training corpus. In practice,
for benchmarking purposes, we use a “ground truth”
reference for each question which contains the an-
swer, and we expect the reference can be retrieved
from a trusted knowledge source when deployed to
real-world applications.

Noisy Context (NC) In this setup, the LLM re-
ceives additional context retrieved from some ex-
ternal knowledge source, which may contain noisy
or irrelevant information. NC is also known as
RAG, a crucial use case frequently encountered in
real-world applications.

Accurate Context (AC) This setting is similar to
NC but the reference is typically noise-free. Ex-
amples include text summarization, closed-QA and
information extraction tasks. The main difference
between AC and NC is that the context in AC is
trustworthy, while the context in NC contains a lot
of noise.

Granularity of checking. Informally, claims
are the units for the checking. This work ex-
plores the approach of representing claims with
knowledge triplets. Knowledge triplets adopt a
(head_entity, relation, tail_entity) struc-
ture to capture fine-grained information within the
response. We call the triplet-format claims as claim-
triplets, examples of which are shown in Figure 2.

Definition of hallucinations. The claim-triplets
are then compared with a reference to determine
the type of hallucinations. If a claim-triplet can
be directly inferred from the reference, we clas-
sify it as Entailment. Conversely, if it contradicts
the information in the reference, it is labeled as
Contradiction. However, in cases where the ref-
erence is insufficient to verify the claim-triplets,
we classify it as Neutral. In this study, we focus
on verifying hallucinations in the response and do
not consider unmentioned aspects in the reference,
which may also be important for certain tasks.

4 The REFCHECKER framework

As illustrated in Figure 2, the REFCHECKER frame-
work is designed as a 2-stage pipeline: an Extrac-
tor E decomposes the LLM response into a set of
triplets, with each of them verified by the Checker
C. The categorization of the triplets can be option-
ally aggregated according to specified rules. We
explain them in the subsequent subsections.

Extractor Our checking framework hinges on a
key assumption: the decomposition of the original
text into triplets facilitates finer-grained detection
and more accurate evaluation. The extraction of
these triplets plays a pivotal role in achieving this
objective. We apply LLMs to extract knowledge
triplets from the given text. We began with GPT-4
and, for both cost and efficiency concern, Mixtral
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8x7B and Mistral. More specifically, we performed
knowledge distillation to train a 7B Mistral-based
extractor with Mixtral 8x7B as the teacher. We
conducted supervised fine-tuning on 10k responses
generated by a Mistral 7B model using the same
prompt in benchmark curation (see Appendix B.1
for details). Evaluation in Sec. 6.4 shows competi-
tive extraction quality of the open-source extractor.
Refer to Appendix B.1 for prompts used for extrac-
tion and details on extractor training.

Checker We experimented with two families of
checkers, the first is off-the-shelf LLMs, GPT-4
(see Appendix B.2 for prompts), and the second
is smaller NLI models including AlignScore (Zha
et al., 2023) and RoBERTa-NLI.2 Long references
in AC/NC setting are split to fit into small context
windows of these small models (e.g. 200 tokens),
and the results are aggregated later.

Mistral 7B (Jiang et al., 2023) lies in between,
offering both massive knowledge obtained during
pre-training and the opportunity for tuning the
open model weights with NLI data. There are
many options we have experimented: 1) fine-tune
by adding small amount of new parameters using
LoRA (LoRA-sft) (Hu et al., 2021), 2) attach a
shallow classifier, eg. SVM, 2-layer MLP, KNN
after NCA projection (Goldberger et al., 2004), on
top of the internal states of the model. We call
such checker RepC (for Representation-based Clas-
sifier). Such states can be selected from one layer
(layer selection, LS) or an ensemble of all layers
(layer ensemble, LE). As we will report in Sec. 6.4,
RepC checkers are competitive in general.

Aggregation Triplet results can be aggregated to
obtain the ratio of each category, therefore gives an
overall measure of hallucination distribution in a
response. To derive the performance of a particular
LLM, we take a macro average on Entailment/Neu-
tral/Contradiction ratios of all responses. If a scalar
is preferred, we can assign certain numeric values
to the catogories, for instance −1, 0, 1 for contra-
dictory, neutral and entail, respectively.

The aggregation can be customized and this is
one of the benefits of the fine-grained hallucination
design in REFCHECKER. For instance, to com-
pare against other response-level approaches (cf.
Sec. 6.1), we adopt a rule where the response is
flagged as contradictory if any one of the claim
triplet is contradictory.

2https://huggingface.co/ynie/roberta-large-s
nli_mnli_fever_anli_R1_R2_R3-nli

5 The KNOWHALBENCH dataset

We assembled a benchmark dataset comprising 300
examples from public datasets, with 100 for each
of the three context settings mentioned in Section 3.
We further collected responses from 7 LLMs on
the established benchmark for human evaluation.
Table 2 shows the summary and statistics of the
benchmark, and we describe the dataset curation
and human annotation process in the rest of this
section.

5.1 Curation of benchmark data

The 300 examples are obtained through a process
of filtering, sampling and hard case selection. The
data sources, tasks and the corresponding refer-
ences are summarized in Table 2 of Appendix A.
We describe them in detail as follows.

For ZC, we sample examples from the dev set of
NaturalQuestions (NQ) (Kwiatkowski et al., 2019),
a open domain question answering dataset, for the
benchmark. Each question in NQ has a human-
annotated long answer and we take the long answer
as the reference. However, we found that some
questions in NQ may cause the LLMs refuse to
answer or have low quality reference to check with.
Thus, we prompted ChatGPT (GPT-3.5-Turbo) to
filter out these examples from the development
set. The details of filtering are described in Ap-
pendix A.

For NC, we utilize questions sourced from the
validation set of MS MARCO (Nguyen et al., 2016)
dataset.3 Each question in this dataset is accompa-
nied by a list of documents retrieved from the inter-
net, serving as the input context. To prevent LLMs
from declining to provide answers, we choose ex-
amples where a golden passage containing the an-
swer to the question has been annotated.

For AC, we employ the databricks-dolly-
15k4 (Conover et al., 2023) instruction tuning
dataset for the benchmark. Each example in this
dataset contains a field named category which
indicates the task type, and we sample exam-
ples from a subset with categories of closed_qa,
information_extraction and summarization.

After sampling, we use fixed prompt templates
in each context setting to collect responses from
LLMs for fair comparisons. For ZC, the prompt is

3https://huggingface.co/datasets/ms_marco/vie
wer/v2.1

4https://huggingface.co/datasets/databricks/d
atabricks-dolly-15k
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Setting Task Reference # Questions Avg.
Context Len.

Avg.
Response Len.

# Claims
/Response

Avg.
Claim Len.

Zero Context Closed-Book QA Annotated
Long Answer 100 102.9 65.7 4.7 9.3

Noisy Context Retrieval-Augmented
Generation (RAG) Retrieved Context 100 520.3 61.3 4.9 8.6

Accurate Context
Summarization

Closed QA
Information Extraction

Input Context 100 264.1 45.7 5.7 8.0

Table 2: Summary and statistics of KNOWHALBENCH.

the question itself. The prompts for NC and AC are
shown in Figure 5 of Appendix A. In order to create
a rigorous benchmark, for each setting, we select
100 hard cases from 1k randomly sampled exam-
ples. We employ a response-level hallucination
checker for this selection. Refer to Appendix A.2
for details.

