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Abstract
Large Language Models (LLMs) have demon-
strated significant potential in handling com-
plex reasoning tasks through step-by-step ratio-
nale generation. However, recent studies have
raised concerns regarding the hallucination and
flaws in their reasoning process. Substantial
efforts are being made to improve the reliabil-
ity and faithfulness of the generated rationales.
Some approaches model reasoning as planning,
while others focus on annotating for process su-
pervision. Nevertheless, the planning-based
search process often results in high latency
due to the frequent assessment of intermediate
reasoning states and the extensive exploration
space. Additionally, supervising the reasoning
process with human annotation is costly and
challenging to scale for LLM training. To ad-
dress these issues, in this paper, we propose a
framework to learn planning-based reasoning
through Direct Preference Optimization (DPO)
on collected trajectories, which are ranked ac-
cording to our synthesized process rewards.
Our results on challenging logical reasoning
benchmarks demonstrate the effectiveness of
our learning framework, showing that our 7B
model can surpass the strong counterparts like
GPT-3.5-Turbo. 1

1 Introduction

Natural language reasoning has been a fundamental
element in the advancement of artificial intelligence
(AI), with its significant impact on a variety of ap-
plications including planning and decision mak-
ing (Huang and Chang, 2023). The goal of build-
ing AI systems capable of replicating human-like
reasoning remains a primary focus within the re-
search community. Recent advancements in Large
Language Models (LLMs) have showcased their
ability to perform complex reasoning tasks, creat-
ing sequences of reasoning steps akin to human

†Correspondence to: Nancy F. Chen and Shafiq Joty.
1Code and trajectory data are released at SparkJiao/dpo-

trajectory-reasoning.
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Figure 1: A solution generated by our fine-tuned model
based on Llama-2-7B-chat (Touvron et al., 2023) for a
logical reasoning problem in LogiQA-v2 dataset (Liu
et al., 2022). It follow the ReAct (Yao et al., 2023b)
format, where each step is marked with a dotted rectan-
gle. The content highlighted in green summarizes some
opinions in the context, and is omitted. The central
reasoning steps pivotal to arriving at the solution are
emphasized in pink. The complete reasoning process
can be found in Figure 8.

thought processes (Wei et al., 2022; Zhou et al.,
2023b). Despite these advancements, it is also con-
cerning that LLMs are susceptible to generating
misleading rationales (Bubeck et al., 2023; Lan-
ham et al., 2023). Such inaccuracies are particu-
larly pronounced in complex reasoning scenarios
(Yu et al., 2022; Huang and Chang, 2023; Jiao et al.,
2024; Wang et al., 2024), underscoring a significant
challenge.

Tremendous efforts have been dedicated to im-
prove the reliability and faithfulness of generated
rationales, including knowledge distillation (Hin-
ton et al., 2015; Xu et al., 2023; Luo et al., 2023;
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Yue et al., 2023) and self-correction (Shinn et al.,
2023). Yet, these approaches predominantly rely
on LLMs for identifying errors or providing supe-
rior reasoning processes, which could be limited
by their capacity. An alternative is to consider hu-
man process supervision (Uesato et al., 2022). For
instance, Lightman et al. (2023a) propose to train
a process reward model (PRM) using step-level
feedbacks on model-generated solutions, which are
annotated by human experts. This enables LLMs to
refine their rationales based on the PRM’s feedback.
While human process supervision has proven effec-
tive, it often incurs higher costs compared to mere
final outcome annotation as well as the automatic
process annotation from a teacher LLM.

In addition to the attempts on process supervi-
sion, some research efforts have explored search-
augmented reasoning for better reasoning trace by
assessing the quality of future states. Hao et al.
(2023) introduce a general framework of reasoning-
as-planning (RAP), where the reasoning process
is defined as a Markov Decision Process (MDP).
Each step in the MDP comprises a state-action pair,
whose particular implementation can vary with dif-
ferent application scenarios. Figure 1 illustrates
this process in the context of logical reasoning
using the ReAct (Yao et al., 2023b) format. At
each step the agent can Think (optionally) and Act,
which involves selecting a group of facts and rules
to deduce a new conclusion.2 It can optionally
make an Observation to get an “updated view” of
the state. During inference, each state-action pair
is assigned a reward, either by an LLM or external
verifier. The planning process is then steered by
Monte Carlo Tree Search (MCTS) (Coulom, 2006)
to maximize the expected total cumulative reward
(or utility) obtained along the chosen path while ef-
fectively narrowing the search space (Figure 2(a)).

Existing RAP frameworks often assume LLMs
as the world model being able to assess the quality
of each reasoning step. As a result, the online
planning may introduce huge latency and cost due
to frequent assessments of intermediate states and
the large search space. Nevertheless, we find that
the core idea behind planning-based reasoning is
to employ online simulation by taking few forward
steps to find the optimal path, and the evaluation
becomes more accurate when it has access to real
outcome feedback.

In this paper, we explore offline simulation to

2The notion of action subsumes both thinking and acting.
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Figure 2: The overall comparison between search-based
inference (a) and our trajectory collection-based offline
training (b). In search-based inference, an LLM or an
external verifier assesses each intermediate state and
assigns a scalar value as feedback. The goal of infer-
ence is find an optimal reasoning path with maximum
expected utility. In our method, the policy model will
first explore multiple reasoning paths, with the process
rewards calibrated by outcome supervision. And we
then optimize it using DPO (Rafailov et al., 2023) to
maximize the probability of the paths with higher cumu-
lative reward.

synthesize process supervision. We introduce
ground-truth outcome supervision that we back-
propagate to intermediate states instead of relying
on LLMs for process assessment. We develop a
simple and effective strategy based on partial tra-
jectory exploration. We first collect some solutions
from LLMs as the seed trajectories, and then sam-
ple several intermediate reasoning states from them
as the non-leaf nodes in planning. After that, the
LLMs are asked to retry to complete each of them
multiple times by taking the intermediate states
as new starting points of reasoning. We take the
number of completions that have reached the cor-
rect outcome as the estimate of expected returns
for training PRM. Finally, we optimize the LLMs
to learn a better policy for generating reliable ra-
tionales through Direct Preference Optimization
(Rafailov et al., 2023), where the contrastive tra-
jectory pairs are annotated by the PRM. A general
comparison between our method and search-based
approaches is shown in Figure 2. In a nutshell, our
contribution can be summarized as follows:

• We propose a novel framework for synthe-
sizing process rewards from outcome annota-
tions, which incorporates offline simulation
and trajectory collection to induce planning-
based reasoning.

• We rigorously evaluate our methodology on
two challenging reasoning tasks: logical rea-
soning and mathematical reasoning. The ob-
served significant improvements over robust
baseline models underscore the efficacy of our
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proposed approach.

• Through detailed analysis, we demonstrate
that our method not only improves the quality
and conciseness of generated rationales but
also reduces the reliance on human annota-
tions.

