
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 4375–4391
November 12-16, 2024 ©2024 Association for Computational Linguistics

PromptReps: Prompting Large Language Models to Generate Dense and
Sparse Representations for Zero-Shot Document Retrieval

Shengyao Zhuang1,2, Xueguang Ma3, Bevan Koopman1,2, Jimmy Lin3, Guido Zuccon2

1CSIRO,
2 The University of Queensland,

3 University of Waterloo

Abstract
Utilizing large language models (LLMs) for
zero-shot document ranking is done in one of
two ways: (1) prompt-based re-ranking meth-
ods, which require no further training but are
only feasible for re-ranking a handful of can-
didate documents due to computational costs;
and (2) unsupervised contrastive trained dense
retrieval methods, which can retrieve relevant
documents from the entire corpus but require
a large amount of paired text data for con-
trastive training. In this paper, we propose
PromptReps, which combines the advantages
of both categories: no need for training and
the ability to retrieve from the whole corpus.
Our method only requires prompts to guide
an LLM to generate query and document rep-
resentations for effective document retrieval.
Specifically, we prompt the LLMs to repre-
sent a given text using a single word, and then
use the last token’s hidden states and the cor-
responding logits associated with the predic-
tion of the next token to construct a hybrid
document retrieval system. The retrieval sys-
tem harnesses both dense text embedding and
sparse bag-of-words representations given by
the LLM. Our experimental evaluation on the
MSMARCO, TREC deep learning and BEIR
zero-shot document retrieval datasets illustrates
that this simple prompt-based LLM retrieval
method can achieve a similar or higher re-
trieval effectiveness than state-of-the-art LLM
embedding methods that are trained with large
amounts of unsupervised data, especially when
using a larger LLM.

1 Introduction

Large Language Models (LLMs) such as GPT4
and LLaMA, which are pretrained on massive cor-
pora and finetuned to follow user instructions, have
strong zero-shot natural language understanding
capabilities (OpenAI, 2024; Touvron et al., 2023).
Via prompting, LLMs excel in various text gen-
eration tasks such as question answering, writing

Figure 1: Overview of PromptReps. LLMs are
prompted to simultaneously generate dense and sparse
representations, then used to build search indexes.

assistance, and conversational agent (Hendrycks
et al., 2021; Liu et al., 2023). Inspired by the suc-
cess of LLMs on natural language understanding
tasks, research has explored the potential of using
LLMs to perform unsupervised document ranking.

One line of work focuses on directly prompt-
ing LLMs to infer document relevance to a given
query (Sachan et al., 2022; Zhuang et al., 2023;
Ma et al., 2023; Sun et al., 2023; Pradeep et al.,
2023; Zhuang et al., 2024; Qin et al., 2024). For
instance, RankGPT (Sun et al., 2023) casts docu-
ment re-ranking as a permutation generation task,
prompting LLMs to generate re-ordered document
identifiers according to the document’s relevance
to the query. These methods leverage LLMs for
document ranking in a complete zero-shot setting
where no further training is required. However,
these methods can only serve as a second-stage re-
ranker on a handful of candidate documents. This
is because each prompt requires one full LLM infer-
ence: for example, in the case of a corpus with 1M
documents, a pointwise approach would require
the construction of 1M prompts and thus the exe-
cution of 1M (costly) LLM inferences – making it
unfeasible for an online search engine.

4375

Another line of research leverages LLMs as
a text embedding model for dense document re-
trieval (Lee et al., 2024; Wang et al., 2024a,b;
BehnamGhader et al., 2024). For example, E5-
mistral (Wang et al., 2024b) employs LLMs to
create synthetic datasets of query-document pairs.
These paired text data are then used to perform un-
supervised contrastive training for a Mistral LLM-
based dense retriever. Since the queries and docu-
ments are encoded with LLMs separately; i.e., us-
ing a bi-encoder architecture, these methods could
serve as a first-stage document retriever. However,
all existing LLM-based retrievers require an un-
supervised contrastive training step to transform
a generative LLM into a text-embedding model.
Even with parameter-efficient training techniques
such as LoRA (Hu et al., 2022), this extra train-
ing is still very expensive. For example, the con-
trastive training of E5-mistral using a large batch
size (2048) and LoRA took ≈ 18 hours on 32 V100
GPUs (Wang et al., 2024b).

In this work, we propose a new zero-shot
LLM-based document retrieval method called
PromptReps. We demonstrate that LLMs can be
directly prompted to produce query and document
embeddings, which can serve as effective text repre-
sentations for neural retrieval systems. Specifically,
we prompt an LLM by asking it to use a single word
to represent a query or a document. Then, we ex-
tract the last layer’s hidden state of the last token in
the prompt as the dense representation of the input
text. Simultaneously, we utilize the logits associ-
ated with predicting the subsequent token to form
a sparse representation. As illustrated in Figure 1,
through a single forward pass, we generate text rep-
resentations for a document that can be indexed for
dense, sparse, or hybrid search architectures. We
also explore alternative representations in addition
to the core idea in this paper, where we generate
multiple words, and use multiple embeddings to
represent an item (Figures 3 and 4).

Our empirical evaluation on multiple datasets
show that PromptReps can achieve a similar or
higher zero-shot retrieval effectiveness than previ-
ous trained LLM-based embedding methods, es-
pecially when a large LLM is utilized. Of key
importance is that our method is the first LLM-
based method that can effectively perform full cor-
pus retrieval while at the same time not requiring
contrastive training, demonstrating that prompt en-
gineering for generative LLMs is capable of gener-
ating robust representations for retrieval.

Code for fully reproducing our results is
available at https://github.com/ielab/
PromptReps.

2 Related Work

2.1 Supervised neural retrievers

Neural retrievers based on the bi-encoder archi-
tecture bring significant improvements over tradi-
tional best-match retrievers such as BM25. Dense
retrievers such as DPR (Karpukhin et al., 2020)
and ANCE (Xiong et al., 2021) are based on
transformer language models and encode text
into low-dimensional vectors, conducting search
with nearest neighbor search. On the other
hand, sparse neural retrievers such as DeepIm-
pact (Mallia et al., 2021), uniCOIL (Lin and Ma,
2021), TILDE (Zhuang and Zuccon, 2021c,b), and
SPLADE (Formal et al., 2021), also based on trans-
former language models, encode text into high-
dimensional sparse vectors as bag-of-words repre-
sentations, conducting search with inverted index.
Recent works also explored fine-tuning generative
LLMs as dense retrievers such as RepLLaMA (Ma
et al., 2024) and LLaRA (Liao et al., 2024). A hy-
brid neural retrieval system refers to a system that
combines the rankings provided by both dense and
sparse retrievers, often resulting in an enhanced fi-
nal ranking (Lin and Ma, 2021; Wang et al., 2021).

All these retrievers are trained with supervised
relevance judgment data (e.g., MSMARCO (Ba-
jaj et al., 2018)) using contrastive learning. Our
work instead focuses on building a hybrid neural
retrieval system with zero-shot dense and sparse
document representations without supervised con-
trastive learning and based on generative LLMs.
This capability has two implications: (1) no con-
trastive training is required, which is expensive
when applied to LLMs with several billions param-
eters, and (2) no human-labelled training data is
required, which may be laborious and expensive to
obtain. With regards to the first point, Wang et al.
(2024b) reported that the training of E5-mistrail
(7B parameters) took about 18 hours on 32 V100
GPUs, for an approximate cost of USD $2,300,1

emissions of ≈5.6 kgCO2e and consumption of
≈37.7 L of water for the associated cooling ac-
tivities.2 Scaling this training to more and larger
LLMs, and more data, will consequently further in-

1Based on 4 On-Demand p3dn.24xlarge instances, June 2024.
2Emissions and water consumption estimates obtained using
the frameworks of Scells et al. (2022); Zuccon et al. (2023).

