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Abstract

Despite impressive performance on language
modelling and complex reasoning tasks, Large
Language Models (LLMs) fall short on the
same tasks in uncommon settings or with dis-
tribution shifts, exhibiting a lack of general-
isation ability. By contrast, systems such as
causal models, that learn abstract variables and
causal relationships, can demonstrate increased
robustness against changes in the distribution.
One reason for this success is the existence
and use of Independent Causal Mechanisms
(ICMs) representing high-level concepts that
only sparsely interact. In this work, we ap-
ply two concepts from causality to learn ICMs
within LLMs. We develop a new LLM archi-
tecture composed of multiple sparsely interact-
ing language modelling modules. We show
that such causal constraints can improve out-of-
distribution performance on abstract and causal
reasoning tasks. We also investigate the level
of independence and domain specialisation and
show that LLMs rely on pre-trained partially
domain-invariant mechanisms resilient to fine-
tuning.

1 Introduction

The latest generation of Large Language Models
(LLMs) with over several billion parameters has
demonstrated impressive performance on an exten-
sive range of in-context language and reasoning
tasks (Bubeck et al., 2023; Brown et al., 2020; Wei
et al., 2022b,a; Touvron et al., 2023a) and an even
greater range when fine-tuned for a specific task
(Touvron et al., 2023b; Hu et al., 2022). However,
these observations do not hold for tasks that fall out-
side the training data distribution, sometimes even
when the task is only slightly perturbed. In partic-
ular, standard LLMs perform poorly on complex
reasoning tasks, such as abstract, causal, or logical
reasoning (Wu et al., 2023; Gendron et al., 2023a;
Zecevic et al., 2023; Jin et al., 2023; Liu et al.,
2023; Bao et al., 2023). Gendron et al. (2023a);

Jin et al. (2023); Wu et al. (2023) showed that fine-
tuning LLMs can increase their in-distribution per-
formance, but the improvement does not transfer to
different distributions, highlighting that LLMs do
not generalise as we might expect a person to when
applied to domains requiring complex reasoning.
Several hypotheses have been proposed to explain
this flaw, such as the lack of abstract or symbolic
representations within the latent space of LLMs
(Wu et al., 2023; Gendron et al., 2023a; Goyal and
Bengio, 2020). These claims are supported by the
brittleness that LLMs can exhibit; when changing
the wording of a question, the performance of an
LLM can vary drastically (Wei et al., 2022b; Jin
et al., 2023). This observation hints that LLMs
may rely on domain-specific information or spu-
rious correlations in the training data that do not
generalise to other distributions.

Causal models rely on the concept that causal
mechanisms invariant under changes in environ-
ment exist. The Independent Causal Mechanisms
principle further states that “the causal genera-
tive process of a system’s variables is composed of
autonomous modules that do not inform or influ-
ence each other. " (Peters et al., 2017; Schölkopf
et al., 2021). These principles are applied in di-
verse ways in the field of causality, either in the
structure of the model, which may be built in a
modular fashion to respect causal relationships, as
in Structural Causal Models (Pearl, 2009), or in the
distribution of the data, which may be rendered in-
dependent and identically distributed (i.i.d) from an
unbalanced distribution by division into subgroups
(Austin, 2011; Gendron et al., 2023c). Integrat-
ing these methods into the architecture of a Large
Language Model could increase its robustness and
out-of-distribution (o.o.d) generalisation.

We investigate this idea in this work: we aim to
better understand how LLMs reason in and out-
of-distribution and whether they can behave as
models of Independent Causal Mechanisms un-
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der certain constraints and with fine-tuning. To
this end, we propose an LLM architecture inte-
grating the concept of mechanisms as independent,
self-contained LLM modules. This model is sum-
marised in Figure 1. We aim to answer the follow-
ing questions: (i) Can LLMs be used as self-routers
for specialised mechanisms, and does it improve
their performance? (ii) Can LLMs capture domain-
invariant abstractions with information-based reg-
ularisation? (iii) How useful is domain-specific
knowledge on reasoning tasks? and (iv) Can our
proposed architecture approximate Independent
Causal Mechanisms? Our contributions can be
summarised as follows:

• We propose a modular LLM architecture yield-
ing modularity and abstraction in LLMs using
routing and regularisation mechanisms.

• We investigate the ability of LLMs to behave
as Independent Causal Mechanisms on reason-
ing tasks and show that it can lead to improved
performance and o.o.d generalisation.

• We show that LLMs approximate independent
mechanism up to an extent but always partially
rely on pre-trained domain-invariant mecha-
nisms for reasoning tasks.

Our code is available at https://github.com/
Strong-AI-Lab/modular-lm.

2 Related Work

LLM Mixtures-of-Experts Modular architec-
tures divide the computations of a network into
sub-networks. The Switch Transformer (Fedus
et al., 2022b) separates the feed-forward layers of
the transformer model (Vaswani et al., 2017) into
multiple expert modules. This strategy allows train-
ing larger models at a lower cost, but the expert
modules are not guaranteed to specialise in specific
domains. Multiple sparse architectures have fol-
lowed but mainly focus on optimising the training
of LLMs for reduced resources and not inducing
domain specialisation (Fedus et al., 2022a). One
exception is the work of Gururangan et al. (2022),
which conditions the activation of an expert mod-
ule on the input domain. However, only the feed-
forward layers are used as experts and the domains
are assumed to be known during training. Clark
et al. (2022) investigate the performance of various
routing strategies for LLMs and show that the gain
from using specialised modules is high for small

models but decreases as the model size increases.
Introduced recently, Mixtral-of-Experts is a mod-
ular LLM using the same routing principle as the
Switch Transformer. It outperforms dense LLMs of
similar size on reading comprehension, common-
sense knowledge and reasoning tasks (Jiang et al.,
2024). However, the authors observe that the rout-
ing process does not lead to domain-specialised
modules. The assignment of experts is not based
on domain information. Our work differs in that
it is not directed at optimising LLM training but
at inducing functional modularity and studying its
effects on generalisation for reasoning tasks.

Modular Neural Networks Other classes of
modular neural models are designed to learn spe-
cialised sub-networks for specific domains. Recur-
rent Independent Mechanisms (Goyal et al., 2021)
attempt to learn models of independent mecha-
nisms with an LSTM architecture (Hochreiter and
Schmidhuber, 1997) to model the dynamics of
physical objects. Mittal et al. (2022) investigate
routing mechanisms for Mixture-of-Experts mod-
els. They find that specialisation can yield better
results as the number of tasks increases. How-
ever, the learned routing strategies do not capture
domain specialisation. In particular, approaches
based on backpropagation to the task loss often
collapse to a single module. Mittal et al. (2022)’s
experiments are restricted to small models and syn-
thetic binary classification and regression tasks; we
study a novel routing method via vector quantisa-
tion and perform our experiments on architectures
over 1B parameters on reasoning tasks.

