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Abstract

We introduce a new database of cognate
words and etymons for the five main Romance
languages (Romanian, Italian, Spanish, Por-
tuguese, French), the most comprehensive one
to date with over 19,000 entries. We propose
a strong benchmark for the automatic recon-
struction of protowords for Romance languages
by applying a series of machine learning mod-
els and features on these data. The best re-
sults reach 90% accuracy in predicting the pro-
toword of a given cognate set, surpassing ex-
isting state-of-the-art results for this task and
showing that computational methods can be
very useful in assisting linguists with protoword
reconstruction.

1 Introduction and Related Work

Protoword reconstruction, consisting of recreat-
ing the words in a proto-language from their de-
scendants in daughter languages, is central to the
study of language evolution. As the foundation
of historical linguistics (Campbell, 2013; Mallory
and Adams, 2006) and the basis for linguistic phy-
logeny (Atkinson et al., 2005; Alekseyenko et al.,
2012; Dunn, 2015; Brown et al., 2008), protoword
reconstruction offers important pieces of informa-
tion concerning the geographical and chronologi-
cal dimensions of ancient communities (Heggarty,
2015; Mallory and Adams, 2006), at the same
time, allowing an insight into the cognitive and
cultural world of our ancestors. The traditional pro-
cess of reconstructing ancient languages consists of
the "comparative grammar-reconstruction" method
(Chambon, 2007; Buchi and Schweickard, 2014),
and the etymological data thus obtained can be used
as a source on human prehistory, corroborating the
archaeological inventory (Heggarty, 2015), and pro-
viding the basis for ‘linguistic paleontology’ (Epps,
2014). The reconstruction of a word automatically
implies a reconstruction of the surrounding reali-
ties, both natural and socio-cultural. For example,

the presence in different Indo-European languages
of obviously related words for ’beech’ or ’salmon’
allowed the reconstruction of words from Proto-
Indo-European and thus information about the ele-
ments of nature present in the immediate vicinity of
the Indo-Europeans could be extracted. In the ab-
sence of any clear documentary or archaeological
data, these lexical clues allowed the geographical
identification of the Indo-European homeland, also
facilitating the chronology of successive waves of
separation of Indo-European languages from the
common trunk.

In the case of Romance languages, although the
mother tongue - Latin - is attested, its presence in
written texts is not an exhaustive source for linguis-
tic, social, and historical analysis of the community
that spoke it. It is now generally accepted that the
spoken language represented a different diastatic,
diaphasic, and diamesic variety from written lan-
guage, used by the few educated people who de-
cided to express themselves in writing (Wright,
2002). The Latin language that we reconstruct
from words inherited in Romance languages is
thus the only concrete and reliable living variety
of the language from which Romance languages
originate, whether we call it oral/ vulgar Latin or
Proto-Romance. We will opt here for the name
"Proto-Romance" when we refer to the language
from which the Romance languages originate, as
this corresponds to the concept of protolanguage
and protoword (Buchi and Schweickard, 2014).

Furthermore, there are still numerous clearly
cognate words present in several Romance lan-
guages, whose etymon is not attested in Latin (nor
in any other language from which it might have
been borrowed). For example, in the case of It.
trovare ’find’, Fr. trouver, Cat. trobar, etymolo-
gists have hotly debated over the decades whether
one should reconstruct the protoform *tropare or
*turbare (Georgescu and Georgescu, 2020). A se-
ries of cognates attested in all Romance geograph-
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ical areas, like Rom. încă ’moreover’, It. anche,
Old Fr. anc, Cat. anc etc., has triggered over 15
etymological hypotheses over the last century, still
without a generally accepted solution.

Although etymologists’ interest in reconstruct-
ing the protolanguages has risen over the years,
they still encounter numerous gaps when using ex-
clusively the classical, manual methods (Buchi and
Schweickard, 2010, 2020). As the task of pro-
toword reconstruction plays an important role in
historical linguistics, studies have gone beyond
the comparative method in an attempt to auto-
mate the process (Atkinson, 2013; Oakes, 2000;
Bouchard-Côté et al., 2013; Ciobanu and Dinu,
2019). However, the task has been recognized
as difficult and challenging. Computational pro-
toword reconstruction is a fairly new direction of
study, and consequently even state of the art ap-
proaches have limitations. Complete automation
of the reconstruction process is still a desideratum.
Oakes (2000) proposed two systems (Jakarta and
Prague) that, combined, cover the steps of the com-
parative method for protolanguage reconstruction,
and several other approaches to reconstruct pro-
towords computationally had been attempted previ-
ously (Hewson, 1973; Lowe and Mazaudon, 1994;
Kondrak, 2002). The work of computational biol-
ogists such as Alexandre Bouchard-Côté, Russell
Gray, Robert McMahon, and Mark Pagel, and co-
authors took the protoword reconstruction one step
further by applying methods from computational
biology to the problem of the reconstruction of lan-
guage history, often in collaboration with linguists
(Pagel, 1999; Pagel et al., 2013; Bouchard-Côté
et al., 2009; Bouchard-Côté et al., 2013). In recent
years, researchers have introduced new methods for
protoword reconstruction, based on modern compu-
tational techniques (for example, CRF, transform-
ers, RNN, deep learning) (Ciobanu and Dinu, 2018;
Sims-Williams, 2018; Meloni et al., 2021; Fourrier,
2022; List et al., 2022; He et al., 2023a; Akavarapu
and Bhattacharya, 2023; Kim et al., 2023). The
computational methods are limited today by 1) the
available data (sparse, inconsistent) and 2) by the
insufficiency of linguistic knowledge embedded in
the systems.

