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Abstract

Speech Emotion Captioning (SEC) has gradu-
ally become an active research task. The emo-
tional content conveyed through human speech
are often complex, and classifying them into
fixed categories may not be enough to fully
capture speech emotions. Describing speech
emotions through natural language may be a
more effective approach. However, existing
SEC methods often produce hallucinations and
lose generalization on unseen speech. To over-
come these problems, we propose AlignCap,
which Aligning Speech Emotion Captioning to
Human Preferences based on large language
model (LLM) with two properties: 1) Speech-
Text Alignment, which minimizing the diver-
gence between the LLM’s response prediction
distributions for speech and text inputs using
knowledge distillation (KD) Regularization. 2)
Human Preference Alignment, where we de-
sign Preference Optimization (PO) Regulariza-
tion to eliminate factuality and faithfulness hal-
lucinations. We also extract emotional clues
as a prompt for enriching fine-grained infor-
mation under KD-Regularization. Experiments
demonstrate that AlignCap presents stronger
performance to other state-of-the-art methods
on Zero-shot SEC task.

1 Introduction

The identification and description of speech emo-
tions play a crucial role in improving communica-
tion efficiency. It also aids in understanding the
speaker’s intentions. Previous work usually treats
emotion acquisition as a classification task, such
as Speech Emotion Recognition (SER) (Ye et al.,
2023; Chen et al., 2023; Shi et al., 2024), which as-
signs speech to different emotion categories based
on the emotions such as sadness, anger, and happi-
ness contained within the speech. However, there
may be a mixture of emotions within one utter-
ance, and classifying speech into a single emotion

∗∗ Equal contribution.

SEC 

“The content of the speech 
is<We went up to the ......>”

“Complaint, expressing 
dissatisfaction loudly.”

×

×

“This is a woman speaking, she 
spoke quickly, her tone was 

excited, her voice was vehement.”√

AlignCap

(2) Factuality Hallucination

(3) Lose Generalization 
“There is a person speaking, 

in a excited tone.”
Speech Transcription:
“We went up to the 
second floor and found 
that there was no queue. 
We were delighted!”

×

(1) Faithfulness Hallucination[Prompt] Describe the emotion 
of the speaker in the given speech:

Figure 1: Hallucination and lack of generalization.

category is not enough to capture the true emotion.
Moreover, different annotators may assign different
emotion category labels to a piece of speech, lead-
ing to the label ambiguity problem in SER task (Li
et al., 2017; Lian et al., 2023b). This can result in
inaccurate emotion labels in existing SER datasets.

Given the limitations of speech emotion classi-
fication, employing natural language descriptions
instead of emotion category labels is a more ac-
curately approach. SECap (Xu et al., 2024) first
proposes a speech emotion captioning framework
to describe speech emotions using natural language
effectively. It utilizes HuBERT (Hsu et al., 2021)
as an audio encoder to extract speech features while
leveraging mutual information learning to decou-
ple content and emotion-related features. (Desh-
mukh et al., 2024) employs GPT-2 (Radford et al.,
2019) as the decoder to generate captions based on
the pre-trained CLAP (Wu et al., 2023) audio en-
coder. (Salewski et al., 2023) exploits OPT (Zhang
et al., 2022) as the LLM to produce captions that
describe the audio content. However, facing with
unseen speech, these methods tend to produce hal-
lucinations of factuality and faithfulness, resulting
in false emotional descriptions and responses that
are inconsistent with user instructions. In addition,
the paradigm of text-only training and zero-shot
inference on speech like (Kouzelis and Katsouros,
2023) will lead to training-inference mismatch, re-
sulting in poor model generalization.

In this paper, we propose a novel SEC frame-
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work AlignCap, which aims to generate rich and
coherent captions while maintaining high con-
sistency with speech emotion. We design KD-
Regularization, which can minimize the distribu-
tion gap between LLM’s response to speech input
and those to corresponding text inputs. It bridges
the training-inference mismatch in zero-shot SEC
and model generalization is improved. AlignCap
is the first to align SEC models to human pref-
erences via PO-Regularization, which eliminates
factuality and faithfulness hallucinations of SEC
models on unseen speech. We also utilize a acous-
tic prompt generated from emotional clues to en-
rich fine-grained information. To summarize, our
contributions are as follows:

1. We propose KD-Regularization to achieve
Speech-Text Alignment and use the KL-
divergence of next-token prediction distribu-
tions as a measure of alignment.

2. We propose PO-Regularization to achieve Hu-
man Preference Alignment, which generates
rich, consistency and rationality emotion de-
scriptions.

