An Audit on the Perspectives and Challenges of Hallucinations in NLP

Pranav Narayanan Venkit' Tatiana Chakravorti! Vipul Gupta! Heidi Biggs®
Mukund Srinath! Koustava Goswami? Sarah Rajtmajer! Shomir Wilson!
! College of Information Sciences and Technology, Pennsylvania State University
2 Adobe Research 3 School of Interactive Computing, Georgia Institute of Technology
4 Department of Computer Science & Engineering, Pennsylvania State University

{pranav.venkit, tfc5416,

Abstract

We audit how hallucination in large lan-
guage models (LLMs) is characterized in peer-
reviewed literature, using a critical examina-
tion of 103 publications across NLP research.
Through the examination of the literature, we
identify a lack of agreement with the term ‘hal-
lucination’ in the field of NLP. Additionally,
to compliment our audit, we conduct a survey
with 171 practitioners from the field of NLP
and Al to capture varying perspectives on hallu-
cination. Our analysis calls for the necessity of
explicit definitions and frameworks outlining
hallucination within NLP, highlighting poten-
tial challenges, and our survey inputs provide
a thematic understanding of the influence and
ramifications of hallucination in society.

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP) have expanded beyond traditional
Machine Learning tools, evolving into sociotech-
nical systems that combine social and technical
aspects to achieve specific goals (Gautam et al.,
2024; Narayanan Venkit, 2023). They have now
become integral in various domains such as health,
policy-making, and entertainment, (Jin and Mihal-
cea, 2022; Werning, 2024) showcasing their sig-
nificant impact on daily life. However, language
models (LM) exhibit negative behaviours such as
hallucination and biases (Bender et al., 2021; Gupta
et al., 2024). This has catalyzed a surge in research
investigating the phenomenon of hallucinations in
NLP (Ji et al., 2023a), reflected in the escalating
number of peer-reviewed publications on the topic,
as illustrated in Fig 1, sourced from SCOPUS.
Within the NLP domain, various frameworks
have emerged to define hallucination, primarily
emphasizing its negative aspect. Hallucination here
refers to the model’s production of references to
non-existent objects or statements, lacking support-
ing examples in the training data (Ji et al., 2023a).
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Figure 1: Articles published each year (from 2013 to
2023) in SCOPUS that contain the term ‘hallucination’
AND (‘NLP’ OR ‘AT’) in the title, abstract, or keywords.

Despite the growing research on this topic, there is
still a notable divide in our understanding, a lack
of a unified framework, and a need for precise defi-
nitions (Filippova, 2020a).

The necessity to understand this gap is accentu-
ated by research demonstrating the societal impacts
of hallucinations (Dahl et al., 2024). Hence, there
is a growing need to explore how the field of NLP
conceptualizes hallucination. In line with this im-
perative, the following questions guide this study:

* RQ1: What are the definitions and frame-
works used to explain hallucinations in NLP?

* RQ2: What is the current understanding of
researchers about hallucinations, and how do
they encounter them in their work?

To answer the RQ1, we first conduct an audit
of the field of hallucinations in NLP by surveying
103 peer-reviewed articles'. Subsequently, we con-
duct a survey to 171 researchers and academics in
the field to gather their perspectives on this phe-
nomenon, providing a novel contribution to the
literature, addressing RQ2. By surveying NLP prac-
titioners, the paper incorporates real-world perspec-
tives, enriching the theoretical discussions with

"https://github.com/PranavNV/The-Thing-Called-
Hallucination
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practical insights. This audit therefore aims to
broaden the communities perspective by presenting
practical insights from researchers employing these
methods in their work. We also propose an ethical
framework to guide future efforts in comprehend-
ing and mitigating hallucinations in LLMs.

2 Evolution of Hallucination in NLP

The term ‘hallucination’ has a long history in ma-
chine learning and has been used in various con-
texts prior to the LM era. Its earliest documented
usage can be traced to the 2000s when Baker and
Kanade (2000) applied it in the context of image
resolution enhancement, referring to the generation
of new pixel values. Subsequently, "hallucination"
has been frequently employed in computer vision
research, including notable works such as Hsu et al.
(2010) on face hallucination.

In the modern deep learning era, hallucination
was used first by Andrej Karpathy in his blog fo-
cusing on Recurrent Neural Networks (Karpathy,
2015). He used the term within the context of LM
by illustrating how an LSTM could generate non-
existent URLSs, effectively ‘hallucinating’ data. The
term then gained major traction with the launch
of ChatGPT (Wu et al., 2023), where it referred
to inaccuracies and factual mistakes produced by
models (Ji et al., 2023a). However, the field lacked
a unified definition, leading to a spectrum of inter-
pretations (Filippova, 2020b). In one of the earlier
works, Maynez et al. (2020) divides term usage
into intrinsic and extrinsic hallucination. Intrinsic
hallucinations are consequences of synthesizing
content using the information present in the input.
Extrinsic hallucinations are model generations that
ignore the source material altogether.

However, there is a rise in discussion around
terminology that reflects a deeper inquiry into the
phenomena, with recent discourse advocating for
‘confabulation’ (Millidge, 2023) or ‘fabrications’
(McGowan et al., 2023) as a more precise descrip-
tor. This reflects the lack of consensus on the term
and highlights the importance of looking at the use
of hallucination with a more critical lens.

3 Related Surveys on Hallucination

We now provide an overview of several key sur-
veys in the realm of NLP focusing on the topic of
hallucination and why our work addresses a rele-
vant gap in the field. Starting with Ji et al. (2023a),
this survey extensively delves into the advance-

ments and challenges concerning hallucination in
NLG, distinguishing between intrinsic and extrin-
sic frameworks of hallucination. Additionally, it
sheds light on fundamental terms such as hallu-
cination, faithfulness, and factuality, along with
prevalent metrics for quantifying these phenomena.
Rawte et al. (2023b) categorizes existing works
within the domain of LMs, covering various as-
pects including methods for detecting hallucination,
mitigation techniques, datasets used, and evalua-
tion metrics. Zhang et al. (2023c) addresses the
challenges of hallucination in LLMs by categoriz-
ing hallucinations into input-conflicting, context-
conflicting, and fact-conflicting types, diverging
from traditional viewpoints.

Furthermore, Huang et al. (2023) redefines the
taxonomy of hallucination into factuality and faith-
fulness, with additional subdivisions, and pro-
poses mitigation strategies aligned with underlying
causes. Tonmoy et al. (2024) offer a comprehen-
sive overview of over thirty-two techniques devel-
oped to mitigate hallucination in LLMs and finally,
Rawte et al. (2023a) present a nuanced categoriza-
tion of hallucination into six types, contributing to
the ongoing discourse within the field.

