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Uncertainty in Language Models: Assessment through Rank-Calibration
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Abstract

Language Models (LMs) have shown promis-
ing performance in natural language genera-
tion. However, as LMs often generate incorrect
or hallucinated responses, it is crucial to cor-
rectly quantify their uncertainty in responding
to given inputs. In addition to verbalized confi-
dence elicited via prompting, many uncertainty
measures (e.g., semantic entropy and affinity-
graph-based measures) have been proposed.
However, these measures can differ greatly, and
it is unclear how to compare them, partly be-
cause they take values over different ranges
(e.g., [0,∞) or [0, 1]). In this work, we ad-
dress this issue by developing a novel and prac-
tical framework, termed Rank-Calibration, to
assess uncertainty and confidence measures for
LMs. Our key tenet is that higher uncertainty
(or lower confidence) should imply lower gen-
eration quality, on average. Rank-calibration
quantifies deviations from this ideal relation-
ship in a principled manner, without requiring
ad hoc binary thresholding of the correctness
score (e.g., ROUGE or METEOR). The broad
applicability and the granular interpretability of
our methods are demonstrated empirically. The
code to replicate our experiments is here.

1 Introduction

Language Models (LMs), especially Large Lan-
guage Models (LLMs), have shown promising per-
formance in Natural Language Generation (NLG).
These models, fitted on huge text corpora, can pro-
duce responses resembling those of humans (Tou-
vron et al., 2023b; OpenAI, 2023). However,
since LMs often generate wrong or hallucinated
responses (Weidinger et al., 2021; Xiao and Wang,
2021; Huang et al., 2024), it is crucial to correctly
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quantify their level of uncertainty in responding to
particular inputs.
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Figure 1: Indication diagrams comparing two uncer-
tainty measures, UNLL (negative log-likelihood) and
UEcc (eccentricity), for the GPT-3.5-turbo model on the
TriviaQA benchmark. The red bars indicate the aver-
age correctness of different outputs, as a function of
the corresponding relative uncertainty levels. The blue
and shallow red areas—deviating from the anti-diagonal
line—indicate where the uncertainty measures are over-
optimistic and pessimistic, respectively. Their sum is
our rank-miscalibration metric (i.e., RCE), which here
is lower for UNLL than UEcc. See Sec. 4.3 for details.

Uncertainty quantification is well-explored in su-
pervised learning, specifically in classification (e.g.,
Lichtenstein et al., 1977; Gal and Ghahramani,
2016; Lakshminarayanan et al., 2017, etc). In clas-
sification, a confidence measure is an estimate of
the probability that the predicted class Ŷ matches
the true class label Y (Lichtenstein et al., 1977;
Lee et al., 2023). A confidence measure C is con-
sidered calibrated if it reflects the probability of
correct prediction, i.e., P(Ŷ = Y | C) = C, for
all values in C’s range. The Expected Calibration
Error (ECE) measures the miscalibration of a confi-
dence measure (Harrell, 2015; Naeini et al., 2015):

EC

[∣∣∣P(Ŷ =Y |C)−C
∣∣∣
]
. (ECE)

In classification, confidence measures are pre-
dominantly built on model logits (Guo et al., 2017;
Kull et al., 2019). However, these methods are less
suitable for NLG tasks. First, the label space is of-
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ten too large to assess correctness via Ŷ = Y , since
LMs produce potentially long textual responses Ŷ
for any given input. Second, for LMs, logits en-
code the likelihood of selecting the next token and
do not necessarily capture linguistic sense (Mielke
et al., 2022). Third, even hand-crafted prompts in-
tended to make LMs express confidence explicitly
may not lead to reliable confidence values because
elicitation is heavily tied to prompt formats (Zhao
et al., 2021; Xiong et al., 2024).

Recent works have studied uncertainty measures
as an alternative to confidence measures. These
capture the “dispersion” of an LMs’ potential out-
puts for a fixed input. Kuhn et al. (2023) introduce
semantic entropy, which incorporates linguistic in-
variances arising from the shared meaning of gen-
erated responses. Lin et al. (2023) extend semantic
entropy by leveraging the affinity matrices induced
by entailment scores of generated outputs. Further,
Chen et al. (2024) characterize differential entropy
in the embedding space with EigenScore, via the
covariance of embeddings of potential responses.

Uncertainty measures are more general and ar-
guably more principled than confidence measures
for LMs, but they lack a universal assessment met-
ric such as ECE. A key issue is that uncertainty
measures are not necessarily commensurate. For
instance, the semantic entropy (Kuhn et al., 2023)
can take arbitrarily large positive values, whereas
the EigV measure of Lin et al. (2023) depends on
the number of responses generated. This makes
it difficult to understand, evaluate, and compare
uncertainty measures via a unified lens.

This paper develops a principled framework to
assess the quality of uncertainty and confidence
measures for LMs. We provide a novel and practi-
cal framework, termed Rank-Calibration. Specifi-
cally, our contributions are as follows.

• We mathematically formalize the assessment
of uncertainty/confidence measures for LMs in
NLG tasks, going beyond binary correctness.

• We demonstrate empirically that existing assess-
ment metrics (e.g., AUROC, ECE, etc) have sev-
eral limitations, including a heavy dependence
on the LM’s performance, instability caused by
ad hoc binarization of correctness scores, and
incompatibility with diverse uncertainty ranges.

• We address these limitations by starting from a
basic principle: lower uncertainty/higher confi-
dence should indicate higher-quality generation.
We thus propose assessing uncertainty measures

in terms of rank-calibration and introduce a suit-
able metric, the Rank-Calibration Error (RCE).

• To make rank-calibration practical, we intro-
duce the Empirical RCE—an estimate of RCE
based on a finite dataset. Moreover, we intro-
duce novel indication diagrams, previewed in
Fig. 1, that intuitively visualize the deviation
of any uncertainty/confidence measure from the
monotonicity required for rank-calibration.

• We experimentally demonstrate the broader ap-
plicability and granular interpretability of our
proposed methods. Comprehensive ablation
studies are conducted to examine its robustness.

2 Correctness and Uncertainty for LMs

Let V be the token vocabulary of an LM and
V⋆ :=∪ℓ≥1Vℓ the space of sequences of arbitrary
length. Given a query x ∈ V⋆, an LM M can gen-
erate output ŷ≜ (ŷℓ)ℓ≥1∈V⋆ by sequentially sam-
pling from the distribution P(ŷ |x) :=∏

ℓ≥1 P(ŷℓ |
x, ŷ<ℓ). Here, ŷℓ ∈ V is the ℓ-th generated token
and P ≜ PM is the generative distribution of M.

