
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 4334–4353
November 12-16, 2024 ©2024 Association for Computational Linguistics

PROMETHEUS 2: An Open Source Language Model Specialized in
Evaluating Other Language Models

Seungone Kim1,2,3∗ Juyoung Suk1∗ Shayne Longpre4 Bill Yuchen Lin5 Jamin Shin1

Sean Welleck3 Graham Neubig3 Moontae Lee2,6 Kyungjae Lee2 Minjoon Seo1

KAIST AI1 LG AI Research2 Carnegie Mellon University3 MIT4

Allen Institute for AI5 University of Illinois Chicago6

seungone@cmu.edu {juyoung, minjoon}@kaist.ac.kr

Abstract

Proprietary LMs such as GPT-4 are often em-
ployed to assess the quality of responses from
various LMs. However, concerns including
transparency, controllability, and affordability
strongly motivate the development of open-
source LMs specialized in evaluations. On the
other hand, existing open evaluator LMs ex-
hibit critical shortcomings: 1) they issue scores
that significantly diverge from those assigned
by humans, and 2) they lack the flexibility to
perform both direct assessment and pairwise
ranking, the two most prevalent forms of as-
sessment. Additionally, they often do not pos-
sess the ability to evaluate based on custom
evaluation criteria, focusing instead on gen-
eral attributes like helpfulness and harmless-
ness. To address these issues, we introduce
Prometheus 2. Prometheus 2 is more powerful
than its predecessor, and closely mirrors hu-
man and GPT-4 judgements. Moreover, it is
capable of processing both direct assessment
and pair-wise ranking formats grouped with a
user-defined evaluation criteria. On four direct
assessment benchmarks and four pairwise rank-
ing benchmarks, PROMETHEUS 2 scores the
highest correlation and agreement with humans
and proprietary LM judges among all tested
open evaluator LMs. Our models, code, and
data are all publicly available. 1

1 Introduction

Evaluating the quality of outputs produced by lan-
guage models (LMs) is progressively becoming
difficult, as the outputs cover an extremely di-
verse distribution of text and complex tasks. To
address this issue, language model-based evalua-
tion has emerged as a scalable and cheap paradigm
for assessing LM-generated text (Li et al., 2024;
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Figure 1: Weak evaluators (e.g., Llama-2-Chat-70B,
Prometheus, and GPT-3.5-Turbo) achieve low scoring
correlation with strong evaluators (e.g., Humans, GPT-4,
and Claude-3-Opus). On the other hand, scores provided
by strong evaluators highly correlate with each other.

Gao et al., 2024). In this paradigm, LMs are ei-
ther prompted to output a scalar indicator of qual-
ity (denoted as direct assessment) (Zheng et al.,
2023; Liu et al., 2023b; Ye et al., 2023; Kim et al.,
2023) or to determine which of two outputs are pre-
ferred (denoted as pairwise ranking) (Wang et al.,
2023b; Li et al., 2023b; Lambert et al., 2024). Prior
works employing proprietary LMs as evaluators
have demonstrated not only high correlations with
human evaluations but also increased speed and
cost-effectiveness (Zheng et al., 2023; Liu et al.,
2023b; Dubois et al., 2023; Ye et al., 2023).

However, relying on proprietary LMs for evalua-
tion poses significant challenges. The lack of trans-
parency about their training data compromises both
fairness and reproducibility, making it problematic
to use them in evaluation pipelines. Additionally,
concerns regarding controllability and affordability
also persist (Kim et al., 2023). To address these
issues, recent works have focused on developing
evaluator LMs that are open-access, transparent,
and controllable (Kim et al., 2023; Wang et al.,
2023a,b; Li et al., 2023a; Zhu et al., 2023; Jiang
et al., 2023b,c; Lee et al., 2024). Yet, these models
often yield scoring decisions that do not correlate
well enough with human judgments or those made
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by proprietary LMs, failing to effectively simu-
late them. Moreover, open evaluator LMs are not
flexible since they are typically trained only to per-
form either direct assessment or pairwise ranking
and assess based on general public preferences like
helpfulness and harmlessness, limiting their ability
to handle diverse real-life scenarios.

To close the gap with proprietary LMs, we in-
vestigate unifying the two model-based evaluation
paradigms - direct assessment and pairwise ranking
- to train a robust unified evaluator LM. We propose
a recipe based on merging the weights of two eval-
uator LMs trained separately on direct assessment
and pairwise ranking formats. Our key empirical
observation is that weight merging can yield an
evaluator LM that not only works in both formats,
but also outperforms evaluator LMs that are jointly
trained or only trained on a single format.

To demonstrate our approach, we develop the
PREFERENCE COLLECTION, a new fine-grained
pairwise ranking feedback dataset that builds on
the FEEDBACK COLLECTION (Kim et al., 2023),
which is a direct assessment feedback dataset. We
choose Mistral-7B (Jiang et al., 2023a) and Mixtral-
8x7B (Jiang et al., 2024) as our base models, and
merge the weights of evaluator LMs separately
trained on the FEEDBACK COLLECTION and the
PREFERENCE COLLECTION to obtain our resulting
models, PROMETHEUS 2 (7B & 8x7B).

On four direct assessment benchmarks (Vicuna
Bench, MT Bench, FLASK, Feedback Bench), the
PROMETHEUS 2 models demonstrate the highest
correlation with both human evaluators and pro-
prietary LM-based judges compared to existing
open evaluator LMs, with the Pearson correla-
tion surpassing other baselines by 0.2 units across
all datasets. Similarly, on four pairwise ranking
benchmarks (HHH Alignment, MT Bench Human
Judgment, Auto-J Eval, Preference Bench), the
PROMETHEUS 2 models show the highest agree-
ment with human evaluators among all the open
evaluator LMs we tested, reducing the performance
gap with GPT-4 in half.

Our contributions are summarized as follows:

• We introduce PROMETHEUS 2 (7B & 8x7B),
state-of-the-art open evaluator LMs that score
high correlations with both human evaluators
and proprietary LM-based judges on both di-
rect assessment and pairwise ranking.

• We introduce a pairwise ranking feedback
dataset called the PREFERENCE COLLEC-

TION, which includes 1K custom evaluation
criteria beyond helpfulness and harmlessness.

• We show that merging the weights of evaluator
LMs trained on direct assessment and pairwise
ranking feedback datasets results in a unified
evaluator LM that excels in both schemes.

2 Related Work

2.1 Language Model-based Evaluation

To assess the generation capabilities of LMs, prior
works such as the GEM benchmark (Gehrmann
et al., 2021, 2022) employed ROUGE (Lin,
2004), BLEU (Papineni et al., 2002), and
BERTScore (Zhang et al., 2019) as their metrics,
which measure the lexical or semantic similarity
between a reference answer and a response. How-
ever, these conventional metrics are prone to false
negatives because they are not expressive enough
to recognize responses that are of good quality but
differ from the reference answer (Schluter, 2017;
Freitag et al., 2020; Hanna and Bojar, 2021).

Recently, employing language models as a judge
has gained attention as a promising paradigm to
mimic the depth and granularity that human evalu-
ation offers (Zheng et al., 2023; Liu et al., 2023b;
Li et al., 2023b; Chan et al., 2023; Ye et al., 2023).
To reduce the over-reliance on proprietary LMs,
follow-up works suggest training language models
specialized in evaluations (Cui et al., 2023; Kim
et al., 2023; Jiang et al., 2023b,c; Li et al., 2023a;
Lee et al., 2024). Yet, open evaluator LMs do
not possess the flexibility to function in different
evaluation schemes and show weak evaluation per-
formance compared to proprietary LMs. We aim
to bridge this gap by introducing PROMETHEUS 2.