5.2 Human evaluation

We performed human evaluation on responses
generated by seven LLMs on this benchmark
dataset, including GPT-4, GPT-3.5-Turbo (OpenAI,
2022), InstructGPT (text-davinci-001) (Ouyang
et al., 2022), Claude 2, Llama 2 70B Chat, Falcon
40B Instruct (Almazrouei et al., 2023) and Alpaca
7B (Taori et al., 2023). The process involves three
steps: gathering responses as mentioned above, ex-
tracting claim-triplets with an extractor based on
Claude 2 as described in Sec. 4, and asking hu-
man annotators to evaluate these claim-triplets. We
annotated a total of 11k claim-triplets for 2.1k re-
sponses. 23% of the claim-triplets were double
annotated, with 95.0% Inter-Annotator Agreement.
See Appendix A.3 for the details of the annotation
process.

6 Experiments

The major difference between REFCHECKER and
other related work lies in the claim granular-
ity. So we conduct experiments to differentiate
granularities first, then evaluate the whole frame-
work on both the SelfCheckGPT dataset and our
KNOWHALBENCH dataset.

6.1 Detection granularity

Previous work used different granularity for hal-
lucination detection, including response, sentence
and sub-sentence levels (cf. Sec. 2 and 3). We com-
pare with them on KNOWHALBENCH to verify the
effectiveness of checking on facts with the triplet
format.

To make the results with different granularities

response sentence sub-sentence triplet

35

40

45

50

55

Claim Granularity

M
ac

ro
-F

1

Figure 4: Performance statistics of 6 checkers under
different claim granularities on 2.1k manually annotated
responses. The detailed checker performance can be
found in Table 8 of Appendix B.2.

comparable to each other, we first breakdown the
2.1k annotated responses into different granular-
ities, then collect corresponding checker predic-
tions respectively, and finally aggregate finer-level
results all into the response-level. We utilize a
strict aggregation rule with zero-tolerance on hal-
lucinations, which means we apply max-pooling
(Entailment < Neutral < Contradiction) over claim
predictions within a response. We compare the re-
sults of 6 checkers, including 3 baseline checkers
(RoBERTa-NLI, AlignScore, GPT-4) and 3 RepC-
LE checkers with KNN, SVM and 2-layer MLP
classifiers respectively. The evaluation metric is
macro-f1 on three categories.

As shown in Figure 4, checking at triplet-level
claims is superior over other granularities, with
a significant lead against response-level (10 pts
macro-f1 score on average). Checking at sentence-
level improves over response-level by 5 pts. How-
ever, we see a 3.5 pts drop moving to sub-sentence,
one of the reasons being sub-sentence claims
can overlap. Apparently, the flexibility of sub-
sentences leads to poor quality of claim extraction,
which subsequently affects checking.
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Pearson Spearman
SelfCheckGPT 78.32 78.30
REFCHECKER

Mistral-SFT + GPT4 80.98 83.92
Mistral-SFT + NLI 78.54 79.66

Table 3: Comparision between REFCHECKER and Self-
CheckGPT on the SelfCheckGPT dataset. The results of
SelfCheckGPT are from SelfCheckGPT (Manakul et al.,
2023). We highlight the best results using proprietary
LLMs with blue colors and best results results using
pure open-source models with orange colors.

Zero Context Noisy Context Accurate Context
r ρ r ρ r ρ

SelfCheckGPT 35.40 43.15 36.31 32.15 40.23 32.55
FActScore 42.58 45.60 33.36 29.91 27.80 27.05
FacTool 59.78 62.57 46.35 38.69 31.41 32.82

REFCHECKER
GPT-4 + GPT-4 83.95 82.35 64.56 57.30 58.61 55.50
Mistral + AlignScore 75.81 74.16 53.88 45.09 46.34 43.22

Table 4: Automated checking results comparison of RE-
FCHECKER and previous approaches. Here r and ρ are
Pearson and Spearman correlation coefficient. The RE-
FCHECKER results are from the best performing com-
binations (extractor + checker) of purely proprietary
(blue) and purely open-source models (orange).

6.2 Results on the SelfCheckGPT dataset

We further compare REFCHECKER with Self-
CheckGPT (Manakul et al., 2023) using their
dataset to evaluate the entire framework. Both
frameworks are used to score the hallucination rates
of responses in the dataset. We then compare these
evaluation results to human annotations using Pear-
son and Spearman correlation coefficients.

SelfCheckGPT adopts sentence-level halluci-
nation detection. We aggregate scores of sen-
tences (0, 0.5, and 1 for for an accurate,
minor_inaccurate, and major_inaccurate, re-
spectively) within a response by taking an average.
Similarly, we aggregate annotations on sentences
for response-level scores by humans. We directly
use the proportion of non-Entailment claims as
scores evaluated by REFCHECKER.

As shown in Table 3, REFCHECKER signifi-
cantly outperforms SelfCheckGPT (over 2 pts) with
a Mistral-SFT + GPT4 combination. The results of
REFCHECKER are slightly better than SelfCheck-
GPT even with purely open-source models (Mistral-
SFT + NLI). Note that SelfCheckGPT requires 20
LLM (ChatGPT) calls on each sentence. Full re-
sults with more configurations are listed in Table 13
(Appendix C). Knowledge-centric hallucination de-

Extractor
Model

Precision Recall F1
Speed

(sec/iter)

Mistral 82.2 68.2 71.3 1.7
Mistral-SFT 90.5 84.8 86.4 1.7
Mixtral 86.7 80.2 81.6 5.7
GPT-4 92.4 88.6 89.3 8.7

Table 5: Automatic evaluation results of extractors.
Mistral-SFT refers to our Mistral-based extractor af-
ter supervised fine-tuning. The other extractors directly
prompt corresponding LLMs with two in-context exam-
ples. The best and the second best results are bolded
and underlined, respectively.

tection offers more accurate estimation of halluci-
nation rates.

6.3 Results on KNOWHALBENCH

We perform comparisons on our KNOWHAL-
BENCH dataset, which provides more context
settings. We include two additional baselines
FActScore (Min et al., 2023) and FacTool (Chern
et al., 2023) to contrast with sub-sentence level
checking. We compute hallucination rates for the
two baselines as the proportion of claims not sup-
ported (FactScore) by or non-factual (FacTool) ac-
cording to the reference.

Table 4 presents Pearson and Spearman correla-
tions between the hallucinations rates evaluated by
humans and checking frameworks. REFCHECKER

significantly outperforms previous methods across
all three context settings with both proprietary and
open-source models. Specifically, the combination
of GPT-4 + GPT-4 outperforms the best alternative,
FacTool, by 18.2 to 27.2 pts. Consistent with our
findings in Sec. 6.1, knowledge-centric detection
by REFCHECKER demonstrates superiority over
baselines that use other claim formats. Further
analysis on recommended REFCHECKER configu-
rations is provided in Appendix B.3.

6.4 Analysis and discussion

In this section, we evaluate each component in RE-
FCHECKER separately and discuss their effective-
ness and pinpointing areas for potential enhance-
ment.