We work with a deterministic correctness func-
tion A :V⋆×V⋆→R mapping each pair (x; ŷ) to a
correctness value A(x; ŷ). In practice, correctness
is often not a binary variable in NLG tasks and can
be assessed in at least two different ways. For the
reader’s convenience, the concepts and notations
used in the paper are summarized in Table 1.

• Reference matching. Given certain refer-
ence answers {y(m)}Mm=1 associated with x,
a similarity score between the output ŷ and
{y(m)}Mm=1 can be interpreted as a correctness
value. Similarity scores commonly utilized for
this purpose include the Rouge score, BLEU
score, and outputs of other discriminative LMs.

• Human evaluation. Correctness or quality may
be evaluated by human experts, possibly inte-
grating multiple opinions (e.g., averaging). This
approach does not require reference answers
and is as “trustworthy” as the humans involved.

An uncertainty measure is a (possibly random)
function UM :V⋆×V⋆ → R, (x; ŷ) 7→ UM(x; ŷ)
associated with the LM that maps any pair (x; ŷ) to
an uncertainty value.1 We will omit M and write
U(x; ŷ), P(· | x) when the choice of the LM is
clear. Some examples are reviewed below, while
additional examples and details are in Appendix B.

1In special cases, the uncertainty measure may only depend
on the input x and the LM M, not the output ŷ.
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Notation Description

V Token vocabulary
V⋆ Space of token sequences
x Input context, x ∈ V⋆

ŷ Gen. output ŷ = (ŷℓ)ℓ≥1 ∈ V⋆

P ≜ PM Generative dist. of LM M
A(· ; ·) A deterministic correctness function
{y(m)}Mm=1 Reference answers for input x
UM(x; ŷ) Uncertainty measure for LM M
CM(x; ŷ) Confidence measure for LM M
reg(u) Regression fn. Ex,ŷ[A | U=u]

Table 1: Summary of notations.

• NLL. In classification, the softmax of the
last-layer logits determines a model’s predic-
tion (Guo et al., 2017). In NLG tasks, one can
view the Negative Log-Likelihood (NLL),

UNLL(x, ŷ):=− ln(P(ŷ | x)),
as an indicator of uncertainty where ŷ =
(ŷℓ)ℓ≥1 is a generated response. A natural ex-
tension accounting for the length of responses
applies length normalization; this is also known
as the Perplexity measure (Jelinek et al., 1977).

• Entropy. The predictive entropy of the dis-
tribution P(· | x) is large when the same input
may lead to diverse outputs, and it is defined as

UE(x):=−Eŷ∼P(·|x)[ln(P(ŷ | x))].
Malinin and Gales (2021) propose a variant of
this, UE-LN(x), utilizing the length-normalized
log-likelihood ln(P(ŷ |x))/len(ŷ). Kuhn et al.
(2023) argue that different responses with the
same meaning should be viewed as equals in
this context, regardless of token-level differ-
ences. They propose the semantic entropy,

USE(x):=−Eŷ∼P(·|x)[ln(P(c(ŷ) | x))],
where c(ŷ) is the semantic concept of ŷ, pro-
vided by another language modeling method.

• Affinity graph. Lin et al. (2023) calculate un-
certainty using a weighted adjacency graph built
upon semantic affinities. Consider an affinity
model e, mapping pairs of responses ŷ, ŷ′ to
values in [0, 1]. Given K independent samples
{ŷ(k)}Kk=1 from P(· | x), the model e induces
a symmetric adjacency matrix W =[wi,j ]

K
i,j=1,

with wi,j=(e(ŷ(i); ŷ(j)) + e(ŷ(j); ŷ(i)))/2 for
all i, j. Let D = [1[j = i]

∑K
k=1wk,j ]

K
i,j=1 be

the corresponding degree matrix and {λk}Kk=1

be the eigenvalues of the Laplacian L = I−
D−1/2WD−1/2. Then, the uncertainty mea-
sures proposed in Lin et al. (2023) include

UEigV(x) :=
K∑

k=1

max{0, 1− λk},

UDeg(x) := 1− trace(D)/K2,

UEcc(x) := ∥[v1,v2, . . . ,vK ]∥2,

where {vk}Kk=1 are suitable vectors associated
with L, see Lin et al. (2023). Intuitively,
UEigV(x) approximately counts the connected
components in the graph represented by W ,
while UDeg(x) and UEcc(x) reflect the diver-
sity of outputs.

The diverse uncertainty measures reviewed
above produce outputs with different ranges. For
instance, UNLL, USE, and UEigV can yield any num-
ber in [0,∞), whereas UDeg and UEcc are bounded
in [0, 1]; see Fig. 3 [bottom] for a visual illustration.
This mismatch in output ranges motivates the need
for a novel unified assessment framework.

As we shall see, our assessment framework can
handle not only any uncertainty measure but also
the closely related concept of confidence measures
(Zhao et al., 2021; Mielke et al., 2022; Xiong et al.,
2024). A confidence measure can be cast as a (pos-
sibly random) function CM : V⋆ × V⋆ → [0, 1],
(x; ŷ) 7→ CM(x; ŷ) with output taking values in
[0, 1]. Intuitively, confidence and uncertainty mea-
sures serve similar purposes, although in a com-
plementary way—high confidence should correlate
with low uncertainty, and vice versa.

With this notation in place, we are now ready to
state our goals and give a more detailed preview
of our proposed framework. Given a benchmark
dataset{(xi, {y(m)

i }Mi
m=1)}ni=1, where each Mi ≥ 0

denotes the number of reference answers for xi, we
aim to quantify the performance of an uncertainty
measure U (or a confidence measure C) as follows.
First, we obtain the paired values of uncertainty and
correctness {(U(xi, ŷi), A(xi; ŷi))}ni=1 by inde-
pendently sampling ŷi∼P(· |xi) for each 1≤i≤n.
Then, we evaluate E({(U(xi, ŷi), A(xi; ŷi))}ni=1)
for each 1≤i≤n, using a suitable metric E .2 To ac-
count for the randomness in sampling ŷi, we may
draw multiple independent responses {ŷ(k)

i }Kk=1
iid∼

2A common practice is to map the correctness values to
{0, 1} by thresholding at an ad hoc value before feeding them
into the evaluation metric; see Sec. 3 for a discussion of the
limitations of this approach.