4376

https://github.com/ielab/PromptReps
https://github.com/ielab/PromptReps

crease costs. Our proposed method does not incur
these additional contrastive pre-training costs. With
regards to the second point, dense retrievers have
shown to have poor generalisability when applied
to data out-of-domain or out-of-task compared to
the data used for contrastive training (Thakur et al.,
2021; Zhuang and Zuccon, 2021a, 2022; Ren et al.,
2023; Lin et al., 2023; Lupart et al., 2022). In pres-
ence of shift in data between training and deploy-
ment, retrieval losses can be significant: dense re-
trieval effectiveness can plummet far below that of
best-match models like BM25 (Khramtsova et al.,
2023, 2024). The acquisition of in-domain/in-task
training data can be costly, laborious and impracti-
cal/impossible especially in domain-specific appli-
cations when dealing with sensitive, private data.

2.2 Unsupervised neural retrievers
There have also been attempts at training ef-
fective neural retrievers without relying on hu-
man relevance judgments. Methods such as Con-
triever (Izacard et al., 2022) and E5 (Wang et al.,
2024a), train a dense retriever with large-scale
pseudo query-document pairs to build unsupervised
training data. LLMs have also been adapted as un-
supervised text embedding models for first-stage
document retrieval. For instance, HyDE (Gao et al.,
2023a) enhances query representations for an unsu-
pervised retriever by replacing the original query
with LLM-generated hypothetical documents.

More recent work has focused on directly con-
verting generative LLMs into a text-embedding
model with unsupervised contrastive pre-training.
Methods like E5-Mistral-Inst (Wang et al., 2024b)
and Gecko (Lee et al., 2024) use large-scale
weakly supervised paired text data or LLM-
generated query-document pair data to per-
form contrastive training on top of LLMs.
LLM2Vec (BehnamGhader et al., 2024), on the
other hand, conducts further masked next token
prediction pre-training with bidirectional attention,
and SimCSE (Gao et al., 2021) trains on raw text
data to transform LLMs into text encoders. Al-
though no labeled data is used, these methods re-
quire synthetic or unsupervised paired text data to
perform contrastive pre-training (thus still expe-
riencing training costs in terms of computations;
and further computational costs may be associated
with the generation of synthetic training data). Our
method instead relies solely on prompt engineering
to transform LLM into a robust text encoder for
document retrieval without any extra training.

2.3 Prompting LLMs for document ranking

Inspired by the prompt-following capacity of
LLMs, recent studies have explored prompting
LLMs for document re-ranking. For instance,
UPR (Sachan et al., 2022) ranks documents point-
wise by prompting the LLM to generate a relevant
query for a given document and rank documents
based on the likelihood of generating the query.
RankGPT (Sun et al., 2023) and LRL (Ma et al.,
2023) propose to re-rank a list of documents at once
and generate permutations for the reordered list.
Pairwise (Qin et al., 2024) and Setwise (Zhuang
et al., 2024) prompting methods have also been
explored to improve effectiveness and efficiency
in the LLM re-ranking pipeline. These methods
are only feasible for re-ranking a handful of candi-
date documents, thus limited to second-stage docu-
ment re-ranking. In contrast, our approach utilizes
prompts to construct the first-stage retrievers.

2.4 Prompting LLMs for sentence embedding

The methods most similar to ours prompt LLMs to
generate sentence embeddings for semantic textual
similarity (STS) tasks (Jiang et al., 2023b; Lei et al.,
2024; Zhang et al., 2024). These previous methods
also used an Explicit One-word Limitation (EOL)
prompt, which also instructs LLMs to represent a
sentence with one word. However, these methods
only evaluate such prompts on STS datasets, and
their effectiveness on information retrieval datasets
with large document corpora is unknown. Addition-
ally, these methods only represent text with dense
embeddings from the hidden states; our method
instead generates dense and sparse representations
simultaneously to build a hybrid retrieval system.
Our empirical results show that dense embeddings
alone perform poorly for document retrieval tasks
with some LLMs, but sparse representations are
much more robust, and the best retrieval effective-
ness is achieved with the hybrid retrieval system
with scaled model size.

3 PromptReps

Previous work that leverages LLMs for document
ranking are limited to document re-ranking tasks
with prompts or rely on contrastive learning to
transform a generative LLM into an embedding
model for document retrieval. Unlike these previ-
ous works, here we aim to directly prompt LLMs
to generate both dense embedding representations
and sparse bag-of-words representations for docu-

4377

ment retrieval without any form of extra training ef-
fort. To achieve this, we devise the prompt as illus-
trated in Figure 1 as the input text for LLMs, where
<System> <User> and <Assistant> are LLM pre-
defined conversational prefix tokens and [text] is
the placeholder for passage text.

When using this prompt for text generation, the
language model needs to find a single word in its
token vocabulary that can best represent the given
passage to generate. However, since there could
be multiple words to represent the passage, there
might be multiple tokens in the vocabulary that
have a high probability of being sampled by the
language model. Such a distribution over the vo-
cabulary, which is often refers to as “logits”, could
provide a good representation of the given passage.
In addition, since the logits are computed by the
last layer hidden state3 of the last input token (‘ “
’), which is a dense vector embedding, it could also
serve as a dense representation of the passage.

Based on the above intuition, we develop a
sparse + dense hybrid document retrieval system
by utilizing both the next token logits and the last
layer hidden states outputted by the LLM with our
designed prompt.

Specifically, during the document indexing
phase, we pass all the documents (one at the time)
with our prompt into the LLM to get output hid-
den states and logits. To build a sparse retrieval
pipeline with logits, we first need to sparsify the
logits representation to be able to perform efficient
sparse retrieval. This is because logits originally
had values for all tokens in the vocabulary, essen-
tially forming dense vectors with dimensions equal
to the vocabulary size. To sparsify the logit rep-
resentations for sparse retrieval, we perform the
following steps:

1. Lowercase the input document text to align with
the phrase “Make sure your word is in lower-
case.” in the prompt since this phrase skewed
the sampling distribution towards lowercase to-
kens (a “sparser” distribution). We then utilize
the NLTK toolkit (Bird and Loper, 2004) to ex-
tract all words in the document, filtering out
standard English stopwords and punctuation.

2. Next, we use the LLM’s tokenizer to tokenize
each extracted word and obtain their token IDs.4

3Often through dot product between the last hidden state with
all token embeddings.

4Note that many words may be split into sub-tokens, resulting
in multiple token IDs, all of which are considered in the logits

We retain only the values corresponding to the
obtained token IDs in the logits and set the rest
of the dimensions to zero, thereby considering
only tokens present in the documents, thus en-
abling exact term matching in retrieval.

3. Next, we follow the SPLADE recipe (Formal
et al., 2021), using the ReLU function to remove
dimensions with negative values and applying
log-saturation to the logits to prevent certain
tokens from dominating. To further enhance the
sparsity of logits, we only keep tokens within
the top 128 values if the logits had more than
128 non-zero values after the previous steps.

4. Finally, the logits are quantized by multiplying
the original values by 100 and taking the inte-
ger operation on that, and the obtained values
represent the weights of corresponding tokens.

With these adjustments, the logits representations
of documents are heavily sparsified, allowing for
efficient sparse retrieval with an inverted index.

For dense retrieval, we directly use the hidden
states as the embeddings of the documents. For
indexing these embeddings, we simply normal-
ize all the embeddings and add them into an Ap-
proximate Nearest search (ANN) vector index. In
Appendix A, we provide example Python code of
generating dense and sparse representations with
PromptReps.

At query time, we process the queries exactly
the same as the documents, with the only excep-
tion being that the term “passage” in the prompt is
replaced with “query”.5 The dense representation
of the query is utilized for semantic search via the
ANN index, while the sparse representation of the
query is employed for exact term matching via the
inverted index. Following previous work (Wang
et al., 2021), we compute the final document scores
by applying min-max normalization to both dense
and sparse document scores. These normalized
scores are then linearly interpolated with equal
weights to produce the final document scores. We
do not explicitly tune the weight because our set-
ting is zero-shot retrieval, and we wanted to main-
tain the “zero-shot” nature of our approach. Never-
theless, in Appendix B, we explore the impact of
the different weight settings.