2.2 Weight Merging

Prior works have demonstrated that weight merg-
ing can enhance performance across various do-
mains, including language modeling (Li et al.,
2022; Matena and Raffel, 2022; Ilharco et al.,
2022; Don-Yehiya et al., 2022; Gururangan et al.,
2023; Yadav et al., 2024; Sukhbaatar et al., 2024),
instruction-tuning (Jang et al., 2023b; Yu et al.,
2023), and aligning to user preferences (Jang et al.,
2023a; Rame et al., 2024; Wang et al., 2024). In
our work, we specifically focus on enhancing the
evaluation capabilities of open evaluator LMs. By
merging models trained on different assessment for-
mats—specifically, direct assessment and pairwise
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ranking—we aim to obtain an evaluator LM that
not only functions in both formats but also shows as
good evaluation performances as proprietary LMs.

3 Methodology

We propose a new recipe for training a unified
evaluator LM based on merging the weights of
models trained for direct assessment and pairwise
ranking. We begin with background on direct as-
sessment and pairwise ranking for evaluator LMs
(Section 3.1, 3.2), followed by the construction pro-
cess of our training data (Section 3.3). Finally, we
present our methods to train state-of-the-art evalua-
tor LMs, Prometheus 2 models (Section 3.4).

3.1 Direct Assessment
Direct assessment is mapping an instruction i and
response r into a scalar value score s, such as
fdirect : (i, r) 7→ s where s ∈ R. For the scor-
ing range, we use an integer between 1 and 5.

Prior works have identified several recipes to
align the scores provided by evaluator LMs (sLM )
and the scores assigned by humans (shuman). For
instance, Liu et al. (2023a) and Zheng et al. (2023)
have shown that it is crucial to add a reference an-
swer a as input to the evaluator LM to maximize
the correlation between sLM and shuman. Also,
Zheng et al. (2023) and Ye et al. (2023) showed
that prompting the language model to write verbal
feedback vr before s also improves the correlation
between sLM and shuman. Lastly, Ye et al. (2023)
and Kim et al. (2023) showed that by explicitly
integrating evaluation criteria e, users can define
the standards for model assessment, ensuring eval-
uations are flexible to specific needs rather than
generic qualities. Specifically, e is represented as
a score rubric including a description for the crite-
rion itself and a set of descriptions for each score
between the scoring range. This is expressed as:

fdirect : (i, r, a, e) 7→ (vr, s)

where s ∈ {1, 2, 3, 4, 5} (1)

3.2 Pairwise Ranking
Pairwise ranking is mapping an instruction i and
two pair of responses (rm, rn) into either i or j,
such as fpair : (i, rm, rn) 7→ s where s ∈ {m,n}.

Similar to direct assessment, prior works have
identified that integrating a reference answer a and
verbal feedback vrm,rn into the evaluation pipeline
is crucial (Zheng et al., 2023; Li et al., 2023b,a).
In addition, to support granular assessment under

Data
PREFERENCE FEEDBACK

COLLECTION COLLECTION

Evaluation Scheme Pairwise Ranking Direct Assessment
# Evaluation Criteria 1,000 1,000

# Instructions 20,000 20,000
# Reference Answer 20,000 20,000

# Instances 200,000 100,000
#Verbal Feedback 200,000 100,000

Table 1: Statistics of our training datasets, the FEED-
BACK COLLECTION and the PREFERENCE COLLEC-
TION. Note that the 1K evaluation criteria, 20K instruc-
tions, and 20K reference answers are shared among the
two datasets. Both datasets have an equal number of
scoring decisions (“A” or “B”; 100K each & 1-5; 20K
each) to prevent unintended biases after training.

custom criterion, we add the evaluation criteria e
as input to the evaluator LM (Ye et al., 2023; Kim
et al., 2023). To the best of our knowledge, we are
the first to study such fine-grained evaluation in
pairwise ranking settings. This is expressed as:

fpair : (i, rm, rn, a, e) 7→ (vrm,rn , s)

where s ∈ {m,n} (2)

In pairwise ranking, the evaluation criterion e
does not include a set of descriptions for each score;
instead, only the description of the evaluation cri-
terion itself. Also, it is noteworthy that the verbal
feedback vrm,rn compares the commonalities and
differences between rm and rn concerning e.

3.3 The Preference Collection
Popular pairwise ranking datasets such as HH-
RLHF (Bai et al., 2022) or Ultra Feedback (Cui
et al., 2023) do not include an evaluation criterion
e and a verbal feedback vrm,rn . To train an evalu-
ator LM that could assess based on such criteria,
we construct the PREFERENCE COLLECTION, in-
cluding 1K evaluation criteria. We apply two mod-
ifications to the FEEDBACK COLLECTION. First,
since the FEEDBACK COLLECTION includes five
responses for each instruction, each corresponding
to a scoring decision between 1 and 5, we pair two
out of the five responses, resulting in a total of ten
combinations per instruction. Using the existing
scoring decisions for each response, we determine
which response is better and assign a new scoring
decision for that pair (i.e., “Response A is better” or
“Response B is better”). Second, to generate new
verbal feedback vrm,rn for each pair of responses,
we prompt GPT-4-1106 to identify the commonali-
ties and differences between the two responses.
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Does the response accurately employ 

specific industry terminologies and jargon?

Pairwise Ranking

+

Both responses attempt to convey the fundamental concept of containerization, 
but with varying degrees of clarity and technical detail. Response A approaches 
the concept by using the metaphor of 'putting things in a box,' which, while easy 

to understand, lacks precision and industry-specific [...] 



On the other hand, Response B employs technical jargon more effectively, 

such as 'packaging,' 'configuration files,' 'libraries,' and 'dependencies.'



It can be concluded that Response B is better than Response A.

A B

B

Verbal Feedback

Scoring Decision

vs Does the response use simple language and 

explanations that are easy to understand for a beginner?

Direct Assessment

+

The response effectively uses simple and accessible language to explain 
containerization and Docker, which is great for beginners. The analogy of putting 

things in a box is particularly helpful as it visually illustrates the concept of [...]



However, the response could be improved by briefly mentioning why 
containerization is significant, such as its benefits in ensuring that software runs 

consistently across different computing environments. It loses a point for not fully 
addressing the significance of containerization in the broader context of software 

development, which could provide valuable insight for the reader.

Verbal Feedback

Scoring Decision

Response

A

Instruction

What is the meaning and significance of 'Containerization' in software development, and what role does Docker play in it?

Containerization in software is similar to putting items in 
a box. It involves packaging your software and all its 

components into a container. Docker is a tool that 
facilitates this process. It helps to encapsulate the 

software into containers and simplifies their use. [...]

Containerization in software development refers to the 
process of packaging up an application along with all its 
related configuration files, libraries, and dependencies 

required to run, into a standalone unit or a ‘container’. [...]

Response

B

Evaluation Criteria

A

Figure 2: Comparison of direct assessment and pairwise ranking. Both responses could be considered decent under
the umbrella of ‘helpfulness’. However, the scoring decision might change based on a specific evaluation criterion.

The statistics of the resulting dataset are listed in
Table 1 along with the FEEDBACK COLLECTION.
We explain about our quality verification process
of the PREFERENCE COLLECTION in Appendix A.
Also, we include the prompts we use for the aug-
mentation process in Appendix H.

