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Abstract

Training a unified multilingual model promotes
knowledge transfer but inevitably introduces
negative interference. Language-specific mod-
eling methods show promise in reducing inter-
ference. However, they often rely on heuris-
tics to distribute capacity and struggle to fos-
ter cross-lingual transfer via isolated modules.
In this paper, we explore intrinsic task modu-
larity within multilingual networks and lever-
age these observations to circumvent interfer-
ence under multilingual translation. We show
that neurons in the feed-forward layers tend
to be activated in a language-specific manner.
Meanwhile, these specialized neurons exhibit
structural overlaps that reflect language prox-
imity, which progress across layers. Based
on these findings, we propose Neuron Special-
ization, an approach that identifies specialized
neurons to modularize feed-forward layers and
then continuously updates them through sparse
networks. Extensive experiments show that
our approach achieves consistent performance
gains over strong baselines with additional anal-
yses demonstrating reduced interference and
increased knowledge transfer.1

1 Introduction

Jointly training multilingual data in a unified
model with a shared architecture for different lan-
guages has been a trend (Conneau et al., 2020;
Le Scao et al., 2022) encouraging knowledge trans-
fer across languages, especially for low-resource
languages (Johnson et al., 2017; Pires et al., 2019).
However, such a training paradigm also leads to
negative interference due to conflicting optimiza-
tion demands (Wang et al., 2020). This interference
often causes performance degradation for high-
resource languages (Li and Gong, 2021; Pfeiffer
et al., 2022) and can be further exacerbated by lim-
ited model capacity (Shaham et al., 2023).

1We release code at https://github.com/Smu-Tan/
Neuron-Specialization.

Modular-based methods, such as Language-
specific modeling (Zhang et al., 2020b) and
adapters (Bapna and Firat, 2019), aim to mitigate
interference by balancing full parameter sharing
with isolated or partially shared modules (Pfeiffer
et al., 2023). However, they heavily depend on
heuristics for allocating task-specific capacity and
face challenges in enabling knowledge transfer be-
tween modules (Zhang et al., 2020a). Specifically,
such methods rely on prior knowledge for man-
aging parameter sharing such as language-family
adapters (Chronopoulou et al., 2023) or directly
isolate parameters per language, which impedes
transfer (Pires et al., 2023).

Research in vision and cognitive science has
shown that unified multi-task models may sponta-
neously develop task-specific functional specializa-
tions for distinct tasks (Yang et al., 2019; Dobs
et al., 2022), a phenomenon also observed in
mixture of experts Transformer systems (Zhang
et al., 2023). These findings suggest that through
multi-task training, networks naturally evolve to-
wards specialized modularity to effectively man-
age diverse tasks, with the ablation of these spe-
cialized modules adversely affecting task perfor-
mance (Pfeiffer et al., 2023). Despite these insights,
exploiting the inherent structural signals for multi-
task optimization remains largely unexplored.

In this work, we explore the intrinsic task-
specific modularity within multi-task networks in
Multilingual Machine Translation (MMT), treating
each language pair as a separate task. We focus
on analyzing the intermediate activations in the
Feed-Forward Networks (FFN) where most model
parameters reside. To our knowledge, our study is
the first to show that neurons activate in a language-
specific way, yet they present structural overlaps
that indicate language proximity in general. More-
over, this pattern evolves across layers in the model,
suggesting that neurons consistently transition from
language-specific to language-agnostic.
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Building on these observations, we introduce
Neuron Specialization, a novel method that lever-
ages intrinsic task modularity to reduce interfer-
ence and enhance knowledge transfer. In general,
our approach selectively updates the FFN parame-
ters during back-propagation for different tasks to
enhance task specificity. Specifically, we first iden-
tify task-specific neurons from pre-trained unified
translation models, using standard forward-pass
validation processes without decoding. We then
specifically modularize FFN layers using these spe-
cialized neurons and continuously update FFNs via
sparse networks.

Extensive experiments on small- (IWSLT) and
large-scale EC30 (Tan and Monz, 2023) transla-
tion datasets show that our method consistently
achieves performance gains over strong baselines
with various configs. Moreover, we conduct in-
depth analyses to show that our method effectively
mitigates interference and enhances knowledge
transfer in high and low-resource languages, re-
spectively. Our main contributions are summarized
as follows:

• We identify inherent multilingual modular-
ity by showing that neurons activate in a
language-specific manner and their overlap-
ping patterns reflect language proximity.

• Building on these findings, we enhance task
specificity through sparse FFNs, achieving
consistent improvements in translation quality
over strong baselines.

• We employ analyses to show that our method
effectively reduces interference in high-
resource languages and boosts knowledge
transfer in low-resource languages.

2 Related Work

Multilingual Interference. Multilingual training
enables knowledge transfer but also causes interfer-
ence, largely due to optimization conflicts among
various tasks (Wang and Zhang, 2022). Methods
alleviating task conflicts hold promise to reduce
interference (Wang et al., 2020), yet they show
limited effectiveness in practice (Xin et al., 2022).
Scaling up model size may reduce interference but
leads to overly large models (Chang et al., 2023),
with risks of overfitting (Aharoni et al., 2019).

Language-Specific Modeling. Recent methods
enhance the unified model by utilizing language-
specific (LS) modules such as adapters (Bapna

and Firat, 2019), LS layers (Zhang et al., 2020b;
Pires et al., 2023) and LS hidden states (Xie et al.,
2021). Although the unified model serves as a
common foundation, these methods strictly iso-
late modules per language. Such designs present
no knowledge sharing among modules and thus
offer fewer benefits to low-resource languages.
Alternatively, approaches like language family
adapters Chronopoulou et al. (2023) seek to fa-
cilitate sharing among language-specific modules,
however, they heavily depend on heuristics such as
using priori linguistic knowledge to enable more
flexible parameter sharing.

Additionally, these modular-based methods ex-
hibit parameter inefficiency when handling numer-
ous languages, resulting in increased memory re-
quirements and extended inference times (Liao
et al., 2023a,b). Similarly, techniques such as pa-
rameter differentiation (Wang and Zhang, 2022)
and language clustering training (Tan et al., 2019)
alleviate interference by expanding the unified
model with substantial extra parameters.

Sub-networks in Multi-task Models. The lot-
tery ticket hypothesis (Frankle and Carbin, 2018)
states that within dense neural networks, sparse
subnetworks can be found with iterative pruning to
achieve the original network’s performance. Fol-
lowing this premise, recent studies attempt to iso-
late sub-networks of a pre-trained unified model
that captures task-specific features (Choenni et al.,
2023a; Lin et al., 2021; He et al., 2023). Nonethe-
less, unlike our method that identifies intrinsic
modularity within the model, these approaches de-
pend on fine-tuning to extract the task-specific sub-
networks. This process may not reflect the origi-
nal model modularity and also can be particularly
resource-consuming for multiple tasks.

Specifically, these methods extract the task-
specific sub-networks by fine-tuning the original
unified multi-task model on specific tasks, fol-
lowed by employing pruning to retain only the most
changed parameters. We argue that this process
faces several issues: 1) The sub-network might be
an artifact of fine-tuning, suggesting the original
model may not inherently possess such modular-
ity. 2) This is further supported by the observation
that different random seeds during fine-tuning lead
to varied sub-networks and performance instabil-
ity (Choenni et al., 2023a). 3) The process is highly
inefficient for models covering multiple tasks, as it
necessitates separate fine-tuning for each task.
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3 Neuron Structural Analysis

Recent work aims to identify a subset of parame-
ters within pre-trained multi-task networks that are
sensitive to distinct tasks. This exploration is done
by either 1) selecting hidden states that greatly in-
fluence task performance (Dobs et al., 2022) or
possess high magnitude values (Xie et al., 2021);
or 2) fine-tuning the unified model on task-specific
data to extract sub-networks (Lin et al., 2021; He
et al., 2023; Choenni et al., 2023b). These ap-
proaches, however, raise a fundamental question,
namely whether the modularity is inherent to the
original model, or simply an artifact introduced by
network modifications.

In this paper, we perform a thorough identifica-
tion of task-specific modularity through the lens
of neuron behaviors, without altering the original
parameters or architectures. We focus on the neu-
rons — the intermediate activations inside the Feed-
Forward Networks (FFN) — to investigate if they
indicate task-specific modularity features.

As FFN neurons are active (>0) or inactive (=0)
due to the ReLU activation function2, this binary
activation state offers a clear view of their contribu-
tions to the network’s output. Intuitively, neurons
that remain inactive for one task but show signif-
icant activation for another may be indicative of
specialization for the latter. More importantly, this
approach ensures that both parameters and hidden
states remain unchanged, affirming the observed
modularity is inherent to the original model.