5The only exception in our experiments is the Quora dataset,
which is a duplicate query search task. Therefore, we use the
query prompt for both queries and documents.

4378

Table 1: nDCG@10 scores of BEIR 13 publicly available datasets.

Sup Contrastive training Unsup Contrastive training PromptReps (ours)
LLM - BERT110M BERT110M BERT330M Llama3-8B-I Llama3-8B-I Llama3-70B-I

Dataset BM25 SPLADE++ DRAGON+ E5-PTlarge LLM2Vec Dense Sparse Hybrid Dense Sparse Hybrid
arguana 39.70 52.1 46.9 44.4 51.73 29.70 22.85 33.32 31.65 24.66 35.27
climatefever 16.51 22.8 22.7 15.7 23.58 19.92 9.98 21.38 19.95 12.14 22.18
dbpedia 31.80 44.2 41.7 37.1 26.78 31.53 28.84 37.71 31.12 28.30 37.59
fever 65.13 79.6 78.1 68.6 53.42 56.28 52.35 71.11 42.06 51.75 63.97
fiqa 23.61 35.1 35.6 43.3 28.56 27.11 20.33 32.40 30.80 22.16 34.66
hotpotqa 63.30 68.6 66.2 52.2 52.37 19.64 44.75 47.05 24.32 42.12 48.51
nfcorpus 32.18 34.5 33.9 33.7 26.28 29.56 28.18 32.98 33.84 29.74 36.08
nq 30.55 54.4 53.7 41.7 37.65 34.43 29.55 43.14 38.25 30.37 46.97
quora 78.86 81.4 87.5 86.1 84.64 81.77 70.35 84.24 81.18 67.69 83.70
scidocs 14.90 15.9 15.9 21.9 10.39 18.51 11.57 17.59 20.59 13.25 19.10
scifact 67.89 69.9 67.9 72.3 66.36 52.68 58.48 65.71 63.12 61.53 70.34
trec-covid 59.47 71.1 75.9 62.1 63.34 59.52 54.59 69.25 67.64 63.00 76.85
touche 44.22 24.4 26.3 19.8 12.82 14.85 18.47 21.65 15.56 18.65 22.35
avg 43.70 50.3 50.2 46.06 41.38 36.58 34.64 44.43 38.47 35.80 45.97

4 Experimental Setup

Dataset and evaluation: We evaluate the docu-
ment ranking effectiveness of both baseline meth-
ods and our proposed PromptReps using MS-
MARCO (Bajaj et al., 2018) passage retrieval,
TREC deep learning (Craswell et al., 2020) and
BEIR (Thakur et al., 2021). These datasets encom-
pass various IR tasks, providing a heterogeneous
evaluation environment. For MSMARCO we re-
port MRR@10 and for TREC deep learning and
BIER we report nDCG@10 scores, the commonly
employed evaluation measure for these datasets.

Baselines: We compare PromptReps with strong
unsupervised first-stage retrievers including BM25,
a classic term frequency-based sparse retrieval
method, and E5-PTlarge (Wang et al., 2024a), a
state-of-the-art BERT large-based dense embed-
ding method trained on 1.3B carefully crafted un-
supervised text pairs. LLM2Vec (BehnamGhader
et al., 2024), a Llama3-8B-Instruct LLM-
based dense embedding method trained with bi-
directional attention, masked next token prediction,
and SimCSE (Gao et al., 2021) on the Wikipedia
corpus. In addition, We also report state-of-the-
art supervised contrastive, fine-tuned BERT-based
sparse retriever SPLADE++ (Formal et al., 2022)
and dense retriever DRAGON+ (Lin et al., 2023).
We note that these methods are trained with lots of
supervised training data and knowledge distillation
from teacher models, thus it is unfair to compare
with our method and other unsupervised baselines.
However, we think it is useful to compare with su-
pervised methods to understand the gap between
supervised and unsupervised methods.

Implementation of PromptReps: PromptReps
is implemented using four base LLMs: Mistral-

7b-Instruct-v0.26 (Jiang et al., 2023a), Phi-3-mini-
4k-instruct7 (Abdin et al., 2024), Llama3-8B-
Instruct,8 and Llama3-70B-Instruct9 (AI@Meta,
2024). Dense and sparse document and query en-
codings are implemented using the Huggingface
Transformers library (Wolf et al., 2020) and the
Tevatron toolkit (Gao et al., 2023b). The Faiss
library (Douze et al., 2024) is used to build the
ANN index with cosine similarity as the embed-
ding distance metric. We simply use brute force
search for ANN (IndexFlatIP in Faiss) for a fair
comparison with the baselines. For sparse retrieval,
Pyserini (Lin et al., 2021) is utilized to construct
the inverted index. For the dense and sparse rank-
ing hybrid, the Ranx library (Bassani and Romelli,
2022) is employed. In our experiments, we report
dense only, sparse only, and the full hybrid results.

5 Zero-shot Results

We start by showing our overall results on the
BEIR dataset, which we treated as test set; we then
analyse choices in instantiation of PromptReps, in-
cluding different variations in the prompt using
the MSMARCO and TREC deep learning datasets,
which we used as development datasets to inform
the choices we made to run PromptReps on BEIR.

5.1 Zero-shot retrieval effectiveness on BEIR

We present our results on BEIR in Table 1. The first
observation highlights that BM25 is a strong zero-
shot retrieval method, capable of outperforming
LLM2Vec, based on the Llama3-8B-Instruct LLM,
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
8https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

9https://huggingface.co/meta-llama/Meta-Llama-3-70B-
Instruct

4379

Table 2: nDCG@10 scores of unsupervised LLM-based
methods hybrid with BM25 on BEIR 13 publicly avail-
able datasets. D+S+BM25 stands for PromptReps hy-
brid with its dense, sparse and BM25.

LLM BERT-330M Llama3-8B-I Llama3-70B-I
Dataset E5-PT+BM25 D+S+BM25 D+S+BM25
arguana 47.34 38.13 39.53
climatefever 21.92 22.95 23.34
dbpedia 43.46 40.87 41.63
fever 78.04 77.07 74.06
fiqa 42.88 34.11 35.35
hotpotqa 69.18 64.38 65.29
nfcorpus 36.61 35.20 37.64
nq 47.71 45.12 48.30
quora 88.63 86.26 86.60
scidocs 20.76 17.97 18.82
scifact 76.37 70.92 73.58
trec-covid 74.09 76.17 80.29
touche 35.01 29.13 34.15
avg 52.46 49.10 50.66

across numerous datasets, achieving a higher aver-
age nDCG@10 score. This outcome implies that
even with a large-size LLM, bi-directional atten-
tion enabled, additional pre-training, and SimCSE-
based unsupervised contrastive training, there re-
mains a gap in transforming a decoder-only LLM
into an effective retrieval method.

On the other hand, E5-PTlarge, based on the
BERT-large model, is the first method that can
outperform BM25 without any supervised train-
ing data. However, it has been trained on a massive,
carefully mined text pair dataset with a large batch
size, which may require more data-collecting ef-
forts and computational resources than LLM2Vec.

PromptReps with Llama3-8B-Instruct LLM has
lower nDCG@10 scores when only using dense
or sparse retrieval. However, the hybrid system
(combining dense and sparse) contributes notable
retrieval effectiveness improvements, surpassing
BM25 and approaching the state-of-the-art E5-
PTlarge. Notably, this is achieved without any form
of extra training but solely relying on prompts.