286



Figure 2: Common workflow for assessing the quality of an LM uncertainty/confidence measure. The key ingredients
are: a base LM M (e.g., Llama-2-7b-chat), a correctness function A (e.g., the Rouge-L score), a benchmark dataset
{xi, {y(m)

i }Mi
m=1}ni=1 (e.g., TriviaQA), an assessment metric E (e.g., AUROC), and the uncertainty measure U

(e.g., UDeg). The workflow proceeds in five stages: generation, correctness calculation, correctness discretization,
uncertainty quantification, and evaluation. Notably, the threshold τ in correctness discretization is usually chosen
heuristically (Kuhn et al., 2023; Xiong et al., 2024; Lin et al., 2023, etc), which can be problematic, as demonstrated
in Sec. 3. Our proposed RCE-based assessment removes this stage by using the correctness values directly.

P(· | xi) and take the average as the final result∑K
k=1 E({(U(xi, ŷ

(k)
i ), A(xi, ŷ

(k)
i ))}ni=1)/K.

The closest works have been discussed in Sec. 1
and 2, and more related works are reviewed in
Appendix A.

3 Limitations of Existing Assessments

This section illustrates some limitations of exist-
ing assessments for LM uncertainty measures via a
case study applying the GPT-3.5-turbo (Ouyang
et al., 2022) model on the TriviaQA bench-
mark (Joshi et al., 2017). We use the validation
set of TriviaQA, which contains 11, 322 question-
answer pairs (after deduplication). We use the same
prompt template as that in Lin et al. (2023). The
template is shown in Appendix E.2.

The uncertainty measures examined here include
the negative log-likelihood UNLL, the semantic en-
tropy USE (Kuhn et al., 2023), the affinity-graph-
based measures UEigV, UEcc, and UDeg (Lin et al.,
2023), with the affinity determined by the NLI
model (He et al., 2021), and the verbalized confi-
dence CVerb (Xiong et al., 2024); see the defini-
tions in Appendix B. These include both white box
and grey box measures,3 as well as a diversity of
prompt strategies. We use the Rouge-L score as
the correctness function A. We follow a common
assessment pipeline (Kuhn et al., 2023; Lin et al.,
2023; Xiong et al., 2024), as depicted in Fig. 2. The
assessment metrics are detailed in Appendix C.

3The grey-box oracle refers to the access to model logits,
which is partly feasible for commercial LMs, while the black-
box oracle only relies on generated outputs.
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Figure 3: Top: AUROCs of uncertainty/confidence mea-
sures with various thresholds. Bottom: Output ranges
of uncertainty/confidence measures. Both results are for
GPT-3.5-turbo on the TriviaQA benchmark.

Ad hoc correctness thresholding. Most existing
assessment metrics (e.g., AUROC, AUPRC, ECE,
etc) are rooted in classification and require binary
labels (i.e., A ∈ {True or False}). Consequently,
an ad hoc threshold τ ∈ R is often introduced to
map continuous correctness values to binary labels,
i.e., Āτ (x; ŷ) :=1[A(x; ŷ)≥ τ ] (Lin et al., 2023;
Kuhn et al., 2023). Thus, the response is viewed as
correct if the correctness value A(x; ŷ) is at least
τ , and incorrect otherwise.

However, thresholding can lead to inconsisten-
cies. Taking AUROC as an example, we plot the as-
sessed results of uncertainty/confidence measures
under varying thresholds in Fig. 3 [top]. The rela-
tive AUROC results of distinct measures vary dras-
tically with the choice of τ . For example, UNLL

appears inferior to other methods if τ < 0.2, but
it becomes the best measure if τ > 0.8. This is
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especially concerning given that there seems to be
no principled way to set this threshold. The same
limitation also affects other metrics (e.g., AUPRC,
AUARC) and configurations; see Appendix E.4.

Diverse output ranges. The second limitation of
existing assessments is rooted in the diverse output
ranges of the uncertainty or confidence measures.
As shown in Fig. 3 [bottom], the output ranges of
different uncertainty measures vary significantly.
For example, the values of USE can be higher than
100 while the values of UEcc and UDeg are small by
definition. This diversity of output ranges prevents
the direct use of calibration-based metrics such as
ECE, which takes variables with inputs in [0, 1].

Strong dependence on LM performance. While
the quality of uncertainty/confidence measures
should be disentangled from the generation per-
formance of the LM, there is often a strong relation
between the two concepts. We argue that many
existing metrics (e.g., AUROC, AUPRC, AUARC)
can be misleading due to this entanglement. Taking
AUARC as an example, if the base LM is powerful
and all correctness values of its responses are high
(e.g., within [0.9, 1.0]), then the evaluated AUARC
will be high for any uncertainty/confidence mea-
sure, regardless of its quality. This is undesirable
because our goal is to provide an overall assess-
ment of the uncertainty measure, which may in the
future need to be applied to different LMs. While
the ECE metric provides a limited “disentangling”
effect, in the sense that it can reflect that highly ac-
curate models may be poorly calibrated (i.e., with
high ECE values) (Guo et al., 2017), it is not appli-
cable to uncertainty measures in general.

Desiderata of evaluation. The aforementioned
challenges suggest that the evaluation of LM un-
certainty measures should take into account the fol-
lowing key desiderata: (1) avoidance of ad hoc cor-
rectness thresholding, (2) applicability to diverse
output ranges of uncertainty measures, and (3) de-
coupling from the generative performance of the
LM. Moreover, the evaluation framework should
be practical. We view these criteria as important,
but not necessarily exhaustive for an ideal assess-
ment. Future research may identify other requisites
and further improve our framework accordingly.

4 Rank-Calibration

In this section, we introduce a novel assessment
framework satisfying the criteria outlined in Sec. 3.

4.1 Rank-Calibration & RCE
Define the regression function reg(·):R→R, u 7→
Ex,ŷ[A(x; ŷ) | U(x; ŷ) = u], representing the
expected correctness level A conditional on an un-
certainty level U = u. Here, x is a random query
sampled from the distribution associated with a
specific benchmark dataset, while ŷ |x∼ P(· |x)
is a random output sampled from the generative
distribution of the LM. We start from the observa-
tion that, ideally, a lower uncertainty level should
correspond to higher generation accuracy. This is
equivalent to saying that the regression function
should ideally be monotone decreasing.

Since U is a random variable depending on
(x; ŷ), reg(U) is also random. If reg(·) is
monotonically decreasing, then U ≤ u implies
reg(U) ≥ reg(u). Thus, for any value u in the
range of U ,

P(U ≤ u) = P(reg(U) ≥ reg(u)). (1)

Equation (1) suggests a direct relation between an
uncertainty level u and its corresponding expected
correctness level reg(u). For example, for a value
of u in the in bottom 10% of the distribution of
U , the expected correctness level reg(u) =E[A |
U = u] is in the top 10% in the distribution of
reg(U)=E[A | U ]. We call this desired property
of uncertainty measures Rank-Calibration.

Definition 1 (RANK-CALIBRATION). We say that
an uncertainty measure U is rank-calibrated if (1)
holds for any u in U ’s range: on average, a lower
uncertainty implies a higher generative quality.