3.1 Identifying Specialized Neurons

We choose multilingual translation as a testbed,
treating each translation direction as a distinct task
throughout the paper. We start with a pre-trained
multilingual model with dff as its dimension of the
FFN layer. We hypothesize the existence of neuron
subsets specialized for each task and describe the
identification process of an FFN layer as follows.

Activation Recording. Given a validation
dataset Dt for the t-th task, we measure activation
frequencies in an FFN layer during validation.
For each sample xi ∈ Dt, we record the state
of each neuron after the activation function σ(·),
reflecting whether the neuron is active or inactive
to the sample. We use a binary vector ati ∈ Rdff

to store this neuron state information. Note that
2For activation functions like GeLU, we consider neurons

inactive when their values are ≤ 0, as discussed in Section 6.2.

this vector aggregates neuron activations for all
tokens in the sample by taking the neuron union of
them. By further merging all of the binary vectors
for all samples in Dt, an accumulated vector
at =

∑
xi∈Dt

ati can be derived, which denotes the
frequency of each neuron being activated during a
forward pass given a task-specific dataset Dt.

Neuron Selection. We identify specialized neu-
rons for each task t based on their activation fre-
quency at. A subset of neurons St

k is progressively
selected based on the highest at values until reach-
ing a predefined threshold k, where

∑

i∈St
k

at(i) >= k

dff∑

i=1

at(i) (1)

Here, the value at(i) is the frequency of the ac-

tivation at dimension i, and
∑dff

i=1 a
t
(i) is the total

activation of all neurons for an FFN layer. k is a
threshold factor, varying from 0% to 100%, indi-
cating the extent of neuron activation deemed nec-
essary for specialization. A lower k value results
in higher sparsity in specialized neurons; k = 0
means no neuron will be involved, while k = 100
fully engages all neurons, the same as utilizing the
full capacity of the original model. This dynamic
approach emphasizes the collective significance of
neuron activations up to a factor of k. In the end,
we repeat these processes to obtain the specialized
neurons of all FFN layers for each task.

3.2 Neuron Analysis on EC30
In this section, we describe how we identify special-
ized neurons on the EC30 dataset (Tan and Monz,
2023), where we train an MMT model covering
all directions. EC30 is a multilingual translation
benchmark that is carefully designed to consider
diverse linguistic properties and real-world data
distributions. It collects high to low-resource lan-
guages, resulting in 30 diverse languages from 5
language families, allowing us to connect our ob-
servations with linguistic properties easily. See
Sections 5 for details on data and models.

3.2.1 Neuron Overlaps Reflect Language
Proximity

We identified specialized neurons following Sec-
tion 3.1, while setting the cumulative activation
threshold k at 95%. This implies that the set of
specialized neurons covers approximately 95% of
the total activations. Intuitively, two similar tasks
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Figure 1: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the first decoder
FFN layer across all out-of-English translation directions to measure the degree of overlap. Darker cells indicate
stronger overlaps, with the color threshold set from 40 to 80 to improve visibility.

should have a high overlap between their special-
ized neuron sets. Therefore, we examined the over-
laps among specialized neurons across different
tasks by calculating the Intersection over Union
(IoU) scores: For task ti and tj , with specialized
neurons denoted as sets Si and Sj , their overlap is
quantified by Eq. 2.

IoU(Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj | (2)

Figure 1 shows the IoU scores for specialized
neurons across tasks in the first decoder layer. Fig-
ures of other layers are in A.9. We observe a struc-
tural separation of neuron overlaps, indicating a
preference for language specificity. Notably, neu-
ron overlap across language families is relatively
low, a trend more pronounced in encoder layers
(Figure 8). In addition, this structural distinction
generally correlates with language proximity as in-
dicated by the clustering pattern in Figure 1. This
implies that target languages from the same fam-
ily are more likely to activate similar neurons in
the decoder, even when they use different writing
systems, e.g., Arabic (ar) and Hebrew (he).

We also provide a phylogenetic tree analysis
quantifying the correlation between neuron over-
laps and linguistic distances in A.9. Moreover, we
show that neuron overlaps show linguistic traits
beyond family ties, exemplified by notable over-
laps between Maltese (mt) and languages in the
Romance family due to vocabulary borrowing.

Figure 2: Progression of distribution of IoU scores for
specialized neurons across layers on the EC30 dataset.
The scores are measured for different source and target
languages in the Encoder and Decoder, respectively.

3.2.2 The Progression of Neuron Overlaps

To analyze how specialized neuron overlaps across
tasks evolve within the model, we visualize the IoU
score distribution across layers in Figure 2. For
each layer, we compute the pair-wise IoU scores
between all possible tasks and then show them in a
distribution. Overall, we observe that from shallow
to deeper layers, structural distinctions intensify in
the decoder (decreasing IoU scores) and weaken in
the encoder (increasing IoU scores).

Furthermore, all neuron overlaps increase as we
move up the encoder, regardless of whether these
tasks are similar or not. This observation may sug-
gest that the neurons in the encoder become more
language-agnostic, as they attempt to map different
scripts into semantic concepts. As for the Decoder,
the model presents intensified modularity in terms
of overlaps of specialized neurons. This can be
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seen by all overlaps becoming much smaller, indi-
cating that neurons behave more separately.

Our findings align with the common assump-
tion of the transformation process in Seq2Seq mod-
els. Similarly, Kudugunta et al. (2019) observed
that multilingual embeddings gradually, though not
perfectly, align within the encoder. However, our
research diverges as it focuses on binary neuron
activation patterns, rather than high-dimensional
embeddings. Moreover, unlike them, we show that
our findings can be leveraged to improve MMT.

4 Neuron Specialization Training

Our neuron structural analysis showed the presence
of specialized neurons within the Feed-Forward
Network (FFN) layers of a multilingual network.
We hypothesize that continuously training the
model, while leveraging these specialized neurons’
intrinsic modular features, can further enhance task-
specific performance. Building on this hypothesis,
we propose Neuron Specialization, an approach
that leverages specialized neurons to modularize
the FFN layers in a task-specific manner.

4.1 Vanilla Feed-Forward Network

We first revisit the Feed-Forward Network (FFN)
in Transformer (Vaswani et al., 2017). The FFN,
crucial to our analysis, consists of two linear lay-
ers (fc1 and fc2) with an activation function σ(·).
Specifically, the FFN block first processes the hid-
den state H ∈ Rn×d (n denotes number of tokens
in a batch) through fc1 layer W1 ∈ Rd×dff . Then
the output is passed to σ(·) and the fc2 layer W2,
as formalized in Eq 3, with bias terms omitted.

FFN(H) = σ(HW1)W2. (3)

4.2 Specializing Task-Specific FFN

Next, we investigate continuous training upon a
subset of specialized parameters within FFN for
each task. Given a pre-trained vanilla multilingual
Transformer model with tags to identify the lan-
guage pairs, e.g., Johnson et al. (2017), we can
derive specialized neuron set St

k for each layer of a
task3 t and threshold k following the method out-
lined in Section 3.1. Then, we derive a boolean
mask vector mt

k ∈ {0, 1}dff from St
k, where the i-

th element in mt
k is set to 1 only when i ∈ St

k, and
apply it to control parameter updates. Specifically,

3We treat each translation direction as a distinct task.

we broadcast mt
k and perform Hadamard Product

with W1 in each FFN layer as follows:

FFN(H) = σ(H(mt
k ⊙W1))W2. (4)

mt
k plays the role of controlling parameter up-

date, where the boolean value of i-th element in
mt

k denotes if the i-th row of parameters in W1 can
be updated or not for each layer4 during continues
training. Broadly speaking, our approach selec-
tively updates the first FFN (fc1) weights during
back-propagation, tailoring the model more closely
towards specific translation tasks and reinforcing
neuron separation.

Note that while fc1 is selectively updated for
specific tasks, other parameters are universally up-
dated to maintain stability, and the same masking
is applied to inference to ensure consistency. In
addition, applying a mask to W1 will nullify the
contribution of the corresponding row in W2 to
the final output, thus, there is no need to apply
task-specific masks to W2, as the masking of suf-
ficiently controls the influence on the output. Our
pseudocode is in Appendix A.10.

Relevant studies like Xie et al. (2021), selec-
tively pruning output hidden states for modules
like attention and FFNs during training and infer-
ence. In contrast, we utilize sparse sub-networks
(fc1 weights) since we found FFN neurons are al-
ready specialized.

5 Experimental Setup

We describe the experimental setups in this section.
Note that we utilize the same training data for both
pre-training and methods involving fine-tuning or
continual training. More details of the datasets are
in Appendix A.1.