The scaling law observed for LLMs (Kaplan
et al., 2020) and dense retrievers (Fang et al., 2024)
also applies here. When changing Llama3-8B-
Instruction to Llama3-70B-Instruction, the dense
and sparse retrieval effectiveness of PromptReps
further improves, with the hybrid approach compa-
rable to E5-PTlarge.

5.2 Further hybrid with BM25

In Table 2 we report results of unsupervised LLM-
based retrievers further hybrid with BM25 on BEIR
datasets. For PromptReps, we generate hybrid rank-
ing by combining dense, sparse, and BM25 rank-
ings using min-max normalization, assigning equal

weight to each. For the baseline, we report E5-
PTlarge hybrid with BM25, also using min-max nor-
malization and equal weights. Compared to their
standalone retrieval effectiveness reported in Ta-
ble 1, the effectiveness of all LLM-based retrievers
significantly improved. E5-PTlarge and PromptReps
with Llama 70B model surpassed supervised train-
ing methods. These results demonstrate that it is
possible to build a strong retrieval system with
LLMs and BM25 without the need for any super-
vised training.

5.3 Sensitivity to different prompts

In the previous experiments, we always use the
prompt illustrated in Figure 1. In this section, we
study how different prompts impact the retrieval
effectiveness. Particularly, we design six differ-
ent prompts,10 listed in Table 3, and conduct ex-
periments on TREC deep learning 2019 and 2020
datasets, and MSMARCO passage retrieval dev
sub-dataset. We use Llama3-8B-Instruction as the
base LLM for PromptReps. The results are listed
in Table 4. We also report results of Recall@1000
and other base LLMs in Appendix C.

The results demonstrate that PromptReps can
achieve a similar level of retrieval effectiveness
as BM25 and surpass LLM2Vec with most of the
prompts. The only prompt that does not work well
is prompt #4, which does not include the phrase
“The word is: “” to force the LLM to generate
the representative word as the next token. This
is expected because, without this phrase, the first
generated token would be a general token such as
“The” which is not representative of the input text.

Interestingly, our results also show that LLMs
have instruction-following ability in this represen-
tation generation task. For instance, comparing
prompts #1 and #2, the only difference is the phrase
“in a retrieval task”, and the prompt with this
phrase yields higher retrieval effectiveness across
all datasets. Additionally, comparing prompts #1
and #6, the difference is the phrase “Make sure your
word is in lowercase”, which matches our sparse
exact matching mechanism where we first lower-
case the input text. This phrase can further improve
the retrieval effectiveness. Finally, using the adjec-
tive phrase “most important” in the prompt does
not significantly impact the results.

10The prompt in Figure 1 is prompt #6 in Table 3.

4380

Table 3: Investigated prompts. The systems prompt and any text string before the prompts in this table are the same
as Figure 1, thus omitted. <A> denotes the model-specific assistant special token.

ID Prompts
1 Use one word to represent the passage in a retrieval task.<A>The word is: "
2 Use one word to represent the passage.<A>The word is: "
3 Use one most important word to represent the passage in a retrieval task. Make sure your word is in lowercase.<A>The word is: "
4 Use one word to represent the passage in a retrieval task.<A>
5 Use one most important word to represent the passage in a retrieval task.<A>The word is: "
6 Use one word to represent the passage in a retrieval task. Make sure your word is in lowercase.<A>The word is: "

Table 4: Retrieval effectiveness of different prompts on
TREC deep learning and MSMARCO. The ID corre-
spond to the prompt IDs list in Table 3.

ID Methods DL2019 DL2020 MSMARCO
- BM25 49.73 48.76 18.75
- LLM2Vec - - 13.61

PromptReps Llama3-8B-Instruct (ours)
1 Dense 49.26 40.28 16.26
2 Dense 43.32 31.60 12.52
3 Dense 49.20 43.90 17.49
4 Dense 0.00 0.00 0.00
5 Dense 47.19 40.17 16.02
6 Dense 50.62 43.81 17.54
1 Sparse 41.77 44.81 20.12
2 Sparse 39.90 43.10 19.13
3 Sparse 43.50 44.87 20.42
4 Sparse 21.77 20.49 7.22
5 Sparse 42.18 44.17 19.78
6 Sparse 42.25 45.60 20.85
1 Hybrid 53.67 54.35 23.68
2 Hybrid 50.65 49.25 21.76
3 Hybrid 55.64 53.83 23.86
4 Hybrid 13.47 11.81 5.06
5 Hybrid 54.16 52.06 23.25
6 Hybrid 55.58 56.66 24.62

5.4 Impact of different LLMs

In this section, we explore how different base
LLMs impact PromptReps. For this study, we in-
vestigate five state-of-the-art open-sourced decoder-
only LLMs, covering different model sizes and
models with or without instruction tuning. We use
prompt #6 for all LLMs11 and report MRR@10
scores on the MSMARCO datasets. The results are
illustrated in Figure 2; more detailed results includ-
ing on TREC deep learning datasets are reported in
Appendix C.

The results show that the hybrid retrieval effec-
tiveness of PromptReps consistently outperforms
BM25, regardless of which LLM is used, with the
only exception of Mistral-7B-Instruct. When us-
ing the Mistral-7B-Instruct LLM, the dense-only
retriever performs poorly. Surprisingly, imple-
menting PromptReps with Phi-3-mini-4k-instruct
achieved much higher retrieval effectiveness than
that of Mistral-7B-Instruct, despite having far fewer
parameters (3.8B).
11Only model specific conversational special tokens are

changed.

Figure 2: MRR@10 scores on MSMARCO of
PromptReps with different LLMs.

Meta-Llama-3 models are generally very effec-
tive for our method. For 8B models, the instruction-
tuned model performs significantly better than the
pretrained-only model, indicating that the instruc-
tion fine-tuning is helpful to further improve our
method. The 70B instruction-tuned model achieved
the best hybrid retrieval results, but the dense-only
and sparse-only retrieval effectiveness is similar
to the 8B instruction-tuned model. These results
agree with the BEIR results presented in Table 1.

6 Supervised Results

We have demonstrated the strong zero-shot effec-
tiveness of PromptReps. Now we explore the ques-
tion: Can PromptReps serve as a better initializa-
tion for LLM-based embedding models in down-
stream contrastive supervised fine-tuning?

To address this question, we conduct supervised
fine-tuning experiments using MSMARCO. Specif-
ically, we follow the RepLlama training recipe (Ma
et al., 2024) to fine-tune the LLama-3-8B-Instruct
base model with InfoNCE loss and hard nega-
tive passages mined by a BM25 and dense re-
trieval hybrid system. The detailed training hyper-
parameters are listed in Appendix D. For the Re-
pLlama baseline, we adhere to the original imple-
mentation, which appends the prefixes “Query: ”
and “Passage: ” to the query and document text,
respectively, and adds the end-of-sentence token
at the end of the text. The output embedding of

4381

this token is then used to represent the text. For
PromptReps, we use our proposed prompt (#6 in
Table 3) and the last token hidden states and log-
its as the dense and sparse representation of the
text. For fine-tuning PromptReps, we explore two
settings, PromptReps-dense only, which only uses
the dense representation of PromptReps to calcu-
late document scores during training and inference.
This setting ensures a fair comparison with Re-
pLlama, as the only difference is the prompt used.
The other setting involves using both dense and
sparse document scores to calculate the loss, sim-
ply adding the two losses as the final loss. During
inference, we report the dense, sparse, and hybrid
retrieval effectiveness separately for this setting.

We train both RepLlama and PromptReps for
1 epoch using the full MSMARCO training data,
which contains 490k training examples. In addition
to the full training, we also explore a low-resource
training setting, where we sample 1k examples
from the entire MSMARCO dataset. We then split
the 1k examples into a training and a validation
set with a 9:1 ratio. We monitor the validation
loss after each training epoch and stop the training,
selecting the best checkpoint if no lower validation
loss is observed for three consecutive epochs.