Rank-calibration is related to, yet distinct from,
the usual notion of calibration in the classification
context (Lichtenstein et al., 1977; Guo et al., 2017).
We defer the detailed discussion to Sec. 4.2. We
remark that the principle of rank calibration is also
discussed in a concurrent work (Zhang et al., 2024).
Unlike our work and (Zhang et al., 2024), (Penha
and Hauff, 2021) use the terminology “rank” to
denote the relevance comparison of candidate re-
sponses in the binning of ECE calculation.

To quantify the distance of a given uncertainty
measure from the ideal rank-calibration, we pro-
pose the following Rank-Calibration Error (RCE),
inspired by ECE for calibration.
Definition 2 (RANK-CALIBRATION ERROR). The
RCE of an uncertainty measure U is defined as

EU

[∣∣PU ′(reg(U ′)≥ reg(U))−PU ′(U ′≤U)
∣∣] ,

(RCE)
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where U ′ is an independent copy of U .

Extension to confidence measures. While pri-
marily motivated by uncertainty measures with in-
commensurate ranges, rank-calibration also applies
to confidence measures. Ideally, higher values of a
confidence measure should imply higher generation
accuracy. Thus, defining reg(c) := E[A | C = c]
for all c in the range of C, we can adapt RCE to

EC

[∣∣PC′(reg(C ′)≥ reg(C))−PC′(C ′≥C)
∣∣] ,

(2)
where C ′ is an independent copy of C. This gauges
deviations from the equivalence between C ≥ c
and reg(C) ≥ reg(c). Since rank-calibration pro-
vides a different perspective from calibration—see
Sec. 4.2—(2) serves as a supplement to ECE in
assessing confidence measures.

4.2 Comparison with Classical Calibration
For a binary correctness value function A taking
values in {0, 1}, rank-calibration relaxes classi-
cal calibration by absorbing all strictly decreasing
transformations.

Theorem 1. Suppose the correctness function A
takes values in {0, 1}. If an uncertainty measure
U is rank-calibrated, i.e., its RCE is zero, then
there exists a unique strictly decreasing transfor-
mation g⋆ : R→ [0, 1] such that Cg⋆ := g⋆(U) is
calibrated, i.e., its ECE is zero. If a confidence
measure C is calibrated, then for any strictly de-
creasing transformation h : R→R, the induced un-
certainty measure Uh := h(C) is rank-calibrated.

Proof. If U is rank-calibrated, the regression func-
tion u 7→ reg(u) = E[A | U = u] ∈ [0, 1] is
strictly decreasing over all values in U ’s range with
positive density (or mass). Moreover, P(A= 1 |
reg(U)=reg(u)) =E[A |U=u] = reg(u). There-
fore, reg(U) is a calibrated confidence measure,
and reg is strictly decreasing. The uniqueness fol-
lows as P(A= 1 | g(U)) = E[A |U ] = reg(U) for
any strictly monotone function.

On the other hand, if C is calibrated, then C=
P(A = 1 | C) = E[A | C] almost surely. For any
strictly decreasing h, we have E[A |Uh] = E[A |
C] = C almost surely because h is a one-to-one
map. Therefore, for any given c and uncertainty
value uh = h(c), it holds almost surely that

Uh = h(C) ≤ uh = h(c) ⇐⇒ C ≥ c

⇐⇒ E[A | C] ≥ E[A | C = c]

⇐⇒ E[A | Uh] ≥ E[A | Uh = uh],

which implies Uh is rank-calibrated.

Theorem 1 implies that, for a binary correctness
function, one can construct a calibrated confidence
measure from an uncertainty measure with mono-
tone transformations if and only if the uncertainty
measure is rank-calibrated. However, RCE and
ECE gauge different quantities: ECE captures the
absolute difference between the predicted and true
probabilities, while RCE reflects the deviation from
a monotonic correspondence between uncertainty
and the expected correctness. These two notions
are generally not directly comparable.

For example, consider the special case where a
continuous-valued confidence measure C is com-
pletely uninformative and the regressed correctness
reg : c 7→ E[A |C = c] is a constant for all con-
fidence levels c. Then, the RCE defined in (2)
reports a large value of 1/2, reflecting its poor in-
dicativeness. However, the ECE can be large or
small depending on the averaged distance between
C’s output and reg. More generally, we find no
relation in the results of ECE and RCE through the
following result, proved in Appendix D.

Proposition 1. Let the correctness function A ∈
{0, 1} be binary. For any α, β ∈ (0, 1/2], there
is a confidence measure C such that its RCE is α
while the ECE is β.

4.3 Empirical RCE & Indication Diagram

Now, as in Sec. 2, consider a dataset {(ui, ai)}ni=1

of uncertainty and correctness values computed
over a benchmark dataset where each ui =
U(x; ŷi), ai = A(xi; ŷi), and ŷi is a response
generated by the LM. The true value of RCE is
unknown, as it refers to an average over the distri-
bution from which the data are drawn.

Empirical RCE. The RCE involves the unknown
probabilities P(U ≤ u) and P(reg(U) ≥ reg(u)),
which generally need to be estimated. Estimating
the latter is challenging as the regression function
is also unknown and needs to be estimated.

To address this, we adopt a piecewise constant
regression or binning strategy, as in non-parametric
statistics (Tsybakov, 2009). First, we group the
uncertainty values {ui}ni=1 into B equal-mass in-
tervals, each containing ⌈n/B⌉—or, when needed,
⌊n/B⌋—elements. The boundaries of the b-th
(1 ≤ b ≤ B) bin are the (b− 1)/B-th and b/B-th
quantiles of (ui)ni=1. Let Ib ⊆ {1, . . . , n} be the
set of indices of the datapoints whose uncertainty
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values fall into the b-th bin. The expected correct-
ness level over the b-th bin can be estimated as

crcb :=
1

|Ib|
∑

i∈Ib
ai,

when |Ib| > 0. From now on, we will inter-
pret 0/0 := 0; and we extend to |Ib| = 0 in
this way. Clearly, crcb is an unbiased estimator
of E[A | U ∈ the i-th bin], which approximates
reg(U) accurately given a narrow bin and abundant
data. We similarly estimate the average uncertainty
within the b-th bin as

uctb =
1

|Ib|
∑

i∈Ib
ui.

As crcb and uctb estimate the per-bin averages of
reg(U) and U , for each b, we estimate P(U ≤ ui)
and P(reg(U) ≥ reg(ui)) for i ∈ Ib as follows:

P̂(reg(U)≥ reg(ui)):=
1

B − 1

∑

b′ ̸=b

1[crcb′ ≥ crcb],

P̂(U ≤ ui):=
1

B − 1

∑

b′ ̸=b

1[uctb′ ≤ uctb].