While these surveys offer insights into the cur-
rent state of hallucination research, they do not
pay attention to critical examinations of the field’s
weaknesses arising from a lack of discourse in
defining hallucination and challenges due to the
same. This deficiency in discussion reflects the
broader trend within the entire field. Therefore,
our audit answers this gap by critically examin-
ing how we conceptualize hallucination. We aim to
highlight the challenges stemming from these defi-
nitions and to further conduct a practitioner survey
within the community to understand researchers’
and developers’ perspectives on this issue. Our goal
is to facilitate a shared understanding of the chal-
lenges and mitigation strategies for hallucination
and develop actionable design principles through
an ethics sheet to address these issues effectively.

4 Critical Analysis of Hallucination in
NLP Literature

This section is dedicated to conducting an audit
of hallucination research within NLP, aiming to
uncover its applications and subsequently identify
the strengths and weaknesses in current literature.

To accomplish this, we conducted an audit of
works from the ACL anthology using specific
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NLP Tasks Frequency
Conversational Al 38
Abstractive Summarization 16
Data-to-Text Generation 14
Machine Translation 12
Image-Video Captioning 8
Data Augmentation 8
Miscellaneous 7

Table 1: Frequency of papers reviewed for each themati-
cally grouped NLP tasks.

keywords such as ‘hallucination’, ‘NLP (OR) AI’
AND ‘hallucinations’, ‘fabrication’, and ‘confab-
ulations’. We surveyed papers released on and be-
fore April 19th, 2024. From this search, a total of
164 papers were retrieved. After filtering out pa-
pers that were not directly related to hallucination
research or those that merely mentioned the term
without substantial focus on the topic, we arrived
at a corpus of 103 papers. This corpus forms the
basis for our audit and analysis of hallucination
research, specifically within the NLP domain.

4.1 Conceptualization of Hallucination

We performed an iterative thematic analysis (Vais-
moradi et al., 2013) to uncover the various applica-
tions of hallucination research in NLP. To ensure
accuracy and prevent misclassification, this recur-
sive process was employed. This resulted in the
identification of seven distinct fields that address
research on hallucination (as shown in Table. 1).

This taxonomy affords insights into the perva-
sive nature of hallucination in NLP. Notably, it
reveals that hallucination transcends beyond text
generation, extending its conceptualization to en-
compass broader domains such as Image-Video
Captioning, Data Augmentation, and Data-to-Text
Generation tasks. This depicts the significance of
hallucination both within and beyond the realm of
NLP. Moreover, our classification framework pro-
vides us with a faceted analysis of how each of
these tasks defines the concept of hallucination.

Using thematic categorization, we come across
definite attributes across the definitions of hallu-
cination. One set of attributes elucidated how hal-
lucinations are associated with the style/language
generated by the model: Fluency, Plausibility, and
Confidence. The next set of attributes falls under
the effects of hallucinations: Intrinsic, Extrinsic,
Unfaithfulness and Nonsensical. The definition of
each of these attributes is elaborated in Table 2.

In each paper analyzed within the survey scope,
hallucination is defined based on a combination of
the set of attributes identified. Our survey revealed

31 unique frameworks for conceptualizing hal-
lucination, illustrating the diverse approaches and
perspectives used. This diversity underscores the
ambiguity in the term’s usage.

To illustrate this phenomenon, we present some
examples showcasing the diverse approaches com-
monly observed in the literature:

“Hallucination refers to the phenomenon where
the model generates false information not sup-
ported by the input.” - (Xiao and Wang, 2021a)

“LLMs often exhibit a tendency to produce ex-
ceedingly confident, yet erroneous, assertions com-
monly referred to as hallucinations.” - (Zhang
etal, 2023a)

“Models generate plausible-sounding but un-
faithful or nonsensical information called halluci-
nations” - (Ji et al., 2023c¢)

Hence, within NLP, a notable deficiency persists
in grasping coherent characteristics of hallucina-
tion. This shortfall underscores the risk of potential
misappropriation of the term when employed in
divergent contexts. An extensive analysis of hallu-
cination for each of the mentioned NLP tasks and
its definition is illustrated in the following section.

4.2 Hallucination in NLP Tasks

We now analyze what aspects of the definitions of
hallucination most commonly occur within each of
our identified sub-fields of NLP? (Table 3).

Conversational AI: In this sub-field, hallucina-
tion encompasses fluency, non-factuality, and both
intrinsic and extrinsic hallucinations. The defini-
tions’ facets highlight that dialogue systems must
balance conversational fluency with factual consis-
tency, aligning both with prior conversation and
real-world truths.

Abstractive Summarization: Works in this sub-
field mainly focuses on extrinsic and intrinsic hal-
lucinations in defining it. Some definitions also
mention the faithfulness of the generation. Despite
the challenges of aligning with real-world facts and
source consistency, prioritizing alignment and ad-
herence to the original material has been shown to
be essential in these works.

Data2Text Generation: Hallucinations are clas-
sified into extrinsic and intrinsic types, similar to
abstractive summarization. Here, alignment with
the underlying data is emphasized as the more crit-
ical factor when compared to the language used.

The breakdown of all the works associated with each of
the subfields is in our Appendix.
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Attributes Definition

Fluency The syntactic incorrectness and semantic errors of the sentence generated.

o The degree to which the generated text
Plausibility . . e .
appears factually incorrect or unbelievable within the given context.
The absence of modifiers or qualifiers that express
Confidence S . .
uncertainty in the generated text, presenting the output with a sense of assuredness.
Intrinsic The generated output that contradicts the source content or the input provided
Extrinsic The generated output that cannot be verified from the source content or the input provided.

Non-factual

Inconsistent with facts in the real world, leading to the generation of non-factual
content in accordance to the established real-world knowledge.

Unfaithfulness

Inconsistent to the input prompt or context, creating deviations
or inconsistencies that would diverge from the intended meaning or message.

Nonsensical

Lack of logical meaning or coherence within a given context as well as the readability of the text.

Table 2: The attributes that appear in the definitions of hallucination.

Machine Translation: Definitions of hallucina-
tion predominantly concentrate on extrinsic hallu-
cination, with rare mentions of intrinsic hallucina-
tions. This observation suggests a lesser concern
for stylistic nuances in text generation within this
field, with a greater emphasis on comprehending
and conveying translated content accurately.

Image and Video Captioning: Models are ex-
pected to maintain consistency with the source
while also incorporating real-world knowledge
to address gaps and apply common sense. Con-
sequently, the definition of hallucination in this
context encompasses intrinsic, extrinsic, and non-
factual elements, highlighting these requirements.