The results are shown in Table 5. Surprisingly,
with only 1k training examples, ranking effective-
ness of RepLlama improved from 0 to a compet-
itive score. This finding suggests that it is possi-
ble to convert an LLM into an effective embed-
ding model with little training data. On the other
hand, PromptReps-dense only achieved the best
MRR@10 score on MSMARCO dev. However,
the hybrid training loss coupled with hybrid re-
trieval achieved the highest effectiveness across dif-
ferent training settings on TREC DL; the only ex-
ception being the full-data setting on MSMARCO
dev. These results demonstrate that PromptReps
could be seen as a simple approach to obtaining
a better initialization of LLM-based embedding
models, which is more cost-effective than meth-
ods requiring further pre-training (BehnamGhader
et al., 2024; Li et al., 2023).

7 Alternative Representation and Scoring

In the previous sections, we only considered us-
ing the representations (dense and sparse) yielded
from the last token in the prompt for document
retrieval. These representations, in the context of
generative LLMs, are responsible for predicting

Table 5: Supervised fine-tuning results

zero-shot 1k data full data (490k)
MSMARCO dev MRR@10

RepLlama3 0.0 27.88 42.77
PromptReps-dense only 17.54 28.48 42.58
PromptReps-dense 17.54 25.45 41.86
PromptReps-sparse 20.85 21.55 34.15
PromptReps-hybrid 24.62 28.18 42.48

DL2019 NDCG@10
RepLlama3 0.0 63.91 73.19
PromptReps-dense only 50.62 62.63 73.50
PromptReps-dense 50.62 64.48 74.10
PromptReps-sparse 42.25 47.23 60.39
PromptReps-hybrid 55.58 65.23 74.49

DL2020 NDCG@10
RepLlama3 0.0 63.10 73.35
PromptReps-dense only 43.81 61.46 73.00
PromptReps-dense 43.81 61.04 73.65
PromptReps-sparse 45.60 50.15 62.81
PromptReps-hybrid 56.66 64.01 73.87

the first generated token. We define this setting
as First-token single-representation (FTSR). We
have demonstrated that this simple way of gen-
erating representations is effective for document
retrieval; however, these representations might be
sub-optimal. For example, LLMs use sub-word tok-
enization algorithms such as SentencePiece (Kudo
and Richardson, 2018). This tokenization might
split a word into sub-words, meaning that the first
generated token might just be a sub-word. Us-
ing the representation of the whole word might be
a better representation than the first token repre-
sentation. Additionally, previous works in multi-
vector dense retrieval such as ColBERT (Khattab
and Zaharia, 2020) demonstrated that using mul-
tiple representations could be beneficial for doc-
ument retrieval. How can we use PromptReps to
also generate single-word representations or multi-
ple representations that can potentially enhance the
retrieval effectiveness? In this section, we explore
these alternative representations.

First-word single-representation (FWSR) and
Multi-token single-representation (MTSR). Instead
of using the representations of the first generated
token, these two methods let the LLM finish the
generation12 of the whole word or multiple words,
controlled by the given prompt (“Use one word” or
“Use three words”), as illustrated in Figure 3. The
end of generation is detected by the token ‘ ” ’. We
then pool all the representations of the generated
tokens to form a single dense and sparse representa-
tion for the input text. For the dense representation
we use mean pooling and for the sparse representa-

12We simply use greedy generation.

4382

Figure 3: First-word single-representations or Multi-token
single-representation.

Figure 4: Multi-representations with ColBERT scoring.

Figure 5: Hybrid retrieval results of different representation methods on BEIR.

tion we use max pooling. Once representations are
obtained, the scoring is the same as FTSR.

Multi-token multi-representation (MTMR) and
Multi-word multi-representation (MWMR). Instead
of using a single representation for retrieval, these
two methods prompt the LLM to generate multiple
words and then index each generated representa-
tion separately. The difference between the two is
that MTMR keeps all the token representations in
the index, while MWMR first groups tokens into
words by using space, and then creates a single
representation for each word by using max pooling
for sparse representations and mean pooling for
dense representations. During retrieval, we follow
the ColBERT scoring method where the relevance
score of a document is computed by the sum of the
maximum similarity of each query representation
against each document representation (Figure 4).

Hybrid retrieval results are shown in Figure 5,
and full dense and sparse retrieval results in Ap-
pendix E. Results show that all the explored meth-
ods are able to perform document retrieval. The
FTSR and MTSR generally perform the best. How-
ever, we note that MTSR requires more token gen-
eration steps and thus has higher query latency. The
FWSR performs the worst, suggesting that sub-
word representations hurt the retrieval performance
for single-word generation prompts. On the other
hand, multi-representation methods with ColBERT
scoring methods do not seem beneficial. Thus, we
conclude that the simplest FTSR is sufficient to
represent the input text for document retrieval.

8 Conclusion

We introduced PromptReps, a simple yet effective
method that prompts LLMs to generate dense and
sparse representations for zero-shot document re-
trieval without any further training. We show that
modern LLMs are effective text encoders by them-
selves, and prompt engineering is sufficient to stim-
ulate their text encoding ability.

For future works, techniques like few-shot in-
context learning (Brown et al., 2020), chain-of-
thought prompting (Wei et al., 2022), and auto-
prompt optimization methods (Yang et al., 2024;
Fernando et al., 2023), which have proven to be ef-
fective in text-generation tasks, could potentially be
leveraged here to enhance embedding generation.

Moreover, it has been shown that the instruction-
following ability of LLMs could be transferred
to embedding models with synthetic instruction
fine-tuning data (Wang et al., 2024b). In our
work, we always keep the instruction prompt con-
sistent across different IR tasks, which could be
sub-optimal. It is interesting to investigate how to
customize instructions for PromptReps to generate
embeddings specific to different domains, tasks, or
even to multi-lingual and cross-lingual IR settings.

Finally, our prompting method could be seen as
a simple approach to obtaining a better initializa-
tion of LLM-based embedding models and all the
previous contrastive pre-training with paired text
data and synthetically generated data could be ap-
plied on top of our method and could potentially
yield improved LLM-based embedding models.

4383

9 Limitations

PromptReps has higher query latency than other
LLM-based dense retrievers if no further optimiza-
tion is implemented. This limitation comes from
two aspects.

First, although the computation of document rep-
resentations happens offline thus will not affect
query latency, the query representations are created
online. PromptReps adds extra prompt texts on top
of the query text thus has a longer input length –
and LLM inference time is proportional to prompt
length. However, we believe this limitation can be
mitigated by leveraging recent works on prompt
compression to compress the fixed prompt tokens
into few or even a single latent token (Ge et al.,
2024; Cheng et al., 2024).

Second, the highest effectiveness for
PromptReps is achieved in the hybrid re-
trieval setting. Compared to previous works which
use dense representations only, the hybrid setting
requires both dense and sparse retrieval, thus the
extra sparse retrieval introduces extra query latency
(and requires additional disk/memory space for the
inverted index). However, PromptReps actually
only requires a limited query latency overhead
if dense and sparse retrieval are implemented in
parallel. In our method, obtaining both dense and
sparse representations only requires a single LLM
forward inference; the only extra computation
is the dot product of the dense vector with the
token embeddings, which is very fast on GPU.
For document search, since we heavily sparsified
the sparse representation, in our experiments, our
sparse retriever is much faster than BM25, and the
bottleneck is the dense retriever. Since the dense
and sparse search could be run in parallel and the
hybrid operation is a simple linear interpolation
of both rankings (very fast on CPU), the query
latency of the hybrid process only depends on the
dense retrieval latency, and it is thus very close to
previous methods.

