
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3254–3266
November 12-16, 2024 ©2024 Association for Computational Linguistics

SEEKR: Selective Attention-Guided Knowledge Retention for Continual
Learning of Large Language Models

Jinghan He1,2, Haiyun Guo1,2∗, Kuan Zhu1,2∗, Zihan Zhao5,
Ming Tang1, Jinqiao Wang1,2,3,4∗

1Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3Peng Cheng Laboratory, 4Wuhan AI Research, 5Chongqing University
hejinghan2022@ia.ac.cn, {kuan.zhu, haiyun.guo, jqwang}@nlpr.ia.ac.cn

Abstract

Continual learning (CL) is crucial for language
models to dynamically adapt to the evolving
real-world demands. To mitigate the catas-
trophic forgetting problem in CL, data replay
has been proven a simple and effective strat-
egy, and the subsequent data-replay-based dis-
tillation can further enhance the performance.
However, existing methods fail to fully exploit
the knowledge embedded in models from previ-
ous tasks, resulting in the need for a relatively
large number of replay samples to achieve
good results. In this work, we first explore
and emphasize the importance of attention
weights in knowledge retention, and then pro-
pose a SElective attEntion-guided Knowledge
Retention method (SEEKR) for data-efficient
replay-based continual learning of large lan-
guage models (LLMs). Specifically, SEEKR
performs attention distillation on the selected
attention heads for finer-grained knowledge
retention, where the proposed forgettability-
based and task-sensitivity-based measures are
used to identify the most valuable attention
heads. Experimental results on two contin-
ual learning benchmarks for LLMs demon-
strate the superiority of SEEKR over the ex-
isting methods on both performance and effi-
ciency. Explicitly, SEEKR achieves compa-
rable or even better performance with only
1/10 of the replayed data used by other meth-
ods, and reduces the proportion of replayed
data to 1%. The code is available at https:
//github.com/jinghan1he/SEEKR.

1 Introduction

Enabling large language models (Achiam et al.,
2023; Touvron et al., 2023; Zheng et al., 2024) with
human-like continual learning ability is crucial for
the long-term practical deployment. It allows for
constant knowledge accumulation on new tasks
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Figure 1: Demonstration of the critical role of atten-
tion weights in knowledge retention. We apply DER++
(Buzzega et al., 2020) for continual learning on the
TRACE benchmark (Wang et al., 2023c) to obtain mul-
tiple old task models and the final model. Grafting the
attention weights of the old models onto the final model
at inference can maintain better performance on the old
tasks. Moreover, the final model obtained by our contin-
ual learning method, SEEKR, achieves similar results.

without the need for costly retraining. However,
sequentially finetuning the LLMs with new data
can lead to catastrophic forgetting (McCloskey and
Cohen, 1989), impairing the general ability of the
model and its performance on previous tasks.

Among the array of continual learning meth-
ods (Ke and Liu, 2022), data replay stands out as
the most widely adopted strategy in practice due
to its simplicity and efficacy (Wang et al., 2024).
Based on it, replay-based distillation methods, in-
cluding DER++ (Buzzega et al., 2020) and subse-
quent techniques (Qin and Joty, 2021; Kang et al.,
2022; Gu et al., 2023), further boost the perfor-
mance by utilizing memories from both data and
model perspectives. Specifically, Buzzega et al.,
2020; Qin and Joty, 2021; Gu et al., 2023 distill the
output logits of old models for knowledge transfer,
and Kang et al., 2022 restrict the changes in impor-
tant feature maps in the image encoders. However,
these works have not fully exploited the potential
of knowledge distillation in continual learning for
LLMs. They focus on the outputs of network lay-
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ers while neglecting the preservation of intricate
internal functions. Consequently, a relatively large
amount of replay data is required by these methods
to achieve good results.

Recently, many studies have investigated the at-
tention weights of different heads to analyze the in-
terpretability of the internal mechanisms in LLMs
(Vig and Belinkov, 2019; Wang et al., 2023a).
Inspired by this, we explore whether attention
weights play a critical role in knowledge retention
during continual learning in LLMs. As shown in
Figure 1, grafting the attention weights from the
LLM of the old tasks to the final LLM after con-
tinual learning can maintain better performance on
old tasks, which suggests that the attention weights
could be crucial to alleviate the catastrophic for-
getting problem and achieve more comprehensive
knowledge retention1. However, naively preserv-
ing the attention weights of all heads in the LLM
by distillation introduces significant computational
costs. Previous studies have observed a functional
specialization phenomenon among attention heads
in LLMs (Vig and Belinkov, 2019; Jo and Myaeng,
2020; Li et al., 2023), which indicates the suscep-
tibility of attention heads to forgetting and their
importance to previous tasks vary. This property
allows us to selectively focus on the valuable atten-
tion heads for efficient knowledge retention.

