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Abstract

Training large language models (LLMs) for ex-
ternal tool usage is a rapidly expanding field,
with recent research focusing on generating
synthetic data to address the shortage of avail-
able data. However, the absence of system-
atic data quality checks poses complications for
properly training and testing models. To that
end, we propose two approaches for assessing
the reliability of data for training LLMs to use
external tools. The first approach uses intuitive,
human-defined correctness criteria. The sec-
ond approach uses a model-driven assessment
with in-context evaluation. We conduct a thor-
ough evaluation of data quality on two popular
benchmarks, followed by an extrinsic evalua-
tion that showcases the impact of data quality
on model performance. Our results demon-
strate that models trained on high-quality data
outperform those trained on unvalidated data,
even when trained with a smaller quantity of
data. These findings empirically support the
significance of assessing and ensuring the relia-
bility of training data for tool-using LLMs.

1 Introduction

Enabling LLMs to make use of external tools is a
promising frontier that allows tapping into informa-
tion that is not readily available to the model itself
(Huang et al., 2024; Li et al., 2023a; Qin et al.,
2024; Tang et al., 2023; Yang et al., 2023; Patil
et al., 2023; Schick et al., 2023). Given a request
and a list of available external API functions, the
basic task of a model is to collect information by
invoking functions, and then to generate a response
for the request. Due to the lack of data for the
task and the high cost of creating such data, re-
searchers have devised synthetic datasets, predomi-
nantly with the assistance of LLMs (Huang et al.,
2024; Li et al., 2023a; Tang et al., 2023). These

*This work was done during an internship in Amazon and
as part of graduate studies at the Technion - Israel Institute of
Technology.

Figure 1: Data quality assessment methods for improv-
ing the training process of tool-using LLMs (a), em-
ploying two different approaches: (b) intrinsic quality
evaluation, using an external LLM to measure various
human-defined criteria; (c) in-context evaluation, using
the target LLM to measure the educational value of data
instances. A smaller high-quality training dataset is
more effective than a larger unvalidated set.

datasets have facilitated a great leap in promoting
the appealing applications of tool-using LLMs.

Recently, Zhou et al. (2023) showed that higher
quality training data yields better performance by
LLMs in text generation tasks. However, leading
works on tool-using LLMs have not made an ef-
fort to measure the quality of training data. Rather,
only model outputs are extrinsically evaluated, dis-
regarding the effect of the data on the tested models.
Most research on tool-using LLMs focuses on im-
proving training and evaluation processes (Huang
et al., 2024; Qin et al., 2024; Tang et al., 2023). The
lack of attention to data quality makes it difficult
to interpret potential pitfalls for models. In turn,
this wastes valuable resources for configuring and
tuning models over possibly erroneous data.

Datasets for tool-using LLMs comprise instruc-
tions and ground truth API call sequences, and
are created mainly with LLMs. Two such promi-
nent datasets (Qin et al., 2024; Tang et al., 2023)
were produced with the help of ChatGPT (OpenAI,
2024), and were not explicitly assessed for their
quality. A closer inspection, conducted in this work,
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reveals numerous errors within the data, both in the
instructions and in the ground-truth API calls (§4).

To conduct our inspections, we define intrinsic
measures for data quality assessment, focusing on
different aspects of quality. For each aspect we
outline human evaluation guidelines, as well as im-
plement automated methods for evaluation. The
automatic methods employ ChatGPT, either by di-
rectly asking for its evaluation or by having it per-
form a proxy task and deriving the evaluation from
its output. We show high agreement for our au-
tomated methods with expert human annotations.
In addition to the intrinsic measures, we propose
a metric we call In-Context Evaluation (ICE; §5).
ICE evaluates a data instance by how helpful it
is for in-context learning, thus predicting its help-
fulness for training a model (§5). This metric is
fully automated and does not rely on task-specific
measurement definitions.

Other than being appraisal instruments, the in-
trinsic evaluation and ICE metrics can be used to
automatically filter out low quality data from an
existing dataset. In Section 6 we carry out this
procedure, and display the effect of training tool-
using LLMs with higher quality data. Our find-
ings, demonstrated on the ToolBench (Qin et al.,
2024) and ToolAlpaca (Tang et al., 2023) bench-
marks, show either better or comparable perfor-
mance when using a small high-quality training
dataset, compared to the original models trained on
larger unverified datasets. The two benchmarks are
based on different API function sets, and different
data generation and training methods, indicating
the generalized applicability of our methods.

2 Background and Related Work

2.1 External Tool Usage by LLMs

Tool learning is a recent area of research, aiming
to enable LLMs to overcome limitations by
accessing tools for, e.g., retrieving up-to-date
information (Kasai et al., 2023; Cheng et al., 2024),
or performing mathematical calculations (Schick
et al., 2023), thereby enhancing their usability for
real-world needs.

Research on tool learning focuses on various
aspects of training LLMs to use external tools.
These mainly include tool selection, tool usage,
and planning (Zhuang et al., 2023; Qin et al., 2024;
Patil et al., 2023; Yao et al., 2023). Such models
are mainly evaluated extrinsically, only measuring
the final results. T-Eval (Chen et al., 2024) is the

first evaluation framework that analyzes tool-using
LLMs intrinsically. That is, it decomposes the eval-
uation into all sub-tasks (such as selection, usage
and planning), measuring the fine-grained abilities
of models as tool agents. We intrinsically evaluate
the data for tool-usage instead of a model.