10 Ethical Considerations

In our experiments, we use PromptReps coupled
with LLMs with a large number of parameters (up
to 70B in our experiments) to encode the BEIR and
MSMARCO datasets, which contain millions of
documents. Although no LLM training was con-
ducted, we are aware that our experiments might
still have consumed significant energy, thus con-
tributing to CO2 emissions (Scells et al., 2022)

and water consumption (Zuccon et al., 2023). In
addition, since we leverage LLMs in a black-box
manner and LLMs’ generation might contain bi-
ases (Gallegos et al., 2024), the representations
generated by LLMs may be biased towards cer-
tain contents or topics. Future work could consider
how to mitigate biases in PromptReps via prompt
engineering.

Acknowledgments

The authors from the University of Waterloo ac-
knowledge the support of the Natural Sciences
and Engineering Research Council (NSERC) of
Canada.

References
Marah Abdin et al. 2024. Phi-3 technical report: A

highly capable language model locally on your phone.
Preprint, arXiv:2404.14219.

AI@Meta. 2024. Llama 3 model card.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. MS MARCO: A human
generated machine reading comprehension dataset.
Preprint, arXiv:1611.09268.

Elias Bassani and Luca Romelli. 2022. ranx.fuse: A
Python library for metasearch. In Proceedings of
the 31st ACM International Conference on Informa-
tion & Knowledge Management, CIKM ’22, pages
4808–4812, New York, NY, USA. Association for
Computing Machinery.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. Llm2vec: Large language mod-
els are secretly powerful text encoders. Preprint,
arXiv:2404.05961.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.

4384

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://doi.org/10.1145/3511808.3557207
https://doi.org/10.1145/3511808.3557207
https://arxiv.org/abs/2404.05961
https://arxiv.org/abs/2404.05961
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031

Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan
Zhao. 2024. xrag: Extreme context compression
for retrieval-augmented generation with one token.
Preprint, arXiv:2405.13792.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M. Voorhees. 2020. Overview
of the TREC 2019 deep learning track. Preprint,
arXiv:2003.07820.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library. Preprint, arXiv:2401.08281.

Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, Wei-
hang Su, Jia Chen, and Yiqun Liu. 2024. Scaling
laws for dense retrieval. In Proceedings of the 47th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’24, page 1339–1349, New York, NY, USA. Associa-
tion for Computing Machinery.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
täschel. 2023. Promptbreeder: Self-referential
self-improvement via prompt evolution. Preprint,
arXiv:2309.16797.

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2022. From dis-
tillation to hard negative sampling: Making sparse
neural IR models more effective. In Proceedings of
the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’22, page 2353–2359, New York, NY, USA.
Association for Computing Machinery.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE: Sparse lexical and ex-
pansion model for first stage ranking. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’21, pages 2288–2292, New York, NY, USA.
Association for Computing Machinery.

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow,
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed.
2024. Bias and fairness in large language models:
A survey. Computational Linguistics, 50(3):1097–
1179.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023a. Precise zero-shot dense retrieval without rel-
evance labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1762–1777,
Toronto, Canada. Association for Computational Lin-
guistics.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023b. Tevatron: An efficient and flexible toolkit
for neural retrieval. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’23,
pages 3120–3124, New York, NY, USA. Association
for Computing Machinery.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024. In-context autoencoder for con-
text compression in a large language model. In The
Twelfth International Conference on Learning Repre-
sentations.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense infor-
mation retrieval with contrastive learning. Preprint,
arXiv:2112.09118.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. Preprint,
arXiv:2310.06825.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2023b. Scaling sentence
embeddings with large language models. Preprint,
arXiv:2307.16645.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

4385

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2405.13792
https://arxiv.org/abs/2405.13792
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/2401.08281
https://doi.org/10.1145/3626772.3657743
https://doi.org/10.1145/3626772.3657743
https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2309.16797
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1162/coli_a_00524
https://doi.org/10.1162/coli_a_00524
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.1145/3539618.3591805
https://doi.org/10.1145/3539618.3591805
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2307.16645
https://arxiv.org/abs/2307.16645
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Omar Khattab and Matei Zaharia. 2020. ColBERT: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’20, pages 39–48, New York, NY, USA. Association
for Computing Machinery.

Ekaterina Khramtsova, Shengyao Zhuang, Mahsa Bak-
tashmotlagh, Xi Wang, and Guido Zuccon. 2023. Se-
lecting which dense retriever to use for zero-shot
search. In Proceedings of the Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval in the Asia Pacific Re-
gion, SIGIR-AP ’23, page 223–233, New York, NY,
USA. Association for Computing Machinery.

Ekaterina Khramtsova, Shengyao Zhuang, Mahsa Bak-
tashmotlagh, and Guido Zuccon. 2024. Leveraging
LLMs for unsupervised dense retriever ranking. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’24, page 1307–1317, New
York, NY, USA. Association for Computing Machin-
ery.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen,
Daniel Cer, Jeremy R. Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai
Meher Karthik Duddu, Gustavo Hernandez Abrego,
Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Pra-
teek Jain, Siddhartha Reddy Jonnalagadda, Ming-
Wei Chang, and Iftekhar Naim. 2024. Gecko: Ver-
satile text embeddings distilled from large language
models. Preprint, arXiv:2403.20327.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao,
Chongyang Tao, and Andrew Yates. 2024. Meta-task
prompting elicits embedding from large language
models. Preprint, arXiv:2402.18458.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao.
2023. Making large language models a better founda-
tion for dense retrieval. Preprint, arXiv:2312.15503.

Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu,
Yancheng Yuan, Xiang Wang, and Xiangnan He.
2024. Llara: Large language-recommendation as-
sistant. Preprint, arXiv:2312.02445.

Jimmy Lin and Xueguang Ma. 2021. A few brief
notes on DeepImpact, COIL, and a conceptual frame-
work for information retrieval techniques. Preprint,
arXiv:2106.14807.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible

information retrieval research with sparse and dense
representations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’21,
pages 2356–2362, New York, NY, USA. Association
for Computing Machinery.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz,
Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and Xilun
Chen. 2023. How to train your Dragon: Diverse aug-
mentation towards generalizable dense retrieval. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 6385–6400, Singapore.
Association for Computational Linguistics.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang,
Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li,
Mengshen He, Zhengliang Liu, Zihao Wu, Lin Zhao,
Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen,
Tianming Liu, and Bao Ge. 2023. Summary of
ChatGPT-related research and perspective towards
the future of large language models. Meta-Radiology,
1(2):100017.

Simon Lupart, Thibault Formal, and Stéphane Clinchant.
2022. MS-Shift: An analysis of MS MARCO distri-
bution shifts on neural retrieval. In European Confer-
ence on Information Retrieval.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and
Jimmy Lin. 2024. Fine-tuning LLaMA for multi-
stage text retrieval. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’24,
page 2421–2425, New York, NY, USA. Association
for Computing Machinery.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and
Jimmy Lin. 2023. Zero-shot listwise document
reranking with a large language model. Preprint,
arXiv:2305.02156.

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola
Tonellotto. 2021. Learning passage impacts for in-
verted indexes. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’21,
pages 1723–1727, New York, NY, USA. Association
for Computing Machinery.

OpenAI. 2024. GPT-4 technical report. Preprint,
arXiv:2303.08774.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023. RankVicuna: Zero-shot listwise docu-
ment reranking with open-source large language mod-
els. Preprint, arXiv:2309.15088.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael
Bendersky. 2024. Large language models are effec-
tive text rankers with pairwise ranking prompting.
Preprint, arXiv:2306.17563.