To this end, we propose a finer-grained model
distillation method called SElective attEntion-
guided Knowledge Retention (SEEKR) for con-
tinual learning of large language models, which
employs attention distillation on the most valu-
able heads in LLMs to achieve efficient knowledge
retention. Specifically, we develop knowledge-
retention-oriented head importance measures,
which consider both forgettability and task sen-
sitivity, to identify the most valuable heads for dis-
tillation. The forgettability, measured by the cumu-
lative changes in attention weights during continual
learning, indicates the generality of knowledge and
the necessity of distillation. An attention head with
higher forgettability indicates a greater need for
knowledge retention. The task sensitivity, calcu-
lated as the first-order derivative of the task loss,
evaluates the importance of maintaining the atten-
tion weights of an attention head for a given task.
An attention head with greater sensitivity should

1Attention grafting can only be used during inference with
both the source and target models, which is an infeasible
solution for continual learning. We employ this technique
solely for exploratory experiments.

be prioritized to restrict variations in its attention
weights. Using the above two importance scores,
SEEKR designs a hierarchical budget allocation
mechanism to adaptively select the most valuable
attention heads for distillation in a controllable way,
which can efficiently regulate the training cost. By
using SEEKR, the performance of old tasks can be
further maintained as shown in Figure 1.

Extensive experiments are conducted on the re-
cently developed continual learning benchmark for
LLMs (Wang et al., 2023c) and the continual learn-
ing benchmark on traditional NLP tasks (Wang
et al., 2022a). The results consistently demon-
strate the superiority of SEEKR in mitigating catas-
trophic forgetting and maintaining the general ca-
pabilities of LLMs. Moreover, as a replay-based
method, SEEKR exhibits excellent data efficiency,
achieving comparable or better performance with
just 1/10 of the replayed data used by the existing
methods, reducing the replayed data proportion to
only 1%.

Our main contributions are summarized as fol-
lows:

• We explore and emphasize the importance
of attention weights for knowledge retention,
and devise knowledge-retention-oriented mea-
sures to identify important attention heads for
distillation. The proposed method, SEEKR,
can efficiently preserve the finer-grained
knowledge in the selected attention heads.

• Extensive experiments validate the superiority
of SEEKR, showcasing its data efficiency by
using just 1% of replay samples to achieve the
comparable or better performance that other
methods reach with 10% of replay samples.

2 Preliminary

2.1 Continual Learning for LLMs
Continual learning algorithms aim to accumu-
late knowledge across sequential tasks. Suppose
there are N tasks with the corresponding datasets
{D1, · · · ,DN}. An LLM, parameterized by θ, are
instruction-tuned on each dataset Di sequentially
to optimize the following objective:

Ltask = E(x,y)∈Di

[
− log pθ(y|x)

]
(1)

where x,y are the instruction and true answer, re-
spectively. Hereafter, we assume the current task is
i and omit the corresponding subscript. In this pa-
per, we study a more common scenario in practice
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where a small amount of data from the old tasks
{R1, ..., RN} can be stored in the memory buffer to
aid the continual learning process. During training
on the current task, replay data are acquired from
the memory buffer, and the model is optimized for
their previous tasks:

Lreplay =

i−1∑

k=1

E(x,y)∈Rk

[
− log pθ(y|x)

]
(2)

2.2 Knowledge Distillation for CL

Knowledge distillation (Hinton et al., 2015) is a
technique to train a student model to replicate the
teacher model’s behavior for efficient knowledge
transfer. To mitigate forgetting on previous tasks in
CL, knowledge distillation is performed between
each old model pθk and the current model pθ using
replay samples from Rk (Buzzega et al., 2020):

Lld =
i−1∑

k=1

E(x,y)∈Rk

[
DKL(pθk(y|x)∥pθ(y|x))

]

(3)
The predicted logits from the old model pθk(y|x)
are saved in the memory buffer along with the re-
play samples and loaded during training as auxil-
iary supervision signals.

3 Method

In this section, we introduce SEEKR, an efficient
replay-based distillation method that identifies valu-
able attention heads and performs attention distilla-
tion for finer-grained knowledge retention.