5.1 Datasets

IWSLT. Following Lin et al. (2021), we con-
structed an IWSLT dataset with eight languages.
We learned a 30k SentencePiece unigram (Kudo
and Richardson, 2018) shared vocabulary and ap-
plied temperature sampling with τ = 2. Note that
we evaluate on Flores-200 (Costa-jussà et al., 2022)
by merging devtest and test, as our test set.

EC30. We further validate our methods on EC30
dataset (Tan and Monz, 2023), which features
61 million parallel training sentences across 60

4Note that mt
k is layer-specified, we drop layer indexes

hereon for simplicity of notation.
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English-centric directions, representing five lan-
guage families and various writing systems. We
classify language pairs into low-resource (=100k),
medium-resource (=1M), and high-resource (=5M)
categories. We build a 128k size shared unigram
vocabulary. Aligning with the original EC30 setups,
we use Ntrex-128 (Federmann et al., 2022) as the
validation set. Also, we use Flores-200 (merging
devtest and test) as the test set for evaluation.

5.2 Systems
We compare our method with strong open-source
baselines that share similar motivations in reducing
interference for multilingual translation tasks.

mT-small. For IWSLT, we train an mT-small
baseline model on Many-to-Many directions as
per Lin et al. (2021): a 6-layer Transformer with 4
attention heads, d = 512, dff = 1,024.

mT-big For EC30, we train a mT-big baseline
model on Many-to-Many directions following Wu
and Monz (2023). It has 6 layers, with 16 attention
heads, d = 1,024, and dff = 4,096.

Fine-Tune. We finetune baselines with the same
routine as our Neuron Specialization Training.

Adapters. We employ two adapter methods: 1)
Language Pair Adapter (AdapterLP) and 2) Lan-
guage Family Adapter (AdapterFam). We omit
AdapterFam for IWSLT due to its limited languages.
AdapterLP inserts adapter modules based on lan-
guage pairs, demonstrating strong effects in re-
ducing interference while presenting no parame-
ter sharing (Bapna and Firat, 2019). In contrast,
AdapterFam (Chronopoulou et al., 2023) facilitates
parameter sharing across similar languages by train-
ing modules for each language family. Their bottle-
neck dimensions are 128 and 512 respectively. See
Appendix A.2 for more training details.

LaSS. Lin et al. (2021) proposed LaSS to lo-
cate language-specific sub-networks following the
lottery ticket hypothesis, i.e., finetuning all transla-
tion directions from a pre-trained model and then
pruning based on magnitude. They then continu-
ally train the pre-trained model by only updating
the sub-networks for each direction. We adopt
the strongest LaSS configuration by applying sub-
networks for both attention and FFNs.

Parameter Differentiation (PD). PD dynami-
cally differentiates shared parameters into task-
specialized ones to reduce interference (Wang and

Zhang, 2022). To avoid over-differentiation, we set
upper-bound (ub=100%) to limit the final model
size (see more experiments in A.2.6). Due to the
lack of multi-GPU support in the official implemen-
tation, we only employ PD in IWSLT experiments.

5.3 Implementation and Evaluation

To ensure fair comparisons, we use the fixed train-
ing routine for all compared methods, see detailed
training and model specifications in Appendix A.2.
For evaluation, We adopt the tokenized BLEU (Pa-
pineni et al., 2002) for the IWSLT and detokenized
SacreBLEU5 (Post, 2018) for the EC30. In ad-
dition, we report ChrF++ (Popović, 2017) and
COMET (Rei et al., 2020) in Appendix A.6.

6 Results and Analyses

6.1 Small-Scale Results on IWSLT

We show results on IWSLT in Table 1. For Many-
to-One (M2O) directions, our method receives an
average +1.7 BLEU gain over the baseline, achiev-
ing the best performance among all approaches.
The AdapterLP, with a 67% increase in parame-
ters over the baseline model, shows weaker im-
provements (+0.8) than our method. As for One-
to-Many (O2M) directions, we observed weaker
performance gains for all methods. While the gains
are modest (averaging +0.3 BLEU), our method
demonstrates consistent improvements across var-
ious languages in general. Finally, we show that
fine-tuning the baseline with the same setting as
our approach does not bring performance gains.

Figure 3: BLEU gains of shallower models over mT-
small on IWSLT show improved X-En performance at
the expense of En-X. Applying Neuron Specialization
reduces EN-X degradation and amplifies X-En gains.

Scaling up does not always reduce interference.
Shaham et al. (2023); Chang et al. (2023) have

5nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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Language
∆θ

Fa Pl Ar He Nl De It Es
Avg

Size 89k 128k 139k 144k 153k 160k 167k 169k

One-to-Many (O2M / En-X)
mT-small - 14.5 9.9 12.0 13.1 17.0 20.6 17.3 18.3 15.4
Fine-Tune 0% +0.1 -0.2 +0.2 +0.4 -0.4 -0.1 -0.3 -0.5 -0.1
AdapterLP +67% +0.1 -0.1 +0.4 +1.4 +0.2 +0.6 +0.1 +0.4 +0.4

LaSS 0% -2.6 0 +0.6 +0.7 -0.2 +0.7 -0.2 -0.4 -0.2
Param-Diff +100% -0.8 0 +1.0 +1.1 +0.2 +0.9 +0.4 +0.7 +0.4

Ours 0% +0.7 +0.1 +0.9 +0.6 +0.1 +0.1 +0.2 -0.3 +0.3

Many-to-One (M2O / X-En)
mT-small - 10.0 8.65 11.1 12.5 11.4 13.6 10.7 11.3 11.2
Fine-Tune 0% +0.3 -0.2 +0.1 +0.8 +0.7 +0.3 -0.2 0 +0.2
AdapterLP +67% +0.9 +0.6 +0.9 +1.0 +0.8 +1.0 +0.9 +0.3 +0.8

LaSS 0% +1.2 +0.6 +0.9 +1.4 +1.1 +1.6 +1.6 +0.8 +1.2
Param-Diff +100% +1.7 +1.3 +1.3 +1.9 +1.6 +2.2 +1.7 +1.3 +1.6

Ours 0% +1.6 +1.2 +1.7 +2.0 +1.9 +2.1 +1.8 +1.4 +1.7

Table 1: BLEU improvements over the baseline (mT-small) on IWSLT. ∆θ denotes the relative parameter increase
over the baseline, and ’Fine-Tune’ signifies finetuning mT-small with the same setting as ’Ours’.

found scaling up the model capacity reduces in-
terference, even under low-resource settings. We
then investigate the trade-off between performance
and model capacity by employing mT-shallow, a
shallower version of mT-small with three fewer lay-
ers (with ∆θ = −39% for parameters, see Table 8
for details). Surprisingly, in Figure 3, we show
that reducing parameters improved Many-to-One
(X-En) performance but weakened One-to-Many
(En-X) results. This result indicates that scaling up
the model capacity does not always reduce interfer-
ence, but may show overfitting to have performance
degradation. Furthermore, we show that imple-
menting Neuron Specialization with mT-shallow
enhances X-En performance in all directions while
lessening the decline in En-X translation quality.

6.2 Large-Scale Results on EC-30

Similar to what we observed in the small-scale
setting, we find notable improvements when we
scale up on the EC30 dataset. Table 2 shows con-
sistent improvements across high-, medium-, and
low-resource languages, with an average gain of
+1.3 SacreBLEU over the baseline. LaSS, while
effective in high-resource O2M pairs, presents lim-
itations with negative impacts (-1.0 score) on low-
resource languages, highlighting difficulties in sub-
network extraction for low-resource languages.

In contrast, our method achieves stable and con-
sistent gains and passes statistical significance tests
in A.4. The AdapterLP , despite increasing parame-
ters by 87% compared to the baseline, falls short

of our method in boosting performance. Similar
to experiments on IWSLT, we found fine-tuning
the baseline on EC30 also brings worse/unchanged
performance, suggesting the effectiveness of our
method. Additionally, we show that applying Neu-
ron Specialization in the encoder or decoder de-
livers similar gains, with both combined offering
stronger performance.

Random Mask. We applied Neuron Specializa-
tion Training using random masks that masked
30% fc1 weights to validate the effectiveness of our
method in locating task-specific neurons. Table 2
shows that such random strategy sacrifices perfor-
mance, especially for low-resource languages.