Causal Models Causal models aim to answer
queries requiring knowledge of the causal relation-
ships linking the data (Bareinboim et al., 2022).
Schölkopf et al. (2021); Goyal and Bengio (2020)
argue that for artificial systems to achieve robust
and o.o.d reasoning, they must reason in terms
of causes and effects and not only correlations,
which current LLMs cannot do yet (Bareinboim
et al., 2022; Zecevic et al., 2023). Structural Causal
Models (SCMs) are graphical models representing
causal relationships as mapping functions from par-
ent nodes to their child nodes in a Directed Acyclic
Graph (Pearl, 2009). If fully specified, an SCM can
represent the complete inner workings of a system.
However, building an SCM requires access to high-
level causal variables, which is not the case in many
deep learning tasks that take low-level observations
as inputs (Schölkopf et al., 2021). The do-calculus,
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Figure 1: Proposed Independent Causal Language Models (ICLM) architecture for language-modelling tasks. The
input text (on the left, in blue) is fed to multiple pretrained LLM modules (in red). A router uses clustering on input
text embeddings (in purple) to activate a domain-specific module for this input. The domain-invariant module is
always activated. The latent representations generated by the activated modules are combined using an aggregation
scheme (in orange) and converted into a probability distribution for the next word (on the right, in blue). An
additional loss (in green) minimises the Mutual Information between the domain-invariant and the domain-specific
representations. The router ensures that the domain-specific modules only gain in-domain knowledge while the
Mutual Information loss regularises the domain-invariant module towards learning abstract representations.

defined by Pearl (1995, 2009), is used to identify
the causal effect of a variable on another with the
help of the do operator: do(·) represents an inter-
vention, i.e. the forced attribution of a value to a
variable. If P (Y |do(X)) = P (Y ), then X has
no causal effect on Y (they may still be correlated
if they share common ancestors). Another class
of causal models relies on determining the flow
of information in a system (Shannon, 1948; Paluš
et al., 2001; Schreiber, 2000). However, these con-
cepts have yet to be applied to language models.
In the domain of transformers, the Causal Trans-
former (Melnychuk et al., 2022) and Causal Atten-
tion (Yang et al., 2021) introduce cross-attention
mechanisms to reduce biases from the training dis-
tribution.

3 Causal Information Routing for LLMs

We now describe our proposed modular archi-
tecture: Independent Causal Language Models
(ICLM), where each module is an LLM fine-tuned
for a specific specialisation or generalisation objec-
tive. We aim to build a system that can adapt to
changing distributions and capture better abstrac-
tions. Our architecture is separated into N + 2
LLM modules connected by three main compo-
nents. The LLM modules are composed of a router
that generates embeddings of the inputs, a domain-
invariant module trained to learn abstractions and

N domain-specific modules trained to specialise
on a single task or domain. The other components
are the routing strategy, Mutual Information loss
and the aggregation scheme. The routing strat-
egy uses the embeddings from the LLM router to
redirect the inputs to a specific module. Specif-
ically, routing is performed in an unsupervised
fashion: each embedding is projected into a clus-
tered space. The centroid of each cluster is as-
sociated with a domain-specific module to which
it assigns a binary activation weight for a given
input. If the input belongs to a cluster, the cor-
responding module is activated. By contrast, the
domain-invariant module processes all inputs. The
Mutual Information loss induces abstraction within
the domain-invariant module; minimising this loss
reduces shared information between the domain-
specific and domain-invariant modules. I.e. it is
intended to cause the domain-invariant module to
gain domain-invariant knowledge and the domain-
specific modules domain-specific knowledge. Fi-
nally, the aggregation scheme combines the output
of the activated domain-specific module and the
domain-invariant module to produce the final out-
put. Figure 1 shows an overview of our method.
We describe the routing strategy in Section 3.1, the
Mutual Information minimisation in Section 3.2
and the aggregation scheme in Section 3.3. Section
4 discusses how the architecture reflects Indepen-
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dent Causal Mechanisms.

3.1 Routing Strategy

The routing strategy redirects the input tokens to
a domain-specific module. This step divides the
inference into independent modules to increase the
specialisation of each module and reduce spurious
distribution biases. In particular, the distribution
may be imbalanced: a data class may dominate
the training distribution and spuriously drive the
gradients in a dense model. The routing module
is used to balance out the distribution. The inputs
belonging to the dominant class are restricted to a
single module and cannot adversarially affect the
other modules. In parallel, data points far from this
data class are trained on a specialised module.

We use a pre-trained LLM (the router) with no
final language modelling layer to build an input
embedding space. The embeddings serve as inputs
to the unsupervised routing strategy. In the strat-
egy, all modules receive the inputs, but the outputs
of non-activated modules are blocked. I.e. their
outputs are associated with a weight of zero (acti-
vated modules have a weight equal to one). This
activation process by weighting allows us to study
more complex (non-binary) weighting schemes,
discussed in Appendix C. This unsupervised learn-
ing method grants more flexibility than the matrix
multiplication used in sparse transformers, as any
clustering algorithm can be used. In particular, in
continual learning settings, one could imagine us-
ing a varying number of clusters (Ester et al., 1996)
and dynamically allocating new modules as data
is being fed to the router. In our work, we restrict
ourselves to simple clustering methods as we find
that they are sufficiently fine-grained for our tasks.
We perform clustering at the input level, i.e. each
point in the clustering space represents a complete
input context.

Vector Quantisation We use the vector quan-
tisation procedure introduced for the VQ-VAE
(van den Oord et al., 2017) as a clustering method.
N vectors hc are arbitrarily initialised in the em-
bedding space, acting as cluster centroids. The
attribution of an input to a cluster is determined by
measuring the shortest Euclidean distance between
them. The router generates an embedding for each
token in the input so we measure the distance be-
tween a centroid and each token and sum them to
obtain the total distance. The location of the cen-
troids is iteratively updated to move closer to the

input embeddings using vector quantisation. The
corresponding routing loss is defined as follows:

LR = MSE(sg(hc), hr) + ν ·MSE(hc, sg(hr))
(1)

with hr one token embedding and hc the co-
ordinates of the selected centroid, sg is the
stop_gradients operation, and ν is a hyperparame-
ter. This method has been very successful in trans-
posing high-level concepts from a continuous to
a discrete space (Bao et al., 2022; Ramesh et al.,
2021) and in building disentangled or interpretable
semantic spaces (Gendron et al., 2023b; Yu et al.,
2023). This approach is simple and assumes clus-
ters with non-overlapping convex hulls. We con-
sider more complex strategies in Appendix C.

3.2 Mutual Information Minimisation

The second aim of the architecture is to induce ab-
straction and domain-invariance in LLMs. To this
end, we introduce a regularisation process based
on information theory. We minimise the Mutual
Information (I) (Shannon, 1948; Kreer, 1957) be-
tween the domain-specific and domain-invariant
modules. Specifically, we minimise the informa-
tion between the last hidden states of the modules.
The idea is to drive the domain-specific modules to
gain knowledge specific to their distribution only,
while the domain-invariant module gains knowl-
edge common to all distributions and discards the
domain-specific information that could be detri-
mental to generalisation. The Mutual Information
between two random processes corresponds to the
dependence between the two processes, i.e. the
amount of information gained on the first process
by observing the second one. The Mutual Informa-
tion between two random variables HI ∈ H and
HS ∈ H is given by:

I(HI , HS) = KL(PHI ,HS
||PHI

⊗ PHS
) (2)

where KL is the Kullback-Leibler divergence (Kull-
back and Leibler, 1951), HI is the random variable
representing the last hidden state of the domain-
invariant module and HS is its counterpart in one
domain-specific module. The hidden states are in-
terpreted as logits distributed in a feature space
H. PHI ,HS

is their joint distribution, and PHI
and

PHS
are their marginals. They are later decoded

using a final linear layer into the space of possible
next words corresponding to the vocabulary of the
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LLM. The total loss LI is given by the total infor-
mation shared between the domain-invariant and
all N domain-specific modules:

LI =
∑

n∈[1,N ]

I(HI , HSn) (3)

The probabilities PHI
(h) and PHS

(h) cannot
be directly computed for any given hidden state
h ∈ H. We can only access the probabilities
PHI

(h|c) and PHS
(h|c) for a given input con-

text c ∈ C. The marginalisation on C is in-
tractable because of the exponential input space:
|C| = V L, with V the vocabulary size of the
LLM and L the maximum length of the input se-
quence (typically V L = (32.103)4096). We can
approximate it by sampling C at the batch level B:
P (h) =

∑
c∈C P (h|c) · P (c) ≈ 1

|B|
∑

c∈B P (h|c)
with |B| ≪ |C|. We do the same with the joint
distribution PHI ,HS

.