The latest computational results on Romance
protoword reconstruction, in particular, are re-
ported on the database of (Meloni et al., 2021),
which contains 8,799 cognates set in Latin, Ital-
ian, Spanish, Portuguese, French, and Romanian

(not all full cognates set). This is a revision of the
dataset of (Dinu and Ciobanu, 2014) (used with
very good results in (Ciobanu and Dinu, 2018))
with the addition of cognates scraped from Wik-
tionary.

Starting with these remarks, our main contribu-
tions are:

1. We introduce a comprehensive Romance
database for protoword reconstruction by process-
ing RoBoCoP (Dinu et al., 2023), the largest Ro-
mance cognate-borrowing database obtained from
electronic dictionaries with etymological informa-
tion of Romanian, Italian, Spanish, Portuguese, and
French.

2. We propose a strong benchmark for automatic
protoword reconstruction, by applying a set of ma-
chine learning models (using various feature sets
and architectures) on any cognate set of Romance
languages.

The rest of the paper is organized as follows:
In Section 2 we present the database that we have
created and offer details about the processing steps
involved; in Section 3 we introduce our approach
for the automatic protoword reconstruction, along
with methodological details; the results of our pro-
posed experiments are fleshed out in Section 4;
and a comprehensive error analysis is described
in Section 5. The last section is dedicated to final
remarks.

2 Data

A major inconvenience in Historical Linguistics in
general, and in computational approaches of pro-
toword reconstruction in particular is the scarcity
of available data. Nonetheless, in the last few years,
several initiatives have been undertaken in this di-
rection. (Ciobanu and Dinu, 2018) developed a
database of Latin protowords, further expanded by
(Meloni et al., 2021) with Wiktionary data. Re-
cently, this dataset was extensively used for sev-
eral studies (Kim et al., 2023; He et al., 2023b;
Akavarapu and Bhattacharya, 2023). In 2023, Dinu
et al. (2023) published the most comprehensive
database of Romance related words, named RoBo-
Cop. It contains cognates and etymons in five
Romance languages: Italian, Spanish, Portuguese,
Romanian, and French. It has already been used
with good results on prominent historical linguistic
tasks such as cognate identification (Dinu et al.,
2023), cognate-borrowings discrimination (Dinu
et al., 2024b), and determining the borrowing di-
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axis

RO ES PT IT FR
axă eje áxis asse ais
axis axis áxis asse ais
ax axis áxis asse ais
axis eje áxis asse ais
axă axis áxis asse ais
ax eje áxis asse ais

Table 1: All cognate tuples present in the ProtoRom
dataset for the Latin etymon axis.

rection (Dinu et al., 2024a).

2.1 The ProtoRom Database

Starting with the RoBoCoP database (Dinu et al.,
2023), in order to obtain cognate sets with common
etymons in the five Romance languages, we filtered
out the words with Latin etymology. We then cre-
ated maximal tuples of words in the Romance lan-
guages with the same etymon (< wLi >, e), where
Li are all the languages among the five where the
etymon e engendered a word, and wLi are the cor-
responding words in each of the languages dis-
cussed. In cases where multiple words in Li derive
from the same etymon e, we created multiple tu-
ples (< wLi >, e) with all possible combinations
of cognate words < wLi > and the same etymon e.
For an example of such a case see Table 1.

We curated the obtained data, with the help of
linguists. In the process, we discarded sets that
contained irrelevant or erroneous information, e.g.:
erroneous lexical forms (e.g. Lat. videre ’see’ -
It. vedere - Fr. voir - Ro. videa (correct: vedea);
included a verb form in any mood other than the
infinitive (e.g. Lat. videre - Sp. veas (subjunctive)
/ viendo (gerundive) / etc.); retained the reflexive
form of a verb (e.g. Lat. ponere ’put’ - It. porre -
Sp. ponerse (poner + reflexive pronoun se), etc.);
or contained words derived on Romance ground
(e.g. Lat. dens ’tooth’ - It. dente - Ro. dint,os (=
dinte + suff.-os), etc.).

We were able to apply manual corrections for
all these errors for the smaller subset of entries in
the database that have a cognate in each of the five
languages. For the rest of the full database Pro-
toRom, we applied a semi-automatic correction by
lemmatizing the cognate words, using the default
lemmatizers1 implemented in the spaCy2 library
for each of the Romance languages. In all exper-

1using the models, for each language L
2https://spacy.io/usage/models

iments described in the rest of the paper, we use
the lemmas of the cognates instead of the original
forms found in the dictionary.