Figure 4: ChrF performance on 870 zero-shot directions
across High, Medium, and Low-resource languages.
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7
Fine-Tune 0% +0.3 +0.2 +0.3 +0.3 +0.2 +0.3 +0.1 -0.4 -0.2 +0.2 0 +0.1
AdapterFam +70% +0.7 +0.3 +0.5 +0.7 +0.3 +0.5 +1.1 +0.5 +0.8 +0.8 +0.4 +0.6
AdapterLP +87% +1.6 +0.6 +1.1 +1.6 +0.4 +1.0 +0.4 +0.4 +0.4 +1.2 +0.5 +0.8

LaSS 0% +2.3 +0.8 +1.5 +1.7 +0.2 +1.0 -0.1 -1.8 -1.0 +1.3 -0.3 +0.5
Random 0% +0.9 -0.5 +0.2 +0.5 -0.7 -0.2 -0.3 -1.5 -0.9 +0.5 -0.9 -0.2

OursEnc 0% +1.2 +1.1 +1.1 +1.0 +1.0 +1.0 +0.7 +0.8 +0.8 +1.0 +1.0 +1.0
OursDec 0% +1.2 +1.1 +1.1 +0.9 +1.1 +1.0 +0.7 +1.1 +0.9 +0.9 +1.1 +1.0

Ours 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3

Table 2: Average SacreBLEU improvements on the EC30 dataset over the baseline (mT-big), categorized by High,
Medium, and Low-resource translation directions. ’Random’ denotes continually updating the model with randomly
selected task-specific neurons. ’OursEnc’ and ’OursDec’ indicate Neuron Specialization applied solely to the Encoder
and Decoder, respectively, while ’Ours’ signifies the method applied to both components.

Zero-Shot Translation. We further evaluated our
method on 870 zero-shot translation directions. For
an unseen zero-shot direction (Src-Tgt), we con-
struct its mask during inference using the Encoder
mask from Source-to-English (Src-En) and the De-
coder mask from English-to-Target (En-Tgt). We
show an average gain of +7.4 and +3.1 on ChrF
and SacreBLEU scores over the baseline (mT-big).
Of these, 847 directions improved, while 23 have
minor declines. We present the comparison in Fig-
ure 4, and more details can be found in A.7.

Wider and Deeper Models. We experiment with
larger models by scaling up the width and depth
(see details in A.5). Table 3 shows we achieve
consistent performance gains, confirming the effec-
tiveness of our approach for larger configurations.

Methods
SacreBLEU COMET

Big Wide Deep Big Wide Deep

Baseline 27.7 28.3 28.8 79.1 79.7 80.0
Ours 29.0 29.4 29.7 80.0 80.5 80.7

Table 3: Performance comparison between baseline
models and our methods on three configurations.

The role of threshold factor. We explore the
impact of our sole hyper-parameter k (neuron se-
lection threshold factor) on performance. As men-
tioned in Section 3.1, a smaller k results in more
sparse specialized neuron selection and fc1 weights.
Figure 5 shows that our method delivers consistent
and positive gains without extensive tuning. More
explanations can be found in A.8.

Figure 5: SacreBLEU gains of our method over the mT-
large baseline on EC30. The x-axis represents the factor
k and the dynamic sparsity of fc1 layers, with values
ranging from minimum to maximum achieved sparsity.

Efficiency Comparisons. We compare efficiency
across three aspects (Table 5). First, adding
lightweight language pair adapters results in an
+87% increase in trainable parameters over the
baseline. Second, our method, which locates spe-
cialized neurons in just 5 minutes, is significantly
faster than LaSS, which takes 33 hours with 4
Nvidia A6000 GPUs. Finally, regarding memory
costs essential for handling multiple languages in
deployment, our method is more economical, re-
quiring only 1-bit masks for the FFN neurons.

Model △θ △Tsubnet △ Memory

AdapterLP +87% n/a 1.42 GB
LaSS 0% +33 hours 9.84 GB
Ours 0% +5 minutes 3e-3 GB

Table 5: Efficiency comparison on EC30 dataset regard-
ing extra trainable parameters (△θ: relative increase
over the baseline), extra processing time for subnet ex-
traction (△Tsubnet), and extra memory (△ Memory).
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Lang De Es Cs Hi Ar Lb Ro Sr Gu Am High Low
Size 5m 5m 5m 5m 5m 100k 100k 100k 100k 100k Avg Avg

One-to-Many
Bilingual 36.3 24.6 28.7 43.9 23.7 5.5 16.2 17.8 12.8 4.1 31.8 11.3
mT-big -4.7 -1.5 -3.6 -4.4 -4.7 +9.0 +8.9 +6.2 +13.9 +3.1 -3.7 +8.2
Ours -2.0 -0.2 -1.7 -2.4 -3.0 +10.8 +10.0 +8.2 +16.4 +3.7 -1.9 +9.8

Many-to-One
Bilingual 39.1 24.5 32.6 35.5 30.8 8.7 19.5 21.3 7.0 8.7 32.7 13.0
mT-big -1.5 +0.9 +0.2 -1.8 -2.3 +13.7 +11.9 +10.3 +18.2 +12.5 -1.1 +13.3
Ours -0.3 +1.7 +1.8 -0.2 -0.3 +15.3 +12.4 +11.3 +19.6 +14.1 +0.3 +14.5

Table 4: SacreBLEU score comparisons for Multilingual baseline and Neuron Specialization models against
Bilingual ones on the EC30 dataset, limited to 5 high- and low-resource languages due to computational constraints.
Red signifies negative interference, Blue denotes positive synergy, with darker shades indicating better effects.

Neuron Specialization Beyond ReLU. We vali-
date the adaptability of our method with the GeLU
activation function, as it produces negative activa-
tion values. We first train an mT-big baseline model
with GeLU, defining non-active neurons as ≤ 0,
keeping all other settings unchanged. The results
(Table 6) show that our method also works with
GeLU, yielding consistent improvements (see de-
tails in Table 14). We leave exploring other thresh-
olds for defining inactive FFN neurons to future
work.

Methods
All (61M)

SacreBLEU ChrF Comet

mT-bigrelu 27.7 52.2 79.1
Oursrelu 29.0 53.3 80.0

mT-biggelu 27.9 52.3 79.2
Oursgelu 28.9 53.2 80.1

Table 6: Performance comparison between the relu and
gelu backbone models and our method.

6.3 The Impact of Reducing Interference

In this section, we measure to what extent our
method mitigates interference and enhances knowl-
edge transfer. Similar to Wang et al. (2020),
we train bilingual models that do not contain in-
terference or transfers, then compare results be-
tween bilingual models, the multilingual baseline
model (mT-big), and our method (ours). We train
Transformer-big and Transformer-based models for
high- and low-resource tasks, see details in A.2.

In Table 4, we show that the multilingual model
(mT-big) facilitates clear positive transfer for low-
resource languages versus bilingual setups, leading

to +8.2 (O2M) and +13.3 (M2O) score gains. How-
ever, training a unified multilingual model incurs
negative interference, causing performance degra-
dation for high-resource languages (averaged -3.7
and -1.1 drops).

In contrast, our Neuron Specialization method re-
duces interference for high-resource settings, lead-
ing to +1.8 and +1.4 SacreBLEU gains over mT-
big in O2M and M2O directions. Moreover, our
method enhances low-resource task performance
with average gains of +1.6 (O2M) and +1.2 (M2O)
SacreBLEU over the mT-big, demonstrating its
ability to foster cross-lingual knowledge transfer.

7 Conclusions

In this paper, we have identified and leveraged in-
trinsic task-specific modularity within multilingual
networks to mitigate interference. We showed that
FFN neurons activate in a language-specific way,
and they present structural overlaps that reflect lan-
guage proximity, which progress across layers. We
then introduced Neuron Specialization Training to
leverage these natural modularity signals to struc-
ture the network, enhancing task specificity and
improving knowledge transfer. Our experimen-
tal results, spanning various resource levels, show
that our method consistently outperforms strong
baseline systems, with additional analyses demon-
strating reduced interference and increased knowl-
edge transfer. Our work deepens the understanding
of multilingual models by revealing their intrinsic
modularity, offering insights into how multi-task
models can be optimized without extensive modifi-
cations.
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Limitations

This study primarily focuses on Multilingual Ma-
chine Translation, a key approach in multi-task
learning, which serves as our primary testbed.
However, the exploration of multi-task capabilities
can extend beyond translation to a wider range of
Natural Language Processing tasks. Recent studies
have begun investigating the specific roles of FFN
neurons in multilingual processing (Tang et al.,
2024; Kojima et al., 2024), safety (Chen et al.,
2024), and information aggregation (Voita et al.,
2023) within Large Language Models. These ar-
eas remain unexplored in our research and present
promising directions for future work.

Recent research has shown that MLP modules re-
call and store knowledge, while Attention modules
are more likely to aggregate information (Meng
et al., 2022; Geva et al., 2021; Elhage et al., 2021;
Wang et al., 2023). In addition, extensive re-
search, including Mixture-of-Experts and language-
specific modules, studies and modifies FFN blocks.
Therefore, our focus on FFN specialization aligns
with these insights and complements existing re-
search. We leave investigations of other Trans-
former components, such as the layer normaliza-
tion modules, to future work.