3. We analyze the issue of distribution gaps in
SEC task and explore various alignment meth-
ods to bridge the gap. Experiments demon-
strate AlignCap’s superiority in both zero-shot
and cross-domain scenarios.

2 Background and Discussion

The section describes the speech-text distribution
gap of traditional SEC methods. To explore this
gap, we conducted preliminary experiments to an-
alyze its potential impact on train-inference mis-
match and performance degradation. Furthermore,
we discuss the impact of modal alignment position
on downstream SEC performance.
Distribution Gap and Alignment. As the
creation of speech-caption pairs is costly, tradi-
tional SEC methods usually are trained using
only text, and employed zero-shot inference on
speech. The distribution of speech and text em-
beddings do not exactly coincide, which degrades
the SEC’s performance. To analyze the effect
of modal alignment on eliminating distribution
gap, we adopt No-alignment, Contrastive Learn-
ing alignment (CL-Align) (Deshmukh et al., 2024),
and Projection-based alignment (CL+Proj-Align)
(Deshmukh et al., 2024), and evaluate the per-
formance of SEC on BLEU@4 (Papineni et al.,

Figure 2: Results of different alignment methods.

2002), METEOR (Banerjee and Lavie, 2005), and
ROUGE (Lin, 2004) metrics. We conducted three
experiments: 1) No-Align: Speech encoder of Pre-
trained CLAP model (Wu et al., 2023) is used to
zero-shot inference directly. 2) CL-Align: We
fine-tuning the text encoder and speech encoder of
CLAP using contrastive learning on speech-caption
pairs Ds={(xn, yn)} which are randomly selected
from SEC datasets. 3) CL+Proj-Align: Based on
CL-Align, we add Projection-based decoding to
project the speech embedding into the text embed-
ding space through cosine similarity. As shown in
Fig 2, captions generated from model with Align-
ment exhibit superior similarity compared to that
No-alignment model. This findings proves that the
distribution gap adversely affects the SEC’s perfor-
mance.
Align before or after LLM Decoding? Accord-
ing to (Jiang et al., 2023), complete alignment be-
tween modalities is often not the optimal solution
for downstream tasks. Such alignment may result
in information loss, especially when the informa-
tion provided by the two modalities differs signif-
icantly. Traditional SEC models achieve Speech-
Text Alignment via fine-tuning encoder on speech-
caption pairs, which bridges the distribution gap
before LLM decoding. However, complete align-
ment of speech and text embedding may result in
information loss, and it lacks a direct measure for
assessing speech-text alignment quality.

To address these problems, we propose KD-
Regularization which achieve Speech-Text Align-

(a) Contrastive Learning Alignment (b) KD-Regularization Alignment 

Figure 3: T-SNE visualizations of LLM’s output from
speech and text input. (a) Align before LLM Decoding.
(b) Align after LLM Decoding.
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Figure 4: The framework of AlignCap. Left: Illustration of Knowledge Distillation Regularization. Acoustic
prompt Pact is generated from emotional clues, which is extracted by an emotion grammar parser Gparser. Semantic
prompt Psem is generated from LLM tokenizer. Right: Illustration of Preference Optimization Regularization.

ment and bridge the distribution gap after LLM
decoding. It use the KL-divergence of next-token
prediction distributions between LLM’s response
as a measure of Speech-Text Alignment. As shown
in Fig 3, we observe that align after LLM decoding
using knowledge distillation can more effectively
improve the speech-text alignment performance.

3 AlignCap

3.1 KD-Regularization

Our goal is to generate speech emotion captions for
speech clips, we design a student LLM to imple-
ment speech tokens to text generation and employ
a teacher LLM’s response to guide student LLM’s
next-token generation. LLaMA-7B (Touvron et al.,
2023a) is chosen to implement this decoding pro-
cess due to its exceptional language understanding
and modeling capabilities. We simply choose rank
value of 8 for LoRA fne-tuning (Hu et al., 2022b)
conducted on Student-LLaMA, while the Teacher-
LLaMA parameters are frozen.
Acoustic Prompt. We first construct a vocabulary
of emotional clues, adjectives such as the speaker’s
tone, intonation, pitch, rhythm, and volume in cap-
tions are all regraded as emotional clues. We de-
sign an emotion grammar parser (based on NLTK
toolkit) to recognize these clues, which are filtered
by the vocabulary. Then these clues are inserted
into a prompt template PT: <Feeling e1, e2, ..., and
en>, where en is the nth emotion entity. The acous-
tic prompt can capture rich and delicate emotion

information in emotional clues. It can enrich fine-
grained emotional description and enhance the ro-
bustness of zero-shot captioning for unseen speech,
leveraging its training-agnostic nature, which is
denoted as:

e1∼n = GParser(yi = {c1i , ..., c|yi|i })
Pact = Insert(PT, idx, e1∼n)