Data Augmentation:: Works from this domain
often omit explicit definitions of hallucination, in-
dicating a divergence in emphasis or a nascent ex-
ploration of this construct within this sub-field.

Miscellaneous: Encompassing tasks such as lan-
guage inference and factuality detection, this cat-
egory’s definitions of hallucination encompass as-
pects like factuality, intrinsic and extrinsic halluci-
nation, fidelity, and nonsensicality. It’s evident that
within these subfields, hallucination addresses both
the stylistic aspects of model output and the fidelity
and accuracy of generated content.

From the analysis of different subfields, it is evi-
dent that each perceives hallucination differently,
emphasizing specific attributes such as factuality,
fidelity, or linguistic styles like confidence, while
potentially overlooking others. This diversity indi-
cates that hallucination as a concept is still in its
early stages in the field, with various frameworks
emerging and a general lack of consensus regard-
ing its definition and application. Furthermore, the
lack of social aspects in hallucination discussions
in these subfields contrasts with the broader under-
standing and research in fields like healthcare.

4.3 Audit of Frameworks

We now scrutinize the dominant frameworks em-
ployed in defining hallucination while also assess-
ing the extent to which these models accurately cap-
ture the phenomenon. We start by looking at how
many of the selected works explicitly define hallu-
cination. Out of the 103 papers, just 44 (42.7%)
provide a definition of the term, leaving the ma-
jority—59 papers or 57.3% —either altogether
omitting their understanding of hallucination in the
context of their research or providing no definition
or a framework. This lack of transparency is not
only concerning but also underscores the need for
clarity, especially given the varied interpretations
of hallucination across different research domains.

Taking our scrutiny a step further, we investi-
gate whether the works defining hallucination ref-
erence and acknowledge preexisting frameworks.
It emerges that only 29 papers or 27 % of the se-
lected works explicitly acknowledge and adhere
to established frameworks of hallucination, while
the remainder 73 % either loosely define the term
or devise new definitions tailored to their specific
research scope. This trend within the field shows a
lack of consensus on the conceptualization of hal-
lucination, leading to disparate interpretations and
a shortage of discourse on the subject.

We also audit the sociotechnical nature of the
definitions of hallucination in NLP. Hallucination
(elucidated in Appendix 10.1) inherently contains
social dimensions, creating varied perspectives
across different social contexts. Moreover, given
the evolution of LMs into social spaces, adopting a
sociotechnical approach becomes necessary, given
that the term ‘hallucination’ is inherently a shared
vocabulary within these domains. Unfortunately,
out of the 103 works examined, only 3 acknowl-
edge the this nature of hallucination, with none
utilizing this framework to inform their approach.
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Application Definitions Frequency
. Al ms igned for natural lan nversation
Conversational Al systems dc?s gned for natura language conversations, 38
understanding inputs, and generating appropriate responses
. L Generating concise summaries by preserving main ideas
Abstractive Summarization & oy P & 16
and context, often creating new sentence
. Automatically converting structured data into human-
Data2Text Generation y g . . 14
readable text, used in reporting and narratives
. . Automatically translating tex n lan sin
Machine Translation utomatically translating te tbetwee anguages using 12
computational methods like neural networks
. . enerating descriptive captions for visual content, aidin,
Image and Video Captioning G & puve cap . ’ J 8
accessibility and understanding
. Techniques to increase data diversity and quality, improving
Data Augmentation . £ 8
model performance individual aspects of an entity
. Encompasses additional non-accomodated tasks like natural
Miscellaneous 1 . . . 7
anguage inference and factuality detection

Table 3: Frameworks of Sentiment and corresponding definitions in Sentiment Analysis

This underscores a need for research to explore
the sociotechnical dimensions inherent in halluci-
nation, showcasing the limited depth of understand-
ing within the ML and NLP communities.

4.4 Audit of Metrics

In the analysis of the 103 papers, we observed that
87 of these works dedicate efforts to measuring
‘hallucination.” This observation depicts the prevail-
ing trend within NLP, emphasizing the significance
of quantifying the concept of hallucination across
diverse research efforts. Building upon prior studies
such as Ji et al. (2023a), our analysis categorizes
the common approaches in NLP for quantifying
hallucination into four major themes: Statistical
Metrics, Data-driven Metrics, Human Evaluation,
and Mixed Methodologies.

40
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Statistical Data-Driven Human Mixed
Metrics Metrics Evaluation Method

Methods of Evaluation

Figure 2: Hallucination evaluation metrics used in NLP.

Statistical metrics calculates a hallucination
score based on the degree of mismatch, with higher
discrepancies indicating lower accuracy, factual-
ity or faithfulness and hence, higher hallucination
(Jiet al., 2023a). Statistical scores such as BLUE,
ROUGE, and Error Rate metrics are commonly
used in this approach. Our findings reveal that
35.2% of the works that quantify hallucination opt
for statistical metrics, employing 25 distinct met-

rics (e.g., BERTScore, F1, Perplexity, Cosine Sim-
ilarity) developed for this purpose. This variability
underscores the lack of a standardized approach.

Data-driven metrics utilizes curated datasets
or neural models to gauge hallucination in gen-
erated text. This methodology, accounting for cu-
rated knowledge/content mismatches, is adopted by
26.1% of the works, resulting in the development
of 18 distinct datasets or models tailored for hal-
lucination measurement, such as CHAIR (Caption
Hallucination Assessment with Image Relevance)
and SelfCheckGPT (Manakul et al., 2023).

Human evaluation offers a complementary per-
spective by employing human annotators to assess
hallucination levels, compensating for apparent er-
rors in automated indicators (Ji et al., 2023a). This
approach, used by 10.2% of the works, encom-
passes scoring and comparison methods, where
annotators rate hallucination levels or compare out-
put texts with baselines or ground-truth references.
Notably, one outlier paper introduced an innovative
approach utilizing eye tracking for hallucination
detection in NLP tasks (Maharaj et al., 2023).

Mixed method approach is deployed by 28.4%
of the works, combining human evaluation with
statistical metrics to offer a holistic perspective on
hallucination quantification. This trend reflects a
concerted effort within the research community to
address the limitations of individual methodologies
and provide insights into the presence and nature
of hallucination in generated texts.