3.4 Training Methods & Baselines

Prompting Prompting involves querying an LM
to make judgments in a specified evaluation for-
mat without training. We employ Llama-2-Chat-
7,13,70B (Touvron et al., 2023); Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023a); and Mixtral-
8x7B-Instruct-v0.1 (Jiang et al., 2024) as our base-
lines. It’s worth noting that models not explicitly
trained on feedback data often fail to generate re-
sponses in the required format, making it extremely
difficult to parse scoring decisions. Although it is
impractical for regular use, we make a fair compari-
son by infinitely looping until scores can be parsed.
Also, we include proprietary LMs such as GPT-3.5-
Turbo-0613; GPT-4-1106; and Claude-3-Opus.

Single-Format Training Single-Format training
involves training a base model θ on either on a
direct assessment feedback dataset Dd or a pair-
wise ranking feedback dataset Dp. For single-
format trained evaluator LMs, we test Prometheus-
7,13B (Kim et al., 2023) (direct assessment);
UltraRM-13B (Cui et al., 2023) (pairwise rank-
ing); and PairRM-0.4B (Jiang et al., 2023c) (pair-

wise ranking). In addition, we also report the per-
formances of single-format training Mistral-7B-
Instruct-v0.2 and Mixtral-8x7B-Instruct-v0.1 on
either direct assessment or pairwise ranking.

Joint Training Joint training involves training a
base model θ on both a direct assessment feedback
dataset Dd and a pairwise ranking feedback dataset
Dp. This enables the resulting evaluator LM to
function across both evaluation formats. For jointly
trained evaluator LMs, we test Auto-J (Li et al.,
2023a). In addition, we report the performances
of jointly training Mistral-7B and Mixtral-8x7B on
both direct assessment and pairwise ranking.

Weight Merging Weight Merging involves train-
ing two models, θd and θp, separately on a direct
assessment feedback dataset Dd and a pairwise
ranking feedback dataset Dp. Then, the final eval-
uator LM θfinal is obtained by merging θd and θp.
For example, linear merging is as follows:

θfinal = α× θd + (1− α)× θp (3)

In addition to linear merging, we test 5 additional
variants, namely Task Arithmetic merging (Ilharco
et al., 2022), TIES merging (Yadav et al., 2024),
DARE-TIES and DARE-Linear merging (Yu et al.,
2023), and SLERP merging (Goddard et al., 2024).
We include an explanation of these merging meth-
ods and ablation experiment results of the perfor-
mance differences in Appendix G. Among them,
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Evaluation Method Benchmark Metrics Judgment Source Reference Answer # Score Rubrics # Instructions # Judgments

Direct Assessment

Vicuna Bench Correlation Proprietary LMs Y 80 80 320
MT Bench Correlation Proprietary LMs Y 80 80 320

FLASK Correlation Proprietary LMs & Humans Y 12 200 2,000
Feedback Bench Correlation Proprietary LMs Y 200 200 1,000

Pairwise Ranking

HHH Align. Accuracy Humans N 4 221 221
MT Bench Human Judg. Accuracy Humans N 1 80 3,360

Auto-J Eval Accuracy Humans N 1 58 1,392
Preference Bench Accuracy Proprietary LMs Y 200 200 2,000

Table 2: Statistics of our evaluation benchmarks to assess the evaluation capabilities of evaluator LMs.

DARE-Linear showed the best performance, and
hence we used it to train the PROMETHEUS 2 (7B
& 8x7B) models. Details on the hyper-parameters
for training and inference along with the prompt
templates are all listed in Appendix B, I, J.

4 Experimental Setup

The statistics of all the benchmarks are in Table 2.
The four direct assessment benchmarks are:

• Vicuna Bench (Chiang et al., 2023): A single-
turn chat benchmark that includes 80 test
prompts, 80 hand-crafted score rubrics from
Kim et al. (2023), and 320 responses obtained
by WizardLM-13B, Vicuna-13B, Llama-2-
Chat-13B, GPT-3.5-Turbo-0613.

• MT Bench (Zheng et al., 2023): A multi-
turn chat benchmark that consists of 80 test
prompts, 80 hand-crafted score rubrics from
Kim et al. (2023), and 320 responses obtained
by WizardLM-13B, Vicuna-13B, Llama-2-
Chat-13B, GPT-3.5-Turbo-0613.

• FLASK (Ye et al., 2023): A fine-grained
evaluation benchmark comprised of 200 test
prompts, 12 score rubrics, and 2000 responses
acquired from Alpaca-7B, Vicuna-13B, Bard,
GPT-3.5-Turbo-0613. In addition to scores
from proprietary LMs, this benchmark also
includes scores marked by human evaluators.

• Feedback Bench (Kim et al., 2023): The test
set of the FEEDBACK COLLECTION with 1K
score rubrics, 200 instructions, and 1K re-
sponses that do not overlap with the train data.

The four pairwise ranking benchmarks are:

• HHH Alignment (Askell et al., 2021): A
benchmark consisting of 221 prompts; 4 score
rubrics (helpfulness, harmlessness, honesty,
and other) and 221 response pairs (graded as
‘win’ or ‘lose’) judged by human evaluators.

• MT Bench Human Judgment (Zheng et al.,
2023): A benchmark that shares the same 80
prompts as MT-Bench. In addition, it provides
3,360 response pairs (graded as ‘win’, ‘tie’, or
‘lose’) judged by human evaluators.

• Auto-J Eval (Li et al., 2023a): A benchmark
consisted of 58 prompts and 1,392 response
pairs (graded as ‘win’, ‘tie’, or ‘lose’) judged
by human evaluators. This benchmark is used
as the in-domain test set of Auto-J.

• Preference Bench: Our in-domain test set for
the PROMETHEUS models. Similar to how the
PREFERENCE COLLECTION was made with
the FEEDBACK COLLECTION, we adjust the
FEEDBACK BENCH and pair two out of the
five responses, resulting in a test set with 200
prompts, 2,000 response pairs (graded as ‘win’
or ‘lose’), and 200 evaluation criteria.

In direct assessment, we conduct reference-
based evaluations by appending the reference an-
swer as the input. We use Pearson, Spearman, and
Kendall-Tau as performance metrics to measure
scoring correlations against reference evaluators.
Moreover, we include the results of the reference-
free direct assessment evaluation in Appendix F.

In pairwise ranking, we conduct reference-free
evaluations. Based on judgments assigned by hu-
mans, we use accuracy as our metric to measure
agreement between evaluator LMs and humans.

Also, the MT Bench Human Judgment and Auto-
J test set includes a ‘tie’ option assessed by human
evaluators. We evaluate in two ways: by excluding
all ‘tie’ options for pairwise ranking (denoted as
‘w/o tie’), or by using direct assessment where re-
sponses scored as ‘ties’ are grouped, and pairwise
rankings are applied to the remaining responses
with differing scores (denoted as ‘w/ tie’).
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Evaluator LM
VICUNA BENCH MT BENCH FLASK Feedback Bench

GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus Humans GPT-4-0613

LLAMA2-CHAT 7B 0.205 0.243 0.036 0.055 0.317 0.256 0.299 0.523

LLAMA2-CHAT 13B 0.185 0.141 -0.042 -0.002 0.239 0.247 0.263 0.545

LLAMA2-CHAT 70B 0.350 0.463 0.178 0.228 0.388 0.402 0.317 0.592

MISTRAL-INSTRUCT-7B 0.486 0.561 0.284 0.396 0.448 0.437 0.377 0.586

MIXTRAL-INSTRUCT-8X7B 0.566 0.579 0.551 0.539 0.483 0.495 0.420 0.673

PROMETHEUS-7B 0.484 0.528 0.378 0.382 0.352 0.331 0.348 0.847

PROMETHEUS-13B 0.492 0.534 0.404 0.477 0.462 0.470 0.449 0.860

AUTO-J (13B) 0.351 0.262 0.432 0.375 0.430 0.370 0.473 0.637

PROMETHEUS-2-7B 0.666 0.654 0.548 0.517 0.617 0.561 0.545 0.882

PROMETHEUS-2-8X7B 0.685 0.635 0.665 0.614 0.659 0.626 0.555 0.898

GPT-3.5-TURBO-0613 0.335 0.349 0.183 0.194 0.437 0.396 0.450 0.594

GPT-4-1106 / 0.694 / 0.717 / 0.736 0.679 0.753

CLAUDE-3-OPUS 0.694 / 0.717 / 0.736 / 0.573 0.788

Table 3: Direct Assessment Results Pearson correlations between reference evaluators (listed on top) and evaluator LMs.
The best comparable statistics are bolded and second best underlined except proprietary LMs. Spearman and Kendall-Tau
correlations are reported in Appendix C. Note that the Feedback Bench is an in-domain test set of the PROMETHEUS models.