Extractors To ensure precise hallucination de-
tection, it requires precise claims that faithfully
represent the facts in the original response. Yet,
evaluating claim extraction is complex due to var-
ied expressions of the same fact. To address this,
we employ an automatic evaluation pipeline utiliz-
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Models
Average of

three settings
Zero context

(NQ)
Noisy context
(MS MARCO)

Accurate context
(databricks-dolly-15k)

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Baseline Checkers

RoBERTa-NLI 76.56 55.88 74.06 69.90 78.36 46.67 77.27 51.06
AlignScore 78.85 59.45 73.40 70.28 78.86 50.42 84.30 57.66
GPT-4 74.77 59.80 67.46 66.10 76.67 55.49 80.17 57.80

Mistral-based Checkers

zero-shot 69.43 46.64 70.83 61.10 71.75 43.01 65.72 35.81
1-shot 76.68 50.66 65.44 63.25 81.23 42.18 83.38 46.56
LoRA-sft-n4000 77.84 57.98 77.43 73.64 79.21 50.29 76.89 50.00
RepC-LE-svm-n1000-e1000 79.03 60.05 77.98 73.53 79.56 51.29 79.54 55.34
RepC-LE-nn-n2000-e2000 81.27 60.80 75.23 71.98 82.08 47.56 86.50 62.86

Table 6: Checker evaluation results on 11k human annotated claim triplets. In Mistral-based checkers, the model
names start with the variant types, eg. LoRA-sft indicates the LoRA fine-tuned variant and RepC-LE-nn indicates
the representation based classification variant using layer ensemble with 2-layer MLP as the classifier. Here “nxxx”
and “exxx” indicates the number of training samples and ensemble learning samples. Due to the space limitation,
we do not include all variant results here, please refer to Table 9 of Appendix B.2 for full results.

ing GPT-4 Turbo (gpt-4-1106-preview) to lessen
the need for post-hoc human evaluation for each
extractor.

We employed GPT-4 Turbo to label each ex-
tracted claim as True/False, indicating faithful-
ness to the original semantics. Additionally, we
tasked it with completing missing claims, enabling
automatic calculation of precision, recall, and F1
score on claims. To validate results, we conducted
a human evaluation on 30 random samples with the
same procedure, ensuring agreement between hu-
man annotators and the model. The comparison in
Table 7 (Appendix B.1) demonstrates strong align-
ment between human and automatic evaluations. It
achieves 93.7% agreement on precision and 91.9%
on recall.

Leveraging the reliability of our automatic eval-
uation pipeline, we evaluated the performance of
four extractors (see Table 5). Our fine-tuned Mis-
tral extractor, Mistral-SFT, approaches GPT-4 ex-
tractor with significantly faster inference speed and
no need for API tokens.
Checkers As described in Sec. 4, the base-
line checkers we include in the evaluation are
RoBERTa-NLI, AlignScore and GPT-4. The
Mistral-based checkers we include are zero-shot
prompted, one-shot prompted, LoRA fine-tuned
and RepC-LE variants. The training and develop-
ment data of these variants are 4k samples from
the ANLI dataset (Nie et al., 2020). We evaluate
their performance using the 11k manually anno-
tated claim triplets. The evaluation metric is accu-
racy and macro-f1 score over 3-way classification.

Table 6 shows the evaluation results. Among the
baseline checkers, AlignScore is a strong competi-
tor to GPT-4. Besides, the Mistral-based checkers
can often give the best performance, though there
does not yet exist a single winner across the board.
The weakness of Mistral-based checkers lies in the
NC setting. A possible reason is the mis-match of
data distribution between training and testing. The
training data of Mistral-based checkers are short
paragraphs (less than 100 tokens) while in NC the
reference can be very long (thousands of tokens).
So we have to split the reference to fit the training
data distribution and aggregate the predictions later.
These results suggest ample room of improvement
for the checkers.

7 Conclusion

We introduced REFCHECKER, a unified framework
for detecting hallucination in LLM responses. RE-
FCHECKER operates at the level of knowledge
triplets extracted from LLM responses, termed
claim-triplets. It allows for fine-grained halluci-
nation detection. Experiments on both previous
benchmark and our curated KNOWHALBENCH

dataset show that such knowledge-centric approach
yields superior performance compared to prior
work based on surface text (response, sentence,
sub-sentence, etc.).
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Limitations

Despite the effectiveness of REFCHECKER, it still
has limitations, which we discuss as follows.

a) The triplet format of claims, while effectively
breaking down LLM responses into finer granular-
ity, can be overly restrictive and may not adequately
cover complex semantics. For instance, the triplet
(Trump, president of, US) is factual in 2018
but not in 2022. Moreover, advanced forms of
hallucination due to reasoning and limited context-
window are challenging to manage with triplets,
which are biased towards local contexts.

b) Additionally, extending the capabilities of RE-
FCHECKER to include various data formats (table,
code, math, etc.) and specific domains (business,
medical, legal, etc.) are worthy of consideration.

c) REFCHECKER has rudimentary support for
source attribution, as detailed in Appendix B.4.
Better source attribution not only improves inter-
pretability but also provides training signals to mit-
igate hallucination.

d) We observed that model-based checkers may
exhibit bias towards internal knowledge, mistak-
enly declaring a neutral claim as an entailment or
contradiction (cf. Appendix D). This requires that
we inject some form of “knowledge source control”
into LLMs.

e) In actual deployment cases, we found users
ask for stronger customizability (e.g. they would
like to use REFCHECKER with their own database
for reference retrieval) and speed improvement.

Ethics Statement

We contend that REFCHECKER poses no nega-
tive ethical implications for the public; rather, it
holds the potential for positive impact by enabling
the identification of non-factual content within
the responses generated by large language models
(LLMs). This capability contributes to the cultiva-
tion of responsible AI practices for the benefit of
society.

In this study, we utilized a variety of scien-
tific resources to conduct our research and aim
to contribute additional artifacts to the community.
Specifically, to curate the benchmark dataset, we
sample 100 examples from each of the following
datasets:

• The development set of NaturalQuestions
dataset, which is under Creative Commons
Share-Alike 3.0 License.

• The validation set of MS MARCO dataset,
which is under Creative Commons Attribution
4.0 International License.

• The databricks-dolly-15k dataset, which is un-
der Creative Commons Share-Alike 3.0 Li-
cense.

These datasets are publicly accessible and utilize
English language corpora. We conduct human an-
notations with 6 NLP experts, the annotations will
be made available to the public under the Creative
Commons Attribution 4.0 International License.

The fine-tuned Mistral 7B extractor, Mistral-SFT,
is based on 10k questions sampled from the three
datasets evenly. The responses are generated by
Mistral 7B and the claim-triplets are extracted by
Mixtral 8x7B which are both under Apache-2.0
License. The RepC checker is also based on Mistral
7B and is trained with the ANLI dataset which
is under Creative Commons-Non Commercial 4.0
License. The fine-tuned models will be released to
the public under Apache-2.0 License.

6961



References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and
Michael Cochez. 2021. Complex query answering
with neural link predictors. In International Confer-
ence on Learning Representations.

Meng Cao, Yue Dong, and Jackie Cheung. 2022. Hal-
lucinated but factual! inspecting the factuality of
hallucinations in abstractive summarization. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3340–3354, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Jiuhai Chen and Jonas Mueller. 2023. Quantifying un-
certainty in answers from any language model via
intrinsic and extrinsic confidence assessment. arXiv
preprint arXiv:2308.16175.

Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern,
Siyang Gao, Pengfei Liu, and Junxian He. 2023.
Felm: Benchmarking factuality evaluation of large
language models. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, Pengfei Liu, et al. 2023. Factool: Factu-
ality detection in generative ai–a tool augmented
framework for multi-task and multi-domain scenar-
ios. arXiv preprint arXiv:2307.13528.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Nouha Dziri, Ehsan Kamalloo, Sivan Milton, Osmar Za-
iane, Mo Yu, Edoardo M Ponti, and Siva Reddy. 2022.
FaithDial: A Faithful Benchmark for Information-
Seeking Dialogue. Transactions of the Association
for Computational Linguistics, 10:1473–1490.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and
Russ R Salakhutdinov. 2004. Neighbourhood com-
ponents analysis. Advances in neural information
processing systems, 17.

Nuno M. Guerreiro, Duarte M. Alves, Jonas Waldendorf,
Barry Haddow, Alexandra Birch, Pierre Colombo,
and André F. T. Martins. 2023a. Hallucinations in
Large Multilingual Translation Models. Transac-
tions of the Association for Computational Linguis-
tics, 11:1500–1517.

Nuno M. Guerreiro, Elena Voita, and André Martins.
2023b. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1059–1075, Dubrovnik,
Croatia. Association for Computational Linguistics.

Or Honovich, Leshem Choshen, Roee Aharoni, Ella
Neeman, Idan Szpektor, and Omri Abend. 2021.
q2: Evaluating factual consistency in knowledge-
grounded dialogues via question generation and ques-
tion answering. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7856–7870, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. Preprint, arXiv:2311.05232.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S. Yu. 2022. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems, 33(2):494–514.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and
Ji-Rong Wen. 2023. HaluEval: A large-scale hal-
lucination evaluation benchmark for large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,

6962

https://openreview.net/forum?id=Mos9F9kDwkz
https://openreview.net/forum?id=Mos9F9kDwkz
https://doi.org/10.18653/v1/2022.acl-long.236
https://doi.org/10.18653/v1/2022.acl-long.236
https://doi.org/10.18653/v1/2022.acl-long.236
http://arxiv.org/abs/2310.00741
http://arxiv.org/abs/2310.00741
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.1162/tacl_a_00529
https://doi.org/10.1162/tacl_a_00529
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1162/tacl_a_00615
https://doi.org/10.1162/tacl_a_00615
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2021.emnlp-main.619
https://doi.org/10.18653/v1/2021.emnlp-main.619
https://doi.org/10.18653/v1/2021.emnlp-main.619
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.18653/v1/2023.emnlp-main.397


pages 6449–6464, Singapore. Association for Com-
putational Linguistics.

Manling Li, Revanth Gangi Reddy, Ziqi Wang, Yi-
shyuan Chiang, Tuan Lai, Pengfei Yu, Zixuan Zhang,
and Heng Ji. 2022. COVID-19 claim radar: A struc-
tured claim extraction and tracking system. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 135–144, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenx-
uan Tu, Siwei Wang, Sihang Zhou, Xinwang Liu, and
Fuchun Sun. 2022. A survey of knowledge graph
reasoning on graph types: Static, dynamic, and mul-
timodal. arXiv preprint arXiv:2212.05767.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004–9017, Singapore. Association for Computa-
tional Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076–12100, Singa-
pore. Association for Computational Linguistics.

Niels Mündler, Jingxuan He, Slobodan Jenko, and Mar-
tin Vechev. 2023. Self-contradictory hallucinations
of large language models: Evaluation, detection and
mitigation. Preprint, arXiv:2305.15852.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located

with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2016), Barcelona,
Spain, December 9, 2016, volume 1773 of CEUR
Workshop Proceedings. CEUR-WS.org.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
nli: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Is-
abella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,

6963

https://doi.org/10.18653/v1/2022.acl-demo.13
https://doi.org/10.18653/v1/2022.acl-demo.13
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://aclanthology.org/2023.emnlp-main.557
https://aclanthology.org/2023.emnlp-main.557
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf


Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2022. Introducing chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784–3803, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://gi
thub.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Yuxia Wang, Revanth Gangi Reddy, Zain Muhammad
Mujahid, Arnav Arora, Aleksandr Rubashevskii, Ji-
ahui Geng, Osama Mohammed Afzal, Liangming
Pan, Nadav Borenstein, Aditya Pillai, Isabelle Au-
genstein, Iryna Gurevych, and Preslav Nakov. 2023.
Factcheck-gpt: End-to-end fine-grained document-
level fact-checking and correction of llm output.
ArXiv, abs/2311.09000.

Shiping Yang, Renliang Sun, and Xiaojun Wan. 2023.
A new benchmark and reverse validation method
for passage-level hallucination detection. Preprint,
arXiv:2310.06498.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. Alignscore: Evaluating factual consistency
with a unified alignment function. arXiv preprint
arXiv:2305.16739.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Ma-
lin, and Sricharan Kumar. 2023a. SAC3: Reliable
hallucination detection in black-box language models
via semantic-aware cross-check consistency. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 15445–15458, Singapore.
Association for Computational Linguistics.

Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng,
Yue Zhang, Zheng Zhang, Chenghu Zhou, Xinbing
Wang, and Luoyi Fu. 2023b. Enhancing uncertainty-
based hallucination detection with stronger focus.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
915–932, Singapore. Association for Computational
Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

6964

https://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06498
https://arxiv.org/abs/2310.06498
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.emnlp-main.58
https://doi.org/10.18653/v1/2023.emnlp-main.58
http://arxiv.org/abs/2303.18223


[Noisy Context]

Please answer the following question
based on the provided passages.

Question: {question}?

Passages:
Passage 0: {content_of_passage_0}
Passage 1: {content_of_passage_1}
. . . // more passages here

Answer:

[Accurate Context]

// for closed QA task
Instruction: Provide a well-formed
answer to the question using
information from the given context.
Question: {question}
Context: {context}

// for summarization and information
extraction tasks
Instruction: {question}
Context: {context}

Figure 5: Prompt templates for response collection from
LLMs on our benchmark. For Zero Context setting, we
just use the question itself as the prompt.

A Details of the Benchmark Data
Curation Process

For Zero Context, we sample examples from the
development set of the NQ dataset for the bench-
mark. However, our initial experiments found that
some questions in NQ may cause the LLMs refuse
to answer or have low quality reference to check
with, and we categorize these questions as: 1) time-
sensitive questions; 2) potentially harmful ques-
tions; 3) ambiguous or vague questions, and 4) low
quality long answer. We talk about the data filtering
later.

For Noisy Context, we utilize questions
sourced from the validation set of MS MARCO
dataset.5(Nguyen et al., 2016) To prevent LLMs
from declining to provide answers, we choose ex-
amples where a golden passage containing the an-
swer to the question has been annotated.

For Accurate Context, we employ the databricks-
dolly-15k6 instruction tuning dataset for the bench-
mark. Each example in this dataset contains a field
named category which indicates the task type,
and we sample examples from a subset with cate-
gories of closed_qa, information_extraction
and summarization.

After sampling, we use fixed prompt templates
in each context setting to collect responses from
LLMs for fair comparisons. For Zero Context set-
ting, the prompt is the question itself. For Noisy
and Accurate Context settings, we use prompt tem-
plates shown in Figure 5.

We also conducted a hard case selection in order
to create a rigorous benchmark. We talk about the
details in the following part of this section.

A.1 Data Filtering for the NQ Dataset

We employ ChatGPT (GPT-3.5-Turbo) to screen
inappropriate examples from the development set
of NQ. The specific prompts utilized are illustrated
in Figure 6.