In addition to the correct series thus retained,
we integrated the database created by Reinheimer-
Rîpeanu (2001), a high quality collection of cog-
nate series manually selected from the etymologi-
cal dictionaries of each Romance language, some
of which still not digitized (which probably ex-
plains why certain cognate sets from this collection
were not among ones in the RoBoCoP database).
We thus obtained a new database of cognate sets.

The proposed database contains a total 39,973
full or partial cognate sets along with their etymons.
For the experiments in this paper, we focus on
the 19,222 entries with at least 2 cognates. We
choose this subset in order to ensure the robustness
of our experiments, focusing on Latin etymons that
engendered at least two cognates in two different
languages, and we ignore the entries with only one
cognate for a given etymon. Going further, this
restricted dataset will be referred to as ProtoRom3.
A cognate set is composed of a tuple of words in
different languages with a common etymon, where
the tuple can be either a full set of 5 cognates or a
partial set of 2 to 4 cognates, where the cognate in
one or more of the languages is missing (the Latin
etymon did not produce an attested word in these
languages according to our sources).

There are 1,245 full cognate sets in the database,
the rest being partial cognate sets. To facilitate
distinguish- ing between the two settings, we name
the first one ProtoRom-all5, and the second one
ProtoRom. When we leave out one of the lan-
guages, we can obtain more full sets of 4-tuples
(sets with at least 4 cognates) as follows: 1,480 if
we leave out Italian, 2,493 if we leave out French,
1,489 when we leave out Portuguese, 1,504 when
we leave out Spanish, and 1,946 by leaving out
Romanian. The statistics detailing the number of
partial cognate sets in all combinations are shown
in Table 2.

ProtoRom is the largest database of cognate sets
for Romance languages so far, significantly exceed-
ing the widely used database for this task (Meloni
et al., 2021), containing 8,799 cognate sets of Ro-
manian, French, Italian, Spanish, Portuguese words
and the corresponding Latin form (which, in turn,
is an extension of Ciobanu and Dinu (2018)’s orig-

3The dataset is available for research purposes upon re-
quest at: https://nlp.unibuc.ro/resources.html#protorom
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inal dataset of 3,218 cognate sets, by adding data
from Wiktionary).

3 Methodology and Experiments

3.1 Experimental Setting

For our experimental trials, we consider two set-
tings: In the first one, we limit our dataset to only
the full cognate sets (i.e. 5-tuples of cognates from
each of the five languages, that originate from the
same Latin etymon), while in the second one we
consider all cognate sets (with at least two cognates
from different languages, per etymon, as previ-
ously mentioned). The second setting uses the full
breadth of our proposed dataset (ProtoRom-all5),
whereas the first one is a strict subset (ProtoRom).

Data splitting. In order to train and validate our
models, we split our datasets into 80% : 10% :
10% train-dev-test subsets. Because of the nature
of the cognate sets, generating a language-level
stratified split is a non-trivial task. Since a Latin
etymon can produce more than one reflex in a given
language, we end up with

∏
imax(1, nLi) cognate

sets for a given etymon, where nLi is the number
of reflexes generated by that etymon in language
Li.

We propose a random split methodology that
achieves the following properties: A Latin etymon
and all of its cognate sets are not allowed to be
part of more than one split; the raw number of
cognate sets (i.e. entries in the dataset) follows the
80 : 10 : 10 distribution; the distribution of unique
Latin etymons is also 80 : 10 : 10; for each of the
five languages; and computing the distribution of
unique reflexes in that language yields the same
ratio across the splits. In other words, if we only
keep the Latin etymons and their reflexes in only
one language, we obtain a monolingual task with
the same 80 : 10 : 10 split.

In order to perform these splits, we construct for
each Latin etymon a 5-dimensional vector (nLi)i,
using the previous definition of nLi . In order to
obtain a split of ratio 0 < p < 1, we want to select
such vectors that, when summed together, equal
p · (NLi)i, where NLi is the total number of unique
reflexes from language Li. In other words, we face
a task equivalent to a five-dimensional knapsack
problem, which is not feasible given the large total
capacities. Considering that these vectors contain
particularly small values, and are somewhat uni-
formly distributed, plus the large capacities that we

have to fill, we are able to randomly select etymons
and their associated cognate sets and add them to
any of the three splits, as long as they fit. This
approach yields the original split distribution with
some small deviations (< 1%).

Also note that after splitting the ProtoRom-all5
dataset, containing only the full cognate sets, we
can use it as a starting point for splitting the rest of
the ProtoRom dataset, thus ensuring that no train-
ing examples from one setting leaks into the vali-
dation of the other one.

Features. The proposed approaches can be split
into two main categories: models for reconstructing
the orthographical representation of the protowords
using the orthographical form of modern cognates,
and models that reconstruct the phonemic repre-
sentation from phonetic transcriptions of modern
cognates. Our extracted dataset essentially pro-
vides the necessary examples for the former, while
for the latter we employ the eSpeak4 library to au-
tomatically generate the phonemic representations.