(1)

Where yi is a series of captions, cmi is the mth

caption of yi. GParser and PT represent emotion
grammar parser and prompt template respectively.
We insert the emotional clues e1∼n into the index
position idx of PT to get acoustic prompt Pact.
Text Token Generation. We denote the captions
in speech-caption pairs as the semantic prompt
Psem and concat Pact and Psem as a prefix prompt,
then we provide the prefix prompt along with an
instruct prompt (user’s instructions) to the LLM
to condition its subsequent generation of speech
emotion captions using prefix language modeling.
This setup leverages external knowledge and the
language understanding and modeling capabilities
of the teacher-LLM to guide the student-LLM to
generate plausible sentences.

Given a caption ci with token Ti, language model
Pθ learns to reconstruct yi conditioned on the Pact

and Psem. The probability of generating the next
token is calculated as follows:

pθ(Tt | T0∼a−1︸ ︷︷ ︸
Pact

, Ta∼b−1︸ ︷︷ ︸
Psem

, Tb∼c−1︸ ︷︷ ︸
Pinstruct

, Tc∼t−1︸ ︷︷ ︸
autoregressive

) (2)
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This process is iterated until the LLM generates
a token containing a period and the training loss
is the maximum likelihood estimate, and the next
token Tt is selected according to:

Tt = argmax
i∈1,...,k

{
pθ (ci | pn, T0,. . ., Tt−1)

}
(3)

Where prefix prompt pn = Pact ⊕ Psem ⊕ Pinstruct.
Trained on limited data, simply using semantic
prompt as prefix prompt may overfit the In-Domain
dataset, leading to significant domain shift and per-
formance degradation of language model using out-
of-domain (OOD) speech. In contrast, the acoustic
prompt based on emotion-aware clues, inherits the
powerful transferability from captions.
Speech Token Generation. For each speech,
we adopt the pre-trained SpeechTokenizer (Zhang
et al., 2024) to extract discrete representations and
denote the tokens of the first residual vector quan-
tization (RVQ) layer as speech tokens. The first
layer of RVQ can be regarded as a semantic to-
ken, which contains more content information from
speech, resulting in capturing semantically accu-
rate emotional clues. We append this speech token
xt to LLM’s input and generate the next token in
an autoregressive modeling manner, for each time
step t, the next token Tt is selected according to:

Tt = argmax
i∈1,...,k

{
pθ (ci | xt, T0,. . ., Tt−1)

}
(4)

Modality Alignment. Modality adapters (Desh-
mukh et al., 2024; Hu et al., 2024) are often used
to compress the speech encoder’s feature represen-
tations. Similar to (Yang et al., 2023), we treat
the input from speech and text modality as a to-
ken sequence and learn a joint embedding space
for all modalities. Speech tokens are expanded
to text token’s codebook in advance so that text
and speech share the same codebook. We pad the
shorter token sequence to make it the same length
as the longer token sequence. We use a mask to
ignore the padding part, ensuring that the model
only focuses on valid tokens.
Knowledge Distillation. As shown in Fig 4, given
a Ds={(xn, yn)}, we treat the LLM’s prediction
distribution pθ (yn |pn, y<n) of the next response
token, after having observed the text input pn and
generated partial response {y0,. . . ,yn−1}, as the
teacher distribution. Where pn is the concatena-
tion of Pact and Psem. In contrast, we consider
the corresponding distribution pθ (yn |xn, y<n) for

the speech input xn as the student distribution. If
speech and text are well-aligned, the two distribu-
tions should be close to each other, as measured by
KL-divergence, which is as followed:

min
LLMstu(·)

LKL(p, x, y) =

−
∑

t,yn

pθ (yn|pn, y<n) log pθ (yn|xn, y<n)
(5)

LKL introduces a quantitative measure of speech-
text alignment at each step of the response gener-
ation process. By minimizing this loss, we can
learning a student LLM using LoRA fine-tuning
(Hu et al., 2022b) for speech input that facilitates
generation behaviors similar to those of text inputs
when generating speech emotion captions.