Note that we utilize a conversational approach
for prompting to identify examples with low-
quality references given as annotated long answers
in the dataset. In the first turn, we eliminate in-
stances with table-formed references, as tables can
introduce ambiguities during the human annotation
process. If the reference is not in a tabular for-
mat, we proceed to the second turn, where we filter
out references that lack context information for the
question (e.g., a question about "A’s son" where
the answer provides information about "B" without
explicitly stating that B is A’s son). This decision is
based on the fact that the reference is a paragraph
from a Wikipedia article, which may omit some
information from the preceding context. Lastly, we
filter out references that lack essential information
needed for answering the question unambiguously
(e.g. a question about passport requirements with-
out specifying the country).

A.2 Details of Hard Case Selection

For each task setting, we sort a set of 1,000 ran-
domly sampled examples based on the extent of
hallucination they demonstrate. This assessment
is conducted using a response-level hallucination
checker derived from Falcon-40B-Instruct. Specifi-
cally, responses were gathered from four different
LLMs , GPT-3.5-Turbo, InstructGPT, Alpaca-7B,
and Falcon-40B-Instruct, for these 1,000 examples.
Falcon-40B-Instruct is subsequently employed to
evaluate whether these responses contain halluci-
nations according to the prompt template depicted
in Figure 7. In this prompt, the “claim” refers to
the response generated by an LLM.

Utilizing the outcome of the hallucination check-
ing process, we calculate a hardness metric for
each example. This metric is defined as the ratio of
judgement as hallucination among the four LLMs.
The top 100 examples with the highest ratios are
then selected as the hard cases for each setting.

5https://huggingface.co/datasets/ms_marco/vie
wer/v2.1

6https://huggingface.co/datasets/databricks/d
atabricks-dolly-15k
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// Time-sensitive questions
Hello, since your knowledge is up to
September 2021, determine whether the
following question needs up-to-date
knowledge to answer:

{question}?

give your answer with the following format:
Reason: <your reason>
Answer: <Yes or No>

// Harmful questions
Hello, please help me determine whether the
following question is harmful:

{question}?

give your answer with the following format:

Reason: <your reason>
Answer: <Yes or No>

// Ambiguous or vague questions
Hello, please help me determine whether the
following question is ambiguous or vague.

Question:
{question}?

Give your answer with the following format:
Answer: <Yes or No>

// Check the quality of reference by chat
Hello, I have a question and a paragraph of
reference text according to the question,
please answer my question one by one in the
following turns.

Question:
{question}?

Reference Text:
{reference}

Is the reference text a table? Give your
answer with the following format:
Answer: <Yes or No>

If No

Does the reference text miss any information
in the question? Give your answer with the
following format:
Answer: <Yes or No>

If No

Does the reference text provide all the
necessary information for answering the
question accurately and unambiguously? Give
your answer with the following format:
Answer: <Yes or No>

Figure 6: Prompts for filtering out inappropriate examples from the development set of NQ.

Analyze if the claim corresponding to the
question is fair according to the context.
If the claim is unfactual or biased, the
answer is no; if the claim is factual and
respectful, the answer is yes.

Context: {context}
Question: {question}
Claim: {claim}
Yes/no question: Is it fair to say that?

Figure 7: The prompt used in hard case selection during
the benchmark curation process.

A.3 Human Annotation

We developed a web-based annotation tool to fa-
cilitate the human evaluation. A screenshot of the
annotation tool is presented in Figure 8. To en-
sure the reliability of the annotation process, six
NLP experts underwent training for the task. The
claim-triplets for human evaluation are extracted
by a Claude 2 extractor as described in Section 4.

The annotators were tasked with assigning a hal-
lucination label to each triplet or identifying it as
a low-quality triplet (referred to as a “bad triplet”)
for subsequent filtering. A “bad triplet” is defined
as one that fails to accurately convey the intended

meaning in the response.
In the Noisy Context setting, if a triplet is sup-

ported by at least one passage, it is categorized as
an Entailment. Conversely, if the triplet is neither
entailed nor contradicted by any of the passages, it
is considered a Neutral.

A.4 Observations from Human Evaluation

We analyze the results of human evaluation to gain
a deeper understanding the patterns of hallucina-
tions. We establish our evaluation metric as fol-
lows. Given a set of N responses from a specific
LLM within the dataset, the i-th response com-
prises Ci claims. Among these, Cy

i claims are
annotated with the specific hallucination type la-
beled as y ∈ {Entailment,Neutral,Contradiction}.
We define the hallucination rate for type y that the
LLM exhibits in the i-th response as ryi , which is

calculated as ryi =
Cy

i
Ci

.
We can see that ryi has definition when Ci > 0,

however, the LLMs may refuse to answer some
certain questions, and the claim extractor will not
extract any claim-triplets from such response, i.e.,
Ci = 0. To cover these cases in the metric, we de-
fine a new metric of Abstain Rate rabstain as did in
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Figure 8: The screenshot of the annotation tool for human evaluation.
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Figure 9: Results of different task settings by averaging
the results of the seven LLMs.

FActScore, and the rate of abstain is the ratio of ab-
stained responses, which is rabstain =

∑N
i=1 1(Ci=0)

N
where 1(x) is an indicator function which is 1 if
x holds and 0 otherwise. Furthermore, we define
the overall occurrence rate of hallucination type y
within this dataset for the given LLM as ry, which
is calculated as:

ry =

∑N
i=1 r

y
i · 1(Ci > 0)

∑N
i=1 1(Ci > 0)

(1)

We organize the conclusions drawn from the data
analysis into several findings:

Context Information is Critical Figure 9 dis-
plays hallucination label distributions and abstain
rates across the three context settings, averaged
from the seven LLMs. In Zero Context, LLMs
exhibit higher contradiction rates and generate
more unverifiable claims, suggesting potential con-
flicts and struggles in finding relevant informa-
tion. When context is present (Noisy and Accu-
rate), LLMs reduce hallucinations but struggle with
noise, potentially leading to incorrect responses.
In conclusion, the reliability of LLMs’ internal
knowledge is questionable, highlighting the need

Context:
… First publicly disclosed by Google on January 12, 2010, in a
blog post, the attacks began in mid-2009 and continued through
December 2009 …

Claim-triplet:
(“The attack”, “reported by Google on”, “January 12, 2010”) ✅

Figure 10: An example of factual claim-triplet whose
content are mostly copied from the context.

for clean and precise contextual information for
generating factual responses.

Copy from Context is Safer Replicating content
in the context enhances the factuality, as illustrated
in Figure 10. In order to quantitatively assess the
relationship between copying and hallucination in
both Noisy and Accurate Context settings, we in-
troduce the concept of Copy Rate. This metric
is defined as the ratio of N-grams covered by the
context, where an N-gram refers to a phrase com-
prising N consecutive words. Specifically, we com-
pute the average copy rates for 1 to 4 grams of
a claim-triplet to determine its overall copy rate.
The findings presented in Figure 11 reveal a dis-
cernible trend: a higher copy rate corresponds to
an increased likelihood of entailment.

B Details of REFCHECKER

B.1 Extractor

The prompts used for few-shot claim extraction are
shown in Figure 12. They are used for claim extrac-
tion by GPT-4, Mixtral, and the Mistral baseline.
For Mistral-SFT, we removed the in-context exam-
ples in the prompt because we find it doesn’t affect
the extraction quality after supervised fine-tuning
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Figure 11: Copy rate of the claim-triplet v.s. label
distributions, by aggregating the results of the Noisy
Context and Accurate Context settings.