2 Related Work

2.1 LLMs for Reasoning

Compared with predicting only the final answer,
chain-of-thought (CoT) (Wei et al., 2022) serves as
a more suitable way for LLMs considering the ra-
tionale will derive more useful information to avoid
potential flaws. Following this, many prompting
techniques are proposed to enrich the generated ra-
tionales (Zhou et al., 2023b; Hao et al., 2023). An-
other group of work focuses on search-augmented
reasoning, where the decoding process is guided by
heuristic search algorithms, like MCTS (Coulom,
2006). Basically, each reasoning state is treated
as a node in a tree or graph, and assigned with a
value demonstrating the confidence or expected re-
wards when reaching it. And LLMs themselves
often serve as the evaluator to give feedback to
intermediate states (Yao et al., 2023a; Hao et al.,
2023).

2.2 Improving LLMs via Sparse Feedback

Since the success of reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017;
Ouyang et al., 2022), employing RL algorithms,
like PPO (Schulman et al., 2017), to optimize
LLMs from sparse feedback is becoming more im-
portant. However, PPO training often demonstrates
unstable process and high resource cost. Some al-
ternative variants are then proposed, like rejection
sampling (Bai et al., 2022; Touvron et al., 2023)
and direct preference modeling (DPO) (Rafailov
et al., 2023). Towards the different types of feed-
back, Lightman et al. (2023b) and Uesato et al.
(2022) propose process supervision to assess the
intermediate reasoning steps. Nevertheless, collect-
ing step-wise feedback from human experts is often
time-consuming and expensive. In this paper, we
propose a simple heuristic approach to estimate the
process rewards of intermediate states.

Our work is concurrent to MATH-
Shepherd (Wang et al., 2023). We share
similar methodology for process rewards estima-
tion, but we have focused on different reasoning

tasks, optimization approaches, and evaluations.
More details are discussed in Appendix D.

3 Method

3.1 Formal Definition of Natural Language
Reasoning

Following Hao et al. (2023), we define
the natural language reasoning task as
a MDP with an action-state trajectory:
τ = ⟨ s0, a0, · · · , st, at, · · · , sT , aT ⟩, where
at is the action taken at timestep t and st+1 is
the state that the agent observes after that. In
the context of LLMs, we simplify the setting by
considering that both the action and state are
sampled from the policy model πθ (an LLM), such
that: {

at ∼ πθ(a|ct),
st+1 ∼ πθ(s|at, ct),

(1)

where θ is the parameter of the policy model,
ct = (s0, a0, · · · , st) is the history trace. Besides,
a reward model rt = r(at, st) ∈ R is employed to
assess the feasibility and desirability of each state-
action pair. In this paper, we focus on the tasks
with annotated final labels, where the agent will
receive a positive reward when it finally reaches a
correct answer:

rf (τ, y) =

{
1, if τ → y

0, else
(2)

where y is the ground-truth answer of a given query,
and τ → y means the trajectory entails the predic-
tion y. Our aim is to optimize the policy for making
decisions to maximize the expected rewards, which
can be formulated as:

argmax
θ

Ex,y∼D,τ ′∼πθ(τ |x)rf (τ
′, y), (3)

where πθ is the policy model parameterized by θ,
D = {x(i), y(i)} is the dataset where the policy
model is optimized on, x is the concatenation of
prompt, context, and question, and τ ′ is the gener-
ated reasoning process as action-state sequence.

3.2 Estimate Process Rewards via Offline
Simulation

One of the main issues with LLMs is that they
tend to hallucinate (Huang et al., 2023). A com-
mon illusion with multi-step reasoning is that the
derived conclusion may be correct but the LLMs
might reach there through unreasonable deduction
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Context:
A college … plans to select several of the six teachers 
from Mr. Liu, Mr. Zhang, Mr. Wang, Mr. Ma, Mr. Niu
and Mr. Zhou to visit abroad. Due to …, the selection 
shall meet the following conditions: (1) Mr. Liu is the 
reserve discipline leader of the college, This time we have 
to send out. (2) if we choose Mr. Liu, we should also 
choose Mr. Zhou, but we can't choose Mr. Zhang. (3) only 
if Mr. Niu can't choose, at least one of Mr. Wang and Mr. 
Ma can choose. (4) if we don't choose Mr. Wang, we don't 
choose Mr. Zhou either.
Question: If the above statement is true, which of the 
followings must be true?
Options:
A. Mr. Niu didn't choose, but Mr. Zhou did.
B. Mr. Liu was chose, but Mr. Ma didn't.
C. Mr. Wang and Mr. Ma were chosen.
D. Neither Mr. Wang nor Mr. Niu was elected.

Policy Model 𝜋!

Thought 1: Who must be chosen or who must not be 
chosen according to the context by one-step reasoning?
Action 1: Take condition (1).
Observation 1: Mr. Liu must be chosen.
Thought 2: Based on Observation 1, who must be chosen 
or who must not be chosen one step further?
Action 2: Take condition (2).
Observation 2: Mr. Zhou must be chosen, but Mr. Zhang 
must not be chosen.
… …
Observation 13: According to condition (4), if Mr. Wang 
was not chosen, Mr. Zhou must not be chosen. So Mr. 
Zhou was not chosen. This is contradictory to observation 
2. So Option D is not true.
Action 14: Finish[The answer is A.]

Step 1: Trajectory collection.

Thought 1:
Action 1:

Observation 1:
Thought 2:

Thought 1:
Action 1:

Observation 1:
Thought 2:
Action 2:

Observation 2:
Thought 3:
Action 3:

Thought 1:
Action 1:

Observation 1:
Thought 2:
Action 2:

Observation 2:
Thought 3:
Action 3:

Observation 3:
Action 4:

Observation 4:
Action 5:

Observation 5:

Sampling partial 
trajectories.

Finish:

Explore and Play.

𝑟" 𝜏# =$
$

𝑟% 𝜏$|'!
Collect the raw 

rewards.

Step 2: Collect raw expected values of 
intermediate steps.

𝒟( = {𝑥 # , {𝜏)
# , 𝑟" 𝜏)

# }}

Process Reward 
Model (PRM) 𝑟*

Step 3: Train a process reward model on 
collected expected values via Cross Entropy.

Step 4: Annotate full trajectories from 𝜋!   
with trajectory-level reward 𝑟+  by 

accumulating 𝑟*  over steps.

𝒟* = 𝑥 # , 𝜏,
# , 𝜏-

# |𝑟+ 𝜏,# − 𝑟+ 𝜏-
# > 𝜎 ,

Step 5: Optimize the policy model on the 
trajectory pairs via Direct Preference 

Modeling (DPO).

𝜏# ≻ 𝜏$

Enhanced Policy 
Model 𝜋!!

Finish:

𝑟" 𝜏.,0 𝑟" 𝜏1,0 𝑟" 𝜏2,3

⋯ Finish: Finish:⋯ Finish: Finish:⋯

where 𝜏, → 𝑦(#), 𝜏- → 𝑦(#).