The metrics audit reveals significant knowledge
gaps and challenges across various approaches.
Notably, established research highlights areas for
improvement in standard methods for measuring
hallucination. For instance, methodologies like
CHAIR and metrics such as ROUGE scores ex-
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hibit instability in measuring hallucination due to
the need for complex human-crafted parsing rules
for exact matching, rendering them susceptible to
errors (Li et al., 2023). Criticisms also extend to
human evaluation methods, which are prone to in-
accuracies in gauging hallucination within these
models (Smith et al., 2022).

Beyond methodological criticisms, our audit un-
covers a trend of employing numerous distinct met-
rics and approaches within these frameworks to
categorize hallucinations. Over time, this has led to
a diverse set of parameters for measuring halluci-
nation, with a general lack of consensus on a stan-
dardized measurement approach. This issue further
highlights the absence of a unified method, espe-
cially as these models have now shifted to become
a sociotechnical solution (Bender et al., 2021).

5 Practitioner Survey of Hallucination

In this section, adopting a ‘community-centric ap-
proach’ (Narayanan Venkit, 2023), we conduct a
survey to gain insights into researchers’ percep-
tions of hallucinations in NLP to complement our
theoretical discussions with practical real-world
perspectives. The primary goal is to demonstrate
how researchers and practitioners within the field
perceive the concept of ‘hallucination’ and to ex-
pand our findings beyond the limitations of existing
literature where real-world perceptions from the re-
searchers are missing (Huang et al., 2023; Zhang
et al., 2023c; Ji et al., 2023a). This motivates us
to gather real-world perspectives from individuals
actively engaged in NLP and Al research.

5.1 Survey Recruitment and Data Collection

For our survey, we employed a multi-faceted ap-
proach to reach a diverse population of respon-
dents. We utilized direct emails, direct messages,
and social media platforms such as LinkedIn and
Twitter to distribute the survey. Our target audience
included graduate students and professors from aca-
demic backgrounds as well as individuals from the
industry who work in NLP, aiming to capture a
wide range of perspectives on hallucinations.

To ensure a comprehensive view, we specifically
targeted researchers familiar with Al and ML, pri-
marily from disciplines such as computer science
and information science. However, we also wel-
comed participants from other domains to explore
their perceptions of whether they had the literature
understanding of the concept of hallucination as

they are also extensively using LLM models. The
survey was examined and approved by the Institu-
tional Review Board (IRB) for ethical practices.

We additionally employed a systematic approach
by randomly selecting 15 universities from the top
100 in the USA as per the 2023 US News and World
Report rankings (News, 2023), to then reach out
to potential participants. Prior works (Chakravorti
et al., 2023) have previously employed this process
to identify high-quality participants. We received
a total of 223 responses, out of which 171 were
complete and usable for analysis.

5.2 Survey Structure

The survey employed a combination of 14 open-
ended and close-ended questions. The survey has
been built based on the previous survey design tech-
niques (Rosen et al., 2013; Baker, 2016; Van No-
orden and Perkel, 2023; Chakravorti et al., 2024).
Open-ended questions and free-response text boxes
allow us to gather rich opinions from participants.
This approach integrates all our findings, providing
a broader and deeper understanding of the response.
For the analysis of open-ended questions, we uti-
lized thematic analysis, drawing from established
methodologies outlined in Blandford et al. (2016);
Terry et al. (2017). The close-ended questions were
analyzed using descriptive statistics to summarize
and analyze the numerical data obtained from re-
spondents. Throughout the analysis process, the
research team made collective decisions regarding
the retention, removal, or reorganization of themes
derived from open-ended responses. All the survey
questions have been provided in Appendix 10.3.

5.3 Survey Findings

We now summarize insights from our responses
to explore various perspectives on hallucinations
in LLMs, including perceptions, weaknesses, and
preferences. The breakdown of responses indicates
that 76.54% of participants were from academia,
20.98% from the industry, and 2.47% both.

Participants were also asked about their research
area’s direct relation to Al and NLP. The analysis
revealed that more than 68.52% of researchers in-
dicated that their work is directly related to NLP,
while the remaining respondents either exhibited
familiarity with or indirectly incorporated NLP and
Al methodologies in their work. This highlights the
substantial involvement of Al experts and practi-
tioners within the survey.
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Figure 3: Respondents familiarity with ‘Hallucination’

5.3.1 Familiarity with Hallucination

The survey included the question on participants’
familiarity with the concept of ‘hallucinations’ in
Al-generated text, measured on a 5-point Likert
scale. The analysis revealed that 24.07% of re-
searchers reported being extremely familiar with
the concept, while 33.33% indicated being very fa-
miliar with it (Figure 3). Participants who indicated
not being familiar with the term ‘hallucination’
(7.96%) also demonstrated implicit concerns with
this phenomenon by highlighting issues such as
generating incorrect responses and crafting stories
autonomously. This demonstrates the widespread
impact of the phenomenon within the community.

5.3.2

The survey included a question regarding the fre-
quency of encountering ‘hallucinated’ content, de-
fined as content that is factually incorrect or unre-
lated to the input, assessed on a 5-point Likert scale
ranging from ‘Never’ to ‘Very frequently’ (Figure
4). The analysis revealed that 46.91% of respon-
dents reported encountering hallucinated content
occasionally, while 29.01% indicated experiencing
it frequently. The results suggest that a substan-
tial portion of practitioners encounter instances of
hallucinated content in Al-generated outputs, indi-
cating a prevalent issue in generative NLP models.

Hallucination Frequency

Very
Frequently 5.56

Frequently
Ocassionally

Rarely

Frequency of Encouters

Never

0 10 20 30 40 50

Percentage of Respondents

Figure 4: Frequency of encountering ‘Hallucination’

5.3.3 Perceptions of Hallucination

The survey findings revealed that more than 92 %
of respondents perceive hallucination as a weak-
ness of LLLMs. Subsequently, participants were
asked to provide their own definitions of ‘hallu-
cination’ in generative Al models through an open-
ended question. To analyze these responses, we
applied thematic categorization based on attributes
generated from the literature audit (Table 2).

The thematic categorization revealed that the ma-
jority of respondents categorized hallucination as
pertaining to the factuality and faithfulness of input,
with relatively lesser emphasis on the extrinsic and
intrinsic nature of hallucination concerning the in-
put. This trend reflects a common perception of
how hallucination is understood within the context
of larger-scope generative Al models.

Moreover, the analysis identified 12 distinct
frameworks regarding how hallucination is de-
fined by respondents. For example:

“Response that appears syntactically and seman-
tically believable, but is not based on actual fact”—
Academic Researcher, NLP

“When the model confidently states something
that is not true”—Academic Researcher, Al

The diversity of viewpoints underscores the in-
consistency within the field regarding the concep-
tualization and understanding of hallucination in
the context of generative Al models.