3.3 Aggregation of Outputs

Before aggregating the domain-invariant and
domain-specific modules, we perform a shared
batch normalisation (Ioffe and Szegedy, 2015) be-
tween their last hidden states. For a batch of size
|B|, one domain-specific active module and one
domain-invariant module, batch normalisation is
operated on 2 × |B| samples. Batch normalisa-
tion ensures that the module outputs have the same
mean and variance. We then use a standard lan-
guage modelling head that converts the hidden
states into a probability distribution for the next
token. The language modelling head is a fully con-
nected layer that takes the concatenated hidden
states as inputs and outputs a probability distribu-
tion in the vocabulary of the language model. This
is a simple aggregation method with great expres-
sivity due to the shared final dense layer. However,
this layer can be subject to biases, e.g. if prioritis-
ing information from one module at the expense
of the others. We study other aggregation schemes,
less expressive but more resilient to this issue, in
Appendix D.

Loss Function The total training loss is com-
posed of five components:

L = Lo+α ·Linv+β ·Ldom+γ ·LR+ ϵ ·LI (4)

Lo is the self-supervised cross-entropy loss be-
tween the output logits of ICLM and the target text.

HSn HS

HR

C

HI

Y

Ytrue

LYτ

LRτ

WSn

WR

WILYτ−1

LRτ−1

τ → τ + 1

τ → τ + 1

Figure 2: Simplified temporal causal graph G during
training before adding Mutual Information minimisa-
tion. C is the input context. HR, HI , HSn

, HS

are the latent states of the router, domain-invariant,
domain-specific and activated domain-specific (after
router weighting) modules. For simplicity, we only
show the state HSn

of the activated domain-specific
module n. Y and Ytrue are the output and true distribu-
tions. WR, WSn

and WI are the trainable parameters
of the modules. LY = Lo + α · Linv + β · Ldom and
LR are the output and router losses. Black edges show
the forward pass at step τ . Blue dashed edges show the
backward pass at step τ . Red dotted edges illustrate the
causal links between the forward and backward passes.

Linv and Ldom are cross-entropy losses between
the output logits of the invariant module and those
of the activated domain-specific module. LR is the
vector quantisation loss obtained from the routing
strategy (Eq. 1). LI is the Mutual Information loss
(Eq. 3). We consider three separate self-supervised
losses Lo, Linv and Ldom to induce the modules
to match the target distributions individually and
prevent collapse to a single useful module. α, β, γ
and ϵ are constant hyperparameters.

4 Theoretical Perspective

In this section, we provide theoretical evidence on
how our model approximates Independent Causal
Mechanisms and under what assumptions. Inde-
pendent Causal Mechanisms consist of autonomous
modules that work independently. In our case, all
domain-specific modules are trained for specific
tasks/distributions. The domain-invariant module
is trained only to use domain-invariant knowledge.
The router module is tasked to split the input dis-
tribution into N more balanced distributions. We
aim to verify that the modules are not causally re-
lated. More formally, we aim to study under what
conditions the following holds:
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P (HR|do(HSn)) = P (HR) ∀n ∈ [1, N ] (5)

P (HR|do(HI)) = P (HR) (6)

P (HSn |do(HSn̂
)) = P (HSn)

∀n̂ ∈ [1, N ] \ {n} ∀n ∈ [1, N ]
(7)

P (HI |do(HSn)) = P (HI) ∀n ∈ [1, N ] (8)

HR, HI and HSn ∀n ∈ [1, N ] are the respective
representations generated by the router, domain-
invariant and N domain-specific modules.

Equations 5 and 6 are verified. The proof is pro-
vided in Appendix B; the main idea is that the use
of a separate loss function for training the router
prevents the other modules from causally acting
on the router, either in the forward or backward
passes. It can be verified in Figure 2. However, if
an invariant module is part of the model, Equations
7 and 8 do not hold. The domain-specific modules
do not directly influence each other because the
routing mechanism allows a single module to go
through the forward and backward passes. Nev-
ertheless, a causal path can be drawn through the
domain-invariant module as it is always activated.
For example, assuming a model with two domain-
specific modules, S0 and S1, activated one after
the other, a path exists and can be represented in
a simplified version as HS1

...−→ LYτ

...−→ HI
...−→

LYτ+1

...−→ HS2 . Again, details of the proof are
given in Appendix B. As HI and HSn are causally
related, we need to reduce the dependency between
the two quantities using a regularisation term. Min-
imising the Mutual Information between HI and
HSn amounts to reducing the mutual dependence
between the variables. I(HI , HSn) = 0 if and only
if HI and HSn are independent. If verified, the
loss LY can be divided into two independent com-
ponents and Equations 7 and 8 hold. We verify
experimentally in Appendix E.1 that the Mutual
Information is close to zero after ∼ 50 training
steps.

5 Abstract Reasoning with ICLM

5.1 Experimental Setup
By default, we use N = 2 domain-specific mod-
ules and one domain-invariant module, as the
datasets we use contain two subdomains each. We
also perform experiments with an ablated model
that does not have a domain-invariant module. In
addition, we study the individual performance of
the domain-invariant and domain-specific modules.

We use a pretrained LLaMA2-7B (Touvron et al.,
2023b) for all our modules. We use Low-Rank Ap-
proximation of LLMs (LoRA) (Hu et al., 2022) to
fine-tune the modules on their respective tasks. All
models are fine-tuned for 3 epochs with AdamW
(Loshchilov and Hutter, 2019) and a batch size of
16. Loss hyperparameters are α = 0.1, β = 0.1,
γ = 0.1, ϵ = 0.01, ν = 0.25. It is worth not-
ing that the number of parameters used is only
marginally higher than that of the base LLaMA2,
as only low-memory LoRA adapter weights are
learned during training.

5.2 Datasets

We perform experiments on the text-based ACRE
and RAVEN datasets (Zhang et al., 2021a, 2019;
Gendron et al., 2023a)1. ACRE and RAVEN are
adapted from Visual Question Answering datasets
to be used by language models. The visual ACRE
(Zhang et al., 2021a) is an abstract causal reasoning
dataset where the model must deduce the causal
mechanisms from a small set of image examples.
The visual RAVEN (Zhang et al., 2019) is an ab-
stract reasoning dataset where the model must com-
plete a sequence of Raven Progressive Matrices
(Raven, 1938). The text ACRE and RAVEN con-
tain symbolic and natural language descriptions of
the images and instructions for solving the task.
They require knowledge of the underlying causal
mechanisms to be solved and have o.o.d sets to chal-
lenge this ability in the tested systems. More details
about the datasets are provided in Appendix A.

Out-of-Distribution Regimes Each dataset has
two o.o.d regimes. In ACRE, the compositionality
split changes the composition of the context exam-
ples: combinations of figure shapes and colours
unseen in the training set are proposed; the sys-
tematicity split alters the distribution of the context
example activations: the context contains more pos-
itive examples than in the training set. In RAVEN,
the four split contains four figures instead of one;
the in-center split describes two figures with one
containing the other instead of being placed next to
each other.