Furthermore, we validated our method primar-
ily on models using the ReLU activation function,
though we also conducted experiments with GeLU,
which showed smaller performance improvements.
Exploring alternative thresholds for defining inac-
tive FFN neurons (beyond simply ≤ 0) may lead to
further gains, which we leave for future work.

Broader Impact

Recognizing the inherent risks of mistranslation
in machine translation data, we have made efforts
to prioritize the incorporation of high-quality data,
such as two open-sourced Multilingual Machine
Translation datasets: IWSLT and EC30. Addition-
ally, issues of fairness emerge, meaning that the ca-
pacity to generate content may not be equitably dis-
tributed across different languages or demographic
groups. This can lead to the perpetuation and am-
plification of existing societal prejudices, such as
biases related to gender, embedded in the data.
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A Appendix

A.1 Dataset details

Due to the difficulties of mining non-English-
centric Translation data, recent research (Johnson
et al., 2017; Zhang et al., 2020b,a; Tan and Monz,
2023; Wu and Monz, 2023; Shaham et al., 2023;
Pires et al., 2023) has increasingly focused on uti-
lizing English-centric datasets to explore Multilin-
gual Neural Machine Translation (MNMT). Fur-
thermore, Fan et al. (2021) have observed that train-
ing in M2M settings does not necessarily enhance
performance in supervised directions. Therefore,
our approach prioritizes English-centric datasets to
remain computationally feasible while still provid-
ing valuable insights into MNMT dynamics.

IWSLT We collect and pre-processes the IWSLT-
14 dataset following Lin et al. (2021). We refer
readers to Lin et al. (2021) for more details.

EC30 We utilize the EC30, a subset of the EC40
dataset (Tan and Monz, 2023) (with 10 extremely
low-resource languages removed in our experi-
ments) as our main dataset for most experiments
and analyses. We list the Languages with their ISO
and scripts in Table 7, along with their number of
sentences.

In general, EC30 is an English-centric Multi-
lingual Machine Translation dataset containing 61
million sentences covering 30 languages (exclud-
ing English). It collected data from 5 representative
language families with multiple writing scripts. In
addition, EC30 is well balanced at each resource
level, for example, for all high-resource languages,
the number of training sentences is 5 million. Note
that the EC30 is already pre-processed and tok-
enized (with Moses tokenizer), thus we directly
use it for our study.

A.2 Model and Training Details

We list the configurations and hyper-parameter set-
tings of all systems for the main training setting
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Germanic Romance Slavic Indo-Aryan Afro-Asiatic

ISO Language Script ISO Language Script ISO Language Script ISO Language Script ISO Language Script

High

(5m)

de German Latin fr French Latin ru Russian Cyrillic hi Hindi Devanagari ar Arabic Arabic

nl Dutch Latin es Spanish Latin cs Czech Latin bn Bengali Bengali he Hebrew Hebrew

Med

(1m)

sv Swedish Latin it Italian Latin pl Polish Latin kn Kannada Devanagari mt Maltese Latin

da Danish Latin pt Portuguese Latin bg Bulgarian Cyrillic mr Marathi Devanagari ha Hausa∗ Latin

Low

(100k)

af Afrikaans Latin ro Romanian Latin uk Ukrainian Cyrillic sd Sindhi Arabic ti Tigrinya Ethiopic

lb Luxembourgish Latin oc Occitan Latin sr Serbian Latin gu Gujarati Devanagari am Amharic Ethiopic

Table 7: Details of EC30 Training Dataset. Numbers in the table represent the number of sentences, for example,
5m denotes exactly 5,000,000 number of sentences. The only exception is Hausa, where its size is 334k (334,000).

Models Dataset
Num. Num. Num.

dim dff
max update

dropout
trainable params Layer Attn Head tokens freq

mT-shallow IWSLT 47M 3 8 512 1,024 2,560 4 0.1
Ours-shallow IWSLT 47M 3 8 512 1,024 2,560 4 0.1

PD-shallow (ub=51%) IWSLT 71M 3 8 512 1,024 2,560 4 0.1
PD-shallow (ub=None) IWSLT 118M 3 8 512 1,024 2,560 4 0.1

mT-small IWSLT 76M 6 8 512 1,024 2,560 4 0.1
LaSS-small IWSLT 76M 6 8 512 1,024 2,560 4 0.1
Ours-small IWSLT 76M 6 8 512 1,024 2,560 4 0.1

bilingual-low EC30 52M 6 2 512 1,024 2,560 1 0.3
bilingual-high EC30 439M 6 16 1,024 4096 2,560 10 0.1

mT-big EC30 439M 6 16 1,024 4,096 7,680 21 0.1
LaSS-big EC30 439M 6 16 1,024 4,096 7,680 21 0.1
Ours-big EC30 439M 6 16 1,024 4,096 7,680 21 0.1

mT-wide EC30 540M 6 16 1,024 8,192 7,680 21 0.1
Ours-wide EC30 540M 6 16 1,024 8,192 7,680 21 0.1

mT-large EC30 615M 12 16 1,024 4,096 7,680 21 0.1
Ours-large EC30 615M 12 16 1,024 4,096 7,680 21 0.1

Table 8: Configuration and hyper-parameter settings for all models in this paper. Num. Layer and Attn Head denote
the number of layers and attention heads, respectively. dim represents the dimension of the Transformer model, dff
means the dimension of the feed-forward layer. bilingual-low and -high represent the bilingual models for low and
high-resource languages.

(EC30) in Table 8. To maintain consistency and
comparability across all experiments, we employed
the same early stopping settings rather than fix-
ing the training duration for all experiments. We
use 4 NVIDIA A6000 (48G) GPUs to conduct
most experiments and implement them based on
Fairseq (Ott et al., 2019) with FP16. Lastly, we uti-
lize the same training data for both pre-training and
methods involving fine-tuning or continual train-
ing.

A.2.1 Global training settings
For all systems on both datasets, we adopt the
pre-norm and share the decoder input output em-
bedding. In addition, we use the Adam optimizer
(β1 = 0.9, β2 = 0.98, ϵ = 10−9) with 5e-4 learn-
ing rate and 4k warmup steps in all methods. Fur-

thermore, we use cross entropy with label smooth-
ing to avoid overfitting (smoothing factor=0.1) and
set early stopping to 20. Similar to Fan et al. (2021),
we prepend language tags to the source and target
sentences to indicate the translation directions for
all multilingual translation systems.

More importantly, we applied the same fixed rou-
tine across all experiments to ensure a fair compar-
ison among all multilingual systems. Other global
settings are the same for all systems to make fair
comparisons, such as learning rate, warm-up steps,
and batch size.

A.2.2 Bilingual models
We train bilingual models in section 6.3 to study
how much our method can reduce interference and
foster knowledge transfer. For bilingual models of
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low-resource languages, we adopt the suggested
hyper-parameter settings from Araabi and Monz
(2020), such as dff = 512, number of attention
head as 2, and dropout as 0.3. Furthermore, We
train separate dictionaries for low-resource bilin-
gual models to avoid potential overfitting instead of
using the large 128k shared multilingual dictionary.

For bilingual models of high-resource languages,
we adopt the 128k shared multilingual dictionary
and train models with the Transformer-big archi-
tecture as the multilingual baseline (mT-big). The
detailed configurations can be found in Table 8.

A.2.3 Language Pair Adapters
We implement Language Pair Adapters (Bapna and
Firat, 2019) by ourselves based on Fairseq. The
Language Pair Adapter is learned depending on
each pair, e.g., we learn two modules for en-de,
namely an english adapter on the Encoder side
and a German adapter on the Decoder side. Note
that, except for the unified pre-trained model, lan-
guage pair adapters do not share any parameters
with each other, preventing potential knowledge
transfers. We set its bottleneck dimension as 128
for all experiments of IWSLT and EC30.

IWSLT. For the IWSLT dataset that contains 8
languages with 16 translation directions, the mT-
small base model size is 76M. AdapterLP insert
3.2M extra trainable parameters for one direction,
thus resulting in 51.2M added parameters for all,
leading to 67% relative parameter increase over the
baseline model.

EC30. For the EC30 dataset that contains 30 lan-
guages with 60 translation directions, the mT-big
base model size is 439M. AdapterLP inserts 6.4M
extra trainable parameters for one direction, thus
resulting in 384M added parameters for all direc-
tions, leading to 87% relative parameter increase
over the baseline model. When training AdapterLP

for low-resource languages, we increased dropout
(0.1 -> 0.3) and decreased batch size (max-token:
7680 -> 2560) to avoid overfitting as suggested
by Bapna and Firat (2019).