5.3.4 Alternative Terms for Hallucination

The survey included a question asking participants
if they prefer an alternate term to describe the phe-
nomenon of ‘hallucination’ in Al-generated content
and to provide an explanation if they do. The anal-
ysis revealed that 54.32% of respondents preferred
the term hallucination or had no other term to pro-
vide. However, among the remaining responses,
40.46 % of participants mentioned ‘Fabrication’
as a better term to describe the phenomenon.

This indicates that while the majority of respon-
dents did not propose an alternative term, a notable
proportion sees fabrications as a more suitable de-
scriptor for the phenomenon of hallucination in
Al-generated content. For example,

“Fabrication makes more sense. Hallucination
makes it feel like Al is human and has the same
sensory perceptions that could lead to hallucina-
tions.”—Academic Researcher, Al & Education

It’s interesting to note that a few researchers also
prefer to use the term ‘Confabulations’ instead
of ‘hallucinations’ when referring to Al-generated
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content. Their rationale likely stems from the nu-
anced difference in meaning between the two terms.
While hallucinations generally convey the idea of
perceiving something that is not based on reality
or fact, confabulations specifically refer to the cre-
ation of false memories or information without the
intention to deceive.

By opting for the term ‘Confabulations,” re-
searchers may be emphasizing the unintentional
nature of the inaccuracies or false information gen-
erated by Al models, as opposed to implying delib-
erate deceit. For example,

“I think confabulation works better because it
means creating a false memory without deceit. Fab-
rication gives the idea that it is intentional, which

in the case of generative Al models, it is not.”—

Academic Researcher, Al & HCI

It’s also insightful to see that respondents pro-
posed various alternative terms to describe the
phenomenon of hallucination in Al-generated con-
tent such as incorrect information/misinformation,
Non-factual information, Cognitive gap, hyper-
generalization, Overconfidence, and Randomness.
These alternatives highlight different aspects and
nuances of the inaccuracies or distortions present in
the generated content. Participants also mentioned
how they prefer multiple terms based on the appli-
cation in which they are used.

“As I mentioned there are different types of hal-
lucinations. For instruction and context hallucina-
tions, I would refer to them as inconsistency in-
stead. For factually incorrect hallucinations, the
word hallucination is fine.”—Academia, NLP

5.3.5 Creativity and Positive Applications

Not all researchers view hallucinations in Al-
generated content through a negative lens. While
the majority may associate hallucinations with inac-
curacies or distortions, a notable minority (~12%
in our survey) provided insights into how they be-
lieve hallucinations in these models can be cor-
related with creativity rather than negatively im-
pacted behaviors. In fields such as story narration
and image generation, researchers often value the
creative behaviors exhibited by AI models. Halluci-
nations, when viewed in this context, may be seen
as manifestations of the model’s ability to think
outside the box, generate novel ideas, and explore
unconventional possibilities. These creative outputs
can inspire new approaches to storytelling, art, and
problem-solving, contributing to innovation and
artistic expression. For example:

“Hallucinations are just what is needed for mod-
els to be creative. In truth, unless Al text-generators
are factually grounded with external knowledge
for a specific field, they are just story generators
which aim to be creative, hence “hallucinate.”"”—
National Lab Researcher, NLP

Further supplementary analysis and quotes on
the various external perspectives and the societal
ramifications of hallucination, obtained through the

survey, is examined in the Appendix 10.2.

6 Challenges and Recommendations

Based on our audit and survey analysis, we outline
the key weaknesses encountered in hallucination
within NLP and potential recommendations moti-
vated by the weaknesses. We utilize a community-
centric approach to define the primary weaknesses
of the field currently and a path forward.

6.1 Challenges

The primary challenges we identify thematically
and aim to elucidate are as follows:

Wide range of vague and absent definitions:
The literature and the practitioner’s survey show
diverse and conflicting frameworks, often lacking
clarity or omitting explicit definitions for halluci-
nation and how it is perceived in various fields of
NLP and language generation. Ambiguity arises
from the use of terms like ‘confabulations,” ‘ fab-
rications,” ‘misinformation,” and ‘hallucinations’
interchangeably, without clear definitions in the
context of hallucinations.

Lack of standardization in measurement: The
absence of standardized metrics to quantify hallu-
cination results in the use of multiple scales and
categorizations. This makes it challenging to com-
pare and interpret results across different models
and studies, leading to a proliferation of diverse
approaches for evaluating hallucinations.

Limited awareness of hallucination in a so-
ciotechnical context: Hallucination research of-
ten lacks the understanding of how the concept of
hallucination is conceptualized beyond its techni-
cal purview. When such analysis is employed in
sociotechnical systems like healthcare and policy
making (Dahl et al., 2024; Pal et al., 2023), it is
important to define the socially relevant framework
of hallucination as well.

Multiple sentiment towards hallucination:
The perception of hallucination in generative Al
varies depending on the context. For instance, it
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is often positively regarded as creativity in image
generation, whereas in text generation, it is viewed
negatively as errors or mistakes. Consequently, fu-
ture research efforts should aim to better address
this disparity to develop a more nuanced framework
for understanding hallucination.

Lack of standardized nomenclature: Both our
literature audit and practitioner survey revealed that
the term ‘hallucination’ is inadequate to fully cap-
ture the behavior exhibited by NLG models. There
is a need for further investigation into which terms
are more appropriate and why they are necessary.
For instance, terms like ‘confabulation,” ‘fabrica-
tions,” and ‘misinformations’ are increasingly be-
ing used to describe the same phenomenon. A more
precise understanding is required to distinguish be-
tween these terms and how they are utilized in
various fields within NLP.

User trust and reliability: Our survey findings
suggest that users may hesitate to fully utilize LLM
capabilities due to concerns about bias and halluci-
nation despite recognizing the potential advantages
these models offer. Therefore, there is a need to
focus efforts on understanding the human interac-
tion aspect concerning hallucination in NLP and
language generation.

Addressing these issues requires careful consid-
eration of the categorization approach, integration
of contextual information, and, efforts towards ro-
bust evaluation methodologies in hallucinations.

6.2 Recommendations

Expanding on audits like Blodgett et al. (2020)
& Venkit et al. (2023), we examine strategies for
NLP practitioners studying ‘hallucination’ to over-
come these challenges. We propose two overarch-
ing themes with four associated recommendations.

Author-Centric Recommendation. These rec-
ommendations prioritize actionable steps for both
the author and developers, emphasizing transparent
and accountable development in conceptualizing
hallucinations.