3.1 Attention-guided Knowledge Retention

To achieve more comprehensive knowledge reten-
tion by using less replay data, we perform an elabo-
rate distillation on the key mechanism of LLMs, i.e.
the attention weights. Specifically, the outputted
attention weights of the h-th head in the l-th layer
are denoted as Al,h :

Al,h = softmax(
Ql,hK

T
l,h√

dk
+Mcausal) (4)

where Q and K represent the query vectors and
the key vectors in the self-attention operation, re-
spectively. Mcausal is the casual attention mask
in LLMs. We use t to index the attention distribu-
tion of the t-th query in Al,h and denote it as Al,h,t.
The attention distributions of query t from each old

task model Ak
l,h,t and the current model Al,h,t are

aligned through the KL divergence loss:

Lad(A,A
k) =

∑

(l,h)∈U

|x⊕y|∑

t=1

DKL(A
k
l,h,t∥Al,h,t)

(5)
where U stands for the set of all attention heads
in all layers. x ⊕ y is the concatenated sequence
of x and y, and |x ⊕ y| means the length of the
whole sequence. In SEEKR, the knowledge distilla-
tion is performed at the head level, which can offer
more direct and refined regulation on the intricate
internal functions of LLMs, achieving a more com-
prehensive and efficient utilization of the limited
replay data.

3.2 Important Head Identification
In practice, distilling all the attention heads in an
LLM is costly and unnecessary, as different heads
exhibit varying levels of task sensitivity and forget-
tability. Therefore, we propose a two-dimensional
measure to identify the most valuable attention
heads for knowledge retention.

3.2.1 Task Sensitivity Measure
For a model adapted to task k, we assess to which
extent changes in the attention weights of each head
affect the task performance. Following common
practice, we resort to Taylor expansion to formalize
this influence (Kang et al., 2022):

∆L(x,y) ≈
〈
∂L(x,y)

∂Al,h
,∆Al,h

〉

F

≤ ||∂L(x,y)
∂Al,h

||F · ||∆Al,h||F
(6)

where ⟨·, ·⟩F and ∥ · ∥F denote the Frobenius inner
product and Frobenius norm, respectively. This
inequality demonstrates the upper bound on the
increase in task loss due to changes in the attention
weights, i.e. ∆Al,h. A larger coefficient indicates
a higher upper bound for the same changes in Al,h.
This implies that changes in these attention weights
are more likely to increase task loss or degrade
task performance, making it crucial to keep them
unchanged. Therefore, we take the coefficient to
estimate the sensitivity of the task k to Ak

l,h, which
is formulated as:

Sk
l,h = E(x,y)∈Rk

||∂L(x,y)
∂Ak

l,h

||F (7)

The importance scores are then normalized
within each layer to obtain S̃k

l,h, thereby mitigating
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the impact of varying gradient magnitudes across
different layers. During training on the new task,
the importance of all previous tasks should be con-
sidered. Therefore, the task sensitivity measure for
each attention head is defined as:

Sl,h =
i−1∑

k=1

S̃k
l,h (8)

3.2.2 Forgettability Measure
The second measure assesses the necessity for
performing attention distillation on each attention
head. We hypothesize that there exist some at-
tention heads whose attention weights remain rel-
atively stable during continual training on new
tasks, suggesting that they are less sensitive to
task-specific details and focus more on general or
shared knowledge. This hypothesis aligns with
prior research (Zhao et al., 2023), which revealed
that only a few modules change drastically during
continual learning, while others stay relatively sta-
ble and may be shared across tasks as common
knowledge. Based on this, we propose that stable
attention heads may encode general knowledge that
is less prone to forgetting, and thus distillation of
such heads should be minimized. To this end, we
leverage the variability of the attention weights dur-
ing continual learning to measure the forgettability
of the attention head:

Fl,h =
i−1∑

k=1

E(x,y)∈Rk
||Ak

l,h −Ak−1
l,h ||F (9)

Higher forgettability scores indicate a greater
necessity for distilling these attention heads.

3.2.3 Overall Importance Measure
To identify valuable heads for attention-guided
knowledge retention, we fuse the two complemen-
tary measures through multiplication, ultimately
forming a holistic metric:

Il,h = Sl,h · Fl,h (10)

After each task, Sl,h and Fl,h of each attention head
are updated according to Equation 8 and 9, and the
overall importance Il,h is re-calculated accordingly.