3.2 Models

We use a variety of machine learning models, in-
cluding classical, neural, and transformer-based
(pretrained and trained from scratch for the task).
We include methods used in previous papers on
the topic and evaluate them on our larger dataset
in order to provide a benchmark for the task of
protoword reconstruction for Romance languages.

We experiment with a variety of models, includ-
ing pre-trained large language models (LLMs) and
current state-of-the-art models for protoword recon-
struction with various architectures (probabilistic
RNN, character-level transformer) adapted to our
new database, as well as original solutions. In this
way, we aim to provide a benchmark for the task of
protoword reconstruction.

CRF + reranking We used an approach that re-
lies on conditional random fields (CRFs), based
on the method proposed by Ciobanu and Dinu
(2018). Firstly, we applied a sequence labeling
method that produces the form of the Latin an-
cestors, for each modern language. The modern
words are the sequences, and their characters are
the tokens. We used character n-grams from the
input words as features. We employed pairwise se-
quence alignment (Needleman and Wunsch, 1970)
between modern words and protowords to obtain

4https://github.com/espeak-ng/espeak-ng
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It: 5,197 It-Fr: 2,807 It-Ro: 3,439 It-Es: 6,820 It-Pt: 4,605 -It: 1,480
It-Fr-Ro: 1,842 Fr: 4,992 Fr-Ro: 3,898 Fr-Es: 4,413 Fr-Pt: 2,797 -Fr: 2,493
It-Fr-Es: 2,270 It-Ro-Pt: 2,926 Ro: 5,685 Ro-Es: 5,117 Ro-Pt: 3,394 -Ro: 1,946
It-Fr-Pt: 2,390 It-Es-Pt: 3,988 Fr-Ro-Pt: 1,782 Es: 6,820 Es-Pt: 4,543 -Es: 1,504
It-Ro-Es: 2,913 Fr-Ro-Es: 3,503 Fr-Es-Pt: 2,311 Ro-Es-Pt: 2,919 Pt: 5,202 -Pt: 1,489

Table 2: Number of cognate sets that are descendants from the same Latin word, for each language combination.
x-y means the number of cognate sets for languages x and y; x-y-z means the number of cognate sets for languages
x,y, and z; x means how many descendants are from Latin for language x; -x means the number of cognate sets for
all languages except x.

the labels for each token. Secondly, we defined
several ensemble methods to take advantage of the
information provided by all languages, in order to
improve performance. We employed fusion meth-
ods based on the ranks in the n-best lists and the
probability estimates provided by the individual
classifiers for each possible production, in order to
combine the outputs of the classifiers (n-best list
of possible protowords) and to leverage informa-
tion from all modern languages. For each word
in the productions list, we multiply the rank of it
with the confidence score given by the CRF model
for each language; we sum up the multiplication
scores for each word in the list and then rerank the
productions based on these results.

Probabilistic LSTM We conducted experiments
using a combination of recurrent neural networks
with different dynamic programs and expectation-
maximization techniques, as described in He et al.
2023b. The overall system can be split in two
stages: a) a modelling stage, where we model the
evolution of words by making small character-level
edits to the ancestral form; for each language in the
study, the distribution over newly created words is
computed; b) an expectation-maximization stage,
where the ancestral form is inferred; using words
sampled from the posterior distribution, the ex-
pected edit count is computed and further used
by the character-level recurrent neural network in
order to optimize the next round of samples; the fi-
nal reconstruction is the maximum likelihood word
forms. This model requires a full tuple of cog-
nates to be passed as input, so we only compute
results for experiments on the ProtoRom-all5 set.
Like the original authors, we only apply this model
on the phonemic forms of words, since the prob-
ability distributions of edit operations used in the
algorithm rely on a set of manually set features for
each phoneme that are not similarly available for
orthographical characters.

Character-level transformer The next experi-
ments conducted in this research are based on the
transformer model, proposed by Kim et al. 2023.
Some critical changes in the architecture were
made in order to be able to accept our samples
format: multiple modern word sequences (one for
each language) correspond to a single protoform
sequence. A positional encoding is applied to each
individual modern word sequence before concate-
nation. An additive language embedding is applied
to the token embeddings alongside the positional
encoding in order to make a difference between
input tokens of different languages.

Pre-trained LLM (Flan-T5) We finally evalu-
ate the capabilities of pretrained Large Language
Models (LLMs) to solve our task. While LLMs
are currently obtaining state-of-the-art performance
across NLP tasks, our specific goal is unlike usual
tasks included in benchmarks or in training data
for LLMs, and it is strongly multilingual (includ-
ing one dead language), so we suspect it might be
a difficult task for an LLM. We choose to use a
pretrained model and fine-tune it on our own train-
ing data in order to increase its chances to perform
well. We use a "base" variant of the Flan-T5 model
(Chung et al., 2024), and fine-tune the model us-
ing instructions including the prompt: "What is the
etymon given the following cognates:", followed
by a list of cognate and language pairs formatted
as "< Li >: < wi >" and separated by new lines,
where the list of cognate words wi is their respec-
tive languages Li can be arbitrarily long (from 2
to 5 cognates, in the case of our experiments). For
evaluation, we attempt to generate multiple out-
put sequences, which are used as a ranking for the
etymon prediction.