[R1] Ensure explicit documentation of the hal-
lucination framework and analysis methodology
employed during the development of NLP mod-
els. Provide guidelines that outline the expected
measurements and quantifications for the model to
enhance interpretability and applicability.

[R2] Explicitly state the use cases and user pro-
files intended to interact with the NLP system. By
considering the specific applications and targeted

users, it is easier to construct the required frame-
work of hallucination that is sensitive to the com-
munity in consideration. Raise awareness about
potential ramifications introduced by NLP models,
emphasizing the importance of fairness and equity.

Community-Centric Recommendation. These
recommendations prioritize actionable steps for the
research community to enhance frameworks and
understanding related to hallucinations.

[R3] Develop clear and standardized definitions
for terms such as ‘confabulations,” ‘fabrications,’
‘misinformation,” and ‘hallucinations’ within the
context of NLP. Establish frameworks that provide
clarity and consistency in understanding these con-
cepts, particularly regarding hallucinations. This
requirement is crucial due to the widespread mis-
understanding of hallucination and the misnomers
that have arisen as research progresses.

[R4] Promote the creation of methods that offer
visibility into the model’s decision-making process,
enabling users to comprehend how hallucinations
or fabrications can occur within the system, thus
fostering trust in its use. Facilitating research dis-
cussions for transparency through workshops and
conferences is one approach to achieving this goal.

7 Conclusion

Our work delves into the conceptualization of hal-
lucination within the scope of NLP. Our approach
involved two key methodologies: first, an exhaus-
tive audit of 103 peer-reviewed papers in the NLP
domain, and second, a practitioner survey of 171
researchers to complement our first study with real-
world practical perception and understanding of
hallucination as a unique contribution. Through this
analysis, we have gained insights into how the NLP
community conceptualizes and defines hallucina-
tion, showcasing a lack of discourse and agreement.
Additionally, our thematic and community-based
approach highlights potential weaknesses within
the field, particularly in addressing misrepresenta-
tions and inaccurate characterizations associated
with hallucination, paving way for better advance-
ment in language generation. Our work finally con-
tributes to a deeper understanding of the challenges
and gaps in research related to hallucination within
NLP, paving the way for future advancements in
NLP and language generation.
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8 Limitations

Our study encompasses a selection of 103 papers,
incorporating works from primarily the ACL An-
thology. While our intention was not to provide
an exhaustive collection of all published works on
hallucination, we aimed to include diverse sources
within NLP that cover various aspects of the field.
Our intent was to curate peer-reviewed literature
commonly found in the NLP domain, encompass-
ing models, applications, survey papers, and frame-
works. We, therefore, did not scope the utility of
hallucination and its impact beyond NLP to other
fields of research, such as Computer Vision. Re-
garding the creation of the challenges and recom-
mendations, it is important to note that the themes
presented are not meant to be exhaustive but rather
serve as a foundational framework to spark addi-
tional inquiries and foster further engagement.

Our survey was designed to capture the view-
points of researchers and practitioners in the Al
and ML field, potentially limiting various experi-
ences. As such, our analysis is centered on this per-
spective. While we did gather additional insights
from participants outside this field, our focus was
not comprehensive in that regard. Our future work
intends to explore the public’s perspective on hal-
lucination.

9 [Ethics Statement

We are aware of the ethical considerations involved
in our research and have taken measures to ensure
responsible practices throughout the study.

Data Publication: All the papers used in our re-
search are listed in the Appendix. However, we rec-
ognize the importance of transparency and account-
ability. Therefore, we publish the complete collec-
tion of papers along with our qualitative classifica-
tion and annotation, allowing for public scrutiny
and examination 3.

Mitigating Qualitative Bias: We acknowledge
the potential for bias when performing qualitative
coding of the papers regarding their applications.
To address this concern, we ensured that at least
three different individuals independently reviewed
and verified the coding to minimize the possibility
of misclassification. Additionally, we followed the
same approach to verify the presence of various def-
initions in each paper, enhancing the reliability and
validity of our analysis. By disclosing these ethical

3https://github.com/PranavN V/The-Thing-Called-
Hallucination

considerations, we emphasize our commitment to
conducting research in an ethical and accountable
manner.
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10 Appendix

10.1 Social Perspectives on Hallucinations

The exploration of hallucination in NLP is solely
technocentric; however, its conceptual roots and
applications are deeply intertwined with societal in-
terpretations. To gain a better understanding of the
term ‘hallucination,’ it is important to consider its
broader usage and implications beyond NLP. Hal-
lucination has been studied across disciplines like
psychology and neurology (Steele, 2017; Legault,
2020). Essentially, hallucinations involve “percep-
tions arising in the absence of any external reality —
seeing or hearing things that are not there” (Steele,
2017). Although a version of this definition is com-
monly used in NLP, often with negative connota-
tions, hallucinations have a wide scope, originating
from fields such as neurology, and philosophy.
Hallucination and Medicine: Hallucination is
believed to have neurological origins, often emerg-
ing from induced states such as drug usage, psy-
chosis, sensory deprivation, or migraines (Legault,
2020). These experiences can encompass vari-
ous sensory modalities like auditory, visual, ol-
factory, tactile, gustatory, or somatic sensations
(Boeving, 2020). Modern neurological research
like Legault (2020) suggests that while hallucina-
tions may not align with external reality, they are
linked to brain regions responsible for processing
perceptions from the external world.
Hallucination and Creativity: Studies explor-
ing hallucination in the context of creativity sug-
gest that individuals with mild hallucinatory ex-
periences may demonstrate enhanced generative
creativity (Fink et al., 2014; Mason et al., 2021).

Another prevalent notion is the use of hallucina-
tions as a gateway to accessing intuition, creativity,
and novel modes of thinking (Mason et al., 2021).
However, there is a call for greater empirical rigor
to establish robust connections between specific
mental states leading to hallucinations and the cre-
ative thinking process (Fink et al., 2014).

The analysis of differing perspectives on halluci-
nation reveals its diverse interpretations, challeng-
ing prevalent assumptions within NLP. However,
using the term “hallucination’ without its social con-
text can foster misconceptions. Firstly, the ‘hallu-
cinations’ in Al systems result from discrepancies
in input data and prompts rather than an absence
of external senses. Secondly, this metaphor risks
perpetuating stigma by linking negative Al phe-
nomena with specific mental illness aspects (Pal
et al., 2023), potentially hindering destigmatiza-
tion efforts in mental health domains (Maleki et al.,
2024). Lastly, given the widespread use of machine
learning models, especially in medical fields (Ji
et al., 2023c), a limited grasp of "hallucination’ con-
text may lead to terminology misinterpretations.