Evaluator LM
HHH ALIGNMENT MT BENCH HUMAN JUDG. AUTO-J EVAL Preference Bench

Help. Harm. Hon. Other Total Avg. w/ TIE w/o TIE w/ TIE w/o TIE Instance-wise Criteria

LLAMA2-CHAT 7B 55.93 62.07 49.18 62.79 57.01 46.68 50.39 45.76 45.73 58.60
LLAMA2-CHAT 13B 71.19 77.59 60.66 62.79 68.33 51.22 49.61 47.84 43.28 63.00
LLAMA2-CHAT 70B 62.71 81.03 65.57 65.12 68.78 55.14 60.88 53.38 50.64 64.70
MISTRAL-INSTRUCT-7B 59.32 68.97 63.93 81.40 67.42 53.81 63.82 53.88 60.94 79.40
MIXTRAL-INSTRUCT-8X7B 83.05 87.93 67.21 69.77 77.38 51.85 71.42 53.81 73.50 84.00
PAIR RM (0.4B) 84.75 84.48 80.33 90.70 84.62 - 59.00 - 59.05 81.80
ULTRA RM (13B) 86.44 79.31 81.97 88.37 83.71 - 56.00 - 59.85 86.97
AUTO-J (13B) 77.97 79.31 70.49 74.42 75.57 42.56 69.12 43.46 76.64 81.35
PROMETHEUS-2-7B 72.78 79.31 77.05 76.74 74.66 50.45 70.78 54.96 75.07 93.25
PROMETHEUS-2-8X7B 84.75 96.55 81.97 76.74 85.52 55.07 71.96 58.41 79.98 90.65

GPT-3.5-TURBO-0613 77.97 81.03 77.05 67.44 76.47 54.65 69.41 45.98 72.13 75.05
GPT-4-1106-PREVIEW 89.83 96.55 91.80 83.72 90.95 60.38 79.90 52.80 83.12 85.50
CLAUDE-3-OPUS 91.53 100.00 91.80 95.35 94.57 55.35 77.65 60.70 82.92 89.85

Table 4: Pairwise Ranking Results Accuracy on human preference datasets. The best comparable accuracies are bolded and
second best underlined except proprietary LMs. Note that HHH Alignment is an in-domain test set for PairRM, Auto-J Eval is
an in-domain test set for Auto-J, and the Preference Bench is an in-domain test set for Prometheus-2 models.

5 Experimental Results

In this section, we compare the evaluation capabil-
ities of PROMETHEUS-2 models with other base-
lines using a direct assessment format (Section 5.1)
and a pairwise ranking format (Section 5.2). Addi-
tionally, we measure the consistency of the scores
from evaluator LMs in Appendix E.

5.1 Direct Assessment Results

The direct assessment results are shown in Table 3.
The scoring decisions of PROMETHEUS 2 models
(7B & 8x7B), GPT-4-1106, Claude-3-Opus, and
human evaluators all strongly correlate with each
other, yielding Pearson correlations higher than 0.5
regardless of the reference evaluator and bench-
mark. On the other hand, base LMs, single-format
trained LMs, and jointly trained LMs show lower
correlations, mostly falling below 0.5.

Notably, PROMETHEUS 2 models outperform
Prometheus and Auto-J by at least 0.2 units
across benchmarks in their correlation with pro-
prietary LMs. Moreover, on the FLASK bench-
mark, while the correlation between humans and
GPT-4 is 0.679, the highest correlation previously
achieved by Prometheus-13B with humans was
0.449. PROMETHEUS-2-8X7B achieves a correla-
tion of 0.555 with humans, halving the gap.

5.2 Pairwise Ranking Results

The pairwise ranking results are shown in Table 4.
We exclude the results of Pair RM and Ultra RM
on ‘w/ Tie’ settings since they could not process it.

On all of the 4 benchmarks, the PROMETHEUS

2 models achieve the highest scores, showing that
they could effectively simulate human judgments.
Notably, while HHH Alignment is an in-domain
test set for Pair RM, and Auto-J Eval is for Auto-
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J, PROMETHEUS-2-8X7B achieves higher scores.
This shows that training a large LM (i.e., Mixtral-
8x7B) with feedback data could be an effective
strategy to obtain a robust evaluator LM that could
generalize beyond its training data. Moreover, the
PROMETHEUS 2 models at least halve the perfor-
mance gap with proprietary LMs compared to ex-
isting evaluator LMs on out-of-domain test sets.

6 Analyses of Weight Merging

To understand the effectiveness of our proposed
weight merging method in the context of evalua-
tions, we address the following research questions:

• RQ1: Is weight merging more effective com-
pared to joint training? (Section 6.1)

• RQ2: Is the effectiveness of weight merging
due to model ensembling? (Section 6.2)

• RQ3: To what extent does learning with di-
rect assessment help pairwise ranking perfor-
mance, and vice versa? (Section 6.3)

6.1 Weight Merging vs Joint Training
Table 5 compares the performance of evaluator
LMs trained via weight merging and joint training.
Alongside this, we also add and compare the results
of prompting and single-format training.

Surprisingly, evaluator LMs trained via joint
training often show lower performance compared
to those trained only in single-format, which indi-
cates negative task transfer. Specifically, evaluator
LMs trained only on direct assessment formats ob-
tain higher correlations compared to their jointly
trained counterparts across different model scales.
Similarly, evaluator LMs trained solely on pairwise
ranking formats achieve higher average accuracy
compared to those trained on multiple tasks, partic-
ularly when using Mixtral-8x7B as the base model.

On the other hand, evaluator LMs trained via
weight merging show superior performance not
only compared to jointly trained evaluator LMs
but also single-format trained evaluator LMs, in-
dicating positive task transfer. Also, while both
benefit each other, merging the pairwise ranking
evaluator LM weights improves direct assessment
performance more significantly than the reverse.

6.2 Is the Effectiveness of Weight Merging
due to Model Ensembling?

While we empirically find that weight merging is
effective, the underlying reason remains unclear. A

natural assumption is that this effectiveness results
from the ensembling effect of combining multiple
models. To test this hypothesis, we conduct an abla-
tion experiment where we train multiple evaluator
LMs on different random seeds and merge them.
Specifically, we merge two evaluator LMs trained
on direct assessment formats (denoted as ‘Direct
Assessment & Direct Assessment’) and two evalu-
ator LMs trained on pairwise ranking formats (de-
noted as ‘Pairwise Ranking & Pairwise Ranking’).
We use Mistral-7B-Instruct as our base model.