Figure 3: The overall framework of our approach. (1) Collect samples with full solution trajectories. (2) Sample
intermediate reasoning states from the dataset, and ask the policy model to continuously explore based on the
intermediate states. After the completed trajectory reaching the termination, we can collect the raw rewards
according to the outcome supervision as the approximation of expected returns for the intermediate reasoning states.
(3) A process reward model is learned from the raw rewards to alleviate the dataset noise and reduce simulation cost.
(4) Collect more full trajectories and annotate them with the trained process reward model. (5) Optimize the policy
model on the pairwise trajectory dataset assessed by our synthesised process rewards.

processes. To address this, we aim at introduc-
ing process supervision (Lightman et al., 2023a),
which, however, is hard to obtain in most reason-
ing cases. We propose a simulation based method
to estimate the expected value by starting from an
intermediate point in a trajectory and exploring
the received rewards after reaching the terminal
states. The idea is based on a common observation
that if an intermediate reasoning state can reach
the correct answer more frequently, it has higher
probability to demonstrate some important facts
or evidences towards the conclusion. Specifically,
given an input x and an intermediate reasoning step
t, we randomly sample K trajectories starting from
either action at or state st. Taking at as example,
the estimated expected value for it is formulated as:

re(τt,a, y) =
K∑

k

rf (τ
k|τt,a , y),

=
K∑

k

rf (⟨ s0, a0, · · · , at︸ ︷︷ ︸
The prefix of τ

, sk,t, · · · , sk,Tk︸ ︷︷ ︸
The sampled completion.

⟩, y),
(4)

where τk|τt,a is the k-th completed trajectory
starting from at, and Tk is the number of steps
in the trajectory. Note that we can estimate the
expected value for both action or state, since they
are all managed by the policy model. For simplicity,
we will discuss the method based on action.

3.3 Synthesized Process Reward Model

After collecting enough trajectories as well as the
estimated expected values of intermediate steps,
we can train a PRM to assign a reward to each in-
termediate state/action, following Lightman et al.
(2023b). The motivation behind training a process
reward model instead of using the collected values
as the rewards includes: (1) If we assess each inter-
mediate step to estimate the value of the complete
trajectory by only heuristic simulation, similar to
the weakness of MCTS, the time consumption and
cost will be severe. (2) The simulation based es-
timation will also introduce noise, since the com-
pletion quality highly depends on the fundamental
capability of the initial policy model. As a result,
employing an extra reward model to approximate
the expected values can be more robust and effi-
cient than heuristic algorithms.

Specifically, following the method in Section 3.2
we obtain a reward modeling dataset:

DR = {x(i), {τ (i)
j,a, r

(i)
j }}, (5)

where r
(i)
j = re(τ

(i)
j,a , y

(i)), and j is the step. We
then formulate the reward modeling process as a
classification problem with K classes, and train the
process reward model fprm : X × T → RK by
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minimizing the following Cross-Entropy loss:

{
Lstep = − log pr,

p = fprm(x, τ),
(6)

where τ is an (incomplete) trajectory and r is the
corresponding estimated real reward value.

3.4 Reward Annotation and Preference
Dataset Construction

After obtaining the process rewards, we can then
assess a complete trajectory by accumulating them
along steps. Specifically, given a complete trajec-
tory τ = ⟨ s0, a0, s1, a1, · · · , sT , aT ⟩, the trajec-
tory level reward is defined as the accumulated
production of the process rewards assigned at each
intermediate step:





rp(τ) =
∏T

t

∏{a,s}
∗

∑K
i≥C fprm(τt,∗)i,

τt,a = ⟨ s0, a0, · · · , st, at ⟩,
τt,s = ⟨ s0, a0, · · · , st, ⟩,

(7)

where ∗ indicates either a or s. C is a hyper-
parameter controlling the minimum amount of suc-
cessful simulations so that we have enough confi-
dence to claim the state can lead to a correct rea-
soning process. This is to avoid that the potential
hallucinated rationales generated by the original
LLMs can affect the estimation of process rewards.

Once we have the clear definition of the trajec-
tory level reward based on the PRM, the policy
model can be optimized via reinforcement learning.
Considering the instability of PPO (Schulman et al.,
2017) training, we choose the algorithm of Direct
Preference Optimization (DPO) instead.

3.5 Direct Preference Optimization

In this section, we will first introduce the
vanilla DPO approach with only outcome su-
pervision, which also servers as an strong base-
line method. Specifically, given an original data
sample (x(i), y(i)), and a group of trajectories
T (i) = {τ (i)0 , τ

(i)
1 , · · · , τ (i)n } sampled from the pol-

icy model taking x(i) as input, we can simply con-
struct a preference dataset:

Do = {x(i), τ (i)
w , τ

(i)
l }, (8)

where τ (i)w ∈ T (i) is a trajectory successfully reach-
ing the correct answer y(i), and τ

(i)
l ∈ T (i) is an-

other trajectory with incorrect prediction. After
that, we can optimize the policy model πθ on the

dataset Do by minimizing the following loss:

LDPO(πθ;πref ;Do)

=− E(x,τw,τl)∼Do

[
log σ

(
β log

πθ(τw|x)
πref(τw|x)

− β log
πθ(τl|x)
πref(τl|x)

)]
,

(9)

where πref is the reference model initialized from
the original policy model before DPO training, β
is the hyper-parameter controlling the divergence
between the distribution from the policy model and
the reference model, τw is the chosen solution, and
τl is the rejected solution.

From the definition we can find that the vanilla
DPO approach only considers the pairwise rela-
tionship based on final prediction, regardless of the
reliability of intermediate reasoning process. Since
we have already defined a trajectory-level reward in
Equation 7 involving the process rewards, we can
further consider the pair-wise relationship among
those trajectories with correct predictions:

Dp = {x(i), τ (i)
a , τ

(i)
b |rp(τ (i)

a )− rp(τ
(i)
b ) > σ, }, (10)

where τ
(i)
a and τ

(i)
b both induce the correct predic-

tion y(i), and σ is hyper-parameter representing the
confidence margin. τa is the chosen solution and
τb is the rejected one. And the final objective can
thus be written as LDPO(πθ;πref ;Do ∪ Dp).

4 Experiments

4.1 Datasets
In this paper, we mainly focus on logical reason-
ing and mathematical reasoning. For logical rea-
soning, we choose ReClor (Yu et al., 2020) and
LogiQA-v2 (Liu et al., 2022) for evaluation, which
are two challenging and widely used logical rea-
soning benchmarks. Both datasets are formulated
as multiple choice question answering and the
statistics of the two datasets are shown in Table 3.
For mathematical reasoning, we have employed
the test sets of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) for evaluation.

