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Abstract

Recent progress in Spoken Language Model-
ing has shown that learning language directly
from speech is feasible. Generating speech
through a pipeline that operates at the text level
typically loses nuances, intonations, and non-
verbal vocalizations. Modeling directly from
speech opens up the path to more natural and
expressive systems. On the other hand, speech-
only systems require up to three orders of mag-
nitude more data to catch up to their text-based
counterparts in terms of their semantic abilities.
We show that fine-tuning speech representation
models on phoneme classification leads to more
context-invariant representations, and language
models trained on these units achieve compa-
rable lexical comprehension to ones trained on
hundred times more data.

1 Introduction and related work

Recent advances in Self-supervised Speech Repre-
sentation Learning (SSL) (Mohamed et al., 2022;
Chen et al., 2022; Hsu et al., 2021; Baevski et al.,
2020) have enabled the development of label-free
representations that are valuable for various down-
stream tasks (wen Yang et al., 2021). These repre-
sentations can be discretized and treated as pseudo-
text, allowing for the training of language models
directly from raw audio (Lakhotia et al., 2021),
which capture both prosody and linguistic con-
tent (Kharitonov et al., 2022). Applications of
these audio-based language models include dia-
logue modeling (Nguyen et al., 2023b), emotion
conversion (Polyak et al., 2021), and direct speech-
to-speech translation (Lee et al., 2022). They can
be trained not only on discretized SSL representa-
tions but also on continuous word-size tokens (Al-
gayres et al., 2023) or on a combination of acoustic
and semantic tokens (Borsos et al., 2023). How-
ever, these models still lag behind their text-based
counterparts in terms of capturing semantics when
trained with similar data quantity (Nguyen et al.,
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Figure 1: Trade-off between language modeling and
expressive resynthesis. *: embeddings initialized from
unit centroids.

2020), with scaling laws up to three orders of mag-
nitude slower (Cuervo and Marxer, 2024). Recent
approaches tackled this issue by jointly training
speech and text Language Models (LMs) (Nguyen
et al., 2024; Maiti et al., 2024; Chou et al., 2023)
or by using existing LMs as a warm initialization
(Hassid et al., 2023).

One hypothesis for the data inefficiency of spo-
ken language models is that they must at the same
time perform language modeling and process ir-
relevant acoustic variations.. Recent works have
addressed this issue for background noise (Chen
et al., 2022), speech rate change (Gat et al., 2023),
and speaker change (Qian et al., 2022; Chang et al.,
2023; Chang and Glass, 2024). However, con-
textual variations due to coarticulation remain a
challenge (Hallap et al., 2023): SSL units align
more closely with contextual phone states (Young
et al., 1994) than with linguistic units (Dunbar et al.,
2022), which may affect the LM’s capacity to learn
higher-order representations of language.

Here, we test a simple idea: using supervised
fine-tuning on a phoneme classification task to help
the model remove its contextual dependency. We
first show that fine-tuned models learn represen-
tations that are much more context-invariant than
the original SSL representations, even with as lit-
tle as a few hours of labels. Next, we show that
these representations can be used to train a LM that
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Figure 2: ABX error rate averaged across subset (dev-clean, dev-other) and speaker (within, across) conditions.

outperforms the standard approach. We then eval-
uate whether the fine-tuned representations have
retained their expressive power by measuring the
distortion when resynthesizing expressive speech.
We release the code and models at https://
github.com/bootphon/spokenlm-phoneme.

2 Method

2.1 Phoneme classification

We started from the pretrained HuBERT (Hsu et al.,
2021) Base model, with 95M parameters, and fine-
tuned it on a frame-wise phoneme classification
task with a forced aligned gold transcription. We
chose this objective to give the model full infor-
mation about phoneme identity and boundaries, to
enforce the learning of context-invariant represen-
tations. An alternative would have been to use a
CTC objective (Graves et al., 2006), which has the
advantage of not requiring forced-alignment, but
may result in alignment errors hindering context-
invariance. As shown in Appendix A.1, CTC fine-
tuning results in slightly lower performance than
phone classification.