A rank-calibrated measure has P̂(U ≤ ui) ≈
P̂(reg(U) ≥ reg(ui)) for all 1 ≤ i ≤ n. We thus
compute the empirical Rank-Calibration Error esti-
mator (Empirical RCE) by taking an average of the
per-bin rank differences of correctness and uncer-
tainty values. More precisely,

1

n

n∑

i=1

∣∣∣P̂(reg(U)≥ reg(ui))−P̂(U ≤ ui)
∣∣∣ .

(Empirical RCE)
The difference between the estimated probabilities
for a given bin represent the ranking gap (i.e., blue
and shallow red areas in Fig. 1). We use the Empir-
ical RCE as the main metric to assess uncertainty
and confidence measures in the paper.

Indication diagram. Similar to reliability dia-
grams representing miscalibration (Lichtenstein
et al., 1977; Niculescu-Mizil and Caruana, 2005),
we can also visualize rank-miscalibration in dia-
grams (e.g., Fig. 1). In particular, we plot the rela-
tive percentile (between 0% and 100%) of the ex-
pected correctness level (i.e., reg(U)) as a function
of the relative percentile of uncertainty (i.e., U ).
We term these plots indication diagrams. If a mea-
sure is rank-calibrated—i.e., if (1) holds—then the
indication diagram should lie on the anti-diagonal
line percent(reg(u)) = 1−percent(u). Deviations
from this line represent rank-miscalibration.

Advantages of rank-calibration. We summa-
rize the advantages of the rank-calibration frame-
work by revising the desiderata from Sec. 3. First,
the empirical RCE does not require any thresh-
olding of the correctness values. Second, rank-
calibration assesses the monotonicity of uncertainty
values by leveraging relative ranks, which makes it
independent of the output range. Third, similar to
ECE, the RCE is not directly tied to the generation
performance of the LM. Finally, our assessment is
practical for any uncertainty/confidence measures.

5 Experiments

We provide more comprehensive experiments and
justify the advantages of our assessment.

5.1 Experiment Setup

We consider both open-source and commercial
LMs, including Llama-2-7b, Llama-2-7b-chat (Tou-
vron et al., 2023b) (an instruction fine-tuned ver-
sion of Llama-2-7b), and GPT-3.5-turbo (Ouyang
et al., 2022). See Appendix E.1 for more details.

We conduct assessments on the validation sets of
four datasets: TriviaQA (Joshi et al., 2017), Natu-
ral Questions (Kwiatkowski et al., 2019), SQuAD-
1 (Rajpurkar et al., 2016), and Meadow (Wang
et al., 2020). For assessment over the open-ended
and challenging Meadow, we only use the more
advanced model GPT-3.5-turbo. To account for
randomness in the evaluation, we repeat experi-
ments bootstrapping each dataset 20 times. See
more details of datasets in Appendix E.2.

We use multiple correctness functions, including
the Rouge-L score, BERT similarity, and ChatGPT
evaluation, all widely applied before (Kuhn et al.,
2023; Xiong et al., 2024). ChatGPT correctness is
only used for GPT-3.5-turbo with temperature 1.0.
See Appendix E.3 for more details.

The uncertainty/confidence measures to be as-
sessed are the same as in Sec. 3, (i.e., UNLL, USE,
UEcc, UDeg, UEigV, and CVerb). We first illustrate
that our proposed assessment has broad applica-
bility and granular interpretability. Furthermore,
we qualitatively show that uncertainty measures
with lower RCE values reliably indicate correct-
ness. Finally, we study robustness by empirically
checking the impact of temperature and correctness
functions on RCE (Demšar, 2006). More results
for different configurations are given in Table 4.
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Dataset Correctness Temperature UEcc UDeg UEigV UNLL USE CVerb

nq-open

bert
0.6 0.199±0.040 0.046±0.008 0.052±0.010 0.101±0.015 0.062±0.010 nan
1.0 0.236±0.033 0.035±0.008 0.038±0.007 0.097±0.017 0.055±0.012 nan

meteor
0.6 0.190±0.039 0.062±0.008 0.067±0.010 0.176±0.018 0.072±0.009 nan
1.0 0.224±0.034 0.044±0.006 0.046±0.007 0.209±0.023 0.074±0.015 nan

rougeL
0.6 0.198±0.039 0.053±0.011 0.057±0.010 0.167±0.013 0.060±0.012 nan
1.0 0.227±0.035 0.035±0.007 0.033±0.006 0.211±0.021 0.069±0.016 nan

rouge1
0.6 0.199±0.039 0.054±0.010 0.057±0.010 0.167±0.014 0.061±0.013 nan
1.0 0.227±0.035 0.034±0.007 0.033±0.006 0.212±0.021 0.069±0.015 nan

squad

bert
0.6 0.208±0.033 0.065±0.014 0.075±0.017 0.048±0.007 0.063±0.012 nan
1.0 0.276±0.039 0.067±0.011 0.063±0.010 0.038±0.006 0.098±0.012 nan

meteor
0.6 0.216±0.038 0.303±0.026 0.265±0.022 0.063±0.013 0.182±0.029 nan
1.0 0.300±0.046 0.292±0.035 0.250±0.027 0.064±0.011 0.274±0.021 nan

rougeL
0.6 0.239±0.036 0.177±0.026 0.143±0.020 0.052±0.011 0.127±0.020 nan
1.0 0.304±0.036 0.179±0.033 0.137±0.024 0.053±0.012 0.210±0.027 nan

rouge1
0.6 0.238±0.037 0.183±0.027 0.148±0.022 0.053±0.010 0.129±0.021 nan
1.0 0.303±0.035 0.185±0.033 0.143±0.025 0.053±0.012 0.213±0.026 nan

triviaqa

bert
0.6 0.140±0.024 0.062±0.016 0.061±0.015 0.020±0.004 0.027±0.007 nan
1.0 0.213±0.030 0.025±0.006 0.034±0.006 0.014±0.002 0.036±0.006 nan

meteor
0.6 0.145±0.027 0.067±0.017 0.064±0.015 0.034±0.009 0.075±0.016 nan
1.0 0.206±0.032 0.035±0.007 0.046±0.005 0.049±0.008 0.084±0.007 nan

rougeL
0.6 0.141±0.021 0.062±0.014 0.061±0.014 0.024±0.005 0.034±0.005 nan
1.0 0.204±0.035 0.027±0.006 0.040±0.004 0.022±0.002 0.051±0.007 nan

rouge1
0.6 0.141±0.021 0.062±0.014 0.062±0.013 0.024±0.005 0.034±0.006 nan
1.0 0.203±0.035 0.027±0.006 0.040±0.004 0.022±0.002 0.051±0.007 nan

Table 2: RCE results for Llama-2-chat with various experimental configurations.