10.2 Supplementary Survey Analysis
10.2.1 Weaknesses of LLM

Before delving into inquiries about hallucinations
in LLMs, it is crucial to gain insights into the per-
ceived weaknesses of these models from the par-
ticipants’ perspective, as well as understand how
frequently they utilize these models in their work.

The survey results indicate that a significant por-
tion of researchers heavily utilize LLMs in their
daily life. Specifically, 67.28% of respondents re-
ported using these models atleast once a day, while
20.37% mentioned using them all the time, high-
lighting the ubiquity of these models.

Upon analyzing the themes derived from partici-
pants’ responses on the weaknesses of generative
Al tools, it was observed that a substantial majority
(55%) of researchers perceive the main weaknesses
to be the generation of misinformation and halluci-
nations, despite both phenomena being essentially
similar in nature. For instance,

“I have been exploring these models to see
what they get right and wrong. They get a lot of
things wrong — what some people call “hallucina-
tions”.”—Emeritus Professor, NLP

Some of the other important weaknesses men-
tioned by the respondents are: biases, not following
the prompts correctly, complex language, and not
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having a long memory. For example,

“They produce a lot of inaccurate replies with
great confidence. These models also tend to be very
biased toward many socio-demographic groups.”—
Graduate student, Generative Al

“It is hard to distinguish whether the information
provided by them is accurate or not. Sometimes,
the models generate text with reasoning making
it sound convincing enough to be true - but ends
up being incorrect ultimately. ”—Industry, Genera-
tiveAl

The responses highlight a critical concern within
the research community regarding the reliability
and accuracy of outputs generated by LLMs, with
potential implications for various applications and
domains, providing us with a strong motivation
behind this study.

The widespread use of LLMs, particularly promi-
nent models such as GPT 3, 3.5, and 4, highlights
their importance and impact on research and in-
dustry practices. However, it’s noteworthy that re-
spondents also mentioned other LLM models that
they use or are familiar with. These include Mistral,
BERT, LLaMA2, Midjourney, ClaudeAl, Gemini,
Vicuna, t5, Falcon, PalLM, Imagen, Dolly, Perplex-
ity, among others.

10.2.2 Social Ramifications of Hallucination

Participants were prompted to explain the effects of
hallucination on their work/daily life. The resulting
themes, from our qualitative analysis of their inputs,
are outlined below:

Not Good for Education: Respondents raised
concerns about the extensive use of these mod-
els by students for homework, indicating potential
negative impacts on their performance and learning
abilities. The respondents believe that such reliance
on these models can lead to a degradation in stu-
dents’ learning. Additionally, respondents express
skepticism about the suitability of these models for
checking homework assignments.

“I don’t actually use Al for my work; I just want
to be aware of what it can do because my students
are probably using it for their homework. It could
have an impact on students’ mastery of the mate-
rial.”—Associate Prof, Biotechnology

Not Good for Scholarly Work: Several respon-
dents noted that these models are not effective for
scholarly purposes, citing instances where the mod-
els generated information that was not present in
the original paper. They express concerns that if
researchers rely on these models for tasks like liter-

ature summarizing, it could lead to a deterioration
in scholarly processes. For example:

“They tend to generate a lot of misinformed facts
about certain groups or cultures that I have seen
happen often. They also generate 'facts’ from schol-
arly works where the papers would not have men-
tioned the same.”—Graduate student, NLP

Struggle with Code Generation: The models
were deemed inefficient for code generation by mul-
tiple respondents, often producing code that lacks
utility due to hallucinations. Respondents high-
lighted mismatches between the generated code
and its intended purpose, emphasizing the need for
thorough review before utilization. Various con-
cerns were raised, including the loss of context dur-
ing prolonged interactions, inaccuracies in complex
coding tasks leading to erroneous outputs, fabrica-
tion of functions or attributes, inaccuracies in both
code and associated theoretical concepts, neces-
sitating extensive debugging and corrections, and
a tendency to cycle back to previously incorrect
suggestions despite error notifications.

“I was asking an Al to generate me a piece
of code. It ended up picking some code from one
website and some from another and combining it.
However those two websites (they were linked by
chatgpt) we’re using different versions of the li-
brary so the resulting code couldn’t be executed.”—
Industry, Network and Security

Increase in Time for Task: A common senti-
ment among respondents is that these models fre-
quently produce errors or false information, result-
ing in potential time wastage. While they acknowl-
edge occasional helpfulness, there’s a consensus
that reliance on these models can often lead to unfa-
vorable outcomes, particularly when verifying out-
puts. This dependency on verification contributes
to increased task duration, adding extra work and
time toward the project’s conclusion, as noted by
several respondents.

“I use GPT API to conduct analysis for some
of my work and accuracy and consistency would
be good in my context, and I have to find ways
to finetune it before I can trust the results of the
analysis, which added more work on my end.”—
Graduate Student, HCI

Misleading and Distrust: Generating incorrect
outputs with confidence can lead to the dissemina-
tion of non-existent knowledge, such as mislead-
ing information in the literature that may confuse
individuals with incorrect concepts. Most of our
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respondents mentioned this concern. Moreover, it
poses challenges in differentiating between accu-
rate Al responses and hallucinations, particularly
for users lacking expertise in the relevant subject
matter.

“It leads to problems if even I do not have any
idea about the work. It is hard to differentiate if it
is a genuine output or hallucination.”—Graduate
Student, Data Science

Al the time

Several times an hour

5 10 15 20 k-3 30
Percentage of Responses (%)

Figure 5: Frequency of Text Generation Model Usage

10.2.3 An External Viewpoint

Additionally, our survey of 51 researchers who do
not specialize in Al revealed that all except 3 have
used text-generation models like various versions
of ChatGPT. Despite their fields not being directly
related to Al, a significant number integrate these
tools into their workflow, with 19.6% using them
multiple times daily and 11.76% using them several
times per hour. Their extensive usage has allowed
them to identify several limitations in the models;
they are: mathematical inaccuracy, outdated infor-
mation, misinformation, poor performance with
complex tasks and creative thinking, lack of speci-
ficity in-depth, overconfidence, lack of transparency,
bias, and irrelevant responses.

Based on the definitions provided, it is observed
that there is a lack of clarity among the respon-
dents regarding what constitutes a ‘hallucination’
in generative Al models, with perspectives vary-
ing widely. Thematic analysis of their responses
indicates that the predominant view associates
“hallucination’ with the generation of nonfactual
content and misinformation by Al systems. That
means these models are generating facts that are
not real and misleading. The remaining themes are
factually incorrect, biased outputs, incompleteness,
misinformation with confidence, and nonsensical
but good-looking texts.