3.2 PO-Regularization
High-quality emotional description needs to con-
sider not only the richness of emotions but also
aspects such as consistency and rationality. The
alignment of SEC’s output to human preferences
is often neglected. There is a problem that the
LLM’s response is inconsistent with the user’s in-
structions (faithfulness hallucination) and results
in false emotional descriptions (factuality halluci-
nation). Therefore, we propose PO-Regularization
to solve these problems.
Preference Pairs Creation. Inspired by (Ouyang
et al., 2022; Yuan et al., 2024), we construct a pref-
erence pairs dataset by utilizing GPT-3.5 scoring
prompt Pscore on LLM’s beam-search decoding
output. The Pscore to act as reward model is used
to create preference pairs, which is as follow:

Review the user’s question and the corresponding response 
using the additive scoring system described below. Points are 
accumulated based on the satisfaction of each criterion:
- Add 1 point if the response is relevant to the instruct prompt and provides 
some emotional relevant  information.
- Add another point if the response contains rich emotional descriptions and it 
seems to have been written from an AI Assistant’s perspective.
- Award a third point if the response contains rich, accurate, and consistent 
descriptions of emotion and appears to be written from a human subjective 
perspective, reflecting expert knowledge.

User: <response,instruction>  Score: <total points>

Figure 5: Scoring prompt for candidate responses.

Following above steps, we can get the prefer-
ence pairs dataset Dp = {(xn, ycn, yrn)}Nn=1, which
is consisted of chosen response ycn and rejected re-
sponse yrn. Finally, we select the highest score as
the ycn and the rest as yrn.
Preference Optimization. To solve the hallucina-
tion problem of LLMs, the prevalent RLHF meth-
ods (Ouyang et al., 2022; Touvron et al., 2023b;
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Cui et al., 2023) involve fitting a reward model
on the preference data, and the training the policy,
value and critic models to maximize the reward
without deviating too far from the reference model.
However, RLHF method contains four models and
has too many hyperparameters, making the train-
ing complex and high computation cost. Inspired
by DPO (Rafailov et al., 2023; Yuan et al., 2024),
We propose a simpler equivalent supervised ap-
proach PO-Regularization that addresses this rein-
forcement learning goal, the policy model can be
directly optimized on the reward feedback based
on preference pairs:

LPO=E(x,yg ,ycn)

[
β log σ(log

πθ(yg|x)
πref (yg|x)

− log
πθ(y

c
n|x)

πref (ycn|x)
)
] (6)

Where β is is a hyperparameter and we only update
the policy model πθ(y|x) during finetuning, while
reference model πref (y|x) is the same as πθ(y|x)
which is frozen to prevent over-optimizing. PO-
Regularization considers the likelihood of the pre-
ferred response ycn over dispreferred response yrn
and optimizes the LLM towards this objective.

4 Experiments

4.1 Dataset
We select speech-caption paired samples from the
large-scale video emotion reason dataset MER2023
(Lian et al., 2023a) to form the MER23SEC dataset.
A Chinese interactive multimodal emotion cor-
pus NNIME (Chou et al., 2017) is used to eval-
uate the transferability of our model trained on
other datasets. Due to the lack of publicly avail-
able high-quality SEC task datasets, we propose
a new dataset named EMOSEC1, which is about
41 hours of Chinese-English Speech Emotion Cap-
tioning datasets. It consists of 15 male and 15
female speakers and covers 45039 sentences, with
a sampling rate of 16kHz. We divide MER23SEC,
EMOSEC, and NNIME datasets into training, vali-
dation and testing according to the ratio of 8:1:1.

4.2 Settings

Evaluation Metrics. We use GPT-3.5 to evalu-
ate the degree of overlap of emotional clues and
summarized states as shown in Fig 6. The auto-
matic evaluation indicators are denoted as AESc

1The EMOSEC dataset is accessible through:
https://zenodo.org/records/10948423

Please extract descriptions related to the speaker's emotional 
state, such as the speaker's tone, intonation, volume, pitch, and 
rhythm etc., and then further summarize these descriptions as 
Pred. Please calculate the overlap between the Pred and GT. 
The higher overlap, the higher score returned. Scores range 
from 0-10.

User: <Pred, GT>   Response: <caption scores>

Please summarize the speaker’s emotional state and calculate 
the degree of overlap between Pred and GT. The higher overlap, 
the higher score returned. Scores range from 0-10.

User: <Pred, GT>   Response: <emotion scores>

Figure 6: Prompt for Automatic Evaluation.

and AESs respectively. The higher the score, the
higher quality of generated captions.

To evaluate the accuracy of the generated cap-
tion, we initially adopt traditional supervised met-
rics for the Automated audio captioning (AAC)
task, containing standard natural language genera-
tion metrics BLEU(B@4), METEOR(M), ROUGE-
L(R), CIDEr(C) (Vedantam et al., 2015), and
SPICE(S) (Liu et al., 2017). B@4 focuses on the
appearance frequency of emotional clues and is
used to evaluate the emotional consistency and fine-
grainedness of generated captions. Compared with
B@4, M considers synonyms more, and R pays
more attention to the sufficiency and faithfulness
of output. C and S Compute accuracy of emotion
captions using human consensus. Therefore, M
can be used to evaluate factuality hallucinations,
while R, C, and S is used to evaluate faithfulness
hallucinations.