3.3 Hierarchical Budget Allocation
Based on the above head importance measure, we
propose a hierarchical budget allocation strategy to
manage the training cost. We define the group of
selected layers and heads as L and H , with budgets

Algorithm 1 SEEKR
Input Initial model θ0, Datasets {Di}Ni=1, Hyper-
parameters λ1, λ2, BL, BH , BT

1: Initialize L,H ← U ; Sl,h, Fl,h, Il,h ← 0;
2: for task i← 1 to N do
3: for epoch e← 1 to epochs do
4: for batch in (

⋃i−1
k=1Rk)

⋃Di do
5: Minimize L in Eq. 13;
6: end for
7: end for
8: Ri ← Random(Di);
9: Update Sl,h, Fl,h, Il,h using Eq. 8-10;

10: Update L,H using Eq. 11;
11: Randomly select T ;
12: end for

BL and BH . Our strategy involves two steps: (1)
Select the top-BL layers that maximize the layer-
wise importance scores

∑
h Il,h. (2) Among all

the attention heads in all these layers, activate the
top-BH heads for attention distillation. Based on
the above process, the set H of the selected heads
can be expressed as:

H = arg topk
(l,h)
{Il,h | l ∈ L}

L = arg topk
l

∑

h

Il,h
(11)

where arg topkz denotes the set of z that achieves
the k largest values. k is BH for H and BL for L.
Additionally, to reduce the O(n2) cost of distill-
ing the entire attention map, we introduce a query
budget BT and randomly select the queries T for
distillation. After determining H and T , we can
rewrite Equation 5 as follows:

Lad(A,Ak) =
∑

(l,h)∈H

∑

t∈T
DKL(A

k
l,h,t∥Al,h,t)

Lseekr =

i−1∑

k=1

E(x,y)∈Rk

[
Lad(A,A

k)
]

(12)
Overall, SEEKR sets three types of budgets to

allow flexible control over training costs. First,
the layer budget adjusts the number of layers for
attention-accelerating algorithms or our distillation
strategy. Second, the head budget filters out less
essential heads and reduces training costs. Lastly,
the query budget specifically targets at reducing the
costs associated with distilling long texts.
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LLaMA-2-7B-Chat Vicuna-7B-v1.5
Order1 Order2 Order1 Order2

SeqFT 47.63 (-11.45) 45.12 (-12.27) 41.91 (-15.29) 45.70 (-12.01)
EWC 48.20 (-9.48) 44.54 (-12.00) 41.88 (-15.57) 49.32 (-8.62)
LwF 41.86 (-6.50) 40.25 (-5.96) 41.19 (-5.54) 42.99 (-4.72)
LFPT5 38.67 (-11.43) 42.26 (-7.43) 41.79 (-8.10) 39.22 (-10.70)
L2P 35.23 (-15.96) 34.63 (-16.86) 32.26 (-16.58) 35.14 (-15.88)
PP 29.41 (-5.79) 21.58 (-8.83) 26.64 (-6.10) 24.88 (-11.54)
O-LoRA 44.64 (-4.20) 42.83 (-9.11) 43.42 (-6.27) 43.87 (-6.37)

Replay (1%) 48.47 (-9.69) 47.04 (-10.24) 48.43 (-9.23) 49.46 (-9.43)
DER++ (1%) 49.22 (-8.32) 46.59 (-10.91) 49.01 (-9.04) 51.09 (-7.85)
SEEKR (1%) 54.99 (-2.61) 54.69 (-2.53) 55.78 (-2.64) 54.91 (-3.40)

Replay (10%) 55.67 (-3.96) 53.39 (-4.15) 55.62 (-2.15) 54.57 (-3.41)
DER++ (10%) 55.01 (-3.50) 54.05 (-2.94) 56.06 (-1.17) 55.14 (-3.77)
SEEKR (10%) 58.27 (0.11) 57.27 (-0.47) 57.54 (0.47) 56.86 (-1.01)

MTL 59.38 58.18

Table 1: Comparison with the state-of-the-art methods on TRACE benchmark. The results are obtained by using
two popular LLMs with two transfer orders, and are presented in the format of OP (BWT).

3.4 Overall Objective
Combining the above objectives, the overall loss
for the new and replay data is formalized as:

L = Ltask + λ1Lreplay + (1− λ1)Lld + λ2Lseekr

(13)
where λ1 is a coefficient to balance the text gen-
eration loss supervised by true labels and teacher
models, and λ2 is a weighting factor to adjust the
magnitude of attention distillation loss. The overall
process of SEEKR is shown in Algorithm 1.