We added one fully connected layer on top of the
HuBERT backbone that maps the 768-dimensional
representation to our phoneme space of dimen-
sion 40. We fine-tuned this model on LibriSpeech
train-clean-100 (Panayotov et al., 2015). We
also reported results for models fine-tuned on Lib-
riLight Limited 10 h, 1 h, and 10 min (Kahn et al.,
2020). The forced alignments are those used in
Nguyen et al. (2020), obtained with the Abkhazia
library'. The fine-tuning hyperparameters are de-
rived from those used in Hsu et al. (2021) for ASR.
Input frames are partially masked as in pretraining,
but the prediction loss is computed over all output
frames, not just the masked ones. We trained for
20000 steps with a batch size of 32 on a single
NVIDIA V100 GPU.

"https://github.com/bootphon/abkhazia

2.2 Quantization

We selected the best layer in terms of Triphone
ABX score for the standard HuBERT base and
the model fine-tuned on train-clean-100. We
trained k-means models on the features of a 10 h
subset of train-clean-100 extracted from those
layers, with k£ = 500. We also quantized the logits
of the fine-tuned model by simply setting the labels
as the predicted phonemes for each frame.

2.3 Language modeling

Finally, we trained LMs on the discretized units.
The language model is a 3-layer LSTM, following
the low-budget baseline of Nguyen et al. (2020),
only changing the embedding dimension from 200
to 768. It was trained on the discrete units of
LibriSpeech 960 h, for 30000 steps on a single
NVIDIA V100 GPU. This 26M parameters lan-
guage model is two orders of magnitude smaller
both in terms of number of parameters and hours of
training data than Spoken LMs like TWIST (Hassid
et al., 2023) or SpiRit-LM (Nguyen et al., 2024).
Our fine-tuned units can in principle benefit any
other LM, including these larger ones.

2.4 Speech resynthesis

For speech resynthesis, we trained a HiFi-GAN
(Kong et al., 2020; Polyak et al., 2021) on the
EXPRESSO dataset (Nguyen et al., 2023a), con-
ditioned on the HuBERT discrete speech units
and one-hot speaker embeddings from one of EX-
PRESSO’s voices. We trained for 250 000 steps on
two NVIDIA V100 GPUs and followed the other
hyperparameters used in EXPRESSO. In this setup
the HiFi-GAN has a different training domain than
the HuBERT, the k-means, and the LM, which
were trained on the audiobooks of LibriSpeech.
EXPRESSO is rich in expressive variations, paralin-
guistics and nonvocals, making it well-suited to
evaluate whether the discrete units preserve expres-
sivity along with phonemic content.
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2.5 Evaluation metrics

We evaluate continuous and discrete units using
ABX discriminability (Schatz et al., 2013; Schatz,
2016). This task quantifies the discriminability
between two sound categories, A and B, as the
probability that a token z of category A will be
closer to another « € Athantoab € B. The
dissimilarity function is the dynamic time-warping
aligned angular distance between the model’s rep-
resentations of two sounds. The ABX error rate is
calculated by averaging the discriminabilities for
all pairs of categories and subtracting it from 1. In
the standard evaluation, each token is a triphone
and triphones differ only by the central phoneme
in a triplet. In the “within speaker” condition, a,
b, and x come from the same speaker, while in the
“across speaker” condition, a and b come from the
same speaker, and = from another one.

Following Hallap et al. (2023), we also evaluate
our models on the Phoneme ABX task, where each
token is a phoneme. We examine two conditions:
“within context” (constant preceding and follow-
ing phonemes) and “any context” (no constraints
on context). This task assesses context-invariance
in speech representations, revealing that current
self-supervised systems struggle with context in-
dependence. Notably, in Hallap et al. (2023) the
performance drop when removing the constant con-
text condition is larger than the gaps observed in
speaker independence or clean versus less-clean
speech conditions. By fine-tuning at a frame level
without taking into account the context, our ap-
proach is a way to directly tackle this issue. For
complementary analysis of the discrete units, see
Appendix A.2.