A.2.4 Language Family Adapters
The Language Family Adapter (Chronopoulou
et al., 2023) is learned depending on each lan-
guage family, e.g., for all 6 Germanic languages in
the EC30, we learn two modules for en-Germanic,
namely the en adapter on the Encoder side and the
Germanic adapter on the Decoder side. We set its

bottleneck dimension as 512 for all experiments
for the EC30.

EC30. For the EC30 dataset that contains 30 lan-
guages with 60 translation directions, the mT-big
base model size is 439M. AdapterFam insert 25.3M
additional trainable parameters for one family (on
EN-X directions), thus resulting in 303.6M added
parameters for all families on both EN-X and X-
En directions, leading to 69% relative parameter
increase over the baseline model.

A.2.5 LaSS
When reproducing LaSS (Lin et al., 2021), we
adopt the code from their official Github page6

with the same hyper-parameter setting as they sug-
gested in their paper. For IWSLT, we finetune
the mT-small for each translation direction with
dropout=0.3, and we set dropout=0.1 for large-
scale EC30. We then identify the language-specific
parameters for attention and feed-forward modules
(the setting with the strongest gains in their paper)
with a pruning rate of 70%. We continue to train
the sparse networks while keeping the same setting
as the pre-training phase as they suggested.

Note that we observed different results as they
reported in the paper, even though we used the
same code, hyper-parameter settings, and corre-
sponding Python environment and package version.
We also found that He et al. (2023) reproduced
LaSS results in their paper, which shows similar
improvements (around +0.6 BLUE gains) over the
baseline of our reproductions. As for an improved
method over LaSS proposed by He et al. (2023),
we do not reproduce since no open-source code has
been released.

A.2.6 Parameter Differentiation
Wang and Zhang (2022) suggest that parameters

with conflicting inter-task gradients might lead to
optimization conflicts among tasks. To alleviate
such parameter interference, they propose PD that
dynamically differentiates shared parameters into
task-specialized ones. PD includes a crucial hyper-
parameter: the differentiation upper bound (ub).
This parameter limits the model’s size relative to
the original model size. For example, ub = 1.5
restricts the model size to 150% of the original,
while ub = None allows the model to grow without
restriction, which can result in bilingual models
with unlimited parameter differentiation, i.e., each

6https://github.com/NLP-Playground/LaSS
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parameter is only shared by one task in the final
model. We report two configurations of the Param-
eter Differentiation in Table 9.

A.3 Comparisons with M2M-100 Models

We choose multilingual Transformer architecture
as our baseline backbone, which has been com-
monly used as a strong baseline in many MNMT
studies (Pires et al., 2023; Shaham et al., 2023;
Arivazhagan et al., 2019; Wu et al., 2024), and is
widely recognized as a strong baseline within the
community (Chen et al., 2023; Wu et al., 2023; Pan
et al., 2021; Wu and Monz, 2023).

We further establish the strength of our baseline
models by comparing them to the M2M-100 mod-
els, which are state-of-the-art systems trained on an
extensive corpus of 7.5 billion parallel sentences.
In specific, we directly evaluated the trained M2M-
100 models provided in Fairseq 7. The results,
presented in Table 10, demonstrate that both our
baseline model (mT-big) and our proposed method
(Ours) achieve performance that is comparable to,
or even surpasses, the M2M-100 models.

A.4 Robustness tests

To show that the improvements of our method are
not due to random variance, we implemented our
method with different random seeds for the below
experiments and conducted statistical significance
tests for our main EC30 results.

A.4.1 Testing with Different Random Seeds

We run our method with different seeds and show
robust performance gains for both IWSLT and
EC30 datasets (see Table 12 and Table 13).

Seed O2M M2O

∆BLEU over mT-shallow
seed=222 +0.3 +1.8
seed=111 +0.3 +1.4

∆BLEU over mT-small

seed=222 +0.3 +1.7
seed=111 +0.6 +1.2

Table 12: Average BLEU improvements of our Neu-
ron Specialization method (Ours) over baselines (mT-
shallow and mT-small) on the IWSLT dataset.

7https://github.com/facebookresearch/fairseq/
tree/main/examples/m2m_100

Seed O2M M2O M2M

∆SacreBLEU over mT-big
seed=222 +1.5 +1.1 +1.3
seed=111 +1.3 +1.1 +1.2
seed=42 +1.4 +1.2 +1.3

Table 13: Average SacreBLEU improvements of our
Neuron Specialization method (Ours) over the baseline
(mT-big) on the EC30 dataset.

A.4.2 Statistical Significance Test

We conducted Paired approximate randomiza-
tion (Riezler and Maxwell III, 2005) paired sig-
nificance test to show that the improvements of
our method over the baseline (mT-big) on EC30
are statistically significant regarding SacreBleu and
ChrF++ metrics. In sum, for both metrics, 59/60
directions passed the test (p-value < 0.05) except
en-ha. The test is performed with the SacreBleu
Python package’s paired significance testing fea-
ture (–paired-ar).

A.5 Experiments on wider and deeper models

We conducted further experiments to determine
if our method retains its effectiveness with larger
models. We expanded the baseline model, mT-
big, in two key dimensions: a) the feed-forward
network (FFN) size, indicating the ’width’ of the
network; b) the number of layers, representing
the ’depth’ of the network. Specifically, we in-
troduced mT-wide, which features an expanded
FFN dimensionality (from 4,096 to 8,192), and mT-
large, which has increased layer count (from 6-6 to
12-12). See model config details in Table 8.

Following these modifications, we applied our
neuron specialization approach to these models.
The results, as shown in Table 11, demonstrate con-
sistent performance gains across both configura-
tions, further validating the efficacy of our method.

A.6 EC30 result using ChrF++ and COMET

Recent studies (Rei et al., 2020; Costa-jussà et al.,
2022) show that ChrF and COMET present high
levels of correlation with human judgments, and
automatic metrics based on pre-trained embeddings
can outperform human crowd workers (Freitag
et al., 2021). Notably, Costa-jussà et al. (2022)
found an increase of +0.5 in ChrF++ has been cor-
related with statistically significant improvements
in human evaluations, with a change of +1.0 in
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Language
∆θ

Fa Pl Ar He Nl De It Es
Avg

Size 89k 128k 139k 144k 153k 160k 167k 169k

One-to-Many (O2M / En-X)
mT-shallow - 14.3 8.7 10.8 11.8 16.0 19.1 16.3 17.3 14.3
Param-Diff +51% -0.1 +0.5 +0.2 +0.4 +0.3 +0.1 +0.3 +0.2 +0.2
Param-Diff +252% +0.8 +0.8 +0.6 +1.4 +0.5 +0.9 +0.6 +0.3 +0.6

Ours 0% +0.2 +0.6 +1.0 +1.1 -0.1 0 -0.1 -0.3 +0.3

Many-to-One (M2O / X-En)
mT-shallow - 10.9 9.4 11.7 14.3 13.1 15.5 11.9 12.5 12.4
Param-Diff +51% +0.3 +0.6 +0.9 +0.8 +0.8 +1.8 +1.2 +1.0 +0.9
Param-Diff +252% +1.7 +1.7 +1.5 +1.3 +2.1 +2.9 +2.5 +1.5 +1.9

Ours 0% +1.3 +1.3 +2.1 +2.1 +1.6 +2.5 +2.0 +1.7 +1.8

Table 9: Experiment results (BLEU) using mT-shallow backbone models on IWSLT. ∆θ denotes the relative
parameter increase over the mT-shallow. For Parameter Differentiation, we run the differentiation upper bound (ub)
by ub=0.51, ub=1.51, and ub=None, limiting the model size to 51%, 151% of the original one and allowing the
model to grow without restriction.

Methods θ
High (5M) Med (1M) Low (100K)

O2M M2O Avg O2M M2O Avg O2M M2O Avg

mT-big 438m 27.7 32.0 29.9 30.6 34.2 32.4 26.9 32.9 29.9
M2M-100 418m 23.3 28.0 25.7 30.8 32.9 31.9 24.6 32.0 28.3
M2M-100 1.2b 28.3 34.3 31.3 36.3 38.9 37.6 31.7 41.1 36.4

Ours-big 438m 29.6 33.3 31.5 32.0 35.5 33.8 28.1 33.7 30.9

Table 10: Performance comparisons on the EC30 test set using SacreBLEU. θ represents the number of parameters,
and ’Ours-big’ denotes our neuron specialization method applied to the mT-big. We excluded directions where the
M2M-100 models scored <=10 BLEU to ensure fair comparisons, resulting in 51 translation directions.

ChrF++ almost always perceptible to human evalu-
ators, which is studied on the FLORES test set.