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

CL Benchmark for LLMs. We evaluate our
method on TRACE (Wang et al., 2023c), a contin-
ual learning benchmark for LLMs that includes
eight datasets covering domain-specific knowl-
edge, multilingual capabilities, code generation,
and mathematical reasoning. We use the reasoning-
augmented version of datasets and conduct experi-
ments under two task orders following the original
paper. After continual learning, we assess the per-
formance of the continually learned tasks and the
changes in the general ability of LLMs.

CL on Traditional NLP Tasks. SuperNI (Wang
et al., 2022a) contains a variety of traditional NLP
tasks and can serve as a practical benchmark for

continual learning of large language models. Simi-
lar to Zhao et al., 2024, we select three datasets for
each of the four types of tasks, i.e. information ex-
traction, question answering, summarization, and
sentiment analysis, to examine the effectiveness of
continual learning methods. For each dataset, 1000
samples and 100 samples are randomly sampled
for training and testing, respectively.

4.1.2 Metrics

Let ai,j denote the testing performance on the i-th
task after training on the j-th task. We report the
overall performance (OP) (Chaudhry et al., 2018)
and the backward transfer (BWT) (Lopez-Paz and
Ranzato, 2017) after training on the last task:

OP =
1

T

T∑

i=1

ai,T (14)

BWT =
1

T − 1

T−1∑

i=1

(ai,T − ai,i) (15)

Moreover, we also report the general ability (GA)
and the delta general ability (DeltaGA) (Wang et al.,
2023c) after continual learning. GA is the average
performance across evaluation datasets in Table 2
and DeltaGA shows the change in GA compared
to the initial model.

3258



MMLU GSM BBH TydiQA BoolQ PIQA GA (DeltaGA)

LLaMA-2-7B-Chat 46.89 27.14 39.73 16.76 79.79 76.33 47.77
SeqFT 45.16 14.03 32.50 14.84 79.00 75.49 43.50 (-4.27)
Replay (1%) 45.49 12.70 33.46 14.65 78.69 75.65 43.44 (-4.33)
SEEKR (1%) 46.32 20.85 38.52 18.22 80.64 75.79 46.72 (-1.05)

Vicuna-7B-v1.5 49.39 23.43 41.12 15.01 81.41 76.77 47.86
SeqFT 46.26 11.68 33.09 13.44 79.97 76.72 43.52 (-4.34)
Replay (1%) 47.14 15.77 33.51 14.14 80.57 76.39 44.59 (-3.27)
SEEKR (1%) 48.83 17.55 38.17 16.32 81.96 77.23 46.68 (-1.18)

Table 2: Changes in general language understanding and reasoning abilities after continual learning with different
methods. The reported results of all continual learning models are averaged over two task orders.

4.2 Baselines

We compare SEEKR with nine baseline methods:
(1) SeqFT sequentially finetunes the model with-
out continual learning strategies. (2) EWC (Kirk-
patrick et al., 2017) regularizes parameter varia-
tions based on parameter importance scores. (3)
LwF (Li and Hoiem, 2017) distills the model of
the last task using the current task data. (4) Re-
play finetunes the model with the current task
data and a small number of replay samples. (5)
DER++ (Buzzega et al., 2020) saves the logits of
the replay samples from the old models for dis-
tillation, and combines distillation and replay to
reduce forgetting. (6) LFPT5 (Qin and Joty, 2021)
learns a soft prompt to generate pseudo samples of
previous tasks for replaying. (7) O-LoRA (Wang
et al., 2023b) imposes orthogonal constraints on
the LoRA matrices for all tasks. (8) L2P (Wang
et al., 2022b) instantiates a prompt pool for adap-
tive prompt selection and prompt tuning for indi-
vidual samples. (9) PP (Razdaibiedina et al., 2023)
tunes a set of prompts for each task and concate-
nates them together. In addition, the results of the
multi-task trained models are reported as MTL and
serve as the upper-bound reference.