Baseline Systems. We compare our model with
other systems. 1) HTSAT-BART (Mei et al., 2023):
a three-stage processing framework, which per-
forms exceptionally well in the AAC task. 2)
NoAudioCap (Deshmukh et al., 2024): a weakly-
supervised audio captioning model which requires
a pre-trained CLAP (Wu et al., 2023). 3) SECap
(Xu et al., 2024): the fisrt SEC model to generate
high-quality speech emotion captions.

Training. For KD-Regularization, we optimize
the student-LLM with the AdamW optimizer and
the learning rate of 1e-5 on 4*V100 GPUs over
50k iterations, the batch size is 16. We employ
DeepSpeed (Rajbhandari et al., 2020) and LoRA
(Hu et al., 2022a) of rank 8 to implement model
parallelism and parameter equivalence, applying
warmup with 400 steps and gradient accumulation
with 8 steps. For PO-Regularization, the learning
rate is set to 5e-7 and train for 1000 steps.
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Dataset Methods BLEU@4↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑ AESc↑ AESs↑

NNIME

HTSAT-BART (Mei et al., 2023) 3.2±0.5 8.6±0.3 15.7±0.4 2.7±0.2 3.0±0.4 2.5±0.4 3.6±0.3
NoAudioCap (Deshmukh et al., 2024) 4.9±0.4 10.4±0.2 17.6±0.3 4.9±0.5 5.1±0.3 3.6±0.2 4.2±0.1

SECap (Xu et al., 2024) 5.8±0.4 11.4±0.3 17.9±0.2 8.6±0.4 5.3±0.3 4.9±0.5 4.5±0.2

SECap-PO 6.0±0.3 12.1±0.3 18.6±0.3 8.9±0.2 5.4±0.4 5.1±0.1 4.7±0.4
AlignCap-KD-RLHF 6.6±0.5 14.6±0.5 20.9±0.2 9.3±0.4 5.6±0.2 5.8±0.3 5.0±0.2

AlignCap-KD-PO 7.7±0.3 17.3±0.4 24.3±0.4 12.8±0.5 6.4±0.3 7.3±0.3 5.6±0.4

EMOSEC

HTSAT-BART (Mei et al., 2023) 4.5±0.3 11.6±0.2 20.4±0.5 5.1±0.4 3.7±0.5 3.6±0.2 4.8±0.3
NoAudioCap (Deshmukh et al., 2024) 6.7±0.3 14.5±0.4 21.8±0.6 10.3±0.6 5.7±0.3 4.7±0.3 5.4±0.1

SECap (Xu et al., 2024) 7.4±0.3 16.6±0.2 25.9±0.3 11.2±0.3 5.8±0.3 5.9±0.3 5.6±0.2

SECap-PO 7.5±0.4 17.0±0.4 26.2±0.2 11.8±0.2 6.0±0.3 6.1±0.4 5.8±0.2
AlignCap-KD-RLHF 7.8±0.3 18.3±0.1 27.9±0.4 14.2±0.4 6.3±0.5 7.0±0.2 6.1±0.3

AlignCap-KD-PO 9.8±0.2 20.9±0.3 29.8±0.5 18.7±0.3 7.6±0.4 8.8±0.2 7.6±0.1

Table 1: Zero-shot evaluation result of different SEC methods on NNIME and EMOSEC.

4.3 Main Results

For Zero-shot scenario, we conduct our model
with baselines on NNIME (Chou et al., 2017) and
EMOSEC dataset. Moreover, we evaluated the
effects of two different Human preference align-
ments RLHF-PPO and DPO, on eliminating the
hallucinations.

Quantitative Evaluation. The objective and au-
tomatic evaluation about zero-shot SEC methods
are shown in Table 1, and we randomly select 25
sentences from test set to calculate scores. Our
proposed preference-optimized models, AlignCap-
KD-RLHF and AlignCap-KD-PO, outperform the
baseline model in all metrics. The B@4 and M
of AlignCap-KD-PO is higher than that of SECap-
PO, which suggests that KD-Regularization can
enhance the accuracy of emotional clues modeling.
The highest R, C, and S scores demonstrate that
AlignCap’s output exhibits greater sufficiency and
faithfulness compared to other baselines. The met-
rics of SECap-PO is higher than that of SECap,
it is attributed to the PO-Regularization, which
eliminates the faithfulness hallucinations where
the output is inconsistent with user instructions.
AlignCap-KD-PO achieves the highest B@4 score,
demonstrating that emotional clues as Pact can gen-
erate more fine-grained emotion captions. It out-
performs AlignCap-KD-RLHF, indicating superior
performance in quantitative evaluation. This con-
firms that DPO-based PO-Regularization can en-
hance the quality of the caption generated by the
model than RLHF-PPO. It also demonstrates that
human preference alignment is an effective method
for the SEC model to undergo self-improvement.