We evaluate spoken language modeling at the
lexical and syntactic levels using the sSWUGGY
and sBLIMP metrics from the ZeroSpeech 2021
challenge (Nguyen et al., 2020). sWUGGY is
a “spot-the-word” task, where the network is pre-
sented with a word and a matching non-word, and
evaluated on its ability to assign a higher proba-
bility to the true word. We also report results for
“in-vocab” pairs, which only contains words from
LibriSpeech. sSBLIMP assesses the network’s abil-
ity to prefer grammatically correct sentences over
incorrect ones, given a pair of matching sentences.

We evaluate content preservation in resynthe-
sized speech by following (Nguyen et al., 2023a)
and running wav2vec 2.0 Large ASR (Baevski
et al., 2020) on the resynthesized speech, report-

Triphone ~ Phoneme ABX J
ABX ) Wiin ctx Any ctx
Continuous
wav2vec 2.0 Base L6 5.41 3.78 11.55
WavLM Base L11 3.57 2.54 8.26
ContentVecjgo L12 3.84 2.54 6.89
HuBERT + Spinyss L12 3.05 2.31 7.63
Continuous
Base L11 4.20 2.98 9.04
FT 100h L12 1.20 0.87 1.87
FT 100h L13 1.05 0.88 2.14
Centroid
Base L11 4.54 3.84 7.34
FT 100h L12 1.65 1.92 2.76
One-hot
Base L11 7.81 12.23 30.00
FT 100h L12 4.02 6.51 26.88
FT 100h L13 4.08 4.78 5.40

Table 1: ABX error rate on selected layers averaged
across subset and speaker conditions. Without quantiza-
tion, when considering the k-means centroid and with
one-hot encoding. For each condition, the best score is
in bold and the second best is underlined.

ing the Word Error Rate (WER). We assess this
on EXPRESSO-READ the reading subset of EX-
PRESSO — in-domain for the vocoder but out-of-
domain for the HuBERT backbone and the k-means
module — and on LibriSpeech, which is out-of-
domain for the vocoder. On EXPRESSO the target
voice is the same as the input voice, while on Lib-
riSpeech the target voice is sampled from the four
voices. We also compute the mel cepstral distortion
(MCD) (Kubichek, 1993) between the original and
resynthesized samples of EXPRESSO-READ using
Sternkopf and Taubert (2024).

3 Results

3.1 Results at the phonemic level

As shown in Figure 2, we computed the ABX error
rate for each Transformer layer of the base model
and the fine-tuned models, including the added
fully connected layer (layer 13). We calculated
both triphone- and phoneme-level ABX error rates.
Fine-tuning mainly improves the last layers” ABX
error rates, with near-perfect scores for the 10h
and 100h fine-tuned models in the “within context”
condition. SSL representations generally struggle
more in the “any context” condition: there the gain
in error rate is the most significant, dropping from
9.4% to 2.4% after fine-tuning on as little as 10 min-
utes. Fine-tuning pushes representations to become
more context-independent.
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WER | MCD |
dev-clean dev-other test-clean test-other EXPRESSO-READ EXPRESSO
Original audio 1.69 3.55 1.86 3.89 11.90 -
Base L11 3.82 11.37 4.12 11.26 20.93 7.32
FT 100h L12 4.36 10.75 4.62 10.90 23.03 7.97
FT 100h L13 5.78 11.90 5.97 12.12 23.80 8.85

Table 2: Resynthesis evaluation. WER is computed using a wav2vec 2.0 ASR system on the resynthetized output.

MCD compares the cepstral representation of the inputs and outputs.