2.2 Data Generation

Recent notable works generated synthetic data for
tool learning. ToolBench (Qin et al., 2024) lever-
ages a large pool of real API functions.1 ChatGPT
(OpenAI, 2024) was used to generate an instruc-
tion that would require invoking a given small set
of these tools, as well as to produce a solution
path for the respective instruction. The data was
constructed with a varying number of tools per in-
stance and varying relatedness between the tools.
API Bank (Li et al., 2023a) created synthetic API
documentation, instruction queries, and responses
using strong LLMs (GPT-4 and ChatGPT; Ope-
nAI, 2024). A smaller test set was created and
validated manually by humans. Tang et al. (2023)
constructed the ToolAlpaca dataset using ChatGPT
to generate cleaner documentation upon existing
APIs, and respective instructions and responses. In
ToolAlpaca, most synthesized instructions only re-
quire a single tool to fulfill the request. The test set
was validated by humans to ensure quality.

To strengthen the credibility of our findings in
this work, we conduct our experiments over both
ToolBench and ToolAlpaca, which differ in API
quality and instruction requirements.

2.3 Data Quality

The ever-increasing dependence on data for train-
ing large models has paved a line of work that
analyzes the effect of data quality on fine-tuning
models. Findings show that a small but high-quality
dataset can be highly effective for fine-tuning a rel-
atively small model, surpassing the performance of
a larger model. For example, Phi (Gunasekar et al.,
2023; Li et al., 2023b) explored code generation
tasks and prompted GPT-4 to assess the educational
value of coding examples. They demonstrated that
a small number of high-quality and diverse exam-
ples are sufficient to reach good quality of code
generation. In the realm of instruction tuning, Li
et al. (2024) suggest employing self-augmentation
and self-curation to iteratively improve the set of in-
structions used for instruct-tuning an LLM. LIMA

1Based on RapidAPI: https://rapidapi.com/hub
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(Zhou et al., 2023) considers the broader picture
of data quality, and show that as few as 1000 high-
quality examples can be sufficient for training an
instruction-following model.

Our work differs from these studies in that it
applies to the regime of tool usage. It can be seen
as additional evidence reinforcing the prevailing
“less is more” trend, proving the importance of data
quality in this regime.

3 Task Setup

Tool-using LLMs are expected to behave as follows.
Given a set of tools T = {t1, ..., tn}, represented as
API functions, and an instruction query q, a model
is required to plan a call sequence S = (t′1, ..., t

′
k),

based on T , that would obtain information, or per-
form actions, needed to address q. Based on the
responses obtained after performing the call se-
quence (using an external API invoker), the model
then generates a final response r that responds to q.
The primary method for model evaluation is based
on calculating the pass rate, which measures the
proportion of instances that successfully addressed
their instructions, i.e., a predicted r responded to q
adequately (explained further in §6).

As mentioned in Section 2, the prominent
datasets created for training and testing tool-using
models were created synthetically with the assis-
tance of LLMs. Specifically, we utilize the Tool-
Bench (Qin et al., 2024) and ToolAlpaca (Tang
et al., 2023) datasets. Table 1 summarizes their
characteristics. The main practical differences are
the quality of the APIs (i.e., the documentation clar-
ity and uniformity of ToolBench is inferior to that
of ToolAlpaca), and the number of tools required to
respond to a query instruction (ToolBench might re-
quire several calls to unrelated tools, while ToolAl-
paca requires calling a maximum of two related
tools). As presented later in this work, these two
differences strongly reflect on the overall quality
of the respective datasets.

Characteristic ToolBench ToolAlpaca

API source real-world synthesized w/GPT
# available APIs 16K 2.3K
# of training instances 125K 4.2K
# required API calls per instance 1-5 1-2

Table 1: Summary of relevant dataset characteristics.

Problem statement. Our primary focus is
on evaluating and improving data quality, and

to show its effect on model performance in
tool-using LLMs. Following a similar line of
research, we hypothesize that a small quantity of
high-quality training data is preferred over a large
quantity of lower-quality data. To demonstrate
this, we first define intrinsic quality criteria for
the data (§4.1) and implement automated metrics
accordingly (§4.3). We additionally propose an
alternative data quality appraisal method using
in-context evaluation (§5). Finally, we filter out
the lower-quality data from datasets using our
automated metrics, and analyze the effect of the
improved data quality on model performance (§6).

4 Intrinsic Quality Evaluation

4.1 Quality Criteria
We set out to understand what makes an instance
of data high quality, specifically for training tool-
using LLMs. The criteria we discuss pertain to both
the query instruction and the API call sequence of
a data instance.2

4.1.1 Instruction Properties
In our setting, an instruction is a free-form text
of one-to-a-few sentences that describes a user re-
quirement. An instruction can contain more than
one request, likely implying the need for several
tool invocations. The following properties in the in-
struction demand validation (examples in Table 2):

Specificity. All the required details are present in
the instruction for the LLM to be able to fulfill the
user requests3.

Coherence. The requests within the instruction
are logically related, and the order of requests
makes sense for a real-world use case.

Solvability. The requests within the instruction
can be addressed by the given API tools.

4.1.2 API-Call Sequence Properties
Apart from the instruction, given as input to a
model, the other vital component of a training in-
stance is the ground-truth output used for training
(or evaluating) a model. In our setting, this is the se-
quence of API calls that the model is expected to in-
fer. We define the following properties for API-call
sequence correctness (see Table 3 for examples):

2We considered other properties that were eventually ex-
cluded from our framework, such as diversity and syntax
validity. See Appendix A.1 for more details.

3Note that we deal with a setting where the agent is ex-
pected to complete the instruction without asking clarification
questions.
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Synthetic Instruction Error Type
I’m curious about a famous actor’s career. Can you provide details about their filmography, including
their best-known titles and streaming availability on Netflix, Hulu, and Prime Video? Also, share some
interesting facts about the actor.

Low Specificity

As a language enthusiast, I’m always eager to learn new languages. Can you help me explore the
possible translations between Russian, Japanese, and Arabic? Additionally, I would like to obtain a
list of available language codes for future reference.

Low Coherence

I need to create a temporary email address with the domain ’example.com’. Once created, I want to
fetch the latest message from this email address.
Given APIs: [Get list of domains for email, Get message by message ID]

Unsolvable

Table 2: Examples of synthesized instructions, highlighted with errors involving our defined properties.