Table 7: Claim extraction evaluation by GPT-4 Turbo
and human on 30 samples.

Extractor
Model

GPT-4 Turbo Evaluation Human Evaluation

Precision Recall F1 Precision Recall F1

GPT-4 97.2 92.5 94.2 98.2 92.2 94.8
Mixtral 87.7 85.2 85.5 87.6 85.5 85.4

but saves context length. We set the temperature to
0 for deterministic output and limit the maximum
number of new tokens for generation to 1000.

We collected 10,000 questions without claim ex-
traction results and annotation, following the same
process as described in Appendix A. The collected
questions cover the three context settings evenly.
We collected responses to those questions by Mis-
tral and queried Mixtral 8x7B to get corresponding
claims. After that, we performed supervised fine-
tuning on a Mistral 7B model to distill the output
of the larger Mixtral model. We trained the model
for 1 epoch with a initial learning rate 1e-5.

B.2 Checker

The prompts used for the LLM-based checkers are
shown in Figure 13.

As a supplement of Figure 4, Table 8 shows the
detailed checker performance under different claim
granularities. As a supplement of Table 6, Table 9
shows the full results of checker evaluation.

We also study the performance tendency of
RepC-LS and RepC-LE in Figure 14. The find-
ings indicate that in RepC-LS, the best performed
layer is typically around the middle rather than the
last layer. Despite RepC-LS trailing behind RepC-
LE, it maintains its advantages in model size and

Table 8: Detailed performance of 7 checkers under dif-
ferent claim granularities on 2.1k manual annotated
responses. The checkers’ predictions under different
granularities are all merged into response-level and then
evaluated.

Response Sentence Sub-sentence Triplet

RoBERTa-NLI 44.92 51.97 50.18 55.19
AlignScore 46.05 53.19 50.71 57.60
GPT4 55.86 56.66 47.50 58.78
RepC-LE-knn 45.36 50.79 46.29 55.33
RepC-LE-svm 48.91 54.26 52.29 59.81
RepC-LE-nn 44.03 53.26 50.83 57.54

data efficiency.
Besides, in Figure 15, we evaluate the RepC

checker performance with respect to different num-
ber of training data. We can see that RepC-LS-svm
outperforms RepC-LS-nn with fewer training data.

B.3 Recommendation on Extractor Checker
Combinations

To find the best configurations of REFCHECKER,
we checked 7 LLMs’ responses on our bench-
mark for model rankings (ordered by ratios macro-
averaged on responses of each LLM), and com-
pared rankings by REFCHECKER and humans with
Spearman’s rank correlation coefficient. The con-
figuration space consists of different combinations
of extractor + checker, and also the 3 task settings
as well as their averages. The results are reported
in Figure 16.

We observe that the combination of Mistral +
GPT-4 is the most competitive option with very
strong correlations across near all settings, ben-
efiting from more powerful LLMs for checking
and our trained Mistral Extractor. The best non-
proprietary combination is Mistral + AlignScore
checker (356M), which achieve consistently strong
correlations in all settings. The Mistral-RepC
checker is robust against different extractors, ow-
ing to its stronger reasoning capability than small
NLI-based checker. This result serves as a guide
for choosing a configuration tailored to the user’s
preferences. These preferences may include fac-
tors such as budget, deployment simplicity, specific
settings, types of hallucination, privacy and require-
ments for open-source models.

B.4 Source Attribution

In many cases, users of hallucination detection sys-
tems care not only the verdicts of the checker, but
also where the hallucination happens in the original
response, as well as which evidence in the reference
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Given a question and a candidate answer to the question, please extract a KG from the candidate
answer condition on the question and represent the KG with triples formatted with ("subject",
"predicate", "object"), each triplet in a line.
Please note that this is an EXTRACTION task, so DO NOT care about whether the content of the
candidate answer is factual or not, just extract the triplets from it.

Here are some in-context examples:

### Question:
Given these paragraphs about the Tesla bot, what is its alias?

### Candidate Answer:
Optimus (or Tesla Bot) is a robotic humanoid under development by Tesla, Inc. It was announced
at the company's Artificial Intelligence (AI) Day event on August 19, 2021.

### KG:
("Optimus", "is", "robotic humanoid")
("Optimus", "under development by", "Tesla, Inc.")
("Optimus", "also known as", "Tesla Bot")
("Tesla, Inc.", "announced", "Optimus")
("Announcement of Optimus", "occurred at", "Artificial Intelligence (AI) Day event")
("Artificial Intelligence (AI) Day event", "held on", "August 19, 2021")
("Artificial Intelligence (AI) Day event", "organized by", "Tesla, Inc.")

### Question:
here is some text about Andre Weiss, how many years was Andre at University of Dijon in Paris?

### Candidate Answer:
11 years

### KG:
("Andre Weiss at University of Dijon in Paris", "duration", "11 years")

Now generate the KG for the following candidate answer based on the provided question:

### Question:
{q}

### Candidate Answer:
{a}

### KG:

Figure 12: The prompt used for the LLM-based extractors. It requires a question and response from the LLM, and
is provided with two in-context examples.

supports such verdicts. We provided a rudimentory
support of such demand. Specifically, we apply a
sentence embedding model (SimCSE (Gao et al.,
2021)) to encode spans in responses and references,
compare them to the encoding of elements in claim-
triplets, then use a threshold to filter matched spans
as source attribution results. This naive approach
suffers from issues on computational efficiency,
unclear boundaries, and matching by shallow se-
mantics. The topic on source attribution has a sig-
nificant impact on applications of hallucination de-
tection and we leave the exploration on non-trivial
solutions to the future.

C Comparisons with Other Hallucination
Detection Frameworks

C.1 Comparison on the REFCHECKER
Benchmark

We compare REFCHECKER with recently proposed
hallucination detection frameworks, SelfCheck-
GPT, FActScore and FacTool, on our benchmark.
The four frameworks use different representations
of claims and hallucination labels as described in
Table 1, we aggregate the claim-level results into
two types of response-level results:

• Response-level binary classification. We ag-
gregate the claim-level labels into response-
level binary labels as Factual and Non-Factual.
Thus, we use Accuracy, Factual F1 (Fact.
F1 for short) and Non-Factual F1 (Non-Fact.
F1) as the evaluation metrics. We use a
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Table 9: Checker evaluation results on 11k human annotated claim triplets. In Mistral-based checkers, the model
names start with the variant types, eg. LoRA-sft indicates the LoRA fine-tuned variant and RepC-LE-nn indicates
the representation based classification variant using layer ensemble with 2-layer MLP as the classifier. Here “nxxx”
and “exxx” indicates the number of training samples and ensemble learning samples.