4.2 Baselines
For the baseline methods, we mainly choose the
following types of approaches: (1) Foundational
LLMs, including Llama2-70B-Chat (Touvron et al.,
2023), Mixtral-MoE-8×7B-Instruct (Jiang et al.,
2024), GPT-3.5-Turbo and GPT-4-Trubo3; (2) Su-
pervised Fine-tuning (SFT), where the training so-
lutions are sampled from larger teacher models;

3We use gpt-3.5-turbo-1106 and gpt-4-0125-preview.
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Training
Set

LogiQA-v2 ReClor

GPT-3.5-Turbo — 45.4 53.7
GPT-4-Turbo — 70.0 —

Llama2-70B-chat — 43.8 60.4
Mixtral-8×7B-Instruct — 49.5 56.7

Llama2-7B-SFT ReClor 44.5 48.8
Llama2-7B-DPO ReClor 47.5 51.3
Llama2-7B-pDPO ReClor 47.4 53.5

Llama2-7B-SFT LogiQA-v2 45.5 53.4

Llama2-7B-RFT
Outcome LogiQA-v2 47.8 52.3
Outcome & PRM-top-1 LogiQA-v2 48.0 54.2
Outcome & PRM-top-3 LogiQA-v2 48.1 53.0
Outcome & PRM-top-5 LogiQA-v2 47.9 52.6

Llama2-7B-ReST-EM LogiQA-v2 49.4 51.5
Iter-1 LogiQA-v2 48.7 52.8

Llama2-7B-IPO LogiQA-v2 44.5 54.1
Llama2-7B-DPO LogiQA-v2 53.1 60.4
Llama2-7B-pDPO LogiQA-v2 55.5 61.7

Iter-1-DPO LogiQA-v2 56.7 61.0
Iter-1-pDPO LogiQA-v2 57.3 61.8
Iter-1-process PPO LogiQA-v2 56.2 61.2
Iter-1-process GRPO LogiQA-v2 57.3 61.7

Table 1: Experimental results on the test set of the logi-
cal reasoning benchmarks.

(3) DPO and IPO (Azar et al., 2023) methods with
only outcome supervision; (4) Rejection-sampling
based approaches, including Rejection-sampling
based Fine-tuning (RFT) (Yuan et al., 2023) and
ReST-EM (Singh et al., 2023), and (5) reinforce
learning (RL) algorithms for iterative training. The
details of baselines can be found in Appendix A.

4.3 Evaluation and Implementation

The evaluation of open-ended generation is difficult.
Considering that most of our models are fine-tuned
on fixed format, we only take the solutions with sat-
isfying the format requirements into consideration
to calculate accuracy. The detailed rules can be
found in Appendix B. The implementation details
can be found in Appendix C.

5 Results and Analysis

5.1 Overall Results on Logical Reasoning

The results on logical reasoning benchmarks are
shown in Table 1, from where we can conclude
that (1) DPO serves as a strong baseline, signifi-
cantly boosting the performance of the SFT model
and outperforming the other baselines. Notably,
the DPO-fine-tuned model on LogiQA-v2 records
an in-domain improvement of 7.0%, and an 7.6%

improvement on the ReClor dataset. The one fine-
tuned on ReClor also demonstrates 2.5% in-domain
and 3.0% out-of-domain improvements, respec-
tively. Besides, on LogiQA-v2, Llama2-7B-DPO
can already surpass the other rejection sampling
based baselines with large margins, like RFT and
ReST-EM. This indicates DPO’s efficacy in opti-
mizing the policy model using outcome supervision
alone. (2) pDPO surpasses the vanilla DPO that
relies solely on outcome supervision. For instance,
by fine-tuning on LogiQA-v2, pDPO achieves abso-
lute improvements of 2.4% and 1.3% on LogiQA-
v2 and ReClor, respectively. Through training on
ReClor, pDPO also achieves 2.2% absolute in-
domain improvements. Besides, pDPO trained
on LogiQA-v2 outperforms the strong foundation
LLMs including Mixtral and GPT-3.5 Turbo, sug-
gesting the superiority of our synthesized process
supervision. (4) The LogiQA-v2 dataset emerges
as a more effective tool for learning explicit logi-
cal reasoning processes compared to ReClor. As
shown in the Table, by fine-tuning on LogiQA-
v2, the generalization performance of pDPO on
ReClor dataset is even better than the in-domain
fine-tuned models. After diving into the dataset de-
tails, we find that LogiQA-v2 comprises multiple
complex logical reasoning abilities, like categori-
cal reasoning and sufficient reasoning, while quite
a few questions in ReClor require only one-step
reasoning to justify the entailment of each option.

5.2 Improvements by Iterative Training
We also performed iterative training by taking
Llama2-7B-pDPO trained on LogiQA-v2 as the
new base model and fine-tuning it on the newly self-
sampled solutions. In addition to DPO and pDPO,
we have also explored the RL based approaches,
including PPO (Schulman et al., 2017) and Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024). For fair comparison with pDPO, PPO and
GRPO also include both the process rewards from
our PRM, and the outcome rewards derived from
the ground-truth labels. The implementation details
can be found in Appendix A.

From Table 1, we observe that all four ap-
proaches demonstrate consistent in-domain im-
provements. Notably, the pDPO approach, which
utilizes synthesized process supervision, surpasses
the conventional process PPO method. This im-
provement may be attributed to the slightly noisy
nature of the synthesized process rewards, which
complicates the task for the critic model within the
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GSM8K MATH
Gemma-7B-Instruct 46.4 24.3
Gemma-2B-SFT 45.8 14.1
Gemma-2B-DPO 50.6 16.0
Gemma-2B-pDPO 52.8 15.7
DeepSeekMath-7B-Ins. 82.3 45.1
DeepSeekMath-7B-Ins. + DPO 82.4 46.3
DeepSeekMath-7B-Ins. + pDPO 82.3 46.8

Table 2: Experimental results on mathematical reason-
ing. Ins. is the short for Instruct, indicating we are
using the instruction tuned version of DeepSeekMath.
All experiments except the SFT one are repeated for 3
times and the averaged results are reported.

PPO algorithm to accurately approximate the dis-
tribution and reduce the variance of the expected
returns. Conversely, GRPO achieves a significant
performance edge over PPO by sampling multiple
solutions for the same query and calculating advan-
tages using the group-averaged rewards as baseline.
Furthermore, it is important to highlight that DPO-
based methods significantly reduce training costs,
completing the training process in under 16 hours
on four NVIDIA H100 GPUs, whereas PPO and
GRPO require over 40 hours on the same hardware.

5.3 Results on Mathematical Reasoning

In addition to logical reasoning, we also conducted
experiments on mathematical reasoning to verify
the effectiveness of our proposed approach, and
the results are shown in Table 2. Specifically, we
randomly sampled a subset of MetaMath (Yu et al.,
2023) as the training set containing 25,000 ques-
tions for Gemma-2B training. From the table we
can conclude that, on GSM8K, the synthesized
process rewards also effectively enhance the math-
ematical reasoning capabilities. Moreover, by em-
ploying DPO and pDPO, our models with 2B pa-
rameters can outperform Gemma-7B-Instruct with
significant improvements.