5.3 Abstract and Causal Reasoning

The results obtained on the ACRE and RAVEN test
sets are shown in Table 1. The proposed ICLM
can outperform the baseline, particularly on the

1We use the data provided at https://github.com/
Strong-AI-Lab/Logical-and-abstract-reasoning.
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most challenging o.o.d sets. Moreover, the perfor-
mance of the individual domain-invariant modules
highlights that the modules have learned more gen-
eralisable knowledge than with standard training.
The domain-specific modules compete with the
baselines trained on the corresponding specific do-
main, showing that the router accurately distributes
the inputs to the right modules. The modules even
outperform the oracle router on RAVEN in almost
all settings. We investigate a potential reason for
this phenomenon in Section 6.2.

5.4 Continual Learning

We investigate the capacity of our model to be used
in continual learning settings. Continual learning
consists of training a model with continuous data
streams or sets evolving over time, where the model
acquires and accumulates knowledge incrementally.
The main challenge lies in the catastrophic forget-
ting of the previous knowledge when gaining new
information (Wang et al., 2023). We study a simple
usecase where we want our model to learn one new
task after training on a previous task. We choose
the scenario ACRE → RAV EN as RAVEN is
more challenging, particularly the o.o.d sets. The
results are shown in Table 2. The domain-invariant
module can use general information extracted from
ACRE to improve its performance on RAVEN,
even outperforming the baseline trained on RAVEN
only. The domain-specific modules can also par-
tially mitigate the catastrophic forgetting problem
observed in LLaMA2. Their weights are not acti-
vated by the router on RAVEN inputs, thus not up-
dated, and their performance on ACRE is preserved.
However, the aggregation process is affected, lead-
ing to reduced performance on ACRE Text.

6 Routing and Independence Analysis

6.1 Evolution of Module Independence

We study the independence of the module hid-
den states during training (Figure 3) and infer-
ence (Figure 4). we focus on two complemen-
tary measures: Mutual Information and the Pear-
son Correlation Coefficient that measures linear
correlation between variables. The latter is lim-
ited to linear dependence but is more easily inter-
pretable. The shared Mutual Information as well as
the Pearson Correlation Coefficient between mod-
ules are effectively reduced by the regularisation
scheme during fine-tuning. However, the module
hidden states remain correlated, in particular at

inference time. Further investigation in Appendix
E.5 further shows that this correlation is maintained
across most layers, which indicates the presence
of a general domain-invariant mechanism shared
by all modules and composing the basis of their
reasoning abilities. Its influence is reduced via
the fine-tuning procedure that develops domain-
specific knowledge but it remains the main mecha-
nism used, particularly at test time.

(a) ACRE Correlation. (b) ACRE MI.

(c) RAVEN Correlation. (d) RAVEN MI.

Figure 3: Evolution of independence measures between
modules during fine-tuning on ACRE and RAVEN. We
measure independence on the last hidden states of the
modules. Correlation and MI are highly reduced but
modules remain correlated.

Dom 1
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0.7 0.63 1

(a) ACRE.

Dom 1

Dom 0
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(b) ACRE o.o.d.

Dom 1
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(c) RAVEN.

Dom 1

Dom 0

Inv 1 0.77 0.79

0.77 1 0.78
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(d) RAVEN o.o.d.

Figure 4: Correlation between the last hidden states of
the modules during inference at test time. Module states
are more correlated than during training.

6.2 Routing Alignment
We look deeper at the embedding space in the rout-
ing module, projected into a 2D space using Mul-
tidimensional Scaling (MDS) (Borg and Groenen,
2005). Figure 5 shows the embedding spaces and
their attribution to the domain-specific modules.
Detailed attributions are shown in Appendix E.2.
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ACRE -o.o.d-Comp -o.o.d-Sys
Text Symb Text Symb Text Symb

LLaMA2-Base 0.014 0.003 0.244 0.001 0.288 0.001
-Finetuned-All* 0.832 0.891 0.832 0.881 0.911 0.891
ICLM* (ours) 0.653 0.950 0.663 0.931 0.634 0.901
ICLM-No-Inv* (ours) 0.871 0.921 0.842 0.941 0.822 0.891
ICLM-Invariant* (ours) 0.891 0.921 0.851 0.941 0.921 0.891
ICLM-Domain* (ours) 0.871 0.911 0.822 0.901 0.822 0.891
-Finetuned-Oracle-Router 0.997 1.000 1.000 1.000 0.994 0.999

RAVEN -o.o.d-Four -o.o.d-In-Center
Text Symb Text Symb Text Symb

0.026 0.149 0.073 0.121 0.000 0.001
0.990 1.000 0.673 0.743 0.673 0.198
1.000 0.980 0.703 0.703 0.515 0.228
1.000 0.732 0.525 0.515 0.455 0.168
1.000 0.990 0.634 0.693 0.554 0.238
0.980 0.980 0.604 0.634 0.386 0.228
0.977 0.965 0.557 0.442 0.536 0.064

Table 1: Accuracy on the ACRE and RAVEN i.i.d and o.o.d test sets. “Finetuned-All” is a single LLaMA2 model
fine-tuned on text and symbolic i.i.d training sets. “Finetuned-Oracle-Router” is an ensemble of two LLaMA2
models fine-tuned on each i.i.d training set (either text or symbolic) and routed via a ground-truth oracle. ICLM is our
full model trained on text and symbolic i.i.d training sets. ICLM-Invariant shows the results for the domain-invariant
module alone. ICML-Domain shows the results for the domain-specific module that aligns best with the dataset (see
Appendix E.2). ICLM-No-Inv is an ablated ICLM with no domain-invariant module. Models with a ∗ indicate that
that this paper introduces the results. The best model is in bold, and the second best is in italics. ICLM outperform
LLaMA2 on most sets and individual modules even outperform the oracle on the more challenging RAVEN.

ACRE -Comp -Sys RAVEN -Four -In-Center
Text Symb Text Symb Text Symb Text Symb Text Symb Text Symb

ICLMACRE* (Table 1) 0.653 0.950 0.663 0.931 0.634 0.901 - - - - - -
ICLMRAV EN* (Table 1) - - - - - - 1.000 0.980 0.703 0.703 0.515 0.228
ACRE→RAV EN

ICLM* (ours) 0.089 0.901 0.119 0.931 0.050 0.871 1.000 0.990 0.772 0.772 0.833 0.248
ICLM-Invariant* (ours) 0.287 0.396 0.277 0.416 0.238 0.455 1.000 0.970 0.673 0.723 0.723 0.238
LLaMA2-Finetuned-Sequential* 0.079 0.376 0.149 0.386 0.089 0.426 0.980 0.772 0.634 0.554 0.584 0.069

Table 2: Accuracy when the model is trained sequentially on ACRE then RAVEN i.i.d training sets. ICLM can use
the information from ACRE to improve its performance on RAVEN, outperforming the baseline trained on RAVEN
only, while preserving more knowledge from the previous task than the base LLaMA2-7B finetuned sequentially. In
particular, the accuracy of ACRE-Symbolic sets is almost untouched.

Both datasets have a clear division between text
and symbolic embeddings. However, the o.o.d sets
are not well separated in ACRE while they are in
RAVEN. This division can explain the similarity
in the results between the ACRE i.i.d and o.o.d
sets, as shown in Table 1. Moreover, as the distri-
butions are very similar, the impact of the router
and the need for abstraction are reduced. On the
other hand, there is a clear separation between the
i.i.d and o.o.d RAVEN embeddings, explaining the
differences in behaviours from the models across
the sets. Adding more modules could allow taking
more advantage of this separation, with each mod-
ule specialising to a subdomain closer to one of the
o.o.d embeddings.