Synthetic Instruction API-Call within Sequence Error Type
Can you create a shield logo for my friend’s blog? The name of
the blog is ‘The Creative Mind’. generate_shield(name=None) Missing Parameter

I need to fetch the current weather conditions for a specific
location. Can you help me by providing the address and geoco-
ordinates of the location?

geocode(address="San
Francisco")
...

Hallucinated Parameter

Table 3: Examples of synthesized API-call sequences for respective instructions, with incorrect parameters.

Parameter alignment. The parameter values in
each of the API calls are correctly extracted or
inferred from the instruction, there are no missing
or hallucinated parameter values.

Sufficiency. The API-call sequence applies to all
required actions for the instruction’s requests.

Minimality. The API-call sequence would ad-
dress all the instruction requirements with a min-
imal number of API calls. No unnecessary or re-
dundant API calls are included in the sequence.

4.2 Manual Annotations

The six intrinsic properties defined above specify
the desired qualities for data instances of tool-using
LLMs. Existing datasets do not always abide by
these quality criteria, especially when they are col-
lected synthetically and do not go through a clean-
ing phase. We inspect such noisy data by prepar-
ing annotation guidelines with respect to the crite-
ria, and annotating accordingly. Specifically, we
methodically4 annotated 50 (instruction, API se-
quence) pairs from each of the training sets of Tool-
Bench (Qin et al., 2024) and ToolAlpaca (Tang
et al., 2023), as well as a large portion of the Tool-
Bench test set (∼700 instances).5 Each of the crite-
ria is marked either as valid or invalid for each of
the annotated instances. The annotated data is used

4Annotation process and agreement in Appendix A.4.
5We did not review ToolAlpaca’s test set since it is already

manually verified.

in later sections for analyses and experiments.

4.3 Automated Metrics

Although manual assessment of data is preferred
for its reliability, it is labor-intensive and therefore
not scalable or practical. We propose automatic
metrics for the intrinsic quality criteria defined
above. The metrics are based on ChatGPT,6 which
is tasked to determine the validity of each criterion
as a binary decision.

For the dimensions of Specificity, Coherence
and Parameter alignment, direct annotation with
ChatGPT proved to be challenging. That is, sim-
ply asking the model to validate the property in
a natural language instruction did not yield suffi-
cient decisions (see Appendix A.3). Thus, we trans-
formed the direct annotation tasks into traditional
NLP tasks, on which ChatGPT performed better.

Specificity. Validating the specificity of requests
is modeled as an extraction task. ChatGPT is tasked
to infer the details required for a given request,
and then extract the available values from the in-
struction, or mark a parameter as #missing. We
then compute a proxy score for specificity: 1 if all
parameters were successfully extracted from the
instruction, and 0 otherwise7.

6Throughout the paper, we use gpt-3.5-turbo-0613.
7A continuous score can be computed as the percentage of

extracted parameters from the total number of parameters, but
we opted for a binary score for simplicity.
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ToolBench Dataset ToolAlpaca Dataset
Quality Criterion Accuracy Prec. Rec. F1 Accuracy Prec. Rec. F1

In
st

ru
ct

io
n Specificity 0.74 0.70 0.84 0.76 0.88 0.75 0.86 0.80

Coherence 0.82 0.62 0.77 0.69 0.98 0.50 1.00 0.66
Solvability 0.90 0.70 0.78 0.74 0.92 0.75 0.50 0.60
Instruction Correctness 0.72 0.72 0.90 0.80 0.86 0.80 0.84 0.82

A
PI

C
al

lS
eq

. Parameter Alignment 0.70 0.63 0.92 0.74 0.76 0.74 0.80 0.77
Sufficiency 0.78 0.64 0.60 0.62 0.88 0.80 0.50 0.62
Minimality 0.76 0.95 0.63 0.76 0.86 0.88 0.57 0.70
Sequence Correctness 0.82 0.83 0.94 0.88 0.76 0.70 0.85 0.80

Overall Correctness 0.86 0.89 0.95 0.92 0.76 0.74 0.90 0.81

Table 4: Validation results of the automated metrics for each criterion compared against human annotations. Coarse-
grained correctness considers combined correctness over specific criteria. Note that precision, recall and F1 are
measured w.r.t. a label that is positive when an error occurs, so e.g., recall means the amount of errors caught.

Coherence. We adopt the concept of next
sentence prediction to assess coherence. The
instruction is split into sentences, and ChatGPT
determines if each subsequent sentence logically
follows the previous one. We set a coherence
score as 1 if all sentence pairs are judged logically
connected, and 0 otherwise.

Parameter alignment. ChatGPT first extracts
parameters (as in specificity), and then compares it
to the ground truth parameter values.

Solvability, Sufficiency & Minimality. The re-
maining criteria use direct instructions to ChatGPT.
The prompts used are provided in Appendix A.2.

4.3.1 Evaluation of Automated Metrics
Using the manually annotated data (described in
§4.2), we conduct an assessment of the automatic
metrics proposed. For each of the ToolBench and
ToolAlpaca datasets, the 50 annotated instances are
compared against the automatically produced val-
ues, producing measures of accuracy (agreement),
precision, recall and F1 score. We treat instances
marked as incorrect instances as positive labels,
since we aim to identify and filter erroneous in-
stances.

We conduct a coarser-grained evaluation of the
criteria, assessing Instruction Correctness as in-
correct if any instruction criterion is wrong, and
Sequence Correctness as incorrect if any API-call
sequence criterion is wrong. Overall Correctness
aggregates all six criteria similarly.