One limitation of pretrained LLMs that we can-
not overcome through fine-tuning is its alphabet,
which contains mostly characters in the Latin
graphical alphabet, which means that we can only
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use this model with othographical features. Us-
ing phonemic features would require retraining the
model from scratch and we would lose the benefit
of pertaining which is usually the strong point of
LLMs.

4 Results

The previously described methods have been
applied on both ProtoRom and ProtoRom-all5
datasets, using the orthographical form of the cog-
nates and Latin etymon, or alternatively the auto-
generated phonemic representations (where the
models were able to accommodate them).

We also provide a comprehensive human evalu-
ation of the results. Linguists from our team man-
ually analyzed the entire list of results, and we
present the most significant observations regard-
ing the models’ successes and failures. The lin-
guists did not correct the protoforms proposed by
the models, but only evaluated and commented on
them in relation to current knowledge in the field
of historical linguistics.

The metrics used include accuracy, (normalized)
edit distance, and Covi, with i ∈ {1, 5, 10}, which
stands for an extended version of the accuracy met-
ric, where a correct prediction is one where the
model found the correct etymon within the first
i etymons predicted by our method (this metric
is computed for models that are able to output a
ranked list of predictions - Flan-T5 and CRF-based
models).

4.1 ProtoRom-all5 Results

Results obtained on the ProtoRom-all5 set are
shown in Table 3. In terms of accuracy (or Cov1),
the best results are obtained using the orthograph-
ical forms, with the CRF-rerank model, reaching
60.4%. From the perspective of the Covi metrics,
it is remarkable that the CRF-rerank model obtains
a Cov10 score above 82%.

The experiments using the phonemic forms pro-
duce weaker results, with the best accuracy reach-
ing 55.8% in the top 1 predictions scenario. Nev-
ertheless, the CRF approach is able to achieve an
accurracy close to 80% when we consider the top
10 best ranked predictions.

The probabilistic RNN models achieve very poor
performances, reaching a mean edit distance of
3.11 when trained on the phonemic representations.

4.2 ProtoRom Results

The best accuracy when training the orthographical
models is achieved in this scenario by the Trans-
former model, closely surpassing 73% (Table 4).
As for the Covi metrics, the Flan model remark-
ably obtains a Cov10 accuracy score of 85.4%, and
an edit distance of 0.23.

Similarly to the previous scenario, the experi-
ments using the phonemic forms produce weaker
results, with the best accuracy reaching 66.8% via
the Transformer model. These results represent a
collection of baselines for protoword reconstruc-
tion using our proposed dataset configurations.

We believe the higher accuracy observed on the
full dataset is simply due to the larger amount of
available data. While ProtoRom-all5 is a subset
that contains only complete cognate sets from each
of the five studied languages (totaling 1,245 sets)
the ProtoRom dataset includes sets of two, three, or
four cognates, resulting in significantly more sets
(19,222). This larger dataset allowed the models
to learn more phonetic correspondences, thereby
improving the reconstruction process. Even though
they are not full sets of five cognates, the additional
cognate sets in the full database seem to help the
models learn more about their protowords. This
learning process is closely similar to the human
method of learning: with more examples, linguists
can be more certain of particular correspondences
or phonetic changes and can apply them in the
reconstruction with much greater confidence.

5 Error analysis

This section is dedicated to a deeper dive into qual-
itatively quantifying the errors produced by the
previously proposed models. Our objective is sepa-
rating purely wrong predictions from "near misses",
which may still provide value for linguists for the
reasons discussed below.

The error analysis was manually conducted by
the linguists from our team, who specialize in Ro-
mance languages. They did not modify the proto-
forms provided by the models in any way. Their
only intervention was to distinguish forms that
were genuinely erroneous from those whose differ-
ences from the dictionary form were either insignif-
icant or represented a correct adjustment to the
reality of Latin pronunciation. In the final quantita-
tive analysis, forms in this category were therefore
included in the list of correct predictions without
any changes to their structure.
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Accuracy Edit/NEdit
Cov1 Cov5 Cov10 Cov1 Cov5 Cov10

Gr
Flan 55.0 70.5 75.9 1.03/0.15 0.55/0.08 0.43/0.06
CRF 60.4 78.2 82.1 0.80/0.12 0.38/0.05 0.31/0.04
Transformer 59.92 — — 0.72/0.11 — —

Ph
CRF 55.8 75.9 79.8 0.86/0.13 0.4/0.06 0.33/0.05
Transformer 47 — — 0.98/0.16 — —

Table 3: Reported results for protoword reconstruction on the ProtoRom-all5 dataset via orthographical representa-
tions (Gr) and via phonemic representations (Ph), respectively. We report the reconstruction accuracy along with the
mean edit distance (Edit) and mean normalized edit distance (NEdit). The Covi values for the edit distances are
computed by selecting the minimum distance between the true etymon and the top i predictions, then averaging over
these minima for all of the test examples. For the Flan and CRF models, we look at the top 1, 5, and 10 predictions
when computing these metrics.