The results are presented in Table 6. Across mul-
tiple benchmarks, merging evaluator LMs trained
on the same evaluation format does not enhance
evaluation performance. Specifically, merging two
evaluator LMs trained on the same evaluation for-
mat—whether direct assessment or pairwise rank-
ing—negatively impacts performance on average
for both direct assessment and pairwise ranking
benchmarks. In contrast, merging two evaluator
LMs, each trained on direct assessment and pair-
wise ranking formats, results in superior perfor-
mance compared to the other settings. This in-
dicates that the beneficial task transfer in weight
merging arises from integrating different evaluation
formats, not ensembling multiple models.

6.3 Quantifying Positive Transfer across
Evaluation Formats

To explore how training on direct assessment feed-
back data influences pairwise ranking accuracy and
vice versa, we experiment by adjusting the α value
during linear merging. We evaluate the average
performance using all eight benchmarks in our ex-
periments. To illustrate the average performance
(colored in black), we adjust the scale by multiply-
ing the Pearson correlations from direct assessment,
which originally range from 0 to 1, by 100 before
averaging them with the pairwise ranking accuracy.

The results are shown in Figure 3. For direct
assessment benchmarks, evaluator LMs obtain the
optimal performance when α is set to 0.5. This
indirectly indicates that both pairwise ranking and
direct assessment feedback data contribute equally.
On the other hand, for pairwise ranking bench-
marks, the performance is optimal when α is set to
0.3. This also implies that while both benefit each
other, training on pairwise ranking improves direct
assessment performance more than the reverse.
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Training Method
DIRECT ASSESSMENT BENCHMARKS PAIRWISE RANKING BENCHMARKS

Vicuna Ben. MT Ben. FLASK Average HHH Align. MT Ben. H.J. Auto-J Eval Average

Mistral-Instruct-7B

PROMPTING 0.486 0.284 0.480 0.417 67.42 63.82 60.94 64.06
DIRECT ASSESSMENT ONLY 0.537 0.561 0.519 0.539 73.33 56.76 64.38 64.82
PAIRWISE RANKING ONLY - - - - 78.73 67.06 72.03 72.61
JOINT TRAINING 0.548 0.450 0.457 0.485 80.09 65.49 73.60 73.06
WEIGHT MERGING 0.666 0.548 0.659 0.624 74.66 70.78 75.07 73.50

Mixtral-Instruct-8x7B

PROMPTING 0.566 0.551 0.507 0.541 77.38 71.42 73.55 74.56
DIRECT ASSESSMENT ONLY 0.625 0.664 0.587 0.625 74.21 53.14 65.85 64.40
PAIRWISE RANKING ONLY - - - - 84.16 66.27 75.66 75.36
JOINT TRAINING 0.628 0.560 0.596 0.595 82.35 68.73 74.78 75.29
WEIGHT MERGING 0.685 0.665 0.659 0.670 85.52 71.96 79.98 79.15

Table 5: Single-Format Training vs Joint Training vs Weight Merging Pearson correlations between evaluator LMs trained
with different methods and GPT-4-1106. Evaluator LMs trained with weight merging outperform single-format-trained and
jointly-trained evaluator LMs across multiple benchmarks.

Training Data Evaluation Format
DIRECT ASSESSMENT BENCHMARKS PAIRWISE RANKING BENCHMARKS

Vicuna Ben. MT Ben. FLASK Average HHH Align. MT Ben. H.J. Auto-J Eval Average

NO TRAINING (PROMPTING) 0.486 0.284 0.480 0.417 67.42 63.82 60.94 64.06

DIRECT ASSESSMENT ONLY 0.537 0.561 0.519 0.539 73.33 56.76 64.38 64.82
PAIRWISE RANKING ONLY - - - - 78.73 67.06 72.03 72.61

DIRECT ASSESSMENT & DIRECT ASSESSMENT 0.552 0.493 0.505 0.517 73.30 55.00 63.69 64.13
PAIRWISE RANKING & PAIRWISE RANKING - - - - 78.70 65.20 72.72 72.21

DIRECT ASSESSMENT & PAIRWISE RANKING 0.666 0.548 0.659 0.624 74.66 70.78 75.07 73.50

Table 6: Unifying Formats vs Ensembling Pearson correlations with GPT-4-1106 (Vicuna Bench, MT Bench, FLASK) and
agreement with human evaluators (HHH Alignment, MT Bench Human Judgment, Auto-J Eval). Merging models trained with
the same evaluation formats (ensembling) underperforms merging models trained with different formats (unifying formats).

Direct Assessment Correlation Pairwise Ranking Accuracy Average Performance

(Direct Assessment : Pairwise Ranking) Merging Ratio
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Figure 3: When merging models, the influence of relative evaluation on absolute evaluation is greater than the
influence of absolute evaluation on relative evaluation. Performance of Direct Assessment (colored in green) and
Pairwise Ranking (colored in blue) when altering the α value to merge evaluator LMs trained on different formats.

7 Conclusion

We introduce PROMETHEUS 2, an open-source LM
specialized in evaluating other responses. Unlike
existing open evaluator LMs that cannot effectively
process both direct assessment and pairwise rank-

ing—the two most prevalent evaluation schemes—
the PROMETHEUS 2 models demonstrate superior
performance on both schemes, significantly narrow-
ing the gap with proprietary LM-based evaluations.
To train the PROMETHEUS 2 models, we develop
the PREFERENCE COLLECTION, the first pairwise
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ranking dataset that includes over 1,000 instance-
wise evaluation criteria beyond basic qualities such
as helpfulness and harmlessness. Notably, we find
that merging evaluator LMs trained on either direct
assessment or pairwise ranking formats can lead
to a unified evaluator LM with strong performance.
We hope that our work encourages more research
on using open-source LMs as evaluators.
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Limitations

Evaluation is fundamentally a very multi-faceted
task. In this paper, we used an indirect method to
assess the evaluation capability of evaluator LMs
by measuring if they perform evaluations similar to
human evaluators or proprietary LMs, such as GPT-
4-1106 and Claude-3-Opus. However, this may
not necessarily be the best approach. Future work
could explore meta-evaluation pipelines that reeval-
uate the results of evaluator LMs or methodologies
that allow humans to efficiently review evaluation
results. Also note that it is crucial to use model-
based evaluations in conjunction with human eval-
uation instead of solely relying on it.

Additionally, the degree to which evaluator LMs
can generalize was based on an analysis by Kim
et al. (2023), which checked for overlap between
the data used to train the evaluator LMs and the
data used to evaluate them. This study extended the
evaluation to eight different datasets with human
judgments to check the generalization capability
of evaluation under various circumstances. How-
ever, this may not be sufficient. One of the major
challenges in evaluating evaluator LMs is obtain-
ing the “evaluation results” (e.g., human judgment).
Automating evaluations with LMs could greatly
benefit many areas of NLP research, hence the role
of future work in creating feedback benchmarks
that include human judgment or data for training

evaluator LMs is crucial.
One downside of the PROMETHEUS 2 is that it

operates only on a 1-5 point Likert scale for abso-
lute evaluation or a comparative evaluation style
of ‘A is better & B is better’. Depending on the
use case, people may need a 1-10 point absolute
evaluation, a ranking method for five responses at
once, or a checklist-based evaluation not covered in
the paper. While proprietary LMs can flexibly con-
duct evaluations in any format if a well-described
prompt is devised, open-source LMs cannot pro-
duce good evaluation results without training, and
conversely, if trained in one or two formats, they
lose the flexibility to conduct different evaluations.
Future work could examine whether evaluator LMs
trained in each format, as done in this paper, can
handle evaluations for added formats well when
weight merging is employed.