SWUGGY 1 SBLIMP ¢

all in-vocab

GSLM (6k h) - 68.7 57.1
AudiolLM (60k h) 71.5 83.7 64.7
TWIST-7B (150kh) 74.6 84.4 62.1
Base L11 (1k h) 64.26 70.87 54.87
FT 100h L12 (1kh) 68.18 77.55 55.82
FT 100h L13 (1kh) 73.37 85.20 61.10
Init from centroids
Base L11 (1k h) 64.78 71.56 54.83
FT 100h L12 (1kh) 68.85 78.66 56.17
Gold phonemes (1k h) 81.58 94.75 62.77

Table 3: Zero-shot language comprehension scores (in
%), for LMs with an embedding table either initialized
randomly or from the unit centroids.

We selected the best layers for the base model
(layer 11) and fine-tuned 100h model (layer 12)
based on the Triphone ABX score, as well as the
last layer of the fine-tuned 100h model (layer 13).
We trained k-means on these representations and re-
port the results in Table 1. We compare these to the
ABX error rates of the best layers of wav2vec 2.0
(Baevski et al., 2020), WavLM (Chen et al., 2022),
ContentVeciog (Qian et al., 2022) and HuBERT
+ Spinposg (Chang et al., 2023). For the centroid
scores, each representation is replaced by the con-
tinuous representation of the closest centroid in
k-means. For the one-hot scores, each representa-
tion is replaced by a one-hot vector with a 1 at its
label position. We use the same distance to com-
pute the ABX as for continuous representations. In
the case of the base model’s layer 11 (Base L11)
and the fine-tuned 100h model’s layer 12 (FT 100h
L12), the representations are of dimension 768,
while for the fine-tuned 100h model’s layer 13 (FT
100h L13) they have a dimension of only 40. Fine-
tuning improves both triphone and phoneme ABX

scores, particularly in reducing the context effect in
the “any context” condition, as observed earlier. In
the case of the ABX of one-hot representations, the
error rates increase across all conditions, but the
highest increase is when the context is not shared
between the phones in the triplet. This is a sign that
the k-means clusters not only are organized accord-
ing to the phonemes but also to the surrounding
context. Clusters are grouped according to their
most probable phoneme, and within each group,
clusters encode different contexts. By going from
centroid representations to one-hot representations,
all 500 clusters are now equidistant, which leads to
the dramatic loss in “any context” compared to the
more modest ones in the other two conditions.

3.2 Results above the phonemic level

We report in Table 3 the zero-shot sSWUGGY (lexi-
cal level) and sBLIMP (syntactic level) scores for
the base and fine-tuned models, as well as for an
LSTM trained on the gold phonemes. Following
the observation regarding the ABX error rates of
the centroids, which remained within 1 percentage
point of the standard continuous units, we train
LSTMs by initializing their embedding table di-
rectly with the associated centroid representation
of dimension 768. Apart from this change, the
training process is the same between the two con-
ditions. Fine-tuning for phoneme classification im-
proves spoken language modeling in terms of zero-
shot comprehension evaluations. Overall, the gap
between training from speech and training with
golden phonemes is now halved. Fine-tuning for
phoneme classification results in models that are on
par in terms of lexical comprehension with much
larger baselines, which were trained on orders of
magnitude more of data.

However, Table 2 shows that this comes at the
cost of the quality of resynthesis. Notably, there
is a cost in content preservation, illustrated by the
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WER. It exists both for the LibriSpeech dataset and
for the EXPRESSO-READ, while these two datasets
correspond to the training domain of different com-
ponents of our pipeline. Figure 1 makes directly
visible the trade-off between language modeling
and speech generation quality.

4 Conclusion

We showed that fine-tuning SSL representations
with a phoneme classification task is an effective
and simple procedure to improve context indepen-
dence. LMs trained on these units achieve compa-
rable lexical comprehension to models trained on
hundred times more data. And we also found that
initializing the embeddings of the discrete tokens
of the LMs with the centroids of the units further
helps with LM scores. This shows that the units
found are meaningfully placed relative to one an-
other in this representation space. Our work also
highlights the trade-off between language modeling
(which works best with abstract units), and speech
generation (which works best with specific units).
Fine-tuning on phoneme classification can adjust
this trade-off.