Accuracy Edit/NEdit
Cov1 Cov5 Cov10 Cov1 Cov5 Cov10

Gr
Flan 65.5 81.7 85.4 0.73/0.09 0.30/0.04 0.23/0.03
CRF 55.0 71.3 79.1 1.06/0.16 0.55/0.08 0.42/0.06
Transformer 73.1 — — 0.51/0.08 — —

Ph Transformer 66.8 — — 0.67/0.10 — —

Table 4: Similar to Table 3 we report the same evaluations when using the complete ProtoRom dataset.

Through analyzing the errors, we have identified
some patterns that typically reflect either an insuf-
ficient number of examples to support a particular
phonetic change or the irregularity of the change
itself. For example, the short tonic /u/ develops
into Spanish /o/ in half of the cases, while it re-
mains /u/ in the other half. In such scenarios, the
model may not know which phonetic treatment the
cognates underwent and might choose the wrong
variant. Similarly, in cases of phonetic accidents,
which are by nature irregular and unpredictable, the
model cannot reconstruct the pre-accident form. In-
stead, it reconstructs the intermediate form between
the classical word and its Romance descendants.
Identifying and systematizing these errors can help
improve future results by broadening the input with
information related to sound changes.

Before analysing the errors, a few preliminary
points should be made. Romance lexicography as
a whole is graphocentric - it considers the written,
classical Latin (CL) lexical variants as the basis
for the Romance vocabulary, even though it goes
without saying that vernacular languages, oral par
excellence, developed from an oral language, in our
case Proto-Romance (PR) (Chambon, 2007). In the
latest methodology used in Romance etymology,
developed within the DÉRom project (Buchi and
Schweickard, 2014), the etymological identifica-
tion is based strictly on the comparative grammar

- reconstruction method, starting from the lexical
forms that were used uninterruptedly in Romance
languages. The lexemes attested in Classical Latin
are only a written correlate, possibly further evi-
dence of the existence of the form obtained by the
methods of comparative historical linguistics.

In the light of these considerations, we find that
some of the reconstructed variants classified as er-
rors should actually be considered as positive re-
sults and evidence that the machine could work
at the same level as a linguist applying traditional
methods. By positive results instead of errors we
mean cases - not a few - where the machine recon-
structed exactly the phonetic form valid for oral
Latin, at the expenses of the standard orthographi-
cal form as it is lemmatized in classical Latin dic-
tionaries.

Cases where the word obtained and the one given
by the dictionary did not completely match were
automatically considered as errors, although some-
times it was not a mistake as such. Therefore, there
are a number of protoforms which, although they
appear in the list as inadvertences, are variants that
should be taken into account with full attention by
linguists. Some are no more wrong than the form
in the dictionary, some are closer to the actual oral
form than those provided by lexicographers, while
some are exactly the form that historical linguists
would have reconstructed using traditional meth-
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ods based on the sound laws of each language (we
discuss each case below). Therefore, protoforms
obtained by the automatic methods proposed here
are sometimes preferable to the lemmatized ones,
and this is the most important thing we can expect
from the machine.

Below, we provide a list of situations categorized
as errors, but where the the automatic protoword re-
construction is either comparable or better than the
version proposed by the dictionary, as it represents
exactly the linguistic variant we should consider as
intermediate between classical Latin and Romance
languages.

• Protowords ending in -um instead of standard
-us (lupum instead of lupus). The difference
between the endings -us / -um did not properly
exist in Proto-Romance, as the final consonant
-s/-m was no longer pronounced. Thus, if the
etymological dictionaries provide the classi-
cal nominative form lupus as an etymon for
Ro. lup, It. lupo, Fr. loup etc., but the com-
puter reconstructs lupum – this latter variant
is more correct from a grammatical point of
view, since in general nouns are inherited from
the accusative form (in our case ending in -
um) and not from the nominative (ending in
-us). Moreover, if it reconstructs lupu, this
form is even more correct, being the real one,
that reflects the pronunciation in the spoken
language.

• The automatically reconstructed protoforms
reflect phonetic features specific to Proto-
Romance: monophthongation (au > o, e.g.
CL auca vs PR oca; œ > e, e.g. pœna vs
pena; æ > e, e.g. hæsitare vs esitare); re-
duction of geminate consonants (addictus vs
adictum); loss of the initial or intervocalic /h/
(hæsitare vs esitare; cohærente vs coerente);
phonetic adaptation of Greek loanwords to the
Latin pronunciation (y > i, e.g. CL byzanti-
nus vs PR bizantinus, the aspirate consonants
become oclusive, th > t (CL citharoedu vs
PR citaredu), ph > f (CL phalange vs PR
falange); assimilations (CL admonere vs PR
ammonire); simplification of consonant clus-
ters (CL sculptore vs PR scultore, temptare
vs tentare, unctura vs untura); changes in the
pronunciation of vowels (CL guttu vs PR gotu,
misculare vs mescolare, siccare vs sec(c)are,
occidere vs ucidere, calcea vs calcia).