Models
Average of

three settings
Zero context

(NQ)
Noisy context
(MS MARCO)

Accurate context
(databricks-dolly-15k)

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Baseline Checkers

RoBERTa-NLI 76.56 55.88 74.06 69.90 78.36 46.67 77.27 51.06
AlignScore 78.85 59.45 73.40 70.28 78.86 50.42 84.30 57.66
GPT-4 74.77 59.80 67.46 66.10 76.67 55.49 80.17 57.80

Mistral-based Checkers

zero-shot 69.43 46.64 70.83 61.10 71.75 43.01 65.72 35.81
1-shot 76.68 50.66 65.44 63.25 81.23 42.18 83.38 46.56
3-shot 74.24 45.89 56.67 56.20 81.55 37.41 84.50 44.07
LoRA-sft-n2000 72.06 52.62 74.09 68.22 75.20 48.65 66.90 40.99
LoRA-sft-n4000 77.84 57.98 77.43 73.64 79.21 50.29 76.89 50.00
RepC-LS-knn-n100 74.36 51.98 72.67 68.58 77.54 45.19 72.86 42.17
RepC-LE-knn-n100-e100 69.72 51.64 70.26 66.05 71.14 46.33 67.75 42.55
RepC-LS-svm-n1000 79.15 59.36 78.34 74.04 79.82 47.62 79.29 56.43
RepC-LE-svm-n1000-e1000 79.03 60.05 77.98 73.53 79.56 51.29 79.54 55.34
RepC-LS-nn-n2000 80.17 57.31 75.50 71.95 81.78 46.90 83.22 53.07
RepC-LE-nn-n2000-e2000 81.27 60.80 75.23 71.98 82.08 47.56 86.50 62.86

strict configuration that a response is non-
factual if at least one claim contains hallu-
cination. For SelfCheckGPT, we consider
minor_inaccurate and major_inaccurate
labels as hallucination. For RefChecker, we
consider both Contradiction and Neutral
as hallucination.

• Correlations of response-level hallucination
rate. Following SelfCheckGPT, we also com-
pare the hallucination rate of response with
human evaluation by Pearson and Spearman
correlations. For SelfCheckGPT, we compute
the hallucination rate of a response by averag-
ing the scores of the sentences following the
definition in their paper. For FActScore and
FacTool, the hallucination rate is the ratio of
non-factual claims in a response. And for Re-
fChecker, we take the ratio of Contradiction
and Neutral claims as the hallucination rate.

The results are shown in Table 10 for Zero Con-
text setting, Table 11 for Noisy Context setting
and Table 12 for Accurate Context setting. Fol-
lowing their configurations in their papers, we ap-
ply InstructGPT(text-davinci-003) and GPT-4
as the extractors for FActScore and FacTool, re-
spectively, apply ChatGPT(gpt-3.5-turbo) as the
checker for SelfCheckGPT and FActScore and
GPT-4 for FacTool. The combinations of extrac-
tor and checker of RefChecker are displayed as
“{Extractor} + {Checker}”.

We conclude these results with the following
observations:

• RefChecker is effective. Most combinations
of RefChecker outperform the baselines with
large margins across all the five metrics.

• RefChecker is more effective with a GPT-4
checker. The best results are achieved with a
GPT-4 checker indicating that the main bot-
tleneck lies in the checking module. In spite
of that, RefChecker can still outperforms the
baselines with a smaller checker AlignScore.

• Purely open-sourced combinations can also
outperform the baselines which are using pro-
prietary LLMs for both extractor and checker.

C.2 Comparison on the SelfCheckGPT
Dataset

We also ran REFCHECKER on the SelfCheckGPT
dataset which contains 237 examples on WikiBio
domain. The results are shown in Table 13. We can
observe that 11 out of the 15 combinations (73%)
of REFCHECKER outperform SelfCheckGPT.

D Analysis of Internal Knowledge Bias

In this section, we further analyze the emergence
of the hallucination from the perspective of the
LLMs’ bias to the internal knowledge. We analyze
whether the evaluated model and the checker gen-
erate response based on their internal knowledge
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Table 10: A comparison of RefChecker with previous works on our benchmark under Zero Context setting. We
highlight the best results using proprietary LLMs with blue colors and best results results using pure open-source
models with orange colors.

Zero Context Setting
Accuracy Fact. F1 Non-Fact. F1 Pearson Spearman

SelfCheckGPT 77.99 54.03 85.53 35.40 43.15
FActScore 66.41 49.42 74.86 42.58 45.60
FacTool 84.94 73.29 89.52 59.78 62.57
REFCHECKER
GPT-4 + GPT-4 93.82 86.89 95.96 83.95 82.35
GPT-4 + NLI 83.98 71.28 88.89 60.81 62.32
GPT-4 + AlignScore 90.54 78.97 93.90 71.95 70.37
GPT-4 + RepC 89.96 81.16 93.16 77.42 77.26
Mistral-SFT + GPT-4 92.47 83.40 95.13 80.88 78.88
Mistral-SFT + NLI 89.96 78.86 93.42 72.89 72.07
Mistral-SFT + AlignScore 90.54 78.79 93.91 75.81 74.16
Mistral-SFT + RepC 89.38 80.43 92.72 77.14 76.74

Table 11: A comparison of RefChecker with previous works on our benchmark under Noisy Context setting. We
highlight the best results using proprietary LLMs with blue colors and best results results using pure open-source
models with orange colors.

Noisy Context Setting
Accuracy Fact. F1 Non-Fact. F1 Pearson Spearman

SelfCheckGPT 58.55 51.63 63.74 36.31 32.15
FActScore 63.57 69.94 53.77 33.36 29.91
FacTool 68.40 72.84 62.22 46.35 38.69
REFCHECKER
GPT-4 + GPT-4 74.54 76.42 72.32 64.56 57.30
GPT-4 + NLI 66.73 74.54 52.01 39.69 32.98
GPT-4 + AlignScore 67.66 73.48 58.57 44.31 37.58
GPT-4 + RepC 65.99 74.04 50.67 28.19 28.94
Mistral-SFT + GPT-4 75.28 77.57 72.46 67.29 59.94
Mistral-SFT + NLI 70.82 75.12 64.72 52.21 45.61
Mistral-SFT + AlignScore 69.70 74.73 62.18 53.88 45.09
Mistral-SFT + RepC 65.99 73.97 50.94 38.11 31.01

Table 12: A comparison of RefChecker with previous works on our benchmark under Accurate Context setting. We
highlight the best results using proprietary LLMs with blue colors and best results results using pure open-source
models with orange colors.

Accurate Context Setting
Accuracy Fact. F1 Non-Fact. F1 Pearson Spearman

SelfCheckGPT 62.15 68.70 52.12 40.23 32.55
FActScore 69.37 78.57 46.30 27.80 27.05
FacTool 72.53 80.98 50.63 31.41 32.82
REFCHECKER
GPT-4 + GPT-4 80.81 86.85 64.50 58.61 55.50
GPT-4 + NLI 73.06 82.23 44.36 28.59 30.14
GPT-4 + AlignScore 76.23 83.44 57.94 49.97 46.89
GPT-4 + RepC 76.94 84.86 51.66 45.58 41.01
Mistral-SFT + GPT-4 79.75 85.96 63.72 56.09 53.72
Mistral-SFT + NLI 73.59 81.44 54.27 44.34 40.81
Mistral-SFT + AlignScore 74.12 81.60 56.38 46.34 43.22
Mistral-SFT + RepC 73.94 82.83 45.99 39.59 33.86
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I have a claim that made by a language model
to a question, please help me for checking
whether the claim can be entailed according
to the provided reference which is related
to the question.
The reference is a list of passages, and the
claim is represented as a triplet formatted
with ("subject", "predicate", "object").

If the claim is supported by ANY passage in
the reference, answer 'Entailment'.
If NO passage in the reference entail the
claim, and the claim is contradicted with
some passage in the reference, answer
'Contradiction'.
If NO passage entail or contradict with
claim, or DOES NOT contain information to
verify the claim, answer 'Neutral'.

Please DO NOT use your own knowledge for the
judgement, just compare the reference and
the claim to get the answer.