4386

https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3624918.3625330
https://doi.org/10.1145/3624918.3625330
https://doi.org/10.1145/3624918.3625330
https://doi.org/10.1145/3626772.3657798
https://doi.org/10.1145/3626772.3657798
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2402.18458
https://arxiv.org/abs/2402.18458
https://arxiv.org/abs/2402.18458
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.02445
https://arxiv.org/abs/2312.02445
https://arxiv.org/abs/2106.14807
https://arxiv.org/abs/2106.14807
https://arxiv.org/abs/2106.14807
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.18653/v1/2023.findings-emnlp.423
https://doi.org/10.18653/v1/2023.findings-emnlp.423
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://api.semanticscholar.org/CorpusID:256231516
https://api.semanticscholar.org/CorpusID:256231516
https://doi.org/10.1145/3626772.3657951
https://doi.org/10.1145/3626772.3657951
https://arxiv.org/abs/2305.02156
https://arxiv.org/abs/2305.02156
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2306.17563
https://arxiv.org/abs/2306.17563

Ruiyang Ren, Yingqi Qu, Jing Liu, Xin Zhao, Qifei
Wu, Yuchen Ding, Hua Wu, Haifeng Wang, and Ji-
Rong Wen. 2023. A thorough examination on zero-
shot dense retrieval. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
15783–15796, Singapore. Association for Computa-
tional Linguistics.

Devendra Sachan, Mike Lewis, Mandar Joshi, Armen
Aghajanyan, Wen-tau Yih, Joelle Pineau, and Luke
Zettlemoyer. 2022. Improving passage retrieval with
zero-shot question generation. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3781–3797, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Harrisen Scells, Shengyao Zhuang, and Guido Zuccon.
2022. Reduce, reuse, recycle: Green information
retrieval research. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’22,
page 2825–2837, New York, NY, USA. Association
for Computing Machinery.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2024a. Text embeddings by
weakly-supervised contrastive pre-training. Preprint,
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024b. Improv-
ing text embeddings with large language models.
Preprint, arXiv:2401.00368.

Shuai Wang, Shengyao Zhuang, and Guido Zuccon.
2021. BERT-based dense retrievers require interpo-
lation with bm25 for effective passage retrieval. In
Proceedings of the 2021 ACM SIGIR International
Conference on Theory of Information Retrieval, IC-
TIR ’21, pages 317–324, New York, NY, USA. Asso-
ciation for Computing Machinery.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Bowen Zhang, Kehua Chang, and Chunping Li. 2024.
Simple techniques for enhancing sentence embed-
dings in generative language models. Preprint,
arXiv:2404.03921.

Shengyao Zhuang, Bing Liu, Bevan Koopman, and
Guido Zuccon. 2023. Open-source large language
models are strong zero-shot query likelihood models
for document ranking. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 8807–8817, Singapore. Association for Com-
putational Linguistics.

4387

https://doi.org/10.18653/v1/2023.findings-emnlp.1057
https://doi.org/10.18653/v1/2023.findings-emnlp.1057
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2404.03921
https://arxiv.org/abs/2404.03921
https://doi.org/10.18653/v1/2023.findings-emnlp.590
https://doi.org/10.18653/v1/2023.findings-emnlp.590
https://doi.org/10.18653/v1/2023.findings-emnlp.590

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,
and Guido Zuccon. 2024. A setwise approach for
effective and highly efficient zero-shot ranking with
large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’24, page 38–47, New York, NY, USA. Association
for Computing Machinery.

Shengyao Zhuang and Guido Zuccon. 2021a. Deal-
ing with typos for BERT-based passage retrieval and
ranking. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2836–2842, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Shengyao Zhuang and Guido Zuccon. 2021b. Fast
passage re-ranking with contextualized exact term
matching and efficient passage expansion. Preprint,
arXiv:2108.08513.

Shengyao Zhuang and Guido Zuccon. 2021c. TILDE:
Term independent likelihood model for passage re-
ranking. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’21, pages
1483–1492, New York, NY, USA. Association for
Computing Machinery.

Shengyao Zhuang and Guido Zuccon. 2022. Character-
bert and self-teaching for improving the robustness
of dense retrievers on queries with typos. In Proceed-
ings of the 45th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’22, page 1444–1454, New York,
NY, USA. Association for Computing Machinery.

Guido Zuccon, Harrisen Scells, and Shengyao Zhuang.
2023. Beyond CO2 emissions: The overlooked im-
pact of water consumption of information retrieval
models. In Proceedings of the 2023 ACM SIGIR
International Conference on Theory of Information
Retrieval, ICTIR ’23, page 283–289, New York, NY,
USA. Association for Computing Machinery.

A Python code example

In Table 6 we provide a Python code imple-
mentation of PromptReps with Meta-Llama-3-8B-
Instruct LLM. The example uses Huggingface
transformers library (v4.40.1) with torch (v2.3.0),
numpy (v1.26.4) and nltk (v3.9.1) to generate dense
and sparse representations.

B Impact of Hybrid weights

In Figure 6 we plot the MRR@10 scores obtained
with different weights for PromptReps with Llama-
8B-Instruct on the MSMARCO dev set. As the plot
suggests, the best effectiveness is achieved with
weight set to 0.4, noting that 0.5 (the setting used

in our zero-shot experiments) actually provides a
fairly good choice for hybrid retrieval.

C Full results on TREC deep learning
and MSMARCO

In Table 7 we present the full results we abstained
on TREC deep learning datasets and MSMARCO
passage retrieval dataset. The prompt ID is refer to
Table 3.

D Fine-tuning hyper-parameters

In Table 8 we report the fine-tuning hyper-
parameters we used for both RepLLama and
PromptReps in Section 6. We use the training data
with hard negatives provided in Tevatron Hugging-
face hub.13

E Full results of different representation
methods

In Table 9 we present the full results of different
representation and scoring methods discussed in
Section 7.

13https://huggingface.co/datasets/Tevatron/
msmarco-passage-aug

4388

https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.18653/v1/2021.emnlp-main.225
https://doi.org/10.18653/v1/2021.emnlp-main.225
https://doi.org/10.18653/v1/2021.emnlp-main.225
https://arxiv.org/abs/2108.08513
https://arxiv.org/abs/2108.08513
https://arxiv.org/abs/2108.08513
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3477495.3531951
https://doi.org/10.1145/3578337.3605121
https://doi.org/10.1145/3578337.3605121
https://doi.org/10.1145/3578337.3605121
https://huggingface.co/datasets/Tevatron/msmarco-passage-aug
https://huggingface.co/datasets/Tevatron/msmarco-passage-aug

Table 6: Python code example of generating dense and sparse representations with PromptReps.

from transformers import AutoModelForCausalLM , AutoTokenizer
import torch
import numpy as np
from nltk import word_tokenize
from nltk.corpus import stopwords
import string
stopwords = set(stopwords.words('english ') + list(string.punctuation))

model_id = 'meta -llama/Meta -Llama -3-8B-Instruct '
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to('cuda')

passage = 'The quick brown fox jumps over the lazy dog.'
messages = [

{'role': 'system ', 'content ': 'You are an AI assistant that can understand human language.'},
{'role': 'user', 'content ': f'Passage: "{ passage }". Use one word to represent the passage '

f' in a retrieval task. Make sure your word is in lowercase.'},
{'role': 'assistant ', 'content ': 'The word is "'}

]

input_ids = tokenizer.apply_chat_template(
messages ,
add_generation_prompt=False ,
return_tensors='pt'

)[:, :-1].to('cuda') # the last special token is removed

outputs = model(input_ids=input_ids , return_dict=True , output_hidden_states=True)

generating dense representation
dense_representation = outputs.hidden_states [-1][:, -1, :][0]

generating sparse representation , log and relu the values
next_token_logits = torch.log(1 + torch.relu(outputs.logits))[:, -1, :][0]

lower case and stopwords removal
words_in_text = [word for word in word_tokenize(passage.lower ()) if word not in stopwords]

extract token ids in the given passage
token_ids_in_text = set()
for word in words_in_text:

token_ids_in_text.update(tokenizer.encode(word , add_special_tokens=False))

token_ids_in_text = torch.tensor(list(token_ids_in_text))

get top tokens and quantization
top_k = min(len(token_ids_in_text), 128)
top_k_values , top_k_indices = next_token_logits[token_ids_in_text].topk(top_k , dim=-1)
values = np.rint(top_k_values.cpu (). detach (). float (). numpy () * 100). astype(int)
tokens = [tokenizer.decode(i) for i in token_ids_in_text[top_k_indices.cpu (). detach (). float (). numpy ()]]

final sparse representation
print({ token: value for token , value in zip(tokens , values)})
{'fox ': 312, 'dog ': 280, 'brown ': 276, 'j ': 273, 'quick ': 265, 'lazy ': 257, 'umps ': 144}

Figure 6: Average MRR@10 scores on MSMARCO dev queries of PromptReps with different dense and sparse
fusion weights.