Lastly, the paper presents an evaluation model
that can handle both absolute and comparative
evaluation formats well through weight merging
based on empirical experiments. However, funda-
mentally explaining why weight merging works
well remains a challenging task. To address this,
Section 6 indirectly analyzes the effectiveness of
weight merging by comparing it with joint training,
demonstrating that the improvement in evaluation
performance is not due to model ensembling, and
showing that the impact of comparative evaluation
on absolute evaluation is greater than the reverse.
Our best current interpretation is that "absolute and
comparative evaluations are not completely differ-
ent tasks, so weight merging could handle both
without degeneration, and conversely, because they
are not too similar, weight merging performed bet-
ter than joint training." Future work could theoreti-
cally analyze this or further explore whether weight
merging can effectively work in fields other than
LLM evaluation.
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Verification Standards RESULTS

Coherence 99.5 % (Passed)
Suitability 98.5 % (Passed)
Criticality 88% (Win rate)

Table 7: Human verification results to assess the quality of
the PREFERENCE COLLECTION. We use three standards to
assess the quality of verbal feedback vrm,rn .

Temperature 1.0
Top_p 0.9

Max New Tokens 1024
Repetition Penalty 1.03

Table 8: Hyperparameters used to inference different evalua-
tor LM baselines.

Base Model mistralai/Mistral-7B-Instruct-v0.2
Torch dtype bfloat16

Epoch 1
Train Data 1 FEEDBACK COLLECTION

Train Data 2 PREFERENCE COLLECTION

Max Seq Length 4096
Learning Rate 1e-5

Train Batch Size 4
Random Seed 42

Merging Strategy Linear (α = 0.5)
Training Method Supervised Fine-tuning

Table 9: Hyperparameters used to train PROMETHEUS 2 7B.

Base Model mistralai/Mixtral-8x7B-Instruct-v0.1
Torch dtype bfloat16

Epoch 1
Train Data 1 FEEDBACK COLLECTION

Train Data 2 PREFERENCE COLLECTION

Max Seq Length 4096
Learning Rate 1e-5

Train Batch Size 8
PEFT True
Lora_r 256

Lora_alpha 512
Lora_Dropout 0.1

Lora Target Module Q proj,K proj,V proj,O proj,W proj,LM_Head
Random Seed 42

Merging Strategy DARE Merging
Merging p 0.1

Merging Lambda 1.95
Training Method Supervised Fine-tuning

Table 10: Hyperparameters used to train PROMETHEUS 2
8x7B.

A Quality Verification of the
PREFERENCE COLLECTION

To ensure the quality of the PREFERENCE COL-
LECTION, particularly the generated verbal feed-
back vrm,rn , we employ five annotators with back-
grounds in natural language processing. The an-
notation study was designed and administered in
accordance with [Affiliation X]’s ethical guidelines.
Crowd workers were informed of the potential risks

of participation and researcher contact information
before hand in the study consent form. The hourly
wage and expected study time were informed in the
Prolific platform. We compensated workers 9 GBP
per hour. 3 were from USA and 2 were from Asian
demographics.

We randomly sample 200 instances with differ-
ent instructions and conduct a three-part verifica-
tion process. First, we assess the coherence of
vrm,rn with the scoring decision (i.e., ’A is better’
or ’B is better’). Second, we evaluate the suit-
ability of vrm,rn against the evaluation criteria e.
Lastly, to determine the criticality of the feedback,
we compare the newly generated vrm,rn with a con-
catenation of vrm and vrn . This aims to determine
if vrm,rn effectively leverages the mutual informa-
tion between rm and rn. Annotators then vote on
whether vrm,rn or the concatenation of rm and rn
is more critical. The results are shown in Table 7.
Note that the Preference Collection only includes
English instances.

B Training and Inference Details

The configurations we used for prompting and train-
ing evaluator LMs are shown in Table 8, 9, 10.
For Auto-J, PairRM and UltraRM, we utilize their
prompt template, inference hyperparameter men-
tioned in the model cards or github repositories in
order to ensure the configuration is optimal for a
fair performance comparison. For proprietary LMs,
PROMETHEUS 1, and PROMETHEUS 2 models, we
use the same prompt template and evaluation con-
figurations.

For both training and inference, we utilized eight
40GB NVIDIA A100 GPUs. Training required ap-
proximately 800 GPU hours, using the implemen-
tation from the Alignment Handbook repository2.
For inference, we used the vllm framework3.

The results from Direct Assessment are aver-
aged after three multiple runs, and pairwise grad-
ing is conducted in a single run. Instead of using
error bars, we report the consistency in assessment
formats, Krippendorff’s alpha for consistency in
direct assessment, and transitivity statistics for con-
sistency in pairwise ranking.

C Direct Assessment Results: Extended

Table 11 and 12 (on the next page) shows the ex-
tended results Table 3. Even when changing the

2https://github.com/huggingface/alignment-handbook
3https://github.com/vllm-project/vllm
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metrics to either Kendall-Tau and Spearman, the
overall trends are maintained. PROMETHEUS 2
shows superior evaluation performances among the
open evaluator LMs, achieving high correlations
with humans and proprietary LMs.

D License

Our models are released under the Apache 2.0 li-
cense. The Preference Collection dataset is sub-
ject to OpenAI’s Terms of Use for generated data.
The model could be used for commercial purposes
while the dataset is intended for research purposes.
We used perspective API to ensure that the train-
ing data or evaluation datasets do not include PII-
included instances.
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Evaluator LM
VICUNA BENCH MT BENCH FLASK Feedback Bench

GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus Humans GPT-4-0613

LLAMA2-CHAT 7B 0.183 0.203 0.065 0.070 0.229 0.186 0.211 0.419

LLAMA2-CHAT 13B 0.145 0.146 -0.019 0.037 0.160 0.174 0.174 0.453

LLAMA2-CHAT 70B 0.282 0.382 0.150 0.196 0.310 0.310 0.231 0.487

MISTRAL-INSTRUCT-7B 0.314 0.391 0.208 0.281 0.395 0.384 0.287 0.454

MIXTRAL-INSTRUCT-8X7B 0.395 0.468 0.433 0.419 0.410 0.408 0.304 0.551

PROMETHEUS-7B 0.405 0.425 0.290 0.263 0.282 0.251 0.236 0.770

PROMETHEUS-13B 0.397 0.434 0.299 0.352 0.365 0.352 0.299 0.793

AUTO-J (13B) 0.282 0.242 0.303 0.272 0.312 0.282 0.312 0.515

PROMETHEUS-2-7B 0.543 0.476 0.390 0.372 0.476 0.446 0.377 0.784

PROMETHEUS-2-8X7B 0.559 0.515 0.535 0.483 0.526 0.507 0.388 0.800

GPT-3.5-TURBO-0613 0.255 0.287 0.148 0.157 0.360 0.315 0.298 0.489

GPT-4-1106 / 0.553 / 0.590 / 0.609 0.517 0.662

CLAUDE-3-OPUS 0.553 / 0.590 / 0.609 / 0.453 0.693

Table 11: Kendall-Tau correlations between reference evaluators (listed on top) and evaluator LMs. The best comparable
statistics are bolded and second best underlined except proprietary LMs.