• Certain reconstructed etyma retain accidental

phonetic changes that must be presupposed for
a particular geolinguistic area (Sp. queso, Pt.
queixo imply the metathesis PR caesu instead
of CL caseu, Ro plop, It. pioppo, Sp. chopo
lead to the protoform with metathesis plopu,
correctly identified by the machine, instead of
CL populus), or for the global PR variety (Ro.
doamnă, It. donna, Sp. doña, lead to the syn-
copated protoform domna, reconstructed by
the machine, instead of CL domina, registered
in lexicography).

• The automatically reconstructed protoforms
may mirror morphologic changes that under-
lie the subsequent Romance developments:
nouns of the 5th declension undergo a shift to
the 1st declension (CL canities vs PR canitia,
species vs specia); verbs shifting from middle-
passive to the active voice (CL renasci vs PR
renascere).

• The computer has reconstructed the oblique
case forms representing the basis from which
the Romance nouns were inherited (nomina-
tive flos vs oblique case flore- > Ro. floare, It.
fiore, Fr. fleur, etc.; civitas vs civitate > Ro.
cetate, Sp. ciudad, etc.), or the plural instead
of the singular form, when the Romance lex-
emes descend from the former (sg. capitium
vs pl. capitia > Sp. cabeza, Pt. cabeça).

The real errors in the experiments we developed
stem primarily from lexicographic omissions or
mistakes, as well as in the imprecise methodol-
ogy employed by the Ibero-Romance dictionaries
consulted, namely the lack of any distinction be-
tween inherited and borrowed Latin words (Buchi
and Dworkin, 2019). This latter inaccuracy leads
to a misinterpretation of the phonetic correspon-
dences by the computer, given that only the in-
herited words, not the borrowed ones, underwent
regular sound change. Therefore, if we put together
Ro. roată, Sp. rueda, Pt. roda, with Ro. rotat,ie, Sp.
rotacion, Pt. rotação, the computer will not be able
to correctly infer the correspondence t/d/d and
will confuse it with t/t/t, also assuming the series
d/d/d. Therefore, some reconstructions, especially
in the case of words circumscribed only to Ibero-
Romance languages, could not take this sound law
into account (e.g., on the basis of Sp. miedo, Pt.
medo, the computer could not reconstruct metus,
but proposed medus, which is wrong). This kind
of shortcomings will be easily overcome in the
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future, firstly by clearly establishing, in the Pro-
toRom database, the inheritance-borrowing distinc-
tion, and secondly by extending the input provided
to the computer with a number of basic phonetic
laws.

Revised performance scores. Looking at the
best reported predictions, we can apply the lin-
guistic observations stated in the previous section
and count which wrong predictions can be actually
considered acceptable errors. Thus using these re-
covered predictions, the best models’ scores would
change as follows:

• the orthographical Transformer accuracy for
the ProtoRom dataset increases from 73.1%
to 82.7% (135 out of the 575 original errors
were recovered).

• the Flan model’s Cov10 accuracy on Pro-
toRom increases from 85.4% to 89.6% (90
out of the 311 original errors were recovered).

• the Cov10 accuracy for the orthographical
CRF model trained on ProtoRom-all5 in-
creases from 82.1% to 90.7% (11 out of the
23 original errors were recovered).

6 Conclusion

In this paper, we built a new dataset for automatic
protoword reconstruction, consisting of 19, 222
cognate sets from five Romance languages (Roma-
nian, Italian, Spanish, Portuguese, French). This is
to date the largest database of its kind, surpassing
its predecessor which totals 8, 799 cognate sets.

We also proposed a series of comprehen-
sive benchmarks ranging from deep-learning ap-
proaches, using LLMs and Transformer-based ar-
chitectures, to more classical algorithms such as
CRFs, some of which achieved performances of
more than 85% accuracy when allowing multiple
generated reconstructions.

An in-depth linguistic analysis of the erroneous
reconstructions was also performed using the pre-
dictions of the best performing models. This at-
tempt shed some light on the various categories of
mistakes, out of which several could be considered
acceptable. When ignoring the aforementioned
acceptable errors, we were able to surpass 90%
accuracies. We consider this an important distinc-
tion, since in our view similar tools should aim
at assisting linguists in their scientific endeavours.
Raw metrics are useful to compare computational

methods, but, in order to assess their usability, a
more qualitative inspection of the results should
be performed. We hope through our research to
incentivize further analysis.

As for future work, we are looking into an addi-
tional refinement of the current cognate sets, but
also extending the database with more examples,
including properly validated monolingual Latin re-
flexes that were excluded from our experiments for
robustness sake. We also intend to expand past the
proposed benchmarks with more novel approaches,
relying on both the proposed dataset and the addi-
tional contents of its parent database, RoBoCoP.

Limitations

One limitation of the current work stems from
the automatic generation of the phonetic repre-
sentations via a third-party library (eSpeak). Al-
though this approach was employed successfully
in previous studies, the quality of the generated
phonemes has a higher variance when comparing
high-resourced languages to lower-resourced ones
(such as Romanian, or even Latin).