Results are presented in Table 4. Given that our
main objective is to identify and filter out incorrect
data samples, our emphasis is on achieving high

recall. This objective is largely met across most
criteria in both datasets. In the Overall Correctness
assessment, which aggregates all criteria, we
observe high recall and precision, demonstrating a
strong alignment of the automated metrics with hu-
man judgment. This approach thus offers a reliable
mechanism to identify problematic data instances.

4.3.2 Quality of Datasets

Table 5 presents the percentage of instances con-
taining errors in the train sets of both ToolBench
and ToolAlpaca, as determined by the automated
metrics. These statistics provide insights into the
quality of the data in each dataset. In the ToolBench
dataset we observe a much higher percentage of
errors across most quality criteria, when compared
to ToolAlpaca. This difference may be attributed
to (1) the complexity of instructions in ToolBench,
which can require several (up to 5) API calls; (2)
real-world APIs used in ToolBench, where the API
documentation is not always clear, resulting in in-
correctly generated instructions and API-call se-
quences. Notice that in both datasets, over 33% of
instances have parameter alignment errors. Such
an error means that one of the core requirements
of a tool-using model – identifying parameters cor-
rectly – is misleadingly learned in more than a third
of the cases, due to wrong training examples. Some
anecdotal examples of incorrect instructions found
by our metrics can be seen in Appendix A.5.

We further explore the relationship between qual-
ity criteria within the datasets in Appendix A.6.
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Dataset

Instruction API-Call Sequence Inst. & Seq.
OverallSpecificity Coherence Solvable Overall Param. Alignment Sufficiency Minimality Overall

ToolBench 20.4% 22.1% 18.2% 47.3% 47.9% 33.6% 45.1% 74.4% 84.0%

ToolAlpaca 17.5% 4.1% 12.7% 27.2% 33.1% 13.6% 15.9% 35.5% 44.8%

Table 5: Percentage of instances containing errors in each dimension, according to our automated methods, in the
train sets of the examined datasets. This analysis is done on 125K examples in ToolBench and 4.2K in ToolAlpaca.

5 In-Context Evaluation (ICE) as an
Alternative Data Measurement

Using intrinsic evaluation, we have defined an intu-
itive and straightforward approach to identify low-
quality data instances based on human understand-
ing of data correctness. However, assessing the
“educational” value of an instance, i.e., its contribu-
tion to the learning process of a model, is a com-
plex task. In addition, the intrinsic evaluation met-
rics proposed rely on prompting a powerful LLM,
which can become costly on large datasets. To
address these challenges, we propose In-Context
Evaluation (ICE) as an alternative automatic ap-
proach for assessing data quality.

Recent studies found a connection between in-
context learning and fine-tuning, demonstrating
that language models implicitly perform gradi-
ent descent when dealing with in-context tasks
(Von Oswald et al., 2023; Dai et al., 2023). Moti-
vated by this insight, we seek to evaluate the edu-
cational value of each data instance by measuring
the performance of in-context learning using the
specific instance as a one-shot example.

5.1 Setup

To construct the in-context task for external tool
use, we prepare a set of 10 human-written APIs,
denoted by A, with simple accompanying docu-
mentation. In addition, we hand-craft a set of 7 test
query instructions, TEST, where each such example
contains a natural language instruction and an ex-
pected API-call sequence, from the APIs in A, that
would address the instruction. For each evaluation
instance, we insert an in-context example, x, which
consists of an instruction and API-call sequence
from the training dataset (i.e., ToolBench or ToolAl-
paca). x follows the structure of the test examples.
We then formulate a prompt for the LLM that we
aim to train, that asks to generate responses for
the 7 test cases. In particular, the prompt includes
(1) task instructions, (2) the API documentation of
A, (3) the training instance, x, given as a one-shot
example, (4) the 7 testing instructions of TEST.

The prompt is given to an LLM we aim to
train: LLaMA-7B for ToolBench or Vicuna-7B for
ToolAlpaca. We analyze its response, that should
include the 7 API-call sequences of TEST. The
responses for the test instructions are evaluated
against the ground truth (using Levenshtein simi-
larity (Levenshtein et al., 1966), expecting an exact
match for API-call sequences). The final ICE score
for x is the average over the 7 test examples, inter-
preted as a measure of the educational value of x.
We provide the full prompt and the precise way we
compute the ICE score in Appendix B.

5.2 Analysis

Score distribution. We present ICE scores for
both datasets in Figure 2. Interestingly, the ICE
scores distribution in ToolAlpaca exhibits bimodal
distribution, which suggests the presence of two
types of examples: one with higher ICE scores,
which we expect to correlate with good-quality
examples, and another with lower ICE scores,
which is expected to lean towards low-quality

(a) ToolBench

(b) ToolAlpaca

Figure 2: Distribution of ICE scores. Most instances
in ToolAlpaca are beneficial as the one-shot in-context
example. ToolBench instances are not as effective.
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Figure 3: Confusion matrices comparing ICE scores
and human Overall Correctness scores.

examples. The majority of instances in ToolAlpaca
have relatively high ICE scores – indicating high
overall dataset quality. In contrast, most samples
in ToolBench have low ICE scores, suggesting
that the overall data quality in this dataset may be
lower compared to ToolAlpaca. This observation
is consistent with the analysis presented using the
intrinsic evaluation in Section 4.3.2.

Correlation to human-defined criteria. ICE is
a model-driven assessment method that may not
necessarily align with human-defined correctness
criteria. To investigate the relationship between
ICE approach and human-defined criteria, we di-
vide the datasets into low and high ICE scores us-
ing a threshold of 0.5. We then generate confusion
matrices between ICE scores and human Overall
Correctness scores. As seen in Figure 3, ICE scores
correlate with human-defined correctness to some
extent, showing it is a sensible metric and can be
beneficial as an alternative method for filtering data.
On the other hand, this correlation is far from per-
fect, showing that ICE is inherently different from
human-prescribed correctness. In Section 6 we test
ICE both as an alternative and as a complementary
filtering technique to human-defined correctness.