4389

Table 7: TREC deep learning and MSMARCO performance of different prompts and LLMs. +BM25 is the system
that hybrid dense, sparse, and BM25.

Prompt DL2019 DL2020 MSMARCO Dev
ID Methods nDCG@10 Recall@1000 nDCG@10 Recall@1000 MRR@10 Recall@1000

- BM25 49.73 74.50 48.76 80.31 18.75 85.73
- LLM2Vec - - - - 13.61 94.70

Phi-3-mini-4k-instruct (3.8B)
1 Dense 46.78 70.10 42.84 67.60 15.45 82.68
2 Dense 34.64 55.15 30.62 50.47 10.85 66.04
3 Dense 49.62 75.79 43.21 71.87 15.78 86.24
4 Dense 39.12 60.77 28.33 57.20 9.26 72.31
5 Dense 43.94 72.51 39.00 70.57 13.50 83.08
6 Dense 40.77 62.05 37.20 58.39 14.64 79.29
1 Sparse 41.51 69.56 40.95 69.70 16.89 84.72
2 Sparse 40.67 60.59 39.36 61.58 16.38 75.43
3 Sparse 42.28 74.33 40.72 72.14 18.16 87.09
4 Sparse 38.05 65.15 34.33 64.13 14.75 78.59
5 Sparse 40.68 70.84 39.26 69.02 16.04 84.41
6 Sparse 41.98 71.20 41.99 69.66 18.19 86.55
1 Hybrid 53.04 79.99 52.76 77.64 21.61 92.21
2 Hybrid 50.51 69.75 43.92 66.47 19.22 81.35
3 Hybrid 55.53 81.68 51.35 79.49 21.76 93.53
4 Hybrid 48.53 76.29 40.37 73.64 18.23 87.18
5 Hybrid 52.08 80.16 50.52 79.30 20.30 92.37
6 Hybrid 51.10 75.84 49.24 73.98 22.06 91.41

Meta-Llama-3-8B-Instruct
1 Dense 49.26 73.03 40.28 68.77 16.26 81.96
2 Dense 43.32 64.77 31.60 61.35 12.52 73.89
3 Dense 49.20 71.69 43.90 69.96 17.49 84.50
4 Dense 0.00 0.00 0.00 0.00 0.00 0.04
5 Dense 47.19 72.00 40.17 66.71 16.02 82.56
6 Dense 50.62 73.01 43.81 68.39 17.54 82.91
1 Sparse 41.77 67.28 44.81 71.36 20.12 85.71
2 Sparse 39.90 66.00 43.10 69.08 19.13 83.74
3 Sparse 43.50 66.74 44.87 72.93 20.42 85.14
4 Sparse 21.77 41.94 20.49 50.51 7.22 56.35
5 Sparse 42.18 67.18 44.17 71.94 19.78 85.37
6 Sparse 42.25 66.58 45.60 72.82 20.85 85.57
1 Hybrid 53.67 83.52 54.35 78.42 23.68 92.84
2 Hybrid 50.65 80.31 49.25 76.64 21.76 90.12
3 Hybrid 55.64 81.90 53.83 79.15 23.86 92.99
4 Hybrid 13.47 37.81 11.81 45.22 5.06 50.50
5 Hybrid 54.16 82.06 52.06 78.70 23.25 92.77
6 Hybrid 55.58 83.44 56.66 79.14 24.62 93.11
6 + BM25 63.09 83.82 60.61 79.57 26.75 95.33

Meta-Llama-3-8B
6 Dense 43.90 67.38 35.50 63.34 14.67 79.61
6 Sparse 38.41 64.83 43.34 67.57 18.82 82.63
6 Hybrid 51.13 77.07 46.34 75.42 22.31 90.87

Mistral-7B-Instruct-v0.2
6 Dense 13.96 27.26 16.77 26.69 5.61 40.27
6 Sparse 39.84 58.05 37.29 63.53 15.62 77.55
6 Hybrid 32.58 57.00 32.95 63.12 13.18 77.98

Meta-Llama-3-70B-Instruct
6 Dense 51.95 77.30 45.01 73.66 17.76 85.65
6 Sparse 44.07 68.60 44.14 70.99 20.70 86.42
6 Hybrid 58.39 86.22 59.17 81.57 25.66 93.75
6 + BM25 63.18 88.56 62.55 86.28 27.63 95.83

4390

Table 8: Hyper-parameters for supervised fine-tuning on MSMARCO passage ranking dataset.

LLM LLama3-8B-Instruct
learning rate 1e-4
warmup ratio 0.1
per GPU batch size 8
of GPUs 4
gradient accumulation steps 4
of negative per example 15
total in batch negative 511
distance method cosine similarity
score temperature 0.01
query length 32
passage length 156
LoRA rank 8

Table 9: Full results of different representation and scoring methods on BEIR.

Dataset First token single rep First-word single rep Multi token single rep Multi-token multi-rep Multi-word multi-rep
Dense Sparse Hybrid Dense Sparse Hybrid Dense Sparse Hybrid Dense Sparse Hybrid Dense Sparse Hybrid

arguana 29.70 22.85 33.32 20.54 24.59 23.80 41.78 24.46 42.61 36.69 23.03 35.19 36.47 24.13 34.96
climatefever 19.92 9.98 21.38 13.88 11.28 16.67 22.19 9.29 20.90 19.40 6.72 17.56 18.75 8.10 18.09
dbpedia 31.53 28.84 37.71 22.71 28.70 30.08 31.83 26.33 36.03 27.46 18.18 31.35 24.50 21.66 30.32
fever 56.28 52.35 71.11 40.97 57.10 61.20 50.49 51.36 64.13 44.53 30.31 54.04 38.81 37.95 52.97
fiqa 27.11 20.33 32.40 17.61 19.60 24.74 28.94 20.73 32.44 25.26 19.41 28.38 26.28 19.50 28.30
hotpotqa 19.64 44.75 47.05 10.35 46.25 37.79 29.94 46.50 51.50 23.80 39.39 46.38 21.93 40.25 43.68
nfcorpus 29.56 28.18 32.98 21.98 29.15 29.49 28.97 28.65 33.65 25.68 25.39 31.20 22.95 25.37 30.05
nq 34.43 29.55 43.14 22.83 29.25 33.18 35.09 25.88 39.36 31.36 23.28 35.38 30.55 22.78 35.95
quora 81.77 70.35 84.24 68.54 69.67 78.15 82.11 68.38 83.91 77.89 63.95 80.26 77.13 64.25 80.76
scidocs 18.51 11.57 17.59 12.73 12.05 14.97 18.12 11.83 17.39 16.13 11.08 15.68 15.85 11.40 15.44
scifact 52.68 58.48 65.71 26.66 58.75 51.59 52.55 59.32 63.75 45.53 54.23 58.53 47.05 53.21 61.18
trec-covid 59.52 54.59 69.25 51.00 55.04 63.53 63.28 51.73 69.16 60.97 49.88 63.54 61.17 46.24 65.10
touche2020 14.85 18.47 21.65 12.23 21.58 19.13 15.59 19.24 21.44 15.86 17.81 22.10 15.41 18.09 19.26
avg 36.58 34.64 44.43 26.31 35.62 37.26 38.53 34.13 44.33 34.65 29.44 39.97 33.60 30.23 39.70

4391