7 Conclusion

Performing strong out-of-distribution reasoning is
a challenging task, and despite their impressive
performance on a wide range of problems, LLMs
have not demonstrated this ability yet. Combining
this popular model with causal models could help
bridge this gap. This work presents a modular ar-
chitecture yielding LLMs to behave as Independent
Causal Mechanisms. We show theoretically that the
proposed model generates causally-independent
modules. We perform experiments on abstract and

(a) ACRE Ground Truth (b) Vector quantisation router

(c) RAVEN Ground Truth (d) Vector quantisation router

Figure 5: 2D projection of the hidden states of LLaMA2
on ACRE and RAVEN i.i.d and o.o.d sets. Ground
truth samples are labelled as in Table 1 (text/symbolic
i.i.d/o.o.d sets). Text and symbolic inputs are always
clustered separately. i.i.d and o.o.d sets are clustered
together in ACRE and separated in RAVEN. The router
follows the text and symbolic division.

causal reasoning tasks in o.o.d and continual learn-
ing settings and show that these principles increase
strong reasoning and generalisation. We further
show that the proposed modules specialise to their
domain with fine-tuning but still partially rely on a
shared domain-invariant mechanism, highlighting
a limitation for representing ICMs with LLMs.
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Limitations

The model proposed in this paper is constrained
to work in a modular manner. All modules are
sparsely connected at the level of the language mod-
elling head. This single connection offers a useful
initial framework to study the ICMs within the
context of LLMs and can represent a wide range
of problems (requiring the composition of several
independent reasoning processes) but it can only
represent causal DAGs with a single layer depth,
potentially hindering the expressivity of more com-
plex mechanism interactions. Generating complex
causal computation graphs tailored to the task at
hand may improve performance, but this problem
is out of the scope of this paper.

We also focus our investigation on the indepen-
dence and accuracy of the modules and do not
attempt to directly represent the true causal mech-
anisms of the tasks as they are unknown. More-
over, we conduct experiments on reasoning tasks to
verify if inducing high-level modularity can yield
increases in performance and generalisation. We
aim not to outperform the state-of-the-art on the
problems but to study whether the proposed mech-
anisms can yield such increases.

In addition, training and fine-tuning Large Lan-
guage Models has a high computational cost. Due
to this high cost, we perform a single fine-tuning
run per task and conduct experiments on this model.
The training cost for our model is only slightly
higher than for a base LLaMA2 because a quan-
tized version of the base model can be used. How-
ever, the cost increases during inference because
each module has to be associated with a fully
loaded LLaMA2. Our current implementation
loads all modules in parallel with the aim to study
the interactions between them (see Section 6 and
Appendix D), but this choice is memory intensive
and does not permit us to directly build ICLM with
a significantly larger number of modules. To scale
ICLM, a production implementation could use a
single base model and load only the required mod-
ules sequentially. Such implementation would have
the same theoretical properties at a negligible mem-
ory cost.
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Figure 6: Example of ACRE task, from the original visual dataset (Zhang et al., 2021a).

A Dataset Description

We perform experiments on the ACRE (Zhang et al., 2021a) and RAVEN (Zhang et al., 2019) datasets
adapted to text format to be used by language models by (Gendron et al., 2023a). We use the data provided
at https://github.com/Strong-AI-Lab/Logical-and-abstract-reasoning.

A.1 ACRE

ACRE is an abstract causal reasoning dataset where the model must deduce the causal mechanisms from a
small set of image examples. Each sample in the dataset contains six images representing objects and
a light, activated or not. The goal of the task is to determine from the images the objects causing the
activation of the light and determine the state of the light in four test cases: activated, deactivated, or
undetermined if the activation causes cannot be retrieved. Figures 6, 7 and 8 provide examples from the
datasets.

Pre-Prompt

Objects of various color, shape, and texture are displayed. Some objects may contain a device to turn a light on if
displayed. From the observations, deduce if the light is on, off, or if the state cannot be determined. Your answer must
contain a single word:
on.
off.
undetermined.

Example Cases

A cyan cylinder in rubber is visible. The light is on.
A gray cube in rubber is visible. The light is off.
A cyan cylinder in rubber is visible. A gray cube in rubber is visible. The light is on.
A blue cube in metal is visible. The light is off.
A gray cylinder in rubber is visible. A gray cube in metal is visible. The light is off.
A red sphere in metal is visible. A yellow cube in rubber is visible. The light is on.

Test Case

A red sphere in metal is visible. The light is undetermined

Figure 7: Example of natural language ACRE task, from (Gendron et al., 2023a). In the test case, the target answer
is indicated in italics.
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Pre-Prompt

Figure out the pattern in the following examples and apply it to the test case. Your answer must follow the format of the
examples. You can answer 1 if the solution cannot be determined. Your answer must be one of the following choices:
0.
1.
2.

Example Cases

[28] → 2
[0] → 0
[28, 0] → 2
[5] → 0
[16, 1]→ 0
[35, 14] → 2

Test Case

[35] → 1

Figure 8: Example of symbolic ACRE task, from (Gendron et al., 2023a). In the test case, the target answer is
indicated in italics.

A.2 RAVEN
RAVEN is an abstract reasoning dataset where the model must complete a sequence of Raven Progressive
Matrices (Raven, 1938). Each sample in the dataset contains eight Raven Progressive Matrices (Raven,
1938). The goal of the task is to determine the matrix that completes the sequence from a set of eight
propositions. Figures 9 and 10 provide examples from the datasets. The RAVEN dataset contains multiple
splits, with different categories of matrices: with a single figure, with four figures, with nine figures, with
two figures side by side, with two figures up and down, with one figure inside another, an with four figures
inside another one. In our experiments, we use the set with a single figure for training and i.i.d testing and
the sets with four and nine figures for o.o.d testing. Figure 9 shows two examples from the set with four
figures and from the set with four figures inside one.
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Figure 9: Example of RAVEN tasks, from the original visual dataset (Zhang et al., 2021a).

Pre-Prompt

Find the pattern number 9 that completes the sequence. Pick the letter in front of the correct pattern that logically
follows in the sequence from the answer set. Patterns in the sequence are preceded by a number from 1 to 8. Patterns in
the answer set are preceded by a letter from A to H. Only return the letter in front of the correct pattern.

Example Cases

1. [(D, D, C, H,)]
2. [(C, D, C, H,)]
3. [(E, D, C, H,)]
4. [(E, C, F, D,)]
5. [(D, C, F, D,)]
6. [(C, C, F, D,)]
7. [(C, J, E, B,)]
8. [(E, J, E, B,)]

A. [(A, J, E, B,)]
B. [(F, J, E, B,)]
C. [(D, A, E, B,)]
D. [(D, B, E, B,)]
E. [(D, J, E, B,)]
F. [(D, E, E, B,)]
G. [(D, G, E, B,)]
H. [(D, C, E, B,)]

1. On an image, a large lime square rotated at 180 degrees.
2. On an image, a medium lime square rotated at 180 degrees.
3. On an image, a huge lime square rotated at 180 degrees.
4. On an image, a huge yellow circle rotated at 0 degrees.
5. On an image, a large yellow circle rotated at 0 degrees.
6. On an image, a medium yellow circle rotated at 0 degrees.
7. On an image, a medium white hexagon rotated at -90 degrees.
8. On an image, a huge white hexagon rotated at -90 degrees.