6 Extrinsic Evaluation

In this section, we validate our main claim that fine-
tuning a tool-using LLM with a smaller dataset of
high-quality data can lead to better performance of
the model on the task, compared to a larger noisy
dataset. We use both intrinsic metrics and ICE to
create training sets of varying quality, and compare
the results of training with the different sets.

Training setup. We follow the general setup
used by the ToolAlpaca (Tang et al., 2023) and
ToolBench (Qin et al., 2024) benchmarks. Specif-
ically, we fine-tune Vicuna-7B (Chiang et al.) for

ToolAlpaca, and LLaMA-7B (Touvron et al., 2023)
for ToolBench, both using LoRA (Hu et al., 2022)
(see Appendix C.1 for more details).

We use the following train sub-sets from each
model’s respective benchmark training sets:

• Random Sample: uniform random subset.
• High Instruction: uniform sample of instances

with all three instruction criteria intact.
• High Instruction + Seq: uniform sample of

instances with all six criteria intact.
• Low ICE: instances with the lowest ICE scores.
• High ICE: instances with the highest ICE

scores.
• High Instruction + Seq + ICE: instances with

all six criteria intact and high ICE scores.
• Original: the full original training set.

Each fine-tuned model is evaluated using pass
rate, which is an extrinsic evaluation procedure
used in both benchmarks.8 This measures the pro-
portion of instances in which the resulting API-call
sequences and responses adequately address their
respective instruction query. See Appendix C.2 for
more details on the evaluation procedure.

Test sets. For ToolAlpaca we use the original test
set, as it is created with human annotation. It con-
sists of 100 instructions of simulated tools that were
not part of the training tool set. ToolBench test set
was created using LLMs and was not manually val-
idated. We inspected 674 examples, as detailed in
Appendix A.4. For instances of low quality, we ei-
ther rectified them (e.g., manually adding a missing
parameter value), or discarded them. The resulting
test set contains 420 high-quality examples.9

6.1 Main Results

Results are presented in Table 6, where the training
sub-sets are fixed to size 10K for ToolBench and 2K
for ToolAlpaca. The results demonstrate the impact
of training data quality on model performance.

When comparing to a model fine-tuned on a
random subset of the original training data (row
1), all methods of filtering low-quality instances
(rows 3-6) are clearly beneficial. Moreover, when
fine-tuning models with much smaller high-quality
sub-sets (rows 3-6), performance is comparable or
superior to models fine-tuned on the full original

8In ToolAlpaca this metric is referred to as “overall accu-
racy”, although it conveys the same concept.

9This test set is available in the supplementary material.
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Fine-tune Set
ToolBench ToolAlpaca

Size Pass Rate 95% CI Size Pass Rate 95% CI
1 Random Sample 10K 0.35 (0.31, 0.39) 2K 0.48 (0.38, 0.58)

2 Low ICE 10K 0.24 (0.20, 0.28) 2K 0.48 (0.38, 0.58)

3 High ICE 10K 0.43 (0.38, 0.47) 2K 0.54 (0.44, 0.64)

4 High Instruction 10K 0.49 (0.44, 0.53) 2K 0.52 (0.42, 0.62)

5 High Instruction + Seq 10K 0.52 (0.47, 0.56) 2K 0.54 (0.44, 0.64)

6 High Instruction + Seq + ICE 10K 0.54 (0.49, 0.58) 2K 0.55 (0.45, 0.65)

7 Original 73K† 0.45 (0.40, 0.49) 4.2K 0.56 (0.46, 0.66)

Table 6: Extrinsic evaluation results with confidence intervals, and the size of the training sets. By filtering
out low-quality training instances, the models perform significantly better than (in ToolBench) or as good as (in
ToolAlpaca) the original models that use a much larger unvalidated training set. † Although there are 125K instances in
the released dataset, the model published in the original paper was trained on a subset of 73K instances.

training sets (row 7). Consistent with the findings
on the ToolBench dataset’s lower overall quality
(§4 and §5), results indicate improved model per-
formance with a high-quality subset, comprising
only ∼14% of the original dataset’s size (row 6).

Comparing the intrinsic metrics to the ICE
method, we find that the former is a better mecha-
nism for filtering training data (row 3 vs. 5). Using
both techniques together can be marginally better
(row 5 vs. 6). Another insight to consider is that
taking data with low ICE scores (row 2) is indeed
harmful to model performance, further reinforcing
that the method is valuable despite its partial agree-
ment with intrinsic human-defined criteria (§5).

In ToolAlpaca, the gaps are less pronounced
than in ToolBench, likely influenced by: (1) the
higher quality of the original dataset, (2) smaller
original training set, causing the filtered datasets
to be too small, (3) smaller test set, only 100 in-
stances. Nonetheless, the trend still exists (albeit
being within the confidence intervals). This, com-
bined with the intrinsic assessment of Table 5, pro-
vides encouraging evidence for the effectiveness of
our methods, even for this smaller-scale dataset.

6.2 Data Scaling Analysis

To further explore the effects of training tool-using
LLMs with high-quality data, we analyze the
performance of models when fine-tuning with
different sizes of train sets. We focus here on
ToolBench, where the impact is more significant
and the original training set is larger, and use
subsets with sizes ranging from 1K to 20K for
the different filtration methods. Results can be

Figure 4: Pass rate results in ToolBench when using
train sets with different sizes and filtration methods.

found in Figure 4. As size increases, we observe
consistently better performance, with an expected
plateau in the largest dataset sizes. Notice that
at some point the training datasets have no more
high-quality data instances that pass our filters,
putting a natural limit on our experiments.