4.3 Implementation Details

SEEKR is a versatile continual learning method
compatible with any transformer-based model. Fol-
lowing Wang et al., 2023c, we conduct our main
experiments on two popular LLMs, i.e. LLaMA-
2-7B-chat (Touvron et al., 2023) and Vicuna-7B-
v1.5 (Zheng et al., 2024). We also scale to a
larger model Vicuna-13B-v1.5 to validate the ef-
fectiveness of SEEKR. All models are trained on 8
NVIDIA Tesla A800 using the DeepSpeed library.
The training batch size is 128. For methods not

Order3 Order4

SeqFT 42.62 (-18.12) 50.52 (-9.88)
LwF 43.29 (-15.47) 47.35 (-12.57)
LFPT5 42.05 (-16.26) 46.09 (-14.16)
L2P 32.71 (-22.34) 31.00 (-23.82)
PP 17.96 (-21.27) 12.19 (-29.08)
O-LoRA 30.07 (-24.47) 26.70 (-33.82)
Replay (1%) 55.00 (-4.27) 54.78 (-5.31)
DER++ (1%) 55.89 (-4.51) 53.48 (-5.01)
SEEKR (1%) 57.04 (-3.15) 58.26 (-2.52)

MTL 61.27

Table 3: Comparison with the state-of-the-art methods
on SuperNI benchmark. The experiments are conducted
on LLaMA-2-7B.

involving parameter-efficient tuning modules, the
learning rate is 1e-5. For replay-based methods,
the default replay ratio is 1%. For SEEKR, λ1 in
Equation 13 is set to 0.5. λ2 is 1e3 for a replay
ratio of 1% and 1e2 for 10%. The head budget BH

is 128, and the layer budget BL is 24 by default
and 8 for 13B models or a replay ratio of 10%. The
query budget BT is 100. All experimental results
were averaged over 3 runs. More implementation
details can be found in Appendix B.

4.4 Main Results

Table 1 compares the overall continual learning
performance of SEEKR with other baselines on
TRACE benchmark. Following Wang et al., 2023c,
we also report the changes in the general ability
of LLMs after continual learning in Table 2. Sim-
ilar experiments on the SuperNI benchmark are
displayed in Table 3.

SEEKR effectively mitigates catastrophic for-
getting of continually learned tasks. Compared
to traditional and state-of-the-art continual learn-
ing approaches, SEEKR consistently achieves the
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(a) Effect of distillation budget (b) Effect of replay data ratio

Figure 2: Results of SEEKR across different distillation budgets and different replay data ratios.

highest OP and the lowest magnitude of BWT in
all settings. Note that the BWT metric specifically
captures the resistance of methods to catastrophic
forgetting, thus the results demonstrate SEEKR’s
superiority in maintaining performance on newly
learned tasks. Additionally, on the SuperNI bench-
mark, we achieve the best performance using only a
small proportion of replay samples, likely because
the benchmark consists of traditional NLP tasks,
which are less challenging.

SEEKR fully exploits the small amount of re-
play data and exhibits excellent data efficiency.
Among all replay-based methods, SEEKR stands
out with a distinct advantage. On the TRACE
benchmark, both Replay and DER++ show lim-
ited benefits with a lower ratio of replay data. In
contrast, SEEKR demonstrates remarkable per-
formance with just 1% of the samples replayed,
achieving comparable or even better results than
other methods that replay 10% of the samples. This
underscores the ability of SEEKR to maximize the
use of a small number of old samples and the inher-
ent knowledge in the old models.

SEEKR is effective in maintaining the general
ability of the original LLM. Table 2 exhibits the
changes in LLMs’ general ability after continual
learning. LLMs that are continually trained on new
tasks show a decline in general task performance,
demonstrating the catastrophic forgetting of their
original capabilities. Results validated that SEEKR,
which elaborately distills multiple finetuned LLMs
with a variety of data, helps to maintain the general
capabilities of the model. This could benefit from
the fact that our approach preserves the knowledge
of the intricate internal functions in LLMs at the
attention head level.

Order1 Order2

random 53.25 (-4.63) 52.62 (-5.11)
task-sensitivity-only 53.91 (-4.29) 53.56 (-2.84)
forgettability-only 54.06 (-3.31) 53.63 (-3.11)
both 54.99 (-2.61) 54.69 (-2.53)

Table 4: Ablation study on the head importance measure.
The experiments are conducted on LLaMA-2-7B.

OP GA |BWT| |DeltaGA|
Metric
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Figure 3: The continual learning performance and the
changes of general ability with Vicuna-13B-v1.5.

4.5 Ablation Studies

Effect of distillation budget. Figure 2 (a) ex-
hibits the performance of our method under dif-
ferent budgets. With a fixed layer budget of 24, a
larger head budget can lead to better results, but
this improvement tends to plateau at a budget of
128. Similarly, the performance improves with an
increasing layer budget and reaches its optimum
at 24. These results further emphasize the signif-
icance of distilling the right attention heads. Dis-
tilling less essential attention heads may lead to
ineffective work.