Despite our efforts, enhancing Gemma-2B-
DPO’s performance on the MATH dataset has
proven challenging, possibly due to the base
model’s limited capability on MATH, which in-
troduces noise when estimating expected returns
during the simulation stage. Consequently, we ex-
panded our experiments to include DeepSeekMath-
7B-Instruct (Shao et al., 2024), which is pre-trained
on large high-quality math-related corpus. We cu-
rated another subset from MetaMath for DeepSeek-
Math training, which contains 55,000 questions
augmented from the MATH training dataset. As
depicted in the table, the results reveal that pDPO

Figure 4: The accuracy of DPO, pDPO and SFT mod-
els on the validation set (left) and test set (right) of
LogiQA-v2, respectively, taking different ratio of anno-
tated questions.

also surpasses DPO in performance by employing
better foundation model.

5.4 Reliance on Annotations of Outcome
Supervision

Although our proposed reward synthesis approach
have avoided the direct annotation of process su-
pervision, the outcome supervision still plays an
important role for back-propagating the confidence
to intermediate reasoning steps. In order to study
the effect of outcome supervision scale to final per-
formance, we randomly construct the sub-datasets
containing 40%, 60%, and 80% questions in the
original dataset to evaluate the fine-tuned perfor-
mance. The results are plotted in Figure 4.

From the figure we can observe that (1) pDPO
consistently outperform DPO across all dataset
splits with different sizes by significant margins,
demonstrating the effectiveness of the synthesized
process supervision. (2) With only 40% annota-
tions containing 3,234 questions in total, process
supervision can outperform the base SFT model
with significant improvements, which also verifies
the significance by providing sparse feedback for
continuous improvements. (3) Besides, we find
that pDPO with only 40% outcome annotations
can achieve comparable performance on the test
set with DPO, i.e., 53.5 v.s. 53.9. Considering
that we have only used 10% outcome annotations
for training the process reward model, the results
can definitely emphasize the data efficiency of our
approach.

5.5 Auto-evaluation of Rationale Quality by
GPT-4

The most important concern is whether the syn-
thesised process reward can contribute to reason-
able and reliable rationale generation. In order to
evaluate this, we propose to use GPT-4 for auto-
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Figure 5: The averaged reward scores of intermediate reasoning steps predicted by our trained process-reward model
on the training set of LogiQA-v2. The x-axis indicates the amount of reasoning steps and the y-axis describes the
value of the averaged scores. For left to right, the three figures illustrate (1) predicted probability based reward of
each reasoning step; (2) the accumulated probability based reward till specific reasoning step by production; and (3)
the raw predicted reward values from the last layer of the reward model with different reasoning steps.
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Figure 6: The wining rate between DPO and pDPO over
different aspects of the auto-evaluation of GPT-4.

matic evaluation. Specifically, following Zhou et al.
(2023a) and Zheng et al. (2023), we first formalize
three dimensions to assess the rationales: Reason-
able, Concise, and Logically Consistent. We then
give GPT-4 two reasoning process and ask it to
judge which one is better or it is a tie for each as-
pect. The critique details and prompt are shown
in Figure 8. In order to avoid the bias caused by
prediction errors of the two models, we first find a
subset of questions where both the solutions given
by the two models lead to the correct answer. Af-
ter that, we randomly sampled 261 questions from
the subset for evaluation. The results are shown
in Figure 6. From all the three aspects, pDPO per-
forms much better than vanilla DPO without pro-
cess reward. Around 67.8% solutions of pDPO are
deemed to have higher overall quality. Besides, for
the most important view, among 52.5% questions,
pDPO can generate more reasonable rationales. We
can also find that nearly 60% responses by pDPO
are more compact, suggesting that the process su-
pervision can help make the rationale more brief
but accurate.

5.6 Analysis of Predicted Rewards

In this section, we have visualized the predicted
step-wise rewards on the training set of LogiQA-
v2, where the solutions are sampled from the SFT

model. In Figure 5, we have visualized three dif-
ferent kinds of rewards: (1) the averaged step-wise
rewards before the softmax operation, i.e., the prob-
ability (left); (2) the accumulated rewards by pro-
duction (medium); and (3) the averaged logits of
each step from the last layer of the reward model
(right). When diving into the logits without nor-
malization, we can find that the rewards maintain
relatively stable at around the first 15 steps, then
decrease sharply. This may be caused by the imbal-
anced amount of solutions with different reasoning
steps, which makes the reward model less confident
on the longer steps. On the other hand, the accu-
mulated probability based rewards keep decreasing
with longer reasoning process, which can be use-
ful to avoid redundant solutions by penalizing the
extremely longer ones.

5.7 Case Study
In this section, we conduct a case study to intu-
itively demonstrate the augmentation bought by
process-supervised DPO. As shown in Figure 9, the
vanila DPO induced model shows two weaknesses:
(1) the intermediate reasoning step is wrong, which
is highlighted in red. And (2) the solution is re-
dundant, like Action 2 and Action 5 to Observation
8. On the contrary, process-supervised DPO not
only well illustrates the flaw in Q’s response (Ob-
servation 3), but also eliminate the meaningless
content, which introduce less noise to make correct
prediction.

6 Conclusion

In this paper, we propose a novel idea to trans-
form reasoning-as-planning as a learning problem
to avoid the latency induced by online search. In-
spired by MCTS, we developed a offline simulation
approach to estimate the expected value of inter-
mediate reasoning steps. After that, we use the
collected expected value dataset to fit a process re-
ward model and annotate the full trajectories with
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sequence-level rewards. Finally, the policy model
is optimized using direct preference optimization.
The experimental results on logical and mathemati-
cal reasoning demonstrate the effectiveness of our
proposed method. Towards the future work, we
hope to explore the synthesised process reward esti-
mated by weak-supervision from different aspects
to further alleviate the reliance on human annota-
tions and enable consistent self-improvement.

Limitations

The simulation based approach still requires large
amount of resources, which has restricted some
analysis for our approach, including experiments
on competition level code generation that requires
long context generation, and those taken on larger
policy models.
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A Baseline

Foundational LLMs We have selected the
strong LLMs without task-specific fine-tuning as
baselines, including Llama-2-70B-chat (Touvron
et al., 2023), Mixtral-MoE-8×7B-Instruct (Jiang
et al., 2024), GPT-3.5-Turbo and GPT-4-
Turbo (OpenAI, 2023).

Supervised Fine-tuning (SFT) We first sam-
ple some responses from larger LLMs follow-
ing the ReAct format for knowledge distillation
since we cannot directly fine-tune them due to
the resource limitation. After that, we can ob-
tain the smaller LLMs with considerable rea-
soning capability through supervised fine-tuning
(SFT). These models serve as baselines and the
foundation models for DPO training. Specifi-
cally, we choose Llama-2-7B-chat and Gemma-
2B-Instruct (Gemma Team, 2024) for SFT.

Outcome-based Preference Optimization We
include the model with only outcome supervision
as baseline to discuss the effectiveness of our syn-
thesised process reward. For fair comparison, DPO
implicitly model the outcome rewards following
Equation 8. We also involve IPO as baseline. The
training dataset is Do as mentioned in Section 3.5.