To ensure a comprehensive evaluation, we
report various automatic metrics in this paper:
ChrF++(character level), SacreBleu (detokenized
word level), and COMET(representation level)
scores as extra results, as shown in Table 14, re-
spectively. We opted for the "wmt22-comet-da"
model (Rei et al., 2022), a widely used version
from Unbabel’s collection of models that serves
as the default choice. This model presents SOTA
performance in WMT Metrics Shared Task (Freitag
et al., 2022). Similar to what we observed in Sec-
tion 6.2, our Neuron Specialization presents consis-
tent performance improvements over the baseline
model while outperforming other methods such as
LaSS and Adapters.

Our method, applied to the same FLORES-200
test set, outperformed the baseline with an average
increase of +1.1 ChrF++ scores, where most gains
were greater than +1.0 ChrF++. This improvement
emphasizes the effectiveness of our approach, sug-

gesting a significant alignment with human evalua-
tive standards.

A.7 Reults in Zero-shot translations
Zero-shot neural machine translation (ZS-NMT)
represents a pivotal challenge in multilingual ma-
chine translation, aiming to handle language pairs
never seen during training. Although training
unified MMT systems enables zero-shot transla-
tions(Johnson et al., 2017), their performance falls
short of that seen in supervised directions. Recent
findings by Zhang et al. (2020b) suggest that larger
model sizes enhance ZS performance. Addition-
ally, Tan and Monz (2023) indicates that vocabu-
lary overlap and linguistic similarities contribute
to variations in ZS performance, and that stronger
En-centric capabilities might improve ZS results.

ZS-NMT Setups To further investigate whether
our method could bring benefits to zero-shot trans-
lations, we tested our method across 870 zero-shot
directions involving 30 languages. To do that,
we created masks using the Encoder mask from
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

SacreBLEU
mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7

Ours-big 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3

mT-wide +23% +0.8 +0.6 +0.7 +0.7 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6
Ours-wide +23% +2.2 +1.9 +2.1 +1.8 +1.7 +1.8 +1.4 +1.1 +1.3 +1.8 +1.5 +1.7

mT-large +40% +1.2 +1.2 +1.2 +1.0 +1.4 +1.2 +0.8 +1.6 +1.2 +1.0 +1.2 +1.1
Ours-large +40% +2.6 +2.3 +2.5 +1.9 +2.0 +2.0 +1.4 +2.2 +1.8 +2.0 +2.1 +2.0

ChrF++
mT-big - 52.4 57.6 55.0 54.0 56.6 55.3 42.5 50.0 46.3 49.6 54.7 52.2

Ours-big 0% +1.4 +1.1 +1.3 +1.1 +0.9 +1.0 +1.2 +0.8 +1.0 +1.2 +0.9 +1.1

mT-wide +23% +0.7 +0.7 +0.7 +0.7 +0.6 +0.7 +0.6 +0.7 +0.7 +0.7 +0.6 +0.7
Ours-wide +23% +1.8 +1.6 +1.7 +1.5 +1.4 +1.5 +1.3 +1.0 +1.2 +1.6 +1.3 +1.4

mT-large +40% +0.9 +0.9 +0.9 +0.9 +1.1 +1.0 +0.8 +1.4 +1.1 +0.9 +1.1 +1.0
Ours-large +40% +2.0 +1.8 +1.9 +1.5 +1.7 +1.6 +1.3 +1.8 +1.6 +1.6 +1.8 +1.7

COMET
mT-big - 82.4 83.9 83.2 81.1 80.1 80.6 73.8 73.4 73.6 79.1 79.1 79.1

Ours-big 0% +1.4 +1.0 +1.2 +0.9 +0.7 +0.8 +0.8 +0.7 +0.8 +1.0 +0.8 +0.9

mT-wide +23% +0.8 +0.6 +0.7 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.7 +0.6 +0.6
Ours-wide +23% +1.8 +1.4 +1.6 +1.3 +1.3 +1.3 +1.3 +1.2 +1.3 +1.5 +1.3 +1.4

mT-large +40% +1.0 +0.8 +0.9 +0.7 +1.0 +0.9 +0.9 +1.2 +1.1 +0.9 +1.0 +0.9
Ours-large +40% +2.1 +1.6 +1.9 +1.3 +1.6 +1.5 +1.3 +1.9 +1.6 +1.6 +1.7 +1.6

Table 11: The effectiveness of our method on different model configurations. The table shows the averaged
improvements on the EC30 dataset over the baseline (mT-big). ’Ours-big’, ’Ours-wide’, and ’Ours-large’ indicate
Neuron Specialization applied to the mT-big, mT-wide, and mT-large baselines respectively.

Source-to-English (Src-En) and the Decoder mask
from English-to-Target (En-Tgt).

ZS-NMT Results Overall, we observed an aver-
aged +3.1 SacreBLEU improvement on zero-shot
directions, with 847 out of 870 directions show-
ing improvements, and 23 directions experiencing
minor declines, averaging -0.3 SacreBLEU. De-
tailed results for high, medium, and low-resource
languages (denoted as H, M, and L) are presented
in Table 15, along with comparisons of directions
achieving baseline scores of 5 and 10 SacreBLEU
using both a baseline model (mT-big) and our
method are shown in Table 16.

Model H2H H2M H2L M2H M2M M2L L2H L2M L2L

mT-big 1.5 2.2 1.3 1.8 2.4 1.3 2.6 3.1 1.3
Ours +4.2 +4.7 +1.6 +4.1 +4.3 +1.5 +2.7 +2.8 +1.2

Table 15: SacreBLEU improvements of Neuron Spe-
cialization method (Ours) over the mT-big baseline on
zero-shot translations.

Model Num. ≥ 5 Num. ≥ 10

mT-big 37 2
Ours 381 95

Table 16: Number of directions that exceed 5 and 10
SacreBLEU scores for the baseline (mT-big) and our
method (Ours).

A.8 Sparsity versus Performance

For the Neuron Specialization, we dynamically se-
lect specialized neurons via a cumulative activa-
tion threshold k in Equation 1, which is the only
hyper-parameter of our method. Here, we discuss
the impact of k on the final performance and its
relationship to the sparsity. As mentioned in Sec-
tion 3.1, a smaller factor k results in more sparse
specialized neuron selection, which makes the fc1
weight more sparse as well in the Neuron Special-
ization Training process. In Figure 5, we show that
our method consistently outperforms the baseline
across a range of k values, from 50 to 97. This
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Methods ∆θ
High (5M) Med (1M) Low (100K) All (61M)

O2M M2O Avg O2M M2O Avg O2M M2O Avg O2M M2O Avg

SacreBLEU
mT-big - 28.1 31.6 29.9 29.7 31.6 30.6 18.9 26.0 22.4 25.5 29.7 27.7

Fine-Tune 0% +0.3 +0.2 +0.3 +0.3 +0.2 +0.3 -0.3 -0.4 -0.4 +0.3 0 +0.1
AdapterFam +70% +0.7 +0.3 +0.5 +0.7 +0.3 +0.5 +1.1 +0.5 +0.8 +0.8 +0.4 +0.6
AdapterLP +87% +1.6 +0.6 +1.1 +1.6 +0.4 +1.0 +0.4 +0.4 +0.4 +1.2 +0.5 +0.8

LaSS 0% +2.3 +0.8 +1.5 +1.7 +0.2 +1.0 -0.1 -1.8 -1.0 +1.3 -0.3 +0.5
Random 0% +0.9 -0.5 +0.2 +0.5 -0.7 -0.2 -0.3 -1.5 -0.9 +0.5 -0.9 -0.2

OursEnc 0% +1.2 +1.1 +1.1 +1.0 +1.0 +1.0 +0.7 +0.8 +0.8 +1.0 +1.0 +1.0
OursDec 0% +1.2 +1.1 +1.1 +0.9 +1.1 +1.0 +0.7 +1.1 +0.9 +0.9 +1.1 +1.0

Ours 0% +1.8 +1.4 +1.6 +1.4 +1.1 +1.3 +1.4 +0.9 +1.2 +1.5 +1.1 +1.3

mT-biggelu 0% +0.1 +0.2 +0.2 +0.1 +0.2 +0.2 +0.1 +0.2 +0.2 +0.1 +0.2 +0.2
Oursgelu 0% +1.5 +1.4 +1.5 +1.3 +1.1 +1.2 +1.1 +0.8 +1.0 +1.3 +1.1 +1.2

ChrF++
mT-big - 52.4 57.6 55.0 54.0 56.6 55.3 42.5 50.0 46.3 49.6 54.7 52.2

AdapterLP +87% +1.3 +0.2 +0.8 +1.1 +0.1 +0.6 +0.3 +0.3 +0.3 +0.9 +0.2 +0.5
AdapterFam +70% +0.6 +0.2 +0.4 +0.7 +0.3 +0.5 +1.1 +0.4 +0.8 +0.8 +0.3 +0.5