Compared with NoAudioCap (Deshmukh et al.,
2024) which also utilizes a similar text-only

training method, both AlignCap-KD-RLHF
and AlignCap-KD-PO comprehensively sur-
pass NoAudioCap, attributed to our proposed
KD-Regularization in alleviating speech-text
distribution gap after LLM decoding. Zero-shot
inference used by NoAudioCap has a training-
inference mismatch, which loses generalization
on unseen speech. The KL-divergence in KD-
Regularization is used to bridge the mismatch,
it suggests that AlignCap can be generalized to
unseen speech.

Qualitative Evaluation. Figure 7 supports the
findings of Table 1 by presenting the output of
AlignCap and HTSAT-BART (Mei et al., 2023),
NoAudioCap (Deshmukh et al., 2024), SECap (Xu
et al., 2024). Our method can produce richer emo-
tional clues and more coherent emotion captions.
In the “Neutral” example of Figure 7, although
SECap (Xu et al., 2024) can produce rich speech
emotion captions, its incorrect emotional cues are
inconsistent with the real emotion. In the “Surprise”
example, the output of NoAudioCap lacks fine-
grained captions of the speaker’s gender, tone, and
intonation. AlignCap-KD-PO not only makes up
for this shortcoming but also outputs the speaker’s
content consistent with the transcribed text, which
enhances the understanding of the speech content.

In the “Angry” example in Figure 7, AlignCap-
KD-RLHF simply refers to gender as "a person",
AlignCap-KD-PO can correctly identify its gen-
der by adopting preference optimization, it is also
attributed to Pact for enriching fine-grained infor-
mation about the speaker.

What’s more, NoAudioCap (Deshmukh et al.,
2024) suffers from LLM’s output inconsistent
with user instructions, and both AlignCap-KD-
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Emotion:   “Neutral”
Transcription: “No, but I love snowboarding very 
much.”
HTSAT-BART: The tone of voice indicates that 
the person in the audio is emotionally calm.
NoAudioCap: The audio is of a man speaking, in 
a neutral tone, at a normal speed, with no voice 
changes or emotions.
SECap: Based on the voice, it sounds like this 
person is happy in the audio, and they are 
expressing excitement or enthusiasm.

AlignCap-KD-RLHF: The emotion of the person 
in the audio is neutral, the tone is normal, and the 
speaking speed is medium.
AlignCap-KD-PO: The man in the audio is 
neutral. His speaking tone is normal, the intonation 
is calm, and the speaking speed is medium, saying, 
\"No, but I love snowboarding very much.\".

Emotion:   “Happy”
Transcription: “Great !  I want to exchange 
some yen.”
HTSAT-BART: A woman is speaking, and her 
tone sounds positive.
NoAudioCap: The audio is of a woman 
speaking, in a fast pace, with a neutral tone, and 
no apparent emotion.
SECap: Based on the voice, it sounds like this 
person is fearful in the audio, and possibly sad. 
They might be expressing a need or desire for 
something, possibly related to money or finances.

AlignCap-KD-RLHF: The person in the audio 
speaks quickly, with a rising intonation and a 
positive tone.
AlignCap-KD-PO: The woman in the audio is 
happy and cheerful. She speaks quickly, with a 
rising intonation and a positive tone.

Emotion:   “Surprise”
Transcription: “Tom now let our arrows fly!”

HTSAT-BART: The emotion of the person in the 
audio is angry. His tone is negative and impatient, and 
his speaking speed is fast.
NoAudioCap: The tone of voice indicates that the 
person in the audio is emotionally argry.
SECap: Based on the voice, it sounds like this person 
is happy in the audio, and their emotions are: happy.

AlignCap-KD-RLHF: The person speaks in a happy 
tone, with a fast speaking speed. The tone of voice 
indicates the emotion of the person in the audio is 
surprise.
AlignCap-KD-PO: This is a man speaking, in a 
positive and happy tone. He speaks English with a 
fast speaking speed, and the content was: "Tom now 
let our arrows fly!".

Emotion:   “Angry”
Transcription: “What am I, I'm a racer, son of god!”