7 Conclusion

We demonstrated the importance of evaluating the
quality of training data for fine-tuning tool-using
LLMs. We introduce two data-evaluation ap-
proaches. The first is a rigorously devised intrinsic
quality assessment, for which we implement
automated metrics. The second uses in-context
evaluation, that measures the educational value
of training examples. While the former method
is more explainable and dependable, the latter
is computationally cheaper. We apply both
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approaches to filter data instances from two large
datasets of differing qualities. The resulting
subsets of training data demonstrate comparable
or superior quality in terms of model performance,
despite their smaller size compared to the original
datasets. Overall, we observe that it is worthwhile
to more carefully choose the training data for
tool-using LLMs. If investing in better methods
of data generation is costly, automatic post-hoc
filtration can be a great alternative.

8 Limitations

In this work, we address the quality of data in-
stances, and refrain from overall dataset-level qual-
ity criteria, primarily diversity of data. Our focus is
on instance-level quality, and we show the advan-
tage of training LLMs with data that is identified as
high-quality with instance-level criteria only. Fu-
ture work can explore the benefits of dataset-level
quality criteria as well.

Our experiments span over two popular bench-
marks for tool-using LLMs. They are differing in
characteristics and quality, and can therefore pro-
vide insights that are not benchmark-specific. Nev-
ertheless, conducting our analyses on additional
related datasets and LLMs would provide an even
more generalized representation of our results.
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A Intrinsic Evaluation

A.1 Other Quality Criteria

We outline here three quality criteria that are com-
monly addressed in the domain of data quality eval-
uation, and that we did not include in this work. (1)
Fluency is the lexical quality of the text in terms
of grammar, spelling, and style (Celikyilmaz et al.,
2021). The reason for omitting this dimension is
that the lexical quality of texts generated by pow-
erful LLMs is very high. We found that virtually
all instances in an assessment set had highly fluent
texts. (2) Syntax Validity is whether the func-
tion calls and parameter names (not values) in the
API-call sequence are valid. Using both manual
validation and automatic rule-based lexical match-
ing we found that data generated with ChatGPT did
not exhibit such errors. (3) Diversity captures how
different the data instances are amongst themselves
in terms of assortment of requests, tool usage, dif-
ficulty, length and other properties. Similarly to
other tasks and domains, it is expected that an LLM
would learn to generalize better given diverse exam-
ples (Gong et al., 2019; Yu et al., 2023). We focus
on instance-level criteria, and leave dataset-level
criteria, such as diversity, for future work.

A.2 Prompts for Assessment

In Figures 6–10 we provide the prompts we use
for automatically assessing the six human-defined
quality criteria, using ChatGPT.

A.3 Unsuccessful Prompts

Direct questioning and annotation instruction with
ChatGPT did not work well for the criteria of Speci-
ficity, Coherence and Parameter Alignment. In Fig-
ures 11–13 we provide the prompts. In Table 7 we
provide validation results of alignment with human
annotation on the same subset of examples of the
ToolBench dataset.

Criterion Acc. Precision Recall F1

Specificity 0.54 0.56 0.36 0.43
Coherence 0.74 0.50 0.46 0.48
Alignment 0.66 0.69 0.71 0.70

Table 7: Validation results when using the direct ques-
tioning approach for Specificity, Coherence and Parame-
ter Alignment. Compare to Table 4, which shows higher
scores for the prompts ultimately used.

A.4 Manual Annotation Process

A.4.1 Annotating Training Data

To initiate the annotation process, we examined the
data and identified the quality criteria (as outlined
in §4.1). We then went through several cycles of ex-
amination and refinement of respective guidelines.

An instance of annotation shows the instruction,
the available API functions, and the API-call se-
quence that should solve the instruction. The an-
notator needs to mark level of specificity of the
instruction (1 to 3), its coherence (1 to 3), whether
it is solvable with respect to the available API func-
tions (yes/no), the sequence call validity in terms
of function availability (yes/no), parameter align-
ment in the calls (yes/no), whether the sequence
call solves the instruction (yes/no), and whether it
does so minimally (yes/no). See Tables 8, 9 and 10
for annotation instructions of the first three criteria.

The annotators (authors of this paper) first anno-
tated the same 20 instances from ToolBench and
discussed differences, culminating in strong agree-
ment between the annotators. The averaged Kappa
statistics for the first three criteria are: Specificity
0.674 (“substantial”), Coherence 0.508 (“moder-
ate”), and Solvability 0.414 (“moderate”). Annota-
tors were then assigned different samples of data,
for a total of 50 instances from the ToolBench train
set, and 50 from the ToolAlpaca train set. We used
this data to assess the intrinsic metrics that we de-
veloped (§4.3).

A.4.2 Annotating the ToolBench Test Set

In comparison to annotation of training instances,
the test set annotation differs in two major aspects.
First, the test set does not include API-call se-
quences, but rather only the input instructions. A
training instance consists of an API-call sequence
in order to teach an LLM how to devise a solution
for attaining a final result. However during test
time, tool-assisted LLMs are typically evaluated on
the final result, and not on the API-call sequence
used to achieve the result. Second, in our cleaned
test set, we do not only mark inadequate instances,
but we also attempt to fix instructions so that they
become usable. The ToolBench test set contains
1100 instances (distinct from the 125K instances),
and only filtering out faulty instances would leave
very few suitable ones. Essentially, we use the
ToolBench test set as data to build upon instead
of creating new data altogether, which would be a
much costlier procedure. The ultimate goal is to
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produce a high-quality test set of solvable multi-
request instructions.

An instruction can fail on either specificity, co-
herence or solvability. Therefore, to repair an in-
struction we focused on the failing criteria and
rewrote the instruction to mend the faults. We al-
lowed for some creativity as long as the quality
criteria were intact, and the same number of re-
quests was kept within the instruction.