Evaluator LM
VICUNA BENCH MT BENCH FLASK Feedback Bench

GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus Humans GPT-4-0613

LLAMA2-CHAT 7B 0.236 0.255 0.084 0.089 0.301 0.244 0.279 0.511

LLAMA2-CHAT 13B 0.178 0.179 -0.025 0.044 0.206 0.222 0.224 0.543

LLAMA2-CHAT 70B 0.348 0.466 0.197 0.252 0.391 0.389 0.298 0.585

MISTRAL-INSTRUCT-7B 0.389 0.480 0.266 0.358 0.499 0.478 0.374 0.563

MIXTRAL-INSTRUCT-8X7B 0.476 0.556 0.545 0.517 0.505 0.500 0.386 0.659

PROMETHEUS-7B 0.508 0.528 0.385 0.349 0.367 0.326 0.317 0.876

PROMETHEUS-13B 0.492 0.534 0.401 0.470 0.474 0.454 0.398 0.893

AUTO-J (13B) 0.337 0.297 0.408 0.365 0.402 0.358 0.408 0.623

PROMETHEUS-2-7B 0.664 0.591 0.509 0.482 0.597 0.555 0.491 0.885

PROMETHEUS-2-8X7B 0.660 0.615 0.669 0.605 0.642 0.618 0.496 0.912

GPT-3.5-TURBO-0613 0.319 0.354 0.192 0.198 0.446 0.390 0.374 0.565

GPT-4-1106 / 0.659 / 0.721 / 0.729 0.650 0.753

CLAUDE-3-OPUS 0.659 / 0.721 / 0.729 / 0.567 0.784

Table 12: Spearman correlations between reference evaluators (listed on top) and evaluator LMs. The best comparable statistics
are bolded and second best underlined except proprietary LMs.

Evaluator LM
HHH ALIGNMENT MT BENCH HUMAN JUDG. AUTO-J EVAL

Direct2Pair(↑) Pair2Pair(↑) ∆(↓) Direct2Pair(↑) Pair2Pair(↑) ∆(↓) Direct2Pair(↑) Pair2Pair(↑) ∆(↓)

AUTO-J (13B) 46.61 75.57 28.96 48.14 69.12 20.98 47.40 76.64 29.24
PROMETHEUS-2-7B 74.21 74.66 0.45 63.24 70.78 7.54 68.11 75.07 6.96
PROMETHEUS-2-8X7B 81.45 85.52 4.07 61.67 71.96 10.29 66.54 79.98 13.44

GPT-4-1106-PREVIEW 83.71 90.95 7.24 68.04 79.90 11.86 54.27 83.12 28.85
CLAUDE-3-OPUS 84.62 94.57 9.95 62.65 77.65 15.00 61.04 82.90 21.86

Table 13: Consistency across Evaluation Formats Pairwise ranking accuracy when assessing in direct assessment formats
(denoted as ‘Direct2Pair’) and pairwise ranking formats (denoted as ‘Pair2Pair’). Smaller ∆ values indicate that evaluator LMs
can robustly evaluate across the two different formats.
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Evaluator LM Vicuna Ben. MT Ben. FLASK

LLAMA2-CHAT 7B 0.3558 0.2565 0.4379
LLAMA2-CHAT 13B 0.2017 0.2998 0.4038
LLAMA2-CHAT 70B 0.5212 0.4559 0.6204
MISTRAL-INSTRUCT-7B 0.5157 0.4393 0.5884
MIXTRAL-INSTRUCT-8X7B 0.5459 0.6229 0.6976
PROMETHEUS-7B 0.6049 0.5363 0.5970
PROMETHEUS-13B 0.5734 0.5181 0.5624
AUTO-J (13B) 0.4976 0.5069 0.6160
PROMETHEUS-2-7B 0.6018 0.5340 0.5991
PROMETHEUS-2-8X7B 0.6383 0.6862 0.7874

GPT-3.5-TURBO-0613 0.7108 0.4800 0.6389
GPT-4-1106-PREVIEW 0.7366 0.8271 0.8355
CLAUDE-3-OPUS 0.8284 0.8601 0.8976

Table 14: Krippendorff’s alpha statistics for evaluator LMs
when prompted 3 times via non-deterministic decoding.

Evaluator LM PREFERENCE COLLECTION

Transitivity

MISTRAL-INSTRUCT-7B 87.10
MIXTRAL-INSTRUCT-8X7B 90.45
PAIR RM 91.40
ULTRA RM 94.25
AUTO-J (13B) 89.65
PROMETHEUS-2-7B 97.60
PROMETHEUS-2-8X7B 96.75

GPT-3.5-TURBO-0613 84.35
GPT-4-1106-PREVIEW 95.70
CLAUDE-3-OPUS 96.20

Table 15: Transitivity statistics to measure consistency in
pairwise ranking evaluation settings.

E Consistency of Evaluator LMs

In addition to obtaining high correlation and accu-
racy, achieving high consistency is another impor-
tant aspect for evaluator LMs. We first test if evalu-
ator LMs could give consistent scoring decisions in
direct assessment formats. We inferencing multiple
times with non-deterministic decoding (e.g., using
temperature 1.0). Following the experimental de-
sign from Ye et al. (2023), we choose to inference
3 times and report the Krippendorff’s alpha value.
As shown in Table 14, the results indicate that train-
ing on feedback data only slightly improves consis-
tency. On the other hand, we find that the LMs with
a large number of parameters achieve high consis-
tency. This indicates the importance of selecting a
large LM as the base model when training an evalu-
ator LM. Notably, PROMETHEUS-2-8X7B obtains
the highest correlation among open evaluator LMs.

Moreover, to evaluate consistency in pairwise
ranking settings (Table 15), we measure transitivity
(i.e., a higher score for response B over A, and
for C over B, results in a higher score for C over
A). As shown in Table 15, the PROMETHEUS 2

models achieve performances on par with GPT-4,
showing that they could provide robust judgments
in pairwise ranking schemes.

Lastly, we conduct an experiment to test if eval-
uator LMs could achieve consistent scores across
different evaluation formats. To do this, we use
pairwise ranking benchmarks and measure the per-
formance differences when prompted with direct
assessment formats and pairwise ranking formats.
Specifically, following Kim et al. (2023), to pro-
cess pairwise ranking datasets in a direct assess-
ment scheme, we evaluate each response separately
and compare the scoring decisions. We mark it as
correct if the evaluator LM provides a higher score
for the human-chosen response over the rejected
one. As shown in Table 13 (on the previous page),
the results show that PROMETHEUS 2 models show
lower performance differences across evaluation
formats, indicating their robustness.
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Evaluator LM BIGGEN BENCH FLASK

Reference-free Reference-based ∆ Reference-free Reference-based ∆

MISTRAL-INSTRUCT 0.305 0.310 0.005 0.331 0.374 0.043
MIXTRAL-INSTRUCT 0.320 0.322 0.002 0.377 0.386 0.009
PROMETHEUS-2-7B 0.403 0.455 0.052 0.425 0.545 0.120
PROMETHEUS-2-8X7B 0.424 0.472 0.048 0.411 0.555 0.144

GPT-3.5-TURBO-0613 0.236 0.252 0.016 0.354 0.374 0.020
GPT-4-1106 0.554 0.599 0.045 0.616 0.679 0.063

Table 16: Pearson correlations between different evaluator models with and without the reference answer and Human. Reference-
based evaluations outperform reference-free evaluations across all evaluator LMs.

Merging Method
DIRECT ASSESSMENT BENCHMARKS PAIRWISE RANKING BENCHMARKS

Average
VICUNA BEN. MT BEN. FLASK (HUMAN) Feedback Ben. Average HHH ALIGN. MT BEN. H.J. AUTO-J Pref. Ben. Average

LINEAR 0.642 0.543 0.544 0.878 0.652 78.73 67.25 73.80 92.45 78.06 82.93
SLERP 0.648 0.532 0.536 0.879 0.649 74.66 70.2 72.33 92.60 77.44 82.67
TASK ARITHMETIC 0.518 0.497 0.482 0.831 0.582 80.09 69.80 72.82 93.00 78.93 81.01
TIES 0.534 0.567 0.529 0.826 0.614 79.64 67.75 72.91 93.95 78.56 80.58
DARE-TIES 0.653 0.545 0.543 0.880 0.655 79.64 66.57 74.68 93.30 78.55 83.27
DARE-LINEAR 0.666 0.548 0.545 0.882 0.660 74.66 70.78 75.07 93.25 78.44 83.32

Table 17: Pearson correlations and accuracy measurements across various benchmarks for different merging methods. The best
comparable statistics are bolded and second best underlined.