HTSAT-BART: This is a man speaking, in an 
excited tone, with a fast speaking speed.
NoAudioCap: The content of voice is: "What am I? 
I'm a racer, son of God!".
SECap: Based on the voice, it sounds like this 
person is angry in the audio, possibly expressing 
disbelief or frustration.

AlignCap-KD-RLHF: The person in the audio is in 
an angry mood, has an angry tone, and speaks at a 
normal speed. 
AlignCap-KD-PO: The man in the audio is angry. 
The voice is vehement and the tone is excited. He 
speaks at a normal speed. The content of the speech 
is: "What am I? I'm a racer, son of God!".

Figure 7: Qualitative Results of Zero-shot SEC with different methods. Incorrect emotional clues in captions are
highlighted in red , while correct emotional clues in captions are in blue .

PO and AlignCap-KD-RLHF eliminate this faith-
fulness hallucination, owing to our proposed PO-
Regularization.

4.4 Ablation Studies

As shown in Table 2, we train AlignCap with spe-
cific components selectively removed to evaluate
the effect of the proposed components to eliminat-
ing hallucinations and enrich fine-grained informa-
tion.

The decrease in all objective evaluation scores
shows the significance of acoustic prompt (Pact),
KD-Regularization (LKL), and PO-Regularization
(LPO). The significant decrease of Pact on B@4
proves the positive effect of the emotional clues
extracted by Pact on the emotional consistency of
generated captions. The lack of LKL and LPO

leads to a significant drop in M and R, indicating
that they play a crucial role in guiding Zero-shot
SEC model to eliminate factuality and faithfulness
hallucinations. The model without Pact also ex-
hibits a decrease in R, indicating its effectiveness
in generating fine-grained emotional descriptions.
The M score of AlignCap-KD-PO is higher than
AlignCap-KD-RLHF without adopting explicit re-
ward modeling, allowing it to learn more human-
like generated captions.

5 Analysis

5.1 Transferability on Cross-Domain Speech

As shown in Table 3, we evaluate the AlignCap in a
cross-domain scenarios where the training data and
testing data are from different datasets. We conduct
experiments on NNIME and MER23SEC’s testing
set, and we only use the training set of EMOSEC’s

Methods Pact LKL LPO
EMOSEC

B@4↑ M↑ R↑ C↑

AlignCap-KD-RLHF

✔ ✔ ✔ / / / /
- ✔ ✔ -3.5 -2.3 -2.7 -1.2
✔ - ✔ -1.9 -5.4 -4.3 -1.9
✔ ✔ - -1.5 -2.7 -3.2 -1.6

AlignCap-KD-PO

✔ ✔ ✔ / / / /
- ✔ ✔ -1.4 -1.3 -1.8 -0.7
✔ - ✔ -0.8 -4.7 -3.0 -1.6
✔ ✔ - -0.5 -2.6 -2.2 -0.9

Table 2: Ablation studies on EMOSEC dataset.

Methods B@4↑ M↑ R↑
EMOSEC→NNIME

HTSAT-BART 1.9±0.4 3.4±0.5 6.1±0.3
NoAudioCap 4.2±0.2 8.7±0.4 10.3±0.6

SECap 3.4±0.3 8.2±0.3 13.8±0.5
AlignCap-KD-RLHF 5.2±0.4 9.6±0.3 14.4±0.4

AlignCap-KD-PO 5.9±0.3 10.1±0.5 15.6±0.2

EMOSEC→MER23SEC
HTSAT-BART 4.4±0.3 11.1±0.4 12.3±0.4
NoAudioCap 11.3±0.3 13.2±0.3 18.7±0.3

SECap 9.8±0.3 14.6±0.3 16.1±0.3
AlignCap-KD-RLHF 14.5±0.2 19.8±0.4 21.0±0.5

AlignCap-KD-PO 16.3±0.3 21.6±0.3 22.7±0.3

Table 3: Cross-domain SEC results on NNIME and
MER23SEC dataset.

captions to fine-tuning AlignCap.
In EMOSEC→NNIME cross-domain scenarios,

the results show that AlignCap outperforms all
baselines. The B@4 and M metrics of SECap
and HTSAT-BART are lower than NoAudioCap
on the NNIME dataset. This is because they all
have encoder-decoder structures and are trained on
well-paired data, lacking components to enhance
generalization capabilities for cross-domain data.

AlignCap outperforms NoAudioCap, demon-
strating the superiority of the proposed KD-based
speech-text alignment over the CLAP-based (con-
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trastive learning) speech-text alignment used in
NoAudioCap for cross-modal mapping. It not only
bridges the audio-text distribution gap, but also im-
proves the generalization ability in cross-domain
scenarios.