Rejection Sampling-based Approach We also
include the rejection sampling based approaches,
i.e., Rejection sampling based Fine-tuning (Yuan
et al., 2023), and ReST-EM (Singh et al., 2023).
Both approaches use outcome annotations to fil-
ter the self-sampled solutions. The difference is
that RFT uses the correct solutions to augment the
original SFT dataset, while ReST-EM employs the
sampled dataset to train the original model from
scratch during each iteration. Besides, for RFT, we
includes two variants: (1) RFT-outcome uses only
the outcome annotation to filter solutions; and (2)
RFT-outcome & PRM-top-k follows RFT-outcome
and uses our trained PRM to rank the kept solu-
tions. Only the top-k ranked solutions will be kept
and augment the orinal training set. For ReST-EM,
we have conducted two iterations since there is
already performance decreasing observed in the
second round.

Reinforce Learning In the experiments of it-
erative training, we include two reinforce learn-
ing algorithms, PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024) as the comparison of
process-based DPO. Both algorithms employ two

kinds of rewards, i.e., the outcome reward and the
process rewards. For each solution (trajectory) sam-
pled from the policy model, we assign it with 1 if it
can induce the correct answer, otherwise we assign
it with 0 as the outcome reward. Besides, for each
reasoning step, the predicted logits by our trained
PRM is treated as the process rewards. One differ-
ence should be noted is that, in pDPO training, we
utilize the probability from the PRM as the process
reward following Lightman et al. (2023a), while for
RL training, we use the logits without normaliza-
tion from the last layer of PRM, to avoid extreme
longer solutions introduced by accumulating the
non-positive step rewards.

B Evaluation Details

In order to simplify the evaluation procedure, for
the models without task-specific fine-tuning, we
use 1-shot prompt of ReAct, which is the same as
that we used for collecting data, to induce the mod-
els to generate reasonable solutions. For models
after fine-tuning, we remove the 1-shot demonstra-
tion because we find it can lead to higher results.
Due to limitation of budget, for GPT-4-Turbo, we
only evaluate the first 250 questions in the test set
of LogiQA-v2.

Besides, as mentioned in Section 4.3, we have
designed several rules to both filter the solutions
unsatisfying the ReAct format and calculate the
accuracy. Specifically, all of the following cases
will be considered incorrect:

• The final answer contains more than one pre-
diction, e.g., Finish[The answer is A and B].

• The solution is truncated due to the length
limit, but some option indices are gathered.

• The summary format is incorrect, e.g., Finish:
the answer is A.

For experiments with DeepSeekMath (Shao et al.,
2024) on mathematical reasoning, we only do basic
cleaning like removing the redundant newline sym-
bols, since it is already fine-tuned on the solutions
with CoT format.

C Implementation Details

C.1 Data Preparation

Considering the limited computation resources,
we mainly conducted experiments on Llama2-
7b-chat (Touvron et al., 2023), DeepSeek-
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Dataset
# Question

(Train)

Avg. of Correct
Solutions

Per. Question

# Question
(Val.)

# Question
(Test)

LogiQA-v2 12,567 6.0 1,569 1,572
ReClor 4,638 5.0 500 1,000

Table 3: Statistics of our used datasets in this paper
for construction preference pairs. The solutions shown
in the table are sampled from the corresponding SFT
model based on the questions in the training set.

Math (Shao et al., 2024)-7B-Instruct, and Gemma-
2B-Instruct (Gemma Team, 2024). In order to col-
lect solutions reaching correct answers more effi-
ciently, we first fine-tune the original models on cor-
responding dataset using the generated responses
from some teacher models (except DeepSeekMath
since its solutions are already in CoT format).
For LogiQA-v2, we sample solutions from Llama-
2-70b-chat, while for ReClor, the solutions are
sampled from GPT-3.5-Turbo to save time. For
Gemma-2B, we sample solutions of MetaMath
from Qwen-72B-chat (Bai et al., 2023).

All teacher models are prompted with exactly
one example. The prompt used for LogiQA-v2 and
ReClor is shown in Figure 7. And the one used for
MetaMath follows RAP (Hao et al., 2023)4. For
all datasets, we sample 10 solutions regarding each
question with temperature fixed as 0.7. Besides,
for ReClor dataset, we remove all solutions with
less than 8 reasoning steps because they omit the
detailed reasoning process and can lead to inferior
solutions for DPO based approach.

C.1.1 Training Data Collection For PRM
For LogiQA-v2, we randomly sampled 10% ques-
tions from the training set for process rewards esti-
mation and PRM training. For ReClor, the ratio is
20%. For Gemma-2B training, we have used 25%
questions for PRM training, while for DeepSeek-
Math, we have used around 10%.

C.2 Hyper-Parameters

For hyper-parameters, we use β = 0.1 and C = 2
on logical reasoning tasks, and β = 0.5, C = 3 on
mathematical reasoning tasks. Besides, σ is set as
0.4 for ReClor dataset, 0.5 for LogiQA-v2, 0.5 for
Gemma-2B, and 0.3 for DeepSeekMath.

C.3 Training

All experiments are conducted on NVIDIA A100
and H100. The evaluation of LLMs relies on

4https://github.com/Ber666/RAP/data/gsm8k/prompts.

σ No. of Pairs No. of P. Pairs Ratio of P. Pairs Dev. Test

1.0 133,458 0 0 54.4 54.4

0.3 179,776 46,318 25.8% 51.4 50.4
0.5 161,140 27,682 17.2% 56.4 55.5
0.7 148,136 14,678 9.9% 55.7 54.3

Table 4: Accuracy on LogiQA-v2 dataset with different
σ. σ = 1.0 refers to the vanilla DPO method. P. Pairs
refers to process-supervised sample pairs.

vLLM (Kwon et al., 2023) inference backend. For
logical reasoning, after training, we evaluate all
checkpoints on the development set of the target
dataset using greedy decoding, and select the best
one to report its performance on the test set. For
Gemma-2B, we select the model checkpoint based
on the performance on GSM8K, and for DeepSeek-
Math, we report the performance of the best check-
point on MATH. All experiments, expept those
using RL algorithms, are repeated for 3 times
with different random seeds and the average results
are reported to reduce the influence of randomness.
We run RL-based approaches for only once due to
resource limitation.

D Compared with MATH-Shepherd

We work concurrently with Math-Shepherd (Wang
et al., 2023), which also comprises similar offline
simulation method to synthesize the process su-
pervision. Differently, they mainly evaluate the
approach on mathematical reasoning through veri-
fication, where the candidate solutions are ranked
according to the rewards from the learned PRM,
or employing it for PPO training, while we focus
on logical reasoning and demonstrate the effec-
tiveness of the synthesized process supervision via
constructing the preference dataset under the guid-
ance of the PRM. The dataset is further used for
DPO training, which, though cannot really surpass
GRPO, often demonstrates less resource require-
ments and more stable learning process.