The results demonstrate the unclear comprehen-
sion and significance attributed to hallucination in
LMs beyond the field of NLP and Al. There is
a pressing need to enhance public understanding
of the concept of hallucination, emphasizing its
meaning and strategies for mitigation. Given the
increasing prominence of LMs as sociotechnical
systems (Narayanan Venkit, 2023), it is crucial to
grasp their social interactions and potential societal
ramifications.

10.2.4 Additional Impacts and Concerns

We analyzed perceptions when participants were
asked about any additional concerns during the
survey. Participants emphasized the necessity for
greater control and more nuanced mechanisms to
address and manage Al hallucinations effectively.
Presently, the detection and rectification of halluci-
nations rely heavily on meticulous human review,
highlighting the need for tools designed specifi-
cally to identify and mitigate such occurrences.
The presence of hallucinations can significantly
impact the credibility and acceptance of genera-
tive models among the general public. These issues
arise due to the inherent limitations of generative
algorithms and the absence of access to real-time
external knowledge.

Transparency regarding the limitations of gener-
ative Al is deemed essential through our findings,
and user education is seen as a key factor in mit-
igating risks associated with the unchecked use
of Al-generated content, as the responsibility for
identifying hallucinations often falls on the user.
While inaccuracies in non-critical applications, like
movie suggestions, may be tolerable, according to
our survey, they are deemed crucially problematic
in contexts such as business decision-making, law,
or health (Dahl et al., 2024).

10.3 Survey Questions

In this section, we provide the content and the ques-
tions that were presented in the survey:

Survey Title: Insights of Usage and Issues with
Text Generative Models and Tools

1. How did you receive the survey? (Social Me-
dia Posts, Direct email, Direct messages, Oth-
ers)

2. What is your current country of residence?
(Open-ended)
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10.

11.

12.

13.

14.

15.

. What

sector do you associate with?
(Academia, Industry, Others)

. What is your field of expertise? (Open-ended)

. Does your research work directly involve

studying or developing Artificial Intelligence
(AD)? (Yes, No)

. How often do you use Text generation models

(like ChatGPT/Gemini)? (All the time, Several
times an hour, once an hour, several times a
day, Once a day, Several times a week, once a

week, Several times a month, Once a month,
Never)

. Which text generation models have you used,

if any? (Open-ended)

. What weaknesses do you perceive in the mod-

els that you have used(if any)? (Open-ended)

. Are you familiar with the concept of “hallu-

cinations’ in Al-generated text? (Extremely
familiar, Very familiar, Moderately familiar,
Slightly familiar, Not at all familiar)

What, according to you, is "hallucination’ in
generative Al models?(Open-ended)

Do you consider ’hallucinations’ to be a weak-
ness when using these models? (Yes, No)

How frequently do you encounter that text
generation models produce "hallucinated’ con-
tent that is factually incorrect or unrelated to
the input? (Very frequently, frequently, Occa-
sionally, rarely never)

If you have an alternate term in mind to
describe the phenomenon instead of ’hallu-
cination’ (e.g., fabrications, confabulations,
etc.), kindly specify it along with an explana-
tion(Mention NA if none). (Open-ended)

Can you provide an example where a halluci-
nation in text generation had or can have an
impact on your work (Mention NA if None)?
(Open-ended)

Do you have any additional comments or in-
sights regarding the hallucination? (if any)
(Open-ended)

10.4 Works and Application

We illustrate the examples and categories of works
that were looked into for understanding the various
applications of hallucinations. We categorize the
research on hallucinations into 7 major categories.
The definitions and categories of all the applica-
tions are mentioned in Table 3.

Abstractive Summarization: Zhang et al.
(2019); Son et al. (2022); Maynez et al. (2020);
Choubey et al. (2023); Cao et al. (2021); Mar-
furt and Henderson (2022); Akani et al. (2023);
van der Poel et al. (2022); Chen et al. (2023b);
Dong et al. (2022); Shen et al. (2023); Nan et al.
(2021); Chen et al. (2021); Ladhak et al. (2023);
Nan et al. (2021); Flores and Cohan (2024)

Conversational Al: Liu et al. (2022); Zhou et al.
(2020); Ji et al. (2023b); Zhang et al. (2023b);
Yang et al. (2023); Das et al. (2022); Bouyamourn
(2023); Sun et al. (2023); Sadat et al. (2023); Slo-
bodkin et al. (2023); Ramakrishna et al. (2023);
Xiao and Wang (2021b); Shuster et al. (2021);
Nie et al. (2019); Longpre et al. (2021); Dziri
et al. (2022); Maheshwari et al. (2023); Ladhak
et al. (2022); Xu et al. (2023); Chen et al. (2023a);
Goldberg et al. (2022); Sundar and Heck (2023);
Roller et al. (2021); Mielke et al. (2022); Roller
et al. (2021); Massarelli et al. (2020); Weller et al.
(2024); Smith et al. (2022)

Data Augmentation: Jian et al. (2022); Ji et al.
(2023b); Friedl et al. (2021); Samir and Silfver-
berg (2022); Anastasopoulos and Neubig (2019);
Narayanan Venkit et al. (2023)

Image and Video Captioning: Xiao and Wang
(2021b); Dai et al. (2023); Rohrbach et al. (2018);
Li et al. (2023); Testoni and Bernardi (2021); Son
et al. (2022); Dai et al. (2023); Li et al. (2023); Liu
and Wan (2023)

Machine Translation: Wang and Sennrich
(2020); Raunak et al. (2021); Dale et al. (2022);
Guerreiro et al. (2023a); Xu et al. (2023); Pfeiffer
et al. (2023); Guerreiro et al. (2023b); Dale et al.
(2023); Irvine and Callison-Burch (2014); Ferrando
et al. (2022); Vu et al. (2022); Miiller et al. (2020);
Waldendorf et al. (2024)

Data2Text Generation: Gonzilez Corbelle et al.
(2022); Shi et al. (2023); Yoon et al. (2022); Fil-
ippova (2020b); Kothyari et al. (2023); Lango and
Dusek (2023); Cirik et al. (2022); Fei et al. (2023);
Obaid ul Islam et al. (2023); Qiu et al. (2023);
Testoni and Bernardi (2021); Gonzalez-Corbelle
et al. (2022); Islam et al. (2023); Polat et al. (2023)
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Miscellaneous: Manakul et al. (2023); Ji et al.
(2023d); Maharaj et al. (2023); McKenna et al.
(2023); Pal et al. (2023); Zhao et al. (2023); Berba-
tova and Salambashev (2023); Wu et al. (2024)
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