5 Limitations

Further work is needed to improve on the trade-
off, perhaps by combining SSL, resynthesis, and
fine-tuning objectives concurrently. More compre-
hensive studies could explore the role of the en-
coder in the spoken language modeling pipeline by
examining the impact of fine-tuning methods on
downstream language modeling, comparing self-
supervisedand supervised speech models with dif-
ferent kinds of supervision. Another important di-
rection to consider is the application of this method
in a multilingual setting. The benefits of fine-tuning
are visible after training on as little as a few hours
of aligned data, making it applicable to low re-
source languages.
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Figure 3: ABX error rate for models finetuned with CTC, averaged across subset and speaker conditions.

A Appendix

A.1 Fine-tuning results

As preliminary investigation, we fine-tuned Hu-
BERT on phoneme recognition with a CTC loss
instead of frame-level classification. As shown in
Figure 3 this results in slightly weaker performance
in terms of ABX.

dev-clean dev-other test-clean test-other

Frame Classification Accuracy 1
Frame level

10min 88.80 83.78 88.80 84.29
1h 91.36 87.35 91.24 87.66
10h 93.01 89.03 92.96 89.31
100h 94.36 90.36 94.28 90.75
Phone Error Rate |,

Frame level

10min 8.45 15.82 8.87 15.30
1h 4.68 9.59 5.15 9.25
10h 3.64 8.70 4.02 8.38
100h 2.83 7.53 3.15 7.07
CTC

10min 8.27 15.18 8.73 14.72
1h 4.68 9.37 5.14 8.98
10h 3.27 7.29 3.65 7.00
100h 2.35 6.33 2.59 591

Table 5: Fine-tuning results (in %)

Table 5 presents the frame-level accuracy and
Phone Error Rate (PER) for models fine-tuned
on increasing labeled data quantity. The PER
was computed by deduplicating consecutive pre-
dictions, without using a Language Model. For
reference, the HUBERT base in SUPERB (wen

Yang et al., 2021), trained with the CTC objective
and with a frozen backbone, has a PER of 5.41%
on test-clean.

A.2 Discrete units quality

In addition to the ABX scores reported in Section
3.1, the quality of the discrete units and their rela-
tionship to phonemes can also be assessed with the
three metrics proposed in Hsu et al. (2021): Clus-
ter Purity, Phone Purity, and PNMI. Cluster purity
is the conditional probability of a k-means label
given a phone label, phone purity is the conditional
probability of a phone label given a k-means label,
and PNMI is the phone-normalized mutual infor-
mation between units and phone labels. The units
are obtained from the cluster assignments given by
the k-means with 500 clusters trained on the output
of the considered model. The evaluation is done
on the combination of LibriSpeech dev-clean and
dev-other. We have for the Base L11 and FT 100h
L12 models: a PNMI of 0.669 and 0.846, Cluster
Purity of 0.093 and 0.131, and Phone Purity of
0.685 and 0.858, respectively.

A.3 Resynthesis evaluation with another ASR
system

We report Table 4 the Word Error Rate for resyn-
thesis on the evaluation datasets using Whisper
large-v3 (Radford et al., 2023) instead of wav2vec
2.0 as the ASR system. The differences between
models are consistent with those in Table 2.

dev-clean dev-other test-clean test-other EXPRESSO-READ
Original audio 2.07 3.76 2.03 3.91 3.33
Base L11 3.84 11.61 4.03 11.38 6.58
FT 100h L12 4.24 10.97 4.34 10.67 7.95
FT 100h L13 5.72 11.76 5.68 11.84 9.68

Table 4: WER using Whisper large-v3 (in %)
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Figure 4: Difference between the MCD of the fine-tuned
models and Base L11 on EXPRESSO for each style.

A.4 Resynthesis quality by expressive style

The drop in resynthesis quality by going from the
standard model to the fine-tuned ones is further
detailed is Figure 4. For each expressive style in
EXPRESSO, the fine-tuned models exhibit a higher
MCD compared to Base L11. The difference is
the most prominent for styles capturing more non-
verbal vocalizations such as “whisper” or “bored”.
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