Effect of more replay samples. To further ex-
plore the potential of SEEKR, we experiment with
an increased ratio of replay samples. Meanwhile,
we compare SEEKR with Replay to demonstrate its
data efficiency. As shown in Figure 2 (b), SEEKR
steadily improves performance as the number of
replay samples grows. At a replay ratio of 10%, the
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Figure 4: Histogram of the cumulative variation in the
attention weights of the attention heads in the model
during sequential finetuning.
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Figure 5: Visualization of the importance scores of all
heads in the model.

BWT score exceeds 0, indicating no forgetting or
even a positive transfer has been achieved, and the
overall performance approximates the upper bound
of multi-task training. Moreover, compared with
Replay, SEEKR is very data efficient by utilizing
only 1% of the old data to achieve the performance
of replaying ten times that amount.

Effectiveness of our head importance mea-
sure. We present the results of the ablation study
on the proposed head importance measure in Ta-
ble 4 . The results show that the random selection
of distilled attention heads noticeably resulted in
a higher forgetting indicator, while using either
sensitivity-based or variation-based measures helps
identify important heads for knowledge retention.
Finally, combining both of the above measures pro-
duces the best results.

4.6 Discussions

Scale to larger models. To validate the general-
izability of SEEKR across different model scales,
we conducted additional experiments on a larger
model, Vicuna-13B-v1.5. Figure 3 shows that our

approach still effectively preserves both the per-
formance of newly learned tasks and the general
capabilities of the original model.

Variation in attention weights. To further con-
firm our hypothesis in Section 3.2.2, we examine
the cumulative changes in attention weights of each
attention head during sequential finetuning. The
results in Figure 4 reveal that most attention heads
remain stable throughout the process, while a small
proportion undergo significant changes. This ob-
servation is similar to prior findings (Zhao et al.,
2023) and supports our hypothesis that these sta-
ble attention heads do exist, making it reasonable
to identify them and avoid unnecessary attention
distillation.

Analysis of selected important heads. Figure 5
illustrates that important attention heads are mainly
distributed in the middle and deep layers of the
model, while almost none are observed in the shal-
low layers. This aligns with the idea that the shal-
low layers encode more generalized knowledge
and are less susceptible to forgetting. A closer
look at Figure 5 further reveals that the importance
scores for the deeper layers are concentrated in a
few heads, while those for the middle layers are
more evenly spread over a larger number of heads.
This may be because the heads in the deeper layers
are more thoroughly function-specialized.

5 Related Works

5.1 Continual Learning for LLMs

Existing continual learning methods are typ-
ically classified into three broad categories:
regularization-based methods, replay-based meth-
ods, and architectural-based methods. (1)
Regularization-based methods restrict model
variations to alleviate forgetting. Some works pe-
nalize changes to important parameters for previ-
ously learned tasks (Kirkpatrick et al., 2017; Wang
et al., 2023b; He et al., 2023), while others resort to
knowledge distillation to maintain the old models’
predictions (Li and Hoiem, 2017; Buzzega et al.,
2020; Kang et al., 2022). (2) Replay-based meth-
ods replay data from the old tasks during training
on the new task. Experience replay methods (Re-
buffi et al., 2017; Wang et al., 2024) design data
selection strategies of previous samples, and gener-
ative replay (Shin et al., 2017; Qin and Joty, 2021)
uses generative models to produce synthetic data
from previous tasks. Other methods (Yang et al.,
2023) retain old tasks by storing statistical infor-
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mation of the old tasks instead of the original data.
(3) Architecture-based methods alter the model
structure to accommodate different tasks. Recently,
this type of methods on LLMs (Wang et al., 2022b;
Razdaibiedina et al., 2023) often add parameter-
efficient tuning modules for new tasks.

SEEKR falls into the category of replay-based
distillation methods and focuses on the preservation
of important attention mechanisms in LLMs. Un-
like existing output or parameter importance mea-
sures (Kirkpatrick et al., 2017; Kang et al., 2022),
which focus solely on task loss sensitivity, our head
importance measure includes a forgettability aspect.
This reflects the susceptibility to forgetting and the
generality of knowledge in different heads, thereby
determining the necessity for distillation.