5.2 Broader Applicability

Previous assessments have some limitations in
open-ended tasks. First, as shown in Fig. 4 [top],
the correctness distribution in open-ended tasks
(e.g., the Meadow dataset) is less concentrated
around zero and one compared to the TriviaQA
correctness distribution. Consequently, if correct-
ness were binarized with thresholding, the assessed
results would be highly impacted by the thresh-
old choice, as illustrated in Fig. 4 [bottom]. As
such, using continuous-valued correctness scores is
common in open-ended tasks (Cohan et al., 2018;
Uppalapati et al., 2023). Since RCE does not re-
quire thresholding, our rank-calibration assessment
does not suffer from the above issue.
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Figure 4: Top: Rouge-L correctness distributions of
GPT-3.5-turbo on the TriviaQA (left) and Meadow
(right) benchmarks. Bottom: AUROCs of assessed
measures for GPT-3.5-turbo on Meadow, with Rouge-L
correctness and various thresholds.

5.3 Granular Interpretability

Beyond the rank-calibration error, the indication
diagrams can be instrumental in understanding the
performance of uncertainty measures. We show
the indication diagrams of UNLL and USE for GPT-
3.5-turbo on TriviaQA in Fig. 1. More indication
diagrams can be found in the Appendix.

First, indication diagrams consistently reflect the
effect of rank-miscalibration. The indication di-
agram of UNLL (Fig. 1 [left]) has more overlap
between the red and blue bars, compared to that of
UEcc (Fig. 1 [right]), reflecting a lower RCE level
(0.038 with UNLL v.s. 0.151 with UEcc). The high
overlap suggests that the relative ranks of uncer-
tainty values are more aligned with those of cor-
rectness levels, leading to better rank-calibration.

Second, indication diagrams can shed light onto
which uncertainty levels may be problematic. For
example, in Fig. 1 [right], we observe that for an
uncertainty in the top 75th percentile, UEcc tends to
be overpessimistic: UEcc assigns high uncertainty
values to high-quality generations.

5.4 Qualitative Illustration

To illustrate the effectiveness of the RCE as an eva-
luation metric for uncertainty measures, we present
two TriviaQA instances and contrast UNLL (hav-
ing RCE 0.037) with USE (having RCE 0.051) for
GPT-3.5. Here, x is the question input, y is the
answer in the dataset, ŷ is the LM response, and
P(U ≤ u) signifies the relative magnitudes of LM’s
uncertainty level according to UNLL and USE.

In the first instance, the generation is factually in-
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correct and UNLL assigns a high uncertainty value
to the response, i.e. P(UNLL ≤ u) ≈ 1. In the sec-
ond scenario, where the generation is correct, UNLL

succeeds in providing a lower uncertainty level,
i.e. P(UNLL ≤ u) ≈ 0. Yet, USE assigns a lower
uncertainty to a poorer generation and a higher
uncertainty to a better generation! These instances
showcase that UNLL is more reliable than USE here,
which is consistent with the RCE-assessed results.
Additional qualitative results are given in Table 5.

x: On September 28th,
NASA announced that what
had been detected on Mars?
y: flowing water
ŷ: Possible signs of life
P(USE ≤ u): 0.813
P(UNLL ≤ u): 0.930

x: “Feel Like Making
Love” and “The First Time
Ever I Saw Your Face” were
hit singles for which fe-
male artist?
y: roberta flack
ŷ: Roberta Flack
P(USE ≤ u): 0.864
P(UNLL ≤ u): 0.046

5.5 Post-hoc Recalibration

Recalibrating uncertainty/confidence measures
with poor rank-calibration can be of interest;
for ECE, this is sometimes known as Mincer-
Zamowitz regression (Mincer and Zarnowitz,
1969). As discussed in Sec. 4.2, an ECE-calibrated
measure is also RCE-calibrated. However, RCE
is invariant to monotone transformations, which
means that approaches like Platt scaling (Platt,
1999) and isotonic regression (Zadrozny and Elkan,
2002) will not improve rank-calibration. Therefore,
we suggest using histogram binning (or, piecewise
constant regression), which includes non-monotone
transforms (Zadrozny and Elkan, 2001). Table 3
and Fig. 10 and 11 list the RCE results of USE for
GPT-3.5-turbo before and after calibration. We ob-
serve the calibrated measure is significantly better
rank-calibrated, showing the effectiveness of this
strategy. See the more experimental details and
results in Appendix F.2.

Dataset Correctness Temperature USE USE,cal

meadow

bert 1.0 0.177±0.027 0.083±0.016

meteor 1.0 0.132±0.018 0.066±0.015

rougeL 1.0 0.113±0.022 0.063±0.014

rouge1 1.0 0.113±0.018 0.061±0.012

nq-open

bert 1.0 0.050±0.007 0.026±0.007

meteor 1.0 0.060±0.009 0.033±0.011

rougeL 1.0 0.052±0.008 0.030±0.010

rouge1 1.0 0.051±0.008 0.029±0.010

squad

bert 1.0 0.113±0.013 0.050±0.013

meteor 1.0 0.086±0.014 0.046±0.010

rougeL 1.0 0.100±0.011 0.037±0.008

rouge1 1.0 0.103±0.011 0.039±0.007

triviaqa

bert
0.5 0.052±0.009 0.030±0.010

1.0 0.052±0.012 0.027±0.008

1.5 0.081±0.009 0.029±0.007

meteor
0.5 0.234±0.019 0.058±0.015

1.0 0.209±0.012 0.047±0.014

1.5 0.176±0.015 0.036±0.012

rougeL
0.5 0.050±0.008 0.028±0.007

1.0 0.059±0.009 0.026±0.007

1.5 0.104±0.007 0.028±0.006

rouge1
0.5 0.050±0.008 0.028±0.006

1.0 0.060±0.009 0.027±0.006

1.5 0.105±0.008 0.028±0.008

Table 3: RCE results of USE and USE,cal after rank-
calibration for GPT-3.5-turbo with various experimental
configurations.

5.6 Robustness Analysis
We conduct ablation studies to analyze the robust-
ness of our assessment to key hyperparameters, in-
cluding temperatures, correctness scores, and sam-
ple sizes. We further propose a method to make
robust comparisons between uncertainty measures
via the Critical Difference (CD) Diagram (Demšar,
2006). Detailed information and results are in Ap-
pendix F.4.