For example, “I’m planning a family movie
night and I want to watch some classic films.
Can you suggest some iconic movies available on
YouTube? Also, find a YouTube playlist of movie
soundtracks. Additionally, provide the latest ver-
sions of C++, Objective-C, and Scala program-
ming languages for my cousin who is a software
developer.” Here, the first request (“suggest iconic
movies”) and the second request (“find a YouTube
playlist”) are not specific enough for the available
API functions, and the third request (“provide the
latest versions of C++...”) is not coherent with
the beginning of the instruction. We therefore
rewrote the instruction for this instance as “I’m
learning how to program and I’d like some assis-
tance. Can you suggest some videos on YouTube
about C++? Also, download the video to MP3
from ‘www.youtube.com/?123abc’. Additionally,
please let me know the the latest versions of C++,
Objective-C, and Scala programming languages.”
The new instruction resolves the three issues de-
scribed. In a case where it is unclear how to use the
respective available API functions, no fix is made
and the instance is simply discarded.

Five annotators annotated 674 of the 1100 in-
stances in the ToolBench test set. 27.6% of the
instances lacked specificity, 21.5% lacked coher-
ence, and 32.7% were unsolvable. Overall, 37.7%
of the instances were discarded, in cases where
errors were too severe to be readily fixable. The
new test set is used for measuring the performance
of tool-using models in the multi-request setting
(§6), and can generally be used as a high-quality
benchmark. We provide the new test set in the
supplementary material.

A.5 Qualitative Examples

In Tables 11 and 12 we provide examples of instruc-
tions which our method found as lacking specificity
and coherence, from both ToolBench and ToolAl-
paca datasets.

Specificity
Evaluate the extent to which the data examples
contain all necessary information without gaps
or missing variables for the AI assistant to ad-
dress the user requests.

1 (Poor): The instruction is extremely broad and
general, lacking essential information.

2 (Medium): The instruction includes moderate
specific details but there are some gaps in infor-
mation.

3 (Excellent): The instruction is highly specific
and complete, with no significant missing infor-
mation.

Table 8: Human annotation guidelines for Specificity.

Coherence
Evaluate the extent to which the different re-
quests in the instruction are logically connected
and relevant to each other.

1 (Poor): The different requests of the instruc-
tion are highly disjointed, lacking a logical con-
nection.

2 (Medium): The different requests of the in-
struction have a moderate level of coherence but
still possess some degree of separation.

3 (Excellent): The components of the instruc-
tion are highly coherent, with a strong logical
connection.

Not Applicable: When there is only one request.
(Considered as ‘3’ for filtering.)

Table 9: Human annotation guidelines for Coherence.

Solvability
Determine if the ground truth APIs can handle
the instruction in terms of functionality. It is
alright if a parameter value is not explicitly pro-
vided in the query.

0 (No): The request cannot be handled by the
given APIs. The APIs’ functionalities do not fit
or address the request.

1 (Yes): The instruction can be handled by using
the given APIs. A parameter value might not be
explicitly provided in the query.

Table 10: Human annotation guidelines for Solvability.
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Instruction Examples
Fr

om
To

ol
B

en
ch

I’m planning to buy a used car and I need to decode the VIN number of a specific vehicle.
Can you provide me with the car model, maker, year, engine, and other relevant information?
Additionally, I’m curious about the trending search results on Google.

I’m a wedding planner and I want to create personalized videos for my clients. Can you give
me the details of a specific template I have in mind, including the variables it offers? Also, I
need to access all my campaigns’ information, including the images, videos, and image+video
campaigns.

I’m hosting a garden party next weekend. Can you give me the 1-hour/minutely forecast for the
party location? Additionally, recommend some outdoor games and decorations for the event.

I recently discovered a new song that I really love. Can you provide me with the lyrics and
related data for the song? Also, suggest some similar songs that I might enjoy.

I’m planning a trip to Europe and I want to stay updated on the energy prices in the region. Can
you fetch all the available articles from a specific region, like Europe? Additionally, provide
me with a list of news sources and their corresponding regions.

Fr
om

To
ol

A
lp

ac
a Please generate an invoice for my freelance work and send it to my client.

How can I find the best gear for my character in Guild Wars 2?

Hey, I’m planning a road trip and I want to check for any road closures along my route. Can
you help me with that?

I need to retrieve detailed information about a specific malware sample. Can you show me how
to do that?

I want to know if any of the email addresses in a list are disposable. Can you use the API to
check which email addresses in the list are disposable?

Table 11: Examples of instructions which our method found as lacking specificity, from the two examined datasets.

A.6 Relationship Between Quality Criteria

We additionally explored the relationship between
quality criteria within the datasets. Generally, the
correlations between dimensions are not particu-
larly high. A notable analysis we conducted shows
the effect of Specificity on Parameter Alignment.
As illustrated in Figure 5, when specificity is weak,
it is also more likely that parameter alignment is
weak. This might be expected behavior since low
specificity means that parameter values are miss-
ing in the instruction, and the LLM hallucinates a
value in order to complete its task. The correlation
however is not exceedingly high, in particular we
see in ToolBench that even for instances with high
specificity, the parameter alignment can still be low,
showing that there are examples where the parame-
ter is present in the instruction but it does not match
the parameter in the ground-truth response.

B ICE

B.1 Full Prompt

In Figure 14 we provide the full prompt for our pro-
posed in-context evaluation method. The prompt
is constructed as follows: a description of the task,
documentation of the APIs selected, one in-context
example and the test queries.

B.2 ICE Score Calculation

To calculate the ICE score, we follow these steps:

1. We input to the model the ICE prompt (Fig-
ure 14), containing an in-context example
from the assessed dataset, and obtain the
model output for each of the 7 test instruc-
tions.