LaSS 0% +1.7 +0.8 +1.2 +1.3 +0.3 +0.8 -0.3 -1.5 -0.9 +0.9 -0.2 +0.5
Random 0% +0.7 -0.4 +0.2 +0.4 -0.5 -0.1 -0.5 -1.2 -0.9 +0.2 -0.7 -0.3

OursEnc 0% +1.0 +0.9 +1.0 +0.7 +0.9 +0.8 +0.6 +0.9 +0.8 +0.8 +0.9 +0.8
OursDec 0% +0.9 +0.9 +0.9 +0.6 +1.0 +0.8 +0.5 +1.2 +0.9 +0.7 +1.0 +0.9

Ours 0% +1.4 +1.1 +1.3 +1.1 +0.9 +1.0 +1.2 +0.8 +1.0 +1.2 +0.9 +1.1

mT-biggelu 0% +0.1 +0.1 +0.1 0 +0.1 +0.1 +0.1 +0.2 +0.2 +0.1 +0.1 +0.1
Oursgelu 0% +1.2 +1.0 +1.1 +1.0 +1.0 +1.0 +1.0 +0.6 +0.8 +1.1 +0.9 +1.0

COMET
mT-big - 82.4 83.9 83.2 81.1 80.1 80.6 73.8 73.4 73.6 79.1 79.1 79.1

AdapterLP +87% +0.9 +0.2 +0.5 +0.6 +0.2 +0.4 0 +0.1 0 +0.5 +0.2 +0.4
AdapterFam +70% +0.4 +0.1 +0.3 +0.4 +0.2 +0.3 +0.7 +0.3 +0.5 +0.5 +0.2 +0.4

LaSS 0% +1.5 +0.8 +1.2 +0.9 +0.6 +0.8 -0.2 -1.0 -0.6 +0.7 +0.1 +0.4
Random 0% +0.2 -0.1 +0.1 -0.1 -0.2 -0.2 -0.8 -0.9 -0.9 -0.2 -0.4 -0.3

OursEnc 0% +1.0 +0.8 +0.9 +0.5 +0.9 +0.7 +0.3 +0.9 +0.6 +0.6 +0.8 +0.7
OursDec 0% +0.9 +0.8 +0.9 +0.5 +1.0 +0.8 +0.3 +0.9 +0.6 +0.6 +1.0 +0.8

Ours 0% +1.4 +1.0 +1.2 +0.9 +0.7 +0.8 +0.8 +0.7 +0.8 +1.0 +0.8 +0.9

mT-biggelu 0% +0.1 +0.1 +0.1 0 0 0 0 +0.1 +0.1 0 +0.1 +0.1
Oursgelu 0% +1.2 +0.9 +1.1 +0.9 +1.1 +1.0 +0.9 +0.6 +0.8 +1.0 +0.9 +1.0

Table 14: Average improvements on the EC30 dataset over the baseline (mT-big). ’OursEnc’ and ’OursDec’ indicate
neuron specialization applied solely to the Encoder and Decoder, respectively, while ’Ours’ signifies the method
applied to both components. The best results are highlighted in bold.

demonstrates robust positive gains, suggesting that
our method is stable across various k settings.

In addition, we show that increasing k leads to
higher improvements in general, and the optimal
performance is about when k=95%. Such observa-
tion follows the intuition since when k is too low,
model capacity will be largely reduced. Moreover,
we find that when the FFN capacity is significantly
reduced (k being very small), we still observe per-
formance gains. Notably, even when 70%-83%
of FFN weights are zeroed out (as shown in Fig-

ure 5), our method still achieves an increase of +0.6
SacreBLEU. These results indicate that our method
can deliver consistent and positive gains without
extensive hyperparameter tuning.

Furthermore, in Figure 6, we show that the spar-
sity of the network presents an intuitive structure:
the sparsity decreases in the Encoder and increases
in the Decoder. This implies the natural signal
within the pre-trained multilingual model that neu-
rons progress from language-specific to language-
agnostic in the Encoder, and vice versa in the De-
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Figure 6: Sparsity progression of Neuron Specialization
when k = 95 on the EC30. We observe that the sparsity
becomes smaller in the Encoder and then goes up in the
Decoder. Note that this figure is based on the natural
signals extracted from the untouched pre-trained model,
and will be leveraged later in the process of Neuron
Specialization Training. This intrinsic pattern naturally
follows our intuition that specialized neurons progress
from language specific to agnostic the in Encoder, and
vice versa in the Decoder.

coder. Such observation is natural because it is re-
flected by the untouched network, similar to what
we observed in the Progression of Neuron overlaps
in Section 3.2.2.

A.9 Neuron Overlaps Visualization and
Phylogenetic Tree.

A.9.1 Phylogenetic Tree
In section 3.2, we show that neuron overlaps re-
flect language proximity, supported by visualizing
the IoU matrix for specialized neurons (Figure 1).
Here, we provide a more rigorous analysis quanti-
fying the correlation between neuron overlaps and
linguistic distances to provide stronger evidence of
how specialized neuron overlaps correlated with
language similarity.

To do that, we conduct the Complete Linkage
Clustering (Müllner, 2011; Bar-Joseph et al., 2001)
to build a phylogenetic tree8 using the IoU scores
for specialized neurons in the first decode FFN
layer. As Figure 7 shows, the result presents strong
evidence that neuron overlaps mirror the pattern of
language proximity.

A.9.2 Additional IoU Visualizations
We provide additional Pairwise Intersection over
Union (IoU) scores for specialized neurons in the

8The implementation is done using
scipy.cluster.hierarchy.linkage from the SciPy package.

first Encoder layer (Figure 8), last Encoder layer
(Figure 9), and last Decoder layer (Figure 10). The
figures show that the Neurons gradually changed
from language-specific to language-agnostic in the
Encoder, and vice versa in the Decoder.

A.10 Pseudocode of Neuron Specialization
We provide the pseudocode of our proposed
method, Neuron Specialization. We present the
process of Specialized Neuron Identification in Al-
gorithm. 1 and Neuron Specialization Training in
Algorithm. 2.
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Figure 7: Phylogenetic Tree of Languages using neuron overlap IoU scores in the first decoder layer (the IoU
values correspond to Figure 1). This figure presents strong evidence that neuron overlaps mirror the pattern of
language proximity.

Figure 8: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the first encoder
FFN layer across all X-En language pairs to measure the degree of overlap between language pairs. Darker cells
indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.

Figure 9: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the last encoder
FFN layer across all One-to-Many language pairs to measure the degree of overlap between language pairs. Darker
cells indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.
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Figure 10: Pairwise Intersection over Union (IoU) scores for specialized neurons extracted from the last decoder
FFN layer across all X-En language pairs to measure the degree of overlap between language pairs. Darker cells
indicate stronger overlap, with the color threshold set from 40 to 80 to improve visibility.

Algorithm 1 Specialized Neuron Identification

1: Input: A pre-trained multi-task model θ with dimensions d and dff ; a validation dataset D with T
tasks, where D = {D1, ..., DT }; and an accumulation threshold factor k ∈ [0%, 100%] as the only
hyper-parameter.

2: Output: A set of selected specialized neurons St
k for each task t.

3: for task t in T do
4: Step 1: Activation Recording
5: Initialize activation vector At = 0 ∈ Rdff

6: for sample xi in Dt do
7: Record activation state ati ∈ Rdff

8: At = At + ati ▷ Accumulate activation states
9: end for

10: at = At
|Dt| ▷ Compute average activation state for task t

11: Step 2: Neuron Selection
12: Initialize selected neurons set St

k = ∅
13: while selection condition not met do ▷ Refer to Eq. 1 for condition
14: Select neurons based on at and add them to St

k

15: end while
16: end for

Algorithm 2 Neuron Specialization Training

1: Input: A pre-trained multi-task model θ with dimensions d and dff . Corpora data C with T tasks that
contain both training and validation data. A set of selected specialized neurons St

k for each task t.
2: Output: A new specialized network θnew. Note that only the fc1 weight matrix will be trained

task-specifically, the other parameters are shared across tasks. In addition, θnew does not contain
more trainable parameters than θ due to the sparse network feature.

3: Derive boolean mask mt ∈ {0, 1}dff from St
k for each layer

4: while θnew not converge do
5: for task t in T do
6: W T

1 = mt ·W θ
1 ▷ We perform this for all layers, refer to EQ. 4

7: Train θnew using Ct ▷ All parameters will be updated, yet fc1 layers are task specific
8: end for
9: end while
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