6 Conclusion

This paper investigates the limitations of common
assessments for LM uncertainty/confidence mea-
sures. We develop an alternate framework, termed
rank-calibration, to assess their quality. Our ap-
proach does not require binarizing correctness at ad
hoc thresholds and is compatible with uncertainty
measures taking values in any output range. We ex-
perimentally show the broad applicability and the
granular interpretability of our method, and provide
a comprehensive robustness analysis. Future direc-
tions include developing uncertainty measures with
guaranteed rank-calibration and enhancing genera-
tive pipelines of LMs (e.g., the retrieval-augmented
generation) with rank-calibrated measures.
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Limitation & Broader Impact

The empirical RCE estimate has not been sub-
jected to a thorough statistical analysis. The per-
formance of assessed uncertainty and confidence
measures (e.g., the vanilla verbalized confidence
CVerb) have not been optimized, since the paper
focuses on a new assessment approach rather than
benchmarking. Human correctness evaluation is
not performed, due to our limited budget.

This work is designed to unveil the issues in
the existing approaches for evaluating LM uncer-
tainty/confidence measures, and to introduce an
alternate, principled assessment to the LM com-
munity. We believe there are no ethical concerns
associated with our research.
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A Additional Related Work

Uncertainty measures in supervised learning. The quantification of uncertainties in model outputs in
supervised learning has a long history (e.g., Lichtenstein et al., 1977, etc). Overparametrized models such
as neural networks pose unique challenges to estimate uncertainty and improve model calibration(Guo
et al., 2017; Papadopoulos et al., 2001; Riquelme et al., 2018). Various approaches have been introduced
to mimic Bayesian inference (Gal and Ghahramani, 2016), to utilize simple deep ensembles (Lakshmi-
narayanan et al., 2017; Jain et al., 2020), and to identify training samples that are out-of-distribution (Liang
et al., 2018; Papernot and McDaniel, 2018). Nonetheless, it is not clear how to adapt these strategies to
language modeling, where the output can be text with complex structure.

Uncertainty measures in language modeling. To gauge the uncertainty level associated with the
outputs of LMs, Kuhn et al. (2023) introduces the concept of semantic entropy, which integrates linguistic
consistencies stemming from shared meanings. In a similar vein, Kadavath et al. (2022); Lin et al. (2022);
Xiong et al. (2024) encourage LMs to analyze their own responses and come up with a “probability”
that a response is correct. In related work, Manakul et al. (2023) uses sampling to identify instances of
fabricated information. Recently, Tian et al. (2023) explore methods for deriving confidence measures for
reinforcement-learning-trained LMs. Lin et al. (2023) draw a distinction between estimating uncertainty
and confidence for LMs. Similarly, Chen and Mueller (2023) introduce a method for detecting bad and
speculative responses from a pre-trained LM with a confidence score. Tanneru et al. (2023) propose two
novel measures to quantify the uncertainty of LM-generated explanations. Although considerable research
focuses on developing uncertainty and confidence measures for LMs, the evaluation of their effectiveness
is less studied.

Assessments of uncertainty measures. Early assessment of confidence measures in classification
scenarios leveraged proper scoring rules (Savage, 1971; DeGroot and Fienberg, 1983; Gneiting and
Raftery, 2007), such as the Brier score (Brier, 1950) and the KL divergence (Winkler et al., 1996). Other
assessments include plotting calibration curves, also known as reliability diagrams (estimated probabilities
against predicted ones) (Harrell, 2015). More recently, the ECE metric—or mean absolute calibration
error—has gained popularity in machine learning (Harrell, 2015; Naeini et al., 2015), along with many
variants (Kumar et al., 2019; Nixon et al., 2019; Gupta et al., 2021; Lee et al., 2023; Si et al., 2022).

In the realm of uncertainty quantification for LMs, the assessment based on ECE remains viable.
However, it necessitates the introduction of ad hoc threshold to derive binary labels. Moreover, the
applicability of ECE is limited, as it does not directly apply to LM uncertainty measures that fall outside
the interval [0, 1]. Our work introduces an assessment centered around rank-calibration, a critical property
that ideal uncertainty measures should satisfy. This assessment is applicable to both confidence and
uncertainty measures and eliminates the need for thresholding the correctness values.

B Common Uncertainty/Confidence Measures for LMs

In this section, we introduce common measures of uncertainty and confidence in detail.

• NLL & Perplexity. Let ŷ = (ŷℓ)ℓ≥1 be the generated response. Then the Negative Log-Likelihood
(NLL) is

UNLL(x, ŷ) := − ln(P(ŷ | x)) = −
∑

ℓ≥1

ln(P(ŷℓ | x, ŷ<ℓ)).

A natural extension accounts for the variable length of responses by applying length normalization.
Suppose that the number of tokens of the response ŷ is len(ŷ), the length-normalized NLL is defined
as

UNLL-LN(x, ŷ) := − 1

len(ŷ)

len(ŷ)∑

ℓ=1

ln(P(ŷℓ | x, ŷ<ℓ)).

Roughly speaking, this can be viewed as the average nats per token in the generated text; if using log2
instead of ln, it would be the average bits per token. The exponential of the length-normalized NLL is
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known as the Perplexity: UPerp(x; ŷ) := exp(UNLL-LN(x, ŷ)) (Jelinek et al., 1977). The perplexity
can also be viewed as the inverse of the geometric mean of the token-wise probabilities.

• Entropy. Entropy is a well-known type of uncertainty measure. The predictive entropy of the
distribution P(· | x) is defined as

UE(x) := −Eŷ∼P(·|x)[ln(P(ŷ | x))].

Entropy gauges the information one has about the potential output given the input, and has high
values when outputs are diverse. Malinin and Gales (2021) propose a variant UE-LN(x) using the
length-normalized log-likelihood ln(P(ŷ | x))/Length(ŷ). Kuhn et al. (2023) argues that responses
with an identical meaning should be viewed as equal; even if they differ at the token level. They thus
propose the semantic entropy

USE(x) := −Eŷ∼P(·|x)[ln(P(c(ŷ) | x))],

where c(ŷ) is a semantic concept of output ŷ, as determined by another machine learning method. We
can similarly define the length-normalized semantic entropy as

USE-LN(x) := Eŷ∼P(·|x)[ln(P(c(ŷ) | x))/len(ŷ)].