Additionally, there is a domain offset between
the predicted emotional description generated by
LLMs and the real description of the target domain,
leading to performance degradation. Equipped with
the PO-Regularization, AlignCap-KD-PO outper-
forms the other baselines including AlignCap-KD-
RLHF version on most metrics, demonstrating the
effectiveness of the proposed compoents.

5.2 Effect of Different Speech-Text Alignment
on Downstream SEC task

Previous alignment methods, such as Gaussian
Noise Injection (CL+NI-Align) (Deshmukh et al.,
2024) and Project-based Decoding (CL+Proj-
Align) (Kouzelis and Katsouros, 2023), achieve
alignment by adding Gaussian noise variance or
mapping based on contrastive learning between
speech and text embeddings before LLM decoding.
The KD-Regularization (KD-Align) we proposed
achieves speech-text alignment after LLM decod-
ing and alleviates the information loss in modality
alignment. Fig 9 shows that our method outper-
forms other alignment methods in all indicators,
attributing to we treat speech-text alignment as a
knowledge distillaiton problem. It can ensure that
the LLM’s responses to speech inputs closely mir-
ror those to corresponding text inputs.

Figure 8: The impact of different Alignment.

5.3 Performance on Different Preference Pair
Sizes and Steps.

As shown in Fig 9, we examine the effect of differ-
ent preference pair sizes and fine-tuning steps for
PO-Regularization on the performance of Align-
Cap. We set the preference pair sizes to be
{0, 25k, 50k, 75k, 100k}. After 500 steps of fine-
tuning with DPO for each of these sizes, we assess
their performance in zero-shot SEC. We can ob-
serve notable improvement with increasing sizes

from 0 to 50k, which indicates that an increase in
preference pair data can improve zero-shot SEC.
However, using more than 50k preference data for
DPO does not lead to significant performance im-
provements, indicating a threshold beyond which
additional data does not enhance learning out-
comes.

Figure 9: Left: Performance of AlignCap across dif-
ferent preference pair sizes. Right: Performance of
AlignCap of different fine-tuning steps.

Moreover, we set the fine-tuning steps to be
0→1.5k for AlignCap on zero-shot SEC evaluation.
As shown in Fig 9, all metrics demonstrate sig-
nificant performance improvement when the num-
ber of fine-tuning steps is less than 1k. However,
when the number of iterations exceeds 1k steps, the
model suffers from overfitting, resulting in perfor-
mance degradation, indicating that 1k steps are the
optimal iteration steps for PO-Regularization.

5.4 Can PO-Regularization Works with Small
Models?

We investigate whether PO-Regularization can
bring improvements for smaller language mod-
els. The preference pair size is 50k and we fine-
tuning the models on EMOSEC dataset for 1k steps.
We evaluate the zero-shot SEC performance on
EMOSEC test set. Tab 4 shows that after 1k it-
erations, PO-Regularization significantly boosts
OPT’s scores but decreases the GPT2-base’s scores
on M and R, while improving GPT-2-large very
little. This indicates that PO-Regularization can
improve caption generation in small language mod-
els, although the improvement is not significant for
models with very small parameters.

Models Parameters B@4↑ M↑ R↑
GPT2-base

124M
3.3±0.3 8.4±0.5 16.1±0.3

GPT2-base-PO 3.3±0.5 8.3±0.4 16.0±0.5

GPT2-large
774M

3.7±0.2 8.9±0.3 17.3±0.4
GPT2-large-PO 3.8±0.3 9.1±0.4 17.6±0.2

OPT
1.3B

4.3±0.2 10.2±0.4 18.8±0.5
OPT-PO 5.4±0.3 12.8±0.2 20.5±0.4

Table 4: Performance on Small Models.

3844



6 Conclusion

We proposed AlignCap, achieving speech-text
alignment and human preference alignment. To
minimize the distribution gap between LLM’s re-
sponse to speech input and those to correspond-
ing text inputs, we design KD-Regularization to
achieve speech-text alignment. Additionally, we
align emotion captions to human preference by
PO-Regularization. This process eliminates the
factuality and faithfulness hallucinations of Align-
Cap on unseen speech. Experiments demonstrate
AlignCap’s superiority in both zero-shot and cross-
domain scenarios.

Limitations

Well-paired speech-caption datasets are difficult to
obtain in real-world scenarios. Captions containing
emotional descriptions are easy to obtain, but high-
quality speech-caption paired data is difficult to
collect, how to solve this mismatch problem will
be left to our future work. In addition, enhancing
the robustness of alignment between speech and
text inputs remains an urgent issue that needs to be
addressed in the future.
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