E Effect of Different Reward Margins

In Equation 9, we have involved a hyper-parameter
σ to control the confidence interval between dif-
ferent sample pairs both reaching the correct an-
swer to construct the process-supervised prefer-
ence dataset. Naturally, there are several aspects
of trade-off to considering the choices of σ. σ
with higher value can improve the ratio of true pos-
itive pairs in the constructed dataset. Yet, high
confidence intervals will also reduce the number
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of training data and probability to include more
hard negative samples. For example, as shown in
Table 4, σ = 0.7 introduces only 10% extra pref-
erence pairs and lead to less significant improve-
ments compared with the case where σ = 0.5. On
the other hand, lower value of σ can include both
more hard negative and false positive pairs. From
the table we find that σ = 0.3 has has introduced
more than 25% process-supervised pairs, but the
performance is even worse than the vanilla DPO
approach, where only outcome-based preferences
pairs are employed.
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Solve a question answering task by having a Thought, then Finish with your answer. Thought can reason about the current situation. Finish[answer] returns the answer and 
finishes the task. You will be given context that you should use to help you answer the question.

Context:
A college will continue to implement the overseas funding plan this year. It plans to select several of the six teachers from Mr. Liu, Mr. Zhang, Mr. Wang, Mr. Ma, Mr. Niu
and Mr. Zhou to visit abroad. Due to the limitations of funding, the needs of discipline development, curriculum arrangement, place and time of each student's visit, the 
selection shall meet the following conditions: (1) Mr. Liu is the reserve discipline leader of the college, This time we have to send out. (2) if we choose Mr. Liu, we should 
also choose Mr. Zhou, but we can't choose Mr. Zhang. (3) only if Mr. Niu can't choose, at least one of Mr. Wang and Mr. Ma can choose. (4) if we don't choose Mr. Wang, 
we don't choose Mr. Zhou either.

Question: If the above statement is true, which of the followings must be true?

Options:
A. Mr. Niu didn't choose, but Mr. Zhou did.
B. Mr. Liu was chose, but Mr. Ma didn't.
C. Mr. Wang and Mr. Ma were chosen.
D. Neither Mr. Wang nor Mr. Niu was elected.

Thought 1: Who must be chosen or who must not be chosen according to the context by one-step reasoning?
Action 1: Take condition (1).
Observation 1: Mr. Liu must be chosen.
Thought 2: Based on Observation 1, who must be chosen or who must not be chosen one step further?
Action 2: Take condition (2).
Observation 2: Mr. Zhou must be chosen, but Mr. Zhang must not be chosen.
Thought 3: Based on Observation 2, who must be chosen one step further? And who must not be chosen?
Action 3: No further conditions can be taken to derive new observations.
Thought 4: We can evaluate each option to check if there is any contradiction with the observations.
Action 4: Take option A.
Observation 4: Mr. Niu didn't choose, but Mr. Zhou did.
Thought 5: Which observations and conditions are related to Option A?
Action 5: Observation 2 and condition (3).
Observation 5: We can confirm that Mr. Zhou was chosen according to observation 2. Condition (3) shows that if Mr. Niu was not chosen, at least one of Mr. Wang and Mr. 
Ma must be chosen. This needs further analysis by assumption.
Thought 6: If Mr. Niu was not chosen is true, what will happen? We should examine the truth of the consequences.
Action 6: Assume that Mr. Niu was not chosen.
Observation 6: At least one of Mr. Wang and Mr. Ma must be chosen.
Thought 7: Which observations and conditions are related to Observation 6 to check if there is any contradiction?
Action 7: Take condition (4).
Observation 7: If Mr. Wang was not chosen, Mr. Zhou must not be chosen. This contradicts Observation 2. Therefore, Mr. Wang must be chosen. So Observation 6 is true. 
So Option A is true.
Action 8: Take option B.
Observation 8: Mr. Liu was chosen, but Mr. Ma didn't.
Thought 9: Which observations and conditions are related to Option B?
Action 9: Observation 1 and condition (3).
Observation 9: Mr. Liu must be chosen. But we cannot tell whether Mr. Ma was chosen or not. So Option B is not necessarily true.
Action 10: Take option C.
Observation 10: Mr. Wang and Mr. Ma were chosen.
Thought 11: Which observations and conditions are related to Option C?
Action 11: Condition (3) and condition (4).
Observation 11: We cannot tell whether Mr. Wang and Mr. Ma were chosen or not. So Option C is not necessarily true.
Action 12: Take option D.
Observation 12: Neither Mr. Wang nor Mr. Niu was elected.
Thought 13: Which observations and conditions are related to Option D?
Action 13: Condition (3) and condition (4).
Observation 13: According to condition (3), if Mr. Niu was not chosen, at least one of Mr. Wang and Mr. Ma must be chosen. But Mr. Wang was not chosen according to 
observation 10. So Mr. Ma must be chosen. According to condition (4), if Mr. Wang was not chosen, Mr. Zhou must not be chosen. So Mr. Zhou was not chosen. This is 
contradictory to observation 2. So Option D is not true.
Action 14: Finish[The answer is A.]

Context:
[New Context]

Question: [New Question]

Options:
[New Options]

Figure 7: Prompt for sampling ReAct solutions. For zero-shot prompting, the exemplar is removed while the other
content keep unchanged.
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Solve a question answering task by having a Thought, then Finish with your answer. Thought can reason about the current situation. Finish[answer] returns the answer and 
finishes the task. You will be given context that you should use to help you answer the question.

Context:
A college will continue to implement the overseas funding plan this year. It plans to select several of the six teachers from Mr. Liu, Mr. Zhang, Mr. Wang, Mr. Ma, Mr. Niu
and Mr. Zhou to visit abroad. Due to the limitations of funding, the needs of discipline development, curriculum arrangement, place and time of each student's visit, the 
selection shall meet the following conditions: (1) Mr. Liu is the reserve discipline leader of the college, This time we have to send out. (2) if we choose Mr. Liu, we should 
also choose Mr. Zhou, but we can't choose Mr. Zhang. (3) only if Mr. Niu can't choose, at least one of Mr. Wang and Mr. Ma can choose. (4) if we don't choose Mr. Wang, 
we don't choose Mr. Zhou either.

Question: If the above statement is true, which of the followings must be true?

Options:
A. Mr. Niu didn't choose, but Mr. Zhou did.
B. Mr. Liu was chose, but Mr. Ma didn't.
C. Mr. Wang and Mr. Ma were chosen.
D. Neither Mr. Wang nor Mr. Niu was elected.