A. On an image, a tiny white hexagon rotated at -90 degrees.
B. On an image, a giant white hexagon rotated at -90 degrees.
C. On an image, a large red hexagon rotated at -90 degrees.
D. On an image, a large orange hexagon rotated at -90 degrees.
E. On an image, a large white hexagon rotated at -90 degrees.
F. On an image, a large green hexagon rotated at -90 degrees.
G. On an image, a large blue hexagon rotated at -90 degrees.
H. On an image, a large yellow hexagon rotated at -90 degrees.

Test Case

The answer is E

Figure 10: Example of RAVEN task, from (Gendron et al., 2023a). In the test case, the target answer is indicated in
italics. The text in blue shows the text for the symbolic dataset. The text in green shows the text for the natural
language dataset. The text in gray is the same for both datasets.
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(a) Simplified temporal causal graph dur-
ing training with no domain-invariant
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(b) Simplified temporal causal graph G.
The graph is the same as Figure 2.
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(c) Temporal causal graph with Informa-
tion Minimisation loss added.

Figure 11: Causal graphs with and without domain-invariant module and Mutual Information minimisation loss.
C is the input context. HR, HI , HSn

, HS are the latent states of the router, domain-invariant, domain-specific
and activated domain-specific (after router weighting) modules. For simplicity, we only show the state HSn of the
activated domain-specific module n. Y and Ytrue are the output and true distributions. WR, WSn and WI are the
trainable parameters of the modules. LY = Lo + α · Linv + β · Ldom and LR are the output and router losses.
Black edges show the forward pass at step τ . Blue dashed edges show the backward pass at step τ . Red dotted
edges illustrate the causal links between the forward and backward passes. For simplicity, we only show the step for
the loss variables as they appear twice. All other variables are at step τ .

B Supplement to the Theoretical Perspective

In this section, we prove the assertions made in Section 4 of the main paper. We study under what
conditions the following equations (repeated from Section 4) hold:

P (HR|do(HSn)) = P (HR) ∀n ∈ [1, N ] (9)

P (HR|do(HI)) = P (HR) (10)

P (HSn |do(HSn̂
)) = P (HSn)

∀n̂ ∈ [1, N ] \ {n} ∀n ∈ [1, N ]
(11)

P (HI |do(HSn)) = P (HI) ∀n ∈ [1, N ] (12)

HR, HI and HSn ∀n ∈ [1, N ] are the respective representations generated by the router, domain-
invariant and N domain-specific modules.

The rules of do-calculus, defined in Pearl (1995), allow one to reduce interventional queries (with the
do(·) operator) to observational queries. We will only use the deletion of actions rule. A simplified rule is
shown in Equation 13:

P (Y |do(X)) = P (Y )

if (Y ⊥⊥ X)GX

(13)

GX represents the causal graph G with the incoming edges of X removed.
Let us first address the causal relationships of the router. Equations 10 and 9 can be verified using the

simplified causal graph in Figure 11. They are a direct application of rule 13. When removing the parents
of HSn or HI , HR is d-separated (Pearl, 1988) from them: the backward path through C is blocked and
the forward path through WR is not connected to HSn or HI . This is due to the use of a separate loss
function for training the router when using the vector quantisation routing strategy. One could notice that
we do not represent the sum of losses of Equation 4. We omit it in the simplified graph. Its impact on the
backward pass is incidental since each element can be optimised independently.

Let us now address the causal relationships of one activated domain-specific module n with its
counterparts (Equation 11). Again, under graph GHSn̂

, HSn , the backward path through C between
is blocked. In addition, we make the assumption that only the module n is activated and is connected
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to Y as in Figure 11. This assumption is verified when using the vector quantisation routing strategy.

As a consequence, the routing process HS can be decomposed into multiple subgraphs HSn

HR−−→ Y

and HSn ̸
HR−−→ Y ∀n ∈ [1, N ] \ {n}, with A

HR−−→ B equivalent to having A → X ← HR and

X → B. A ̸ HR−−→ B removes the second link. Therefore, during the backward pass, there is only one link
LY →WSn → HSn and no path to the other domain-specific modules n. A last type of path can exist;
here is an example: assuming a model with two domain-specific modules, S0 and S1, activated one after the

other, the following path exists: HS1

HR−−→ Yτ → LYτ →WI
C−→ HI → Yτ+1 → LYτ+1 →WS2

C−→ HS2 .
There is a causal path forward path from HS1 to HS2 . The path does not exist if there is no invariant
module, and Equation 11 holds.

If an invariant module is part of the model, Equations 11 and 12 do not hold because of the path above:
HI and HSn are not independent in the causal graph GHSn

. Independence is achieved by minimising the
Mutual Information between HI and HSn , as discussed in the main paper.

C Additional Routing Strategies

In our main experiments, we use a simple routing strategy based on computing vector quantisation from
Euclidean distance. In this section, we consider several additional routing strategies:

• K-Means Clustering

• Euclidean Distance Weighting

K-Means Clustering This strategy computes the clusters using K-Means (Lloyd’s algorithm) (Lloyd,
1982). We first learn the cluster centroids on the training set separately. Then, we fine-tune the other
modules. Therefore, the clustering mechanism is independent of the gradient descent during fine-tuning,
and the quality of the clusters with respect to the data distribution depends solely on the robustness of
the clustering method. For efficiency reasons, we do not directly perform the clustering on the hidden
states of the router module. Before clustering an input embedding, we project it to a more dense space
with fewer dimensions (typically 64). We apply Multidimensional Scaling with the SMACOF algorithm
(Borg and Groenen, 2005). The algorithm requires us to provide a base of the input space to perform
the projection. We span the space using a random set of vectors from the training space. Because the
distribution is skewed, we do not have a warranty to build a base. To remain computation-efficient, we
sample 8×M vectors with M the dimensionality of the reduced space.

Euclidean Distance Weighting This strategy differs from the other ones as it does not use vector
quantisation. Instead, we compute the Euclidean distance between the embeddings and the centroid
coordinates (randomly initialised) and use softmin to convert the distances into continuous weights
between zero and one. The lower the distance between the embedding and a centroid, the higher the
weight the corresponding domain-specific module will have on the output. Consequently, with this method,
all domain-specific modules are always activated. This operation is differentiable and is the closest to
the routing process of Mixture-of-Expert models like the Switch Transformer (Fedus et al., 2022b). This
method does not follow the causal structure discussed in Section 4. Instead, it uses the output loss to
update the centroid coordinates.

The results obtained with these two routing strategies are provided in Appendix E.3.

D Additional Aggregation Schemes

In this section, we describe two additional aggregation schemes between the domain-invariant and domain-
specific modules. Instead of using a shared language modelling head, we propose to use a separate head
for each module and combine their outputs at the end by a weighted sum. This method tackles the issue
of prioritised modules (e.g. one module being overused at the expense of the others). However, the
information from the modules is not linearly combined but added separately, reducing expressivity.

We want to bound the output of each model such that it influences the final prediction by a pre-
determined factor (given by the router output for the domain-specific modules and provided as a hyperpa-
rameter for the domain-invariant module). Each module outputs unbounded logits. The lack of bounds
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prevents them from directly multiplying the logits by their weighting factor and summing them together.
Indeed, one module could overcome the weighting by increasing the magnitude of its logits. We consider
two combination schemes: in the logit space and in the probability space.