4350



F Reference-free Evaluation in Direct
Assessment Formats

In this section, we assess the impact of excluding a
reference answer in evaluations conducted using di-
rect assessment formats. The results are presented
in Table 16 (on the previous page). For this experi-
ment, we employ FLASK (Ye et al., 2023) which
includes human judgments and additionally the
BiGGen Bench (Kim et al., 2024). The BiGGen
Bench is a generation benchmark which includes
a evaluation criteria tailored to each instance and
provides 2840 human judgments (excluding the
multilingual tasks) in direct assessment formats.

Across both benchmarks and different evalua-
tor LM variants, the correlation with humans di-
minishes when the reference answer is discarded.
Even for GPT-4-1106, there is a significant perfor-
mance degradation (0.045, 0.063). This suggests
that including a reference answer is crucial for con-
ducting effective evaluations with LMs. Interest-
ingly, PROMETHEUS-2-7B achieves better perfor-
mance in a reference-free setting (0.403, 0.425)
than Mistral-7B-Instruct-v0.2 (0.310, 0.374). Sim-
ilar trends are observed for PROMETHEUS-2-
8X7B (0.424, 0.411) and Mixtral-8x7B-Instruct-
v0.1 (0.322, 0.386). This implies that one effect
of training an evaluator LM with a reference an-
swer included is to induce the ability to ground
judgments to the given reference answer.

G Merging Method Ablation

In this section, in addition to linear merging, we
also test different merging techniques including:

• Slerp merging (Goddard et al., 2024) oper-
ates by interpolating two weights θd and θp
while preserving the geometric properties of
the spherical space in which θd and θp reside.
Specifically, this is conducted by normalizing
θd and θp into unit length and then merging
the two weights based on the coefficient α
such as:

θfinal = α× θd
||θd||

+ (1− α)× θp
||θp||

(4)

• Task Arithmetic merging (Ilharco et al.,
2022) which can be expressed as follows:

θfinal = θinit + α× (θd − θinit)+

(1− α)× (θp − θinit)
(5)

where θinit is the weight of the base model.
However, we empirically find that the result-
ing evaluator LM θfinal often does not gener-
ate valid scoring decisions (e.g., generating an
integer during pairwise ranking).

• TIES merging (Yadav et al., 2024), while
similar to Task Arithmetic merging, adds (1) a
Trim operation to remove redundant weights
in the task vector θd − θinit and θp − θinit
and (2) Elect and Disjoint operations to
resolve disagreement (i.e., opposite directed
weights) between θd − θinit and θp − θinit.

• DARE merging (Yu et al., 2023), while also
similar to Task Arithmetic and TIES merging,
performs a Random Drop and Re-scale
operations in the task vector θd − θinit and
θp − θinit to remove redundant weights. We
find that DARE merging work best when
we choose Mixtral-8x7B as our base model.
DARE-linear merging is what was originally
proposed by Yu et al. (2023). In DARE-TIES
merging, the Elect operation from Yadav
et al. (2024) is additionally added after the
Re-scale operation.

We conduct our experiments based on the imple-
mentation from MergeKit (Goddard et al., 2024). 4

In Table 17 (on the previous page), we mea-
sure the performance of evaluator LMs employing
different merging methods. In direct assessment
benchmarks, DARE-Linear achieves the best per-
formance, followed by DARE-TIES and Linear
merging. In pairwise ranking benchmarks, Task
Arithmetics achieves the best performance, with
only a minimal difference compared to other meth-
ods. On average, DARE-Linear performs best.
Based on these results, we have trained Prometheus-
2-7B with DARE-Linear merging. We also opted
to train Prometheus-2-8x7B using DARE-Linear
merging. Although the optimal merging method
might differ, we have not conducted additional ex-
periments due to computational limitations. Future
work could explore whether these findings hold
true.

4https://github.com/arcee-ai/mergekit
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H PREFERENCE COLLECTION
Augmentation Prompt

Prompt for Generating Verbal Feedback
in Pairwise Ranking

###Task Description:
An instruction (might include an Input in-
side it), two responses to evaluate (denoted
as Response A and Response B), a refer-
ence answer, and a score rubric representing
a evaluation criteria are given.
1. Write a detailed feedback explaining why
{sub_str}, focusing strictly on the aspects
highlighted in the evaluation criteria.
2. While writing the feedback, make com-
parisons between Response A, Response B,
and Reference Answer. Instead of examin-
ing Response A and Response B separately,
go straight to the point and mention about
the commonalities and differences between
them.
3. While writing the feedback, do not start
by mentioning {sub_str} in the first sen-
tence. Instead, try to write a reasoning pro-
cess that delves into the commonalities and
differences of the two responses and men-
tion {sub_str} at the last part of your justifi-
cation.
4. Within the feedback, do not explicitly
mention about the reference answer. For in-
stance, do not use phrases like "Compared
to the reference answer". Assume that you
inherently know the reference answer which
could be used to determine details that are
not present in both responses under assess-
ment.
5. Please do not generate any other opening,
closing, and explanations. Just write the
feedback.
6. Within the feedback, generate a string
phrase "[END]" after you are finished.
###Instruction: {instruction}
###Response A: {response_A}
###Response B: {response_B}
###Reference Answer: {reference_answer}
###Score Rubric: {criteria}
###Feedback:

I Direct Assessment Prompt

Direct Assessment System Prompt

You are a fair judge assistant tasked with
providing clear, objective feedback based
on specific criteria, ensuring each assess-
ment reflects the absolute standards set for
performance.

Direct Assessment Prompt Template

###Task Description:
An instruction (might include an Input in-
side it), a response to evaluate, and a score
rubric representing a evaluation criteria are
given.
1. Write a detailed feedback that assess the
quality of the response strictly based on the
given score rubric, not evaluating in general.
2. After writing a feedback, write a score
that is an integer between 1 and 5. You
should refer to the score rubric.
3. The output format should look as follows:
"Feedback: (write a feedback for criteria)
[RESULT] (an integer number between 1
and 5)"
4. Please do not generate any other opening,
closing, and explanations.
###The instruction to evaluate:
{orig_instruction}
###Response to evaluate:
{orig_response}
###Score Rubrics:
{score_rubric}
###Feedback:

J Pairwise Ranking Prompt

Pairwise Ranking System Prompt

You are a fair judge assistant assigned to de-
liver insightful feedback that compares indi-
vidual performances, highlighting how each
stands relative to others within the same co-
hort.
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Pairwise Ranking Prompt Template

###Task Description:
An instruction (might include an Input in-
side it), a response to evaluate, and a score
rubric representing a evaluation criteria are
given.
1. Write a detailed feedback that assess
the quality of two responses strictly based
on the given score rubric, not evaluating in
general.
2. After writing a feedback, choose a bet-
ter response between Response A and Re-
sponse B. You should refer to the score
rubric.
3. The output format should look as follows:
"Feedback: (write a feedback for criteria)
[RESULT] (A or B)"
4. Please do not generate any other opening,
closing, and explanations.
###Instruction:
{orig_instruction}
###Response A:
{response_A}
###Response B:
{response_B}
###Score Rubric:
{score_rubric}
###Feedback:
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