Thought 1: Who must be chosen or who must not be chosen according to the context by one-step reasoning?
Action 1: Take condition (1).
Observation 1: Mr. Liu must be chosen.
Thought 2: Based on Observation 1, who must be chosen or who must not be chosen one step further?
Action 2: Take condition (2).
Observation 2: Mr. Zhou must be chosen, but Mr. Zhang must not be chosen.
Thought 3: Based on Observation 2, who must be chosen one step further? And who must not be chosen?
Action 3: No further conditions can be taken to derive new observations.
Thought 4: We can evaluate each option to check if there is any contradiction with the observations.
Action 4: Take option A.
Observation 4: Mr. Niu didn't choose, but Mr. Zhou did.
Thought 5: Which observations and conditions are related to Option A?
Action 5: Observation 2 and condition (3).
Observation 5: We can confirm that Mr. Zhou was chosen according to observation 2. Condition (3) shows that if Mr. Niu was not chosen, at least one of Mr. Wang and Mr. 
Ma must be chosen. This needs further analysis by assumption.
Thought 6: If Mr. Niu was not chosen is true, what will happen? We should examine the truth of the consequences.
Action 6: Assume that Mr. Niu was not chosen.
Observation 6: At least one of Mr. Wang and Mr. Ma must be chosen.
Thought 7: Which observations and conditions are related to Observation 6 to check if there is any contradiction?
Action 7: Take condition (4).
Observation 7: If Mr. Wang was not chosen, Mr. Zhou must not be chosen. This contradicts Observation 2. Therefore, Mr. Wang must be chosen. So Observation 6 is true. 
So Option A is true.
Action 8: Take option B.
Observation 8: Mr. Liu was chosen, but Mr. Ma didn't.
Thought 9: Which observations and conditions are related to Option B?
Action 9: Observation 1 and condition (3).
Observation 9: Mr. Liu must be chosen. But we cannot tell whether Mr. Ma was chosen or not. So Option B is not necessarily true.
Action 10: Take option C.
Observation 10: Mr. Wang and Mr. Ma were chosen.
Thought 11: Which observations and conditions are related to Option C?
Action 11: Condition (3) and condition (4).
Observation 11: We cannot tell whether Mr. Wang and Mr. Ma were chosen or not. So Option C is not necessarily true.
Action 12: Take option D.
Observation 12: Neither Mr. Wang nor Mr. Niu was elected.
Thought 13: Which observations and conditions are related to Option D?
Action 13: Condition (3) and condition (4).
Observation 13: According to condition (3), if Mr. Niu was not chosen, at least one of Mr. Wang and Mr. Ma must be chosen. But Mr. Wang was not chosen according to 
observation 10. So Mr. Ma must be chosen. According to condition (4), if Mr. Wang was not chosen, Mr. Zhou must not be chosen. So Mr. Zhou was not chosen. This is 
contradictory to observation 2. So Option D is not true.
Action 14: Finish[The answer is A.]

Context:
[New Context]

Question: [New Question]

Options:
[New Options]

Here is a logical reasoning problem, and there are two solutions describing their thinking process. Please tell me which one is 
better. You should consider the following criteria:
1. Reasonable: The reasoning process is reasonable, which means each conclusion should be inferred by collecting evidence, 
instead of making up unknown facts.
2. Concise: The reasoning process should not tell something irrelevant to the question.
3. Logically consistent: There must not be contradiction in the process itself.

Here is the problem containing a context, a question, and different options:

Context:
[Context]

Question:
[Question]

Options:
[Options]

Reasoning process A:
[Reasoning process A]

Reasoning process B:
[Reasoning process B]

For each aspect of the above criteria, select one winner, or judge it as a tie, following the format:
Reasonable: A/B/Tie
Concise: A/B/Tie
Logically consistent: A/B/Tie

And finally, by considering all the criteria together, select one winner, or judge it as a tie, with the following format:
Overall: A/B/Tie

Figure 8: Prompt for compare two different responses, and assess the quality from different aspects.
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Context:
P: Because an elected official needs the support of a political party to be effective, the independent candidate for the legislature cannot possibly be an effective legislator is 
she wins. Q: I disagree. By your reasoning, our current legislator, who has the support of a political party, ought to have been effective, but he has not been.

Question:
Which one of the following is the best criticism of Q's statement?

Options:
A. It mistakenly interprets P to be claiming that a factor assures, rather than is necessary for, a legislator's effectiveness.
B. It simply contradicts P's claim without offering evidence against it.
C. It does not consider the possibility that a political party might decide to support an elected legislator even though he or she ran as an independent.
D. It fails to prove a precise definition for a key term -- the word effective. 

[Llama-2-7b-DPO]:
Thought 1:  What is the main point of P's statement?
Action 1: Read P's statement.
Observation 1: P says that an elected official needs the support of a political party to be effective, and an independent candidate for the legislature cannot possibly be an 
effective legislator if she wins.
Thought 2: What is Q's statement?
Action 2: Read Q's statement.
Observation 2: Q says that by P's reasoning, the current legislator, who has the support of a political party, ought to have been effective, but he has not been.
Thought 3: What is the relationship between P's and Q's statements?
Action 3: Analyze the relationship.
Observation 3: Q is challenging P's claim that a political party is necessary for a legislator's effectiveness.
Thought 4: Which option best criticizes Q's statement?
Action 4: Evaluate each option.
Observation 4: Option A is incorrect because Q does not mistakenly interpret P's claim. Option B is incorrect because Q does not simply contradict P's claim without 
offering evidence against it. Option C is incorrect because Q does not consider the possibility that a political party might decide to support an elected legislator even though 
he or she ran as an independent. Option D is incorrect because Q does not fail to prove a precise definition for a key term.
Action 5: Take option A.
Observation 5: Option A is incorrect.
Action 6: Take option B.
Observation 6: Option B is incorrect.
Action 7: Take option C.
Observation 7: Option C is incorrect.
Action 8: Take option D.
Observation 8: Option D is incorrect.
Action 9: Finish[The answer is A.]

[Llama-2-7b-pDPO]:
Thought 1:  What is the main point of P's statement?
Action 1: Analyze the premises and conclusion of P's statement.
Observation 1: P argues that an elected official needs the support of a political party to be effective, and therefore, an independent candidate for the legislature cannot be an 
effective legislator if she wins.
Thought 2: What is Q's response to P's statement?
Action 2: Analyze Q's statement.
Observation 2: Q disagrees with P's argument by pointing out that the current legislator, who has the support of a political party, has not been effective despite having the 
support of a political party.
Thought 3: What is the flaw in Q's response?
Action 3: Evaluate Q's response based on P's argument.
Observation 3: Q's response does not address the main point of P's statement. Q simply provides a counterexample to P's argument without acknowledging or refuting P's 
premises.
Thought 4: Which option best describes the flaw in Q's response?
Action 4: Evaluate each option.
Option A: Acknowledges the mistake in Q's response. Q does not mistakenly interpret P's claim. Q simply ignores P's premises.
Option B: Does not accurately describe the flaw in Q's response. Q does not simply contradict P's claim. Q provides a counterexample to P's argument.
Option C: Not relevant to the flaw in Q's response. Q does not consider the possibility that a political party might decide to support an elected legislator even though he or 
she ran as an independent.
Option D: Not relevant to the flaw in Q's response. Q does not fail to prove a precise definition for a key term.
Action 5: Finish[The answer is A.]

Figure 9: Case study taking the responses from Llama2-7b-DPO and Llama2-7b-pDPO that are fine-tuned on
LogiQA-v2, respectively.
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