Combination in the logit space The aggregation scheme in the logit space is very similar to the one
performed in the latent space in the main paper. We first perform a shared batch normalisation (Ioffe and
Szegedy, 2015) between the modules to overcome the unbounded issue in the logit space. For a batch
of size |B|, one domain-specific active module and one domain-invariant module, batch normalisation is
operated on 2×|B| samples. We attribute a weight wI to the domain-invariant module as a hyperparameter
and wSn = rn · (1− wI) to the domain-specific module, with rn the weight given by the router. After
normalisation, We multiply each logit value by its corresponding weight and sum them together.

Combination in the probability space Each module outputs unbounded logits, so we first convert each
output into normalised probabilities (that sum to one). We then perform the weighting in each probability
space before converting them back to logits (shown in Equation 14). Finally, the outputs from all modules
are summed together (shown in Equation 15). The final probabilities are shown in Equation 16.

l̃a(Y |c) = log
(1− wa

2
+ wa · Pa(Y |c))

)
+ log(Ba) (14)

l(Y |c) = l̃I(Y |c) +
∑

n∈[1,N ]

l̃Sn(Y |c) (15)

P (Y |c) = σ(l(Y |c)) (16)

c is the input context. P (Y |c) is the final output distribution between all words Y , obtained using
softmax normalisation σ on the output logits l(Y |c). The output logits are obtained by summing the
weighted logits of the domain-invariant module l̃I(Y |c) and all domain-specific modules l̃Sn(Y |c).
Equation 14 shows the weighting process for all modules (a ∈ {I, S1, . . . , SN}). The weight wI is a
hyperparameter set prior to training. The weights wSn∀ n ∈ [1, N ] combine the weight wI with the router
weights rn: wSn = rn · (1−wI). Ba is a normalisation term that ensures the conversion function between
probabilities and logits is invertible.

The results obtained with these two aggregation schemes are provided in Appendix E.4.

E Additional Experiments

E.1 Evolution of the Mutual Information Across Training

To ensure the independence between the domain-specific and domain-invariant modules, we minimise
the mutual Information between them. Figure 12 shows the evolution of Mutual Information during
training. We observe that it quickly decreases to reach below 0, 0001. Figure 13 shows the same loss for
the variants using aggregation in the logit and probability spaces. Unlike for the main model, we observe
small spikes in the loss after 100 training steps. The aggregation scheme that uses a shared language
modelling head (our default) seems more stable during training.

E.2 Routing Alignment and Visualisation

We study the module attribution performed by the router more deeply. Table 3 shows the alignment
between the two domain-specific modules. We first observe that the division is mainly syntactic: each
module specialises towards one type of input format, either text or symbolic. It aligns perfectly with the
dataset.

Figures 14, 15, 16 and 17 show visualisations of the clusters in a 2D space. Figures 14 and 15 show
the i.i.d and o.o.d sets of ACRE. Figures 16 and 17 show the i.i.d and o.o.d sets of RAVEN. As in the
main paper, the projection is made using Multidimensional Scaling (MDS) (Borg and Groenen, 2005).
For illustration purposes, we observe the clusters formed by the K-Means method for N = 4 modules.
We also observe the clusters formed from the penultimate hidden states of the router. As discussed above
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Figure 12: Evolution of the Mutual Information loss
during training on ACRE and RAVEN. The x-axis cor-
responds to the number of training steps and is shown
in the log scale.

Figure 13: Evolution of the Mutual Information loss
during training of variants with probability and logits
aggregation on ACRE and RAVEN. The x-axis corre-
sponds to the number of training steps and is shown in
the log scale.

Table 3: Alignment between modules and formats in the ACRE dataset. Each column shows the proportion of
activation for each module for a given dataset. Each module specialises perfectly to one dataset.

ACRE -Comp -Sys
Text Symb Text Symb Text Symb

n = 0 0.0 1.0 0.0 1.0 0.0 1.0
n = 1 1.0 0.0 1.0 0.0 1.0 0.0

and in the main paper, there is a clear division between text and symbolic embeddings, but the o.o.d sets
are not well separated in ACRE while they are in RAVEN. This division (and absence of division) is also
present in the previous hidden states, although the separation is less obvious: all embeddings tend to align
to a single axis.

We want to study the router’s behaviour further when faced with a diverse set of input data. To this end,
we feed six different datasets to the model: the i.i.d text and symbolic sets of ACRE and RAVEN, PVR
(Zhang et al., 2021b) and ARC (Chollet, 2019) datasets. The visualisations are in Figure 18. Overall, the
datasets are well separated but have different shapes. While some form dense amalgamates, others spread
in the latent space. The observations from ACRE and RAVEN suggest that the distance in the embedding
space between a module cluster and an input can be an indicator of the module’s performance on the input.
The o.o.d sets of ACRE are merged in the latent space, and the model maintains accuracy across the sets.
In parallel, the o.o.d sets of RAVEN are separated by clear boundaries, and the accuracy drops as the
distance with the i.i.d set increases. Experiments on a larger scale are needed to validate or invalidate the
hypothesis and discriminate the true causes responsible for this behaviour from spurious correlations.

E.3 Variations of the Routing Strategy

We perform additional experiments on ACRE and RAVEN datasets using the routing strategies introduced
in Appendix C: K-Means and weighting. Tables 4 and 5 show the results.

The alternative routing strategies achieve similar and sometimes superior performance than the base
ICLM model. As observed in the previous section, the router creates well-defined clusters that the
K-Means and Euclidean distance vector quantisation strategies tend to follow. No explicit differentiation
of the routing process can be observed from the visualisations. The difference in performance may
lie in the optimisation process. K-Means does not backpropagate information to the router; weighting
backpropagates from the output loss, and vector quantisation backpropagates from a secondary loss.
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(a) Ground Truth (l = −1) (b) K-Means (l = −1) (c) Ground Truth (l = −2) (d) K-Means (l = −2)

Figure 14: Clusters formed from the hidden states of LLaMA2 on the ACRE training sets. The visualisations
contain the last two levels (l) of hidden layers. The ground truth shows the true splits (text/symbolic). The learned
clusters use 4 centroids.

(a) Ground Truth (l = −1) (b) K-Means (l = −1) (c) Ground Truth (l = −2) (d) K-Means (l = −2)

Figure 15: Clusters formed from the hidden states of LLaMA2 on the ACRE o.o.d sets. The visualisations contain
the last two levels (l) of hidden layers. The ground truth shows the true splits (text/symbolic/o.o.d splits). The
learned clusters use 4 centroids.

(a) Ground Truth (l = −1) (b) K-Means (l = −1) (c) Ground Truth (l = −2) (d) K-Means (l = −2)

Figure 16: Clusters formed from the hidden states of LLaMA2 on the RAVEN training sets. The visualisations
contain the last two levels (l) of hidden layers. The ground truth shows the true splits (text/symbolic). The learned
clusters use 4 centroids.

(a) Ground Truth (l = −1) (b) K-Means (l = −1) (c) Ground Truth (l = −2) (d) K-Means (l = −2)

Figure 17: Clusters formed from the hidden states of LLaMA2 on the RAVEN o.o.d sets. The visualisations contain
the last two levels (l) of hidden layers. The ground truth shows the true splits (text/symbolic). The learned clusters
use 4 centroids.

(a) Ground Truth (l = −1) (b) K-Means (l = −1) (c) Ground Truth (l = −2) (d) K-Means (l = −2)

Figure 18: Clusters formed from the hidden states of LLaMA2 on the training sets of ACRE, ARC, PVR and
RAVEN. The visualisations contain the last two levels (l) of hidden layers. The ground truth shows the true splits
between each dataset. The learned clusters use 4 centroids.
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Table 4: Accuracy on the ACRE i.i.d and o.o.d test sets. Datasets are represented in columns, and models in rows.
ICLM is trained on text and symbolic i.i.d training sets. Models with a ∗ indicate that the results are introduced in
this paper. The best model is shown in bold.