Also, in this study we used the generated pho-
netic forms without any extra preprocessing steps,
in order to have a representation of the pronunci-
ation that is as accurate as possible. Removing
phonetic markers (such as stress markers) from
these representations may turn the generation task
into a somewhat easier one, since currently the pho-
netic models are tasked with predicting the stressed
sounds too.

In terms of resources, existing LLMs are mostly
targeting orthographical texts, making any reason-
able attempt at generating phonetic ones very diffi-
cult.
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A Appendix

A.1 Hyperparameters and infrastructure

A.1.1 Conditional Random Fields
The implementation of the CRF models follows the
description provided by Ciobanu and Dinu 2018.
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The CRF algorithm relies on the Mallet library
implementation, version 2.0.85.

The only training hyperparameters that were
tuned are:

• the window size w ∈ {1, 2, 3, 4, 5}

• the number of CRF training iterations i ∈
{25, 50, 100}

For the orthographical and phonetic training sce-
narios, the hyperparameters were selected by train-
ing on the ProtoRom-all5 training split, and evalu-
ating on the dev one. Because of the long training
time on the complete ProtoRom dataset, we ended
up reusing the same hyperparameters found during
the previous step.

The selected hyperparameters are as follows:

• for the orthographical CRF:

– Spanish: w = 1, i = 100

– French: w = 4, i = 100

– Italian: w = 2, i = 100

– Portuguese: w = 1, i = 100

– Romanian: w = 1, i = 100

• for phonetic CRF:

– Spanish: w = 1, i = 100

– French: w = 4, i = 100

– Italian: w = 3, i = 100

– Portuguese: w = 1, i = 100

– Romanian: w = 4, i = 100

The training was performed on a Ryzen 5 3600X
4GHz CPU, parallelized on 8 threads, the total
training time being:

• orthographical CRF for ProtoRom-all5 (in-
cluding grid search): 15 hours

• phonetic CRF for ProtoRom-all5 (including
grid search): 22 hours

• orthographical CRF for ProtoRom: 102 hours

A.1.2 Probabilistic LSTM
We conducted experiments with the same architec-
ture used in He et al. 2023b (GitHub repository6)
and following hyperparameters:

• lstm input size: 64
5https://mimno.github.io/Mallet/
6https://github.com/AndreHe02/historical_release/tree/master

• lstm hidden size: 64

• context window: 10

• number of epochs: 30

For the training we used the following configu-
ration:

• number of rounds: 8

• learning rate: 0.01

• optimizer: Adam

• weight decay: 0.01

All the training was done on an Apple M2 Pro
chip and the total training time was 2 hours.

A.1.3 Transformer model
The architecture we used in our experiments is the
same as Kim et al. 2023 (GitHub repository7). The
hyperparameters used for both orthographical and
phonetic experiments are as follows:

• embedding size: 128

• number of encoder layers: 3

• number of decoder layers: 3

• number of attention heads: 8

• feed forward layer size: 128

• dropout: 0.202

Training hyperparameters used for both ortho-
graphical and phonetic experiments:

• number of epochs: 200

• batch size: 1

• learning rate: 0.00013

• loss: cross entropy loss

• optimizer: Adam

• scheduler: polynomial decay scheduler with
warmup

• warmup epochs: 50

• weight decay: 0

In terms of trainable parameters:
7https://github.com/cmu-llab/acl-2023/tree/main
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• orthographical experiments: ≈ 817, 869 pa-
rameters

• phonetic experiments: ≈ 854, 877 parameters

The training was done using an RTX 2080 Ti
GPU. Training time:

• ProtoRom-all5 dataset: 2.5 hours

• ProtoRom dataset: 5 days

A.1.4 Flan-T5
Flan-T5 was trained using early stopping based on
the Cov1 metric on the validation set.

The configuration used and optimal hyperparam-
eters are as follows:

• batch_size: 50

• epochs: 300,

• learning_rate: 1e-4,

• patience: 3,

• max_seq_len: 64,

• weight_decay: 1e-5,

• warmup_steps: 500,

• lr_scheduler_type: polynomial,

• num_return_sequences: 10,

• num_beams: 10,

• classifier_dropout: 0.0,

• d_ff: 2048,

• d_kv: 64,

• d_model: 768,

• decoder_start_token_id: 0,

• dense_act_fn: gelu_new,

• dropout_rate: 0.1,

• eos_token_id: 1,

• feed_forward_proj: gated-gelu,

• initializer_factor: 1.0,

• is_encoder_decoder: true,

• is_gated_act: true,

• layer_norm_epsilon: 1e− 06,

• max_length: 64,

• model_type: t5,

• n_positions: 512,

• num_beams: 10,

• num_decoder_layers: 12,

• num_heads: 12,

• num_layers: 12,

• num_return_sequences: 10,

• output_past: true,

• pad_token_id: 0,

• relative_attention_max_distance: 128,

• relative_attention_num_buckets: 32,
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