5.2 Knowledge Distillation

Knowledge distillation aims to leverage the teacher
model’s performance and generalize it to the stu-
dent model (Hinton et al., 2015; Park et al., 2019;
Guo et al., 2023). For language models, Sanh et al.,
2019 uses the teacher model’s generation distri-
bution for each token as a supervision signal for
the student model, and some other works (Wang
et al., 2020b,a) distill the attention scores of one
layer to transfer the knowledge of larger LMs into
smaller models. Unlike their objectives of transfer-
ring knowledge between models of different sizes,
we use attention distillation for knowledge reten-
tion. Both our teacher and student models share a
similar architecture and are derived from the same
pre-trained LLM, which enables head-by-head and
layer-by-layer distillation.

6 Conclusion

In this paper, we propose SEEKR, an efficient
replay-based distillation method for continual learn-
ing in LLMs. SEEKR resorts to attention distilla-
tion of important heads for finer-grained knowledge
retention, which identifies valuable heads through
the proposed knowledge-retention-oriented impor-
tance measures. Combined with a hierarchical bud-
get allocation mechanism, SEEKR can ensure its
utility across various resource levels. Extensive ex-
periments consistently validated the effectiveness
of our method in preserving the performance of
newly learned tasks and the original ability of the
initial LLMs.

Limitations

Despite the potential benefits of SEEKR, several
limitations need to be considered. First, SEEKR is
inherently a replay-based approach, which may not
be applicable in scenarios where historical data in-
volves privacy concerns. A potential solution is to
use SEEKR with pseudo-samples generated by the
trained LLM, but this approach requires further ex-
ploration. Second, due to computational resource
limitations, we did not experiment with larger-scale
LLMs like LLaMA-2-70B. Additionally, the appli-
cation of SEEKR to continual learning with mul-
timodal large language models remains to be ex-
plored in the future.
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A Datasets

For the TRACE benchmark (Wang et al.,
2023c), we conduct experiments on the reasoning-
augmented datasets as such high-quality train-
ing data is more suitable for the LLM learning
paradigm. The task order is consistent with the
two orders provided by the benchmark, which are
also displayed in Table 5. For evaluation on the
changes in the general ability, we test the LLMs on
the datasets (Hendrycks et al., 2020; Ghazal et al.,
2013; Clark et al., 2020; Bisk et al., 2020; Clark
et al., 2019; Cobbe et al., 2021) included in this
benchmark.

For the SuperNI benchmark (Wang et al., 2022a),
we choose four types of tasks and three dataset
each for continual learning, containing a total of 12
traditional NLP tasks similar to Zhao et al., 2024.
The two task orders can be found in Table 5.

B Implementation Details

For methods not involving parameter-efficient tun-
ing (PET) modules, we finetuning the LLMs on the
task sequence in order1 for 5, 5, 5, 5, 5, 5, 10, 5
epochs, order2 for 10, 10, 10, 5, 5, 5, 5, 5 epochs,
and order3 and order4 for 10 epochs each. For the
compared baseline methods involving PET mod-
ules, the training epochs vary from 5 to 15 epochs
for better performance. The hyperparameters of
the compared baseline methods were kept the same
as in the original repositories. If they did not per-
form well, we conducted additional searches for
the optimal learning rate.

For all the replay-based methods, we randomly
selected the indicated proportion of replay sam-
ples from the full training set and kept the replay
samples utilized by each method consistent for fair-
ness. For the replay-based distillation methods, the
distillation signals, i.e. output logits and attention
weights, of each old teacher model are saved in the
memory buffer along with the original replay sam-
ples and loaded from the buffer during training on
the new task. When replaying the old data, samples
from the memory buffer and the current task are
sampled in an evenly interleaved manner according
to the ratio of their volumes.
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Order Benchmark Task Sequence

1 TRACE benchmark C-STANCE → FOMC → MeetingBank → Py150 →
ScienceQA → NumGLUE-cm → NumGLUE-ds → 20Minuten

2 TRACE benchmark NumGLUE-cm → NumGLUE-ds → FOMC → 20Minuten →
C-STANCE → Py150 → MeetingBank → ScienceQA

3 SuperNI benchmark task1572 → task363 → task1290 → task181 → task002 → task1510 →
task073 → task748 → task511 → task591 → task195 → task875

4 SuperNI benchmark task748 → task073 → task1572 → task195 → task591 → task363 →
task1510 → task181 → task511 → task002 → task1290 → task875

Table 5: Task sequence of different task orders.
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