ACRE -o.o.d-Comp -o.o.d-Sys
Text Symb Text Symb Text Symb

ICLM* (ours) 0.653 0.950 0.663 0.931 0.634 0.901
ICLM-Weighted* (ours) 0.812 0.921 0.802 0.960 0.842 0.970
ICLM-K-Means* (ours) 0.901 0.881 0.911 0.911 0.891 0.921

Table 5: Accuracy on the RAVEN i.i.d and o.o.d test sets. The characteristics are the same as in Table 4.

RAVEN -o.o.d-Four -o.o.d-In-Center
Text Symb Text Symb Text Symb

ICLM* (ours) 1.000 0.980 0.703 0.703 0.515 0.228
ICLM-Weighted* (ours) 1.000 1.000 0.743 0.703 0.653 0.248
ICLM-K-Means* (ours) 1.000 1.000 0.634 0.673 0.515 0.287

E.4 Variations of the Aggregation Scheme

We perform additional experiments on ACRE and RAVEN datasets using the aggregation schemes
introduced in Appendix D: in the logit and probability spaces. Tables 4 and 5 show the results.

Table 6: Accuracy on the ACRE i.i.d and o.o.d test sets.

ACRE -o.o.d-Comp -o.o.d-Sys
Text Symb Text Symb Text Symb

ICLM* (ours) 0.653 0.950 0.663 0.931 0.634 0.901
ICLM-Logits* (ours) 0.842 0.950 0.881 0.901 0.901 0.921
ICLM-Probas* (ours) 0.921 0.950 0.832 0.921 0.891 0.931

Table 7: Accuracy on the RAVEN i.i.d and o.o.d test sets.

RAVEN -o.o.d-Four -o.o.d-In-Center
Text Symb Text Symb Text Symb

ICLM* (ours) 1.000 0.980 0.703 0.703 0.515 0.228
ICLM-Logits* (ours) 1.000 0.990 0.644 0.713 0.703 0.268
ICLM-Probas* (ours) 0.802 0.931 0.614 0.624 0.495 0.297

As per the routing strategies, the alternative aggregation schemes achieve similar and sometimes
superior performance than the base ICLM model. No scheme is systematically better than the others.
These results show that less expressive aggregation methods, i.e. weighted sums, can perform similarly to
trained dense layers on abstract and causal reasoning tasks.

E.5 Module Correlation Across Hidden States

To further investigate the level of Independence of the LLM modules, we measure the Pearson Correlation
Coefficient between all hidden states of the domain-invariant and domain-specific modules during infer-
ence on ACRE and RAVEN. Figures 19 and 20 show the results. The intra-module correlations (Figures
19a, 19e, 19h, 19i, 20a, 20e, 20h and 20i) show that hidden states from close layers in the model are highly
correlated. Furthermore, correlation blocks are visible, i.e. sequences of layers that demonstrate a high
level of correlation between them and a low level of correlation with the layers not in the sequence. We
observe five correlation blocks well-defined on ACRE and with fuzzy-edges on RAVEN.
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(a) Router-Router. (b) Router-Inv. (c) Router-Dom 0. (d) Router-Dom 1. (e) Inv-Inv.

(f) Inv-Dom 0. (g) Inv-Dom 1. (h) Dom 0-Dom 0. (i) Dom 1-Dom 1. (j) Dom 0-Dom 1.

Figure 19: Measures of the Pearson Correlation Coefficient between module hidden states during inference on
ACRE dataset. Rows and columns represent layers 0 to 33 of a LLaMA2 module. Router refers to the routing
module, Inv refers to the domain-invariant module, and Dom i refers to the i domain-specific module. The caption
indicates the modules used for each row-column pair.

These correlation blocks hold in the inter-module correlation matrices, indicating that similar mech-
anisms are shared across modules. However, the fine-tuning and regularisation procedures reduce the
influence of the shared mechanisms and enhance specialisation.

Correlation Measures in Transfer Learning Settings We perform the same measures in the transfer
learning settings. Figures 21 and 22 show the results. The studied ICLM model has four modules: while
domain-2 and dmain-3 are well aligned with the respective text and symbolic RAVEN splits, the two
remaining modules do not fully align with the two ACRE splits. Particularly, the domain-2 shows a very
low level of correlation with the other modules and even with its own layers. This visualisation of the
layers confirms the results observed in Table 2 and demonstrates that the poor performance of this module
is due to a collapse of the module during the transfer learning: the module inputs are no longer correlated
with the module outputs.
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(a) Router-Router. (b) Router-Inv. (c) Router-Dom 0. (d) Router-Dom 1. (e) Inv-Inv.

(f) Inv-Dom 0. (g) Inv-Dom 1. (h) Dom 0-Dom 0. (i) Dom 1-Dom 1. (j) Dom 0-Dom 1.

Figure 20: Measures of the Pearson Correlation Coefficient between module hidden states during inference on
RAVEN dataset. Rows and columns represent layers 0 to 33 of a LLaMA2 module. Router refers to the routing
module, Inv refers to the domain-invariant module, and Dom i refers to the domain-specific module i. The caption
indicates the modules used for each row-column pair.

(a) Router-Router. (b) Router-Inv. (c) Router-Dom 0. (d) Router-Dom 1. (e) Router-Dom 2. (f) Router-Dom 3.

(g) Inv-Inv. (h) Inv-Dom 0. (i) Inv-Dom 1. (j) Inv-Dom 2. (k) Inv-Dom 3. (l) Dom 0-Dom 0.

(m) Dom 1-Dom 1. (n) Dom 2-Dom 2. (o) Dom 3-Dom 3. (p) Dom 0-Dom 1. (q) Dom 0-Dom 2. (r) Dom 0-Dom 3.

(s) Dom 1-Dom 2. (t) Dom 1-Dom 3. (u) Dom 2-Dom 3.

Figure 21: Measures of the Pearson Correlation Coefficient between module hidden states of the transfer learning
model during inference on ACRE dataset. Rows and columns represent layers 0 to 33 of a LLaMA2 module. Router
refers to the routing module, Inv refers to the domain-invariant module, and Dom i refers to the i domain-specific
module. The caption indicates the modules used for each row-column pair.
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(a) Router-Router. (b) Router-Inv. (c) Router-Dom 0. (d) Router-Dom 1. (e) Router-Dom 2. (f) Router-Dom 3.

(g) Inv-Inv. (h) Inv-Dom 0. (i) Inv-Dom 1. (j) Inv-Dom 2. (k) Inv-Dom 3. (l) Dom 0-Dom 0.

(m) Dom 1-Dom 1. (n) Dom 2-Dom 2. (o) Dom 3-Dom 3. (p) Dom 0-Dom 1. (q) Dom 0-Dom 2. (r) Dom 0-Dom 3.

(s) Dom 1-Dom 2. (t) Dom 1-Dom 3. (u) Dom 2-Dom 3.

Figure 22: Measures of the Pearson Correlation Coefficient between module hidden states of the transfer learning
model during inference on RAVEN dataset. Rows and columns represent layers 0 to 33 of a LLaMA2 module.
Router refers to the routing module, Inv refers to the domain-invariant module, and Dom i refers to the i domain-
specific module. The caption indicates the modules used for each row-column pair.
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