2. For each test instruction, we calculate the
Levenshtein distance between the generated

4970



Instruction Examples
Fr

om
To

ol
B

en
ch

I’m planning a surprise birthday party for my best friend and I need some help. Can you find
the email of a person named Emma Watson at google.com? Additionally, I want to find a
formulated product by its registration number to use as a gift for my friend.
My family and I are considering relocating to New York City. Can you provide us with a list
of transactions for zipcode 10019? We would like to see the last sales date, last sales amount,
and total records for each transaction. Additionally, could you give us the detailed historical
transactions for the address 310 W 56th St, New York, NY 10019?
I want to explore movies related to a specific genre. Can you discover movies in the genre with
genreId ’80’ and provide me with the details of the first 10 results? Also, fetch the crew details
for a random movie.
I’m a basketball enthusiast and I want to know more about the players in the NBA. Can you
fetch me the details of all the players? Additionally, provide me with a random Chuck Norris
joke to lighten the mood.
My friends and I are planning a trip to multiple cities and we need to estimate the cost of living.
Can you provide us with a list of available currencies? Additionally, we would like to get a
comprehensive list of cities, including their countries, to help us plan our itinerary.

Fr
om

To
ol

A
lp

ac
a I’m curious about quotes related to debugging. Can you find some for me? After that, please

show me a list of all authors so I can learn more about their thoughts on programming.
I want to add a catchy animation to my GitHub profile. Show me a list of font types available
for use, and once I choose one, create a typing and deleting SVG with the text "I’m a software
engineer" in 18-point font size, orange color, a typing speed of 80 ms, start delay of 500 ms,
and a pause duration of 1 second.
I’m thinking of going to Lansdowne Park this afternoon. Could you find nearby bus stops
within a 300-meter radius with my current location at latitude 45.3967 and longitude -75.6858?
My user profile still shows my old email address. Can you update it to my new one,
"new_email@example.com"? Also, update my preferences to receive newsletters about datasets
in the "economy" category.
Can you personalize the email content for my subscribers based on their names? Use
the template ’Holiday Greetings’ and add subscriber data for Sarah, whose email is
sarah@example.com and name is ’Sarah Smith’.

Table 12: Examples of instructions which our method found as incoherent, from the two examined datasets.

API-call sequence and the correct API-call
sequence.

3. We average the Levenshtein distances calcu-
lated for all test instructions, resulting in a
single score for each data instance.

Steps 1 to 3 are repeated for each of the data
instances in the assessed dataset. Figure 2 shows
the distribution of instance-level scores for the two
assessed datasets.

C Extrinsic Evaluation

C.1 Training Setup
The training setup is similar for both ToolBench
and ToolAlpaca benchmarks, where we train on

pairs of (instruction, API-call sequence + re-
sponse).

ToolBench. We fine-tune a LLaMA-7B model
when working with the ToolBench dataset. The
learning rate is set to 5× 10−5, and we use a batch
size of 2. Since the tasks require relatively long
inputs for the targeted model, the context length
is extended using positional interpolation (Chen
et al., 2023). We increase the context length to
4096, which is twice the model’s default length of
2048. The model is trained for two epochs on 8
NVIDIA A10G Tensor Core GPUs.

ToolAlpaca. For the ToolAlpaca dataset, we fine-
tune a Vicuna-7B model. We use a batch size of
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(a) ToolAlpaca dataset

(b) ToolBench dataset

Figure 5: Confusion matrices for Specificity and Param-
eter Alignment.

2 and a learning rate of 2 × 10−5. The model is
fine-tuned for three epochs on 4 NVIDIA A10G
Tensor Core GPUs.

C.2 Evaluation Setup

We adhere to the evaluation procedures outlined
in the respective benchmarks for ToolBench and
ToolAlpaca. Both benchmarks use a generative
model for the evaluation of the API-call sequence
and response. We use ChatGPT for both datasets.

ToolBench. In the ToolBench benchmark, the
evaluation process begins with assessing the solv-
ability of the given instruction. Using ChatGPT,
solution paths are categorized as Pass, Fail, or Un-
sure based on this classification. The evaluation
criteria include various rules to determine the suc-
cess of a solution path. For more detailed insights
into the evaluation methodology and rules, please
refer to the original paper (Qin et al., 2024).

The original evaluation procedure involves as-
sessing the generalization ability across three
levels—unseen instructions, tools, and categories—
as well as three different scenarios. However, in-
stead of splitting the test set into categories, we
calculate the pass rate by averaging over all test

samples. Importantly, in the human-annotation of
the test set, we aimed to maintain a similar distri-
bution across all test splits for consistency.

Regarding the retrieval of APIs during model
inference, we adopt only one of the approaches
tested in the original evaluation, where we directly
insert the relevant APIs for each test instruction.
This approach simulates the scenario where the
user specifies the preferred API set.

ToolAlpaca. Similarly, in the ToolAlpaca bench-
mark, we use ChatGPT to evaluate the model’s
output in addressing the instruction. The evalu-
ation criteria is assessing the overall correctness,
considered as the pass rate, of both the process
and the response. For further details regarding the
evaluation methodology, please refer to the original
paper (Tang et al., 2023).

In our study, we use the simulated subset for eval-
uation. This subset comprises 10 simulated tools
(100 instructions) that were not part of the training
toolset. While the original paper also includes a
real-world subset with 11 APIs from various do-
mains, we focused solely on the simulated data due
the lack of detailed instructions on how to use the
real-world data.
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Figure 6: Prompt for instruction specificity, as an ex-
traction task.

Figure 7: Prompt for instruction coherence, as a next
sentence coherence prediction task.

Figure 8: Prompt for instruction solvability.
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(a) Step 1: parameter value extraction

(b) Step 2: comparison

Figure 9: Prompts for assessing parameter alignment
in the API-call sequence, as a two-step procedure.

Figure 10: Prompt for sufficiency and minimality of
the API-call sequence.

Figure 11: Prompt for specificity, as a direct questioning
task.
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Figure 12: Prompt for coherence, as a direct question-
ing task.

Figure 13: Prompt for parameter alignment, as a direct
questioning task.
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Figure 14: The prompt used for in-context evaluation of a training instance (marked as {in_context_example} in
the prompt).
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