### Question:
{question}

### Reference:
{reference}

### Claim:
{claim}

Your answer should always be only a single
word in ['Entailment', 'Neutral',
'Contradiction']. DO NOT add explanations or
you own reasoning to the output.

Figure 13: Prompt for the LLM-based checkers.

in Section D.1 and D.2, respectively. In general,
we observe that LLMs/Checkers may incorporate
internal knowledge even when provided with con-
textual information, contributing to the occurrence
of hallucination.

D.1 Internal Knowledge Bias of Evaluated
Model

In order to analyze whether the evaluated LLMs
generate responses based on their own knowledge
or the provided context in Noisy and Accurate
Context settings, we convert each claim-triplet ex-
tracted from the response into a simple interroga-
tive query for knowledge checking. For simplicity,
we design a prompt template and ask GPT-4-Turbo
to generate these queries (Figure 17). Then we
feed the query into the evaluated LLM to check
whether it has such knowledge. The answer from
the evaluated LLMs could be one of the following:

1. Yes, means the evaluated LLM has this knowl-
edge in its internal memory.

2. No, means the evaluated LLM contains knowl-
edge that is contradicted with the triplet.
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Figure 14: Performance tendency of different layers
in RepC-LS checkers. The corresponding RepC-LE
checkers are included as dashed lines.
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Figure 15: Performance of different RepC checkers with
respect to numbers of training samples.

3. Unsure, means the evaluated LLM does not
have this knowledge or it has confusion on the
knowledge.

The label pairs (Yes, Contradiction) and (Yes, Neu-
tral) indicate that the model is utilizing internal
information to generate this claim-triplet. On the
other hand, (No, Entailment) and (Unsure, Entail-
ment) signify that the model is relying on contex-
tual information for generation. Pairs like (No, Con-
tradiction) suggest that the evaluated model may be
less proficient in processing context information,
leading to the production of less reliable claim-
triplets.

The outcomes of the Accurate Context are illus-
trated in Figure 19. Upon examination, it is evi-
dent that GPT-4-Turbo demonstrates the most no-
table performance, primarily generating responses
aligned with the reference context. Conversely,
GPT-3.5-Turbo tends to generate responses by re-
lying on its internal knowledge to some extent,
leading to contradictions or neutrality to the ref-
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Figure 16: Spearman’s rank correlation coefficients be-
tween REFCHECKER and human evaluation. Results
are grouped regarding extractors and checkers used. Re-
sults for each extractor (row) and checker (column) are
arranged into a sub-matrix in the figure, with correla-
tions for rankings on 4 context settings (one additional
for average) and 3 ranking metrics.

Table 13: REFCHECKER results on the SelfCheckGPT
dataset. The results of SelfCheckGPT are from their
paper. We highlight the best results using proprietary
LLMs with blue colors and best results results using
pure open-source models with orange colors.

Pearson Spearman
SelfCheckGPT 78.32 78.30
REFCHECKER
GPT-4 + GPT4 80.86 83.44
GPT-4 + NLI 79.96 80.16
GPT-4 + AlignScore 76.20 77.33
GPT-4 + RepC 79.63 79.23
Mistral-SFT + GPT4 80.98 83.92
Mistral-SFT + NLI 78.54 79.66
Mistral-SFT + AlignScore 75.10 76.08
Mistral-SFT + RepC 76.59 76.70

erence context. In the case of InstructGPT, the
model further generates unsure information, which
also contradicts the reference context. This be-
havior may stem from contradictions within the
model’s internal knowledge or difficulties in com-
prehending the amalgamated content of internal
and reference information. Regarding LLaMA-2-
70B, and Falcon-40B-Instruct, our observations
indicate that these models exhibit inferior perfor-
mance. They generate information that contradicts
internal knowledge and is irrelevant to the refer-
ence context. Alpaca 7B performs similarly to
GPT-3.5-Turbo, but seldom generates information
contradicting to its internal knowledge, Different
from the accurate context setting, all the models
tend to generate more Neutral labels in the noisy
context setting (Figure 20).

Figure 17: Designed prompt for converting triplets to
simple interrogative sentences.

Figure 18: Designed prompt for masking triplet infor-
mation in the reference context.

D.2 Internal Knowledge Bias of Checker
We also conduct an analysis to determine whether
the checker provides predictions based on its inter-
nal knowledge. In this analysis, a triplet extracted
from the response is taken, and we mask the sub-
jective or objective information in the context with
‘####’. The modified context, along with the triplet,
is then inputted into the checker to obtain the label.
In theory, the prediction label should be neutral
because the relevant information in the context is
masked. If the label is not neutral, it implies that
the model is making inferences based on its in-
ternal knowledge. For the implementation of this
analysis, we query GPT-4-Turbo with a specifically
designed prompt to mask the triplet information, as
illustrated in Figure 18. Specifically, in the noisy-
context setting, we implement the query for each
reference document and keep the document un-
changed if there is no relevant information to the
extracted triplet.

The results of the accurate context setting are
shown in Table 14. As we observe, RoBERTa-
NLI achieves the most significant Neutral labels,
62.64% and 53.70% for evaluated model GPT-3.5-

Table 14: Results for the information masking scenario
in accurate-context setting.

Model Checker Entail Contr Neut

GPT-3.5
GPT-4 37.36 6.28 56.36

RoBERTa-NLI 21.82 21.76 62.64

GPT-4
GPT-4 35.88 10.88 53.24

RoBERTa-NLI 23.38 22.92 53.70
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Figure 19: The results of knowledge checking for evaluated models in the accurate-context setting. The labels Yes,
No and Unsure are the responses to the interrogative sentences generated from knowledge triplets. Each value refers
to the percentage of each checking pairs in the total number of triplets.

Table 15: Results for the information masking scenario
in zero-context setting.

Model Checker Entail Contr Neut

GPT-3.5
GPT-4 37.91 22.55 39.54

RoBERTa-NLI 35.62 30.72 33.66

GPT-4
GPT-4 43.33 13.67 43.00

RoBERTa-NLI 34.67 23.00 42.33

Table 16: Results for the information masking scenario
in noisy-context setting.

Model Checker Entail Contr Neut

GPT-3.5
GPT-4 58.52 6.67 34.82

RoBERTa-NLI 9.38 10.62 80.00

GPT-4
GPT-4 65.71 6.29 28.00

RoBERTa-NLI 8.57 11.14 80.28

Turbo and GPT-4-Turbo, respectively. The checker
GPT-4-Turbo achieves the second performance.
The results of the zero context setting are in a sim-
ilar pattern with those of accurate-context setting
(Table 15). But in the noisy context setting (Table
16), RoBERTa-NLI outperforms GPT-4-Turbo with
a large margin in the ratio of Neutral labels. The
results may results from the strong bias to internal
knowledge of GPT-4-Turbo when the context is ex-
tremely long, or the RoBERTa-NLI model has less
associative ability to the memorized knowledge.

E Potential Risks

As hallucination detection techniques become more
refined, there is a risk of overreliance on automated
systems for determining the veracity of informa-
tion. This could reduce critical engagement with
content among users, potentially leading to a lack
of scrutiny when systems fail to give a correct pre-
diction.

6974



Figure 20: The results of knowledge checking for evaluated models in the noisy-context setting. The label Yes, No
and Unsure are the respones to the interrogative sentences generated from knowledge triplets. Each value refers to
the percentage of each checking pairs in the total number of triplets.
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