• Affinity graph. Recently, Lin et al. (2023) use a weighted adjacency graph built upon semantic
affinities between outputs to reflect uncertainty. Given an entailment-contradiction affinity model e
that maps pairs ŷ, ŷ′ of responses to values in [0, 1], e induces a symmetric adjacency matrix W =

[wi,j ]
K
i,j=1 with responses {ŷ(k)}Kk=1 sampled from P(· |x), where for all i, j, wi,j=(e(ŷ(i); ŷ(j)) +

e(ŷ(j); ŷ(i)))/2. Let D = [1[j = i]
∑K

k=1wk,j ]
K
i,j=1 be the matrix of degrees and {λk}Kk=1 be the

eigenvalues of the Laplacian L=I−D−1/2WD−1/2. Measures proposed in Lin et al. (2023) include

UEigV(x) :=
K∑

k=1

max{0, 1− λk},

UDeg(x) := 1− trace(D)/K2, CDeg(x; ŷ
(i)) := Di,i/K,

UEcc(x) := ∥[v1,v2, . . . ,vK ]∥2.

where {vk}Kk=1 are certain centralized vectors associated with the spectral decomposition of L. Here,
UEigV(x) is approximates the number of connected components in the graph represented by W , while
UDeg(x) and UEcc(x) reflect the diversity of outputs.

• Verbalized confidence. Verbalized confidence generally refers to the textual confidence output by an
LM. For example, if an LM is highly uncertain about its answer, it may inform the user by saying, e.g.,
“I am only 20% confident in this answer.” This is often implemented by feeding handcrafted prompts
to advanced LMs such as GPT-4 (OpenAI, 2023). Many prompting strategies have been used in the
literature to enhance this procedure (Zhao et al., 2021; Kadavath et al., 2022; Lin et al., 2022; Xiong
et al., 2024). Since optimizing the prompting strategy is not our focus and we do not want confidence
elicitation to interfere with the generation of responses, we adopt a simple post-hoc strategy here by
feeding a query-response pair to an LM and asking it how confident it believes the response correctly
addresses the query. This post-hoc strategy is similar to the one used by Kadavath et al. (2022). We
use the following specific prompt format:

Read the question and answer below.
{question} {generation}
Provide a numeric confidence that indicates your certainty about
this answer.
For instance, if your confidence level is 80%, it means you are 80%
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certain that this answer is correct and there is a 20% chance that
it is incorrect.
Use the following format to provide your confidence: Confidence:
[Your confidence, a numerical number in the range of 0-100]%."

C Common Evaluation Metrics

In this section, we review evaluation metrics that have been commonly used to assess LM uncer-
tainty/confidence measures. These metrics usually require binary correctness values.

• AUROC. AUROC refers to the area under the Receiver-Operating Curve (ROC). The ROC plots
the true positive rate (a.k.a. recall) against the false positive rate (a.k.a. 1− specificity) at various
thresholds of uncertainty levels. The true positive rate is on the y-axis, and the false positive rate is on
the x-axis. An AUROC value of 1 may represent a perfect uncertainty measure; a value of 0.5 suggests
no discriminative ability (equivalent to random uncertainty levels). The AUROC can be more useful
for evaluation in imbalanced scenarios where correct responses are much more (or less) frequent than
incorrect responses.

• AUPRC. AUPRC refers to the area under the Precision-Recall Curve (PRC), which plots the positive
predictive value (a.k.a. precision) against the true positive rate (a.k.a. recall) at various threshold
settings. Precision is on the y-axis, and recall is on the x-axis. Similar to AUROC, it is valuable in
imbalanced dataset scenarios but focuses more on the performance of the positive (minority) class (i.e.,
correct responses). Variants of AURPC include AUPRC-Positive and AUPRC-Negative, which focus
on gauging the ability of uncertainty measures to identify correct responses and incorrect responses,
respectively.

• AUARC. AUARC refers to the area under the Accuracy-Rejection Curve (ARC) that plots the accuracy
of generation against a rejection rate (the proportion of generated responses for which the model
abstains from making a prediction). The curve shows how the accuracy of generation improves as
it is allowed to reject uncertain responses. A higher AUARC value means that an LM can generate
more correct responses as it increasingly avoids uncertain (based on the level of specific uncertainty
measures) cases. This metric is useful for evaluating uncertainty measures in scenarios where LMs can
defer responses for which they are not confident.

• ECE. ECE stands for the expected calibration error, a metric used to evaluate the calibration of
confidence measures, particularly in classification tasks. Calibration refers to how well the confidence
levels align with the actual proportion of correct generation. For an ideally calibrated confidence
measure, if the confidence level is 70%, then approximately 70% of generated responses should
be correct. ECE quantifies the difference between the confidence levels and the realized correct
proportion. A lower ECE indicates better calibration, meaning the confidence measure is more
reflective of the actual correct proportion. A confidence measure with an ECE close to zero is
considered well-calibrated.

D Proof of Proposition 1

Case 1. α = 1/2. Consider the continuous case C ∼ Unif[1/2 − β, 1/2 + β] and reg(C) ≡ 1/2 + β
almost surely (i.e., A ∼ Bernoulli(1/2+β)). Then PC′(reg(C ′) ≥ reg(C)) ≡ 1 for almost surely. Since
C is continuous-valued, PC′ follows the uniform distribution over [0, 1]. We thus have

RCE =

∫ 1

0
|1− p|dp =

1

2
.

On the other hand,

ECE =

∫ 1/2+β

1/2−β

|1/2 + β − c|
2β

dc = β.
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Case 2. α ∈ (0, 1/2). Consider the case reg(C) ≡ 1/2 + β almost surely. We construct the marginal
distribution of C as follows. Let P(C = ck) = pk for 1 ≤ k ≤ K with K ≥ (1 − 2α)−1. Here
p1 = · · · = pK−1 = p while pK = 1− (K − 1)p where p is the non-negative root of (K − 1)p2 + (1−
(K−1)p)2 = 1−2α. Since K ≥ (1−2α)−1, such p ∈ (0, (K−1)−1] exists. Moreover, we let {ck}Kk=1

satisfy 0 ≤ c1 < · · · < cK−1 ≤ 1/2 + β, ck + cK−k ≡ 1 with ck ̸= 1/2 for all 1 ≤ k < K, cK = 1/2.
Then, by definition, we can calculate

RCE =
K∑

k=1

pk


1−

∑

ℓ≥k

pℓ


 =

∑

1≤ℓ<k≤K

pkpℓ

=

(∑K
k=1 pk

)2
−∑K

k=1 p
2
k

2
=

1−∑K
k=1 p

2
k

2
= α.

On the other hand, we have

ECE =
K∑

k=1

∣∣∣∣
1

2
+ β − ck

∣∣∣∣ pk = β +
1

2
−

K∑

k=1

ckpk = β.

This finishes the proof.

E Additional Experiment Details

E.1 Model Setup
Following Lin et al. (2023), we set the temperature to 0.6 for the two Llama-2 models and 1.0 for the GPT
model. We quantize the two Llama-2 models to 16 bits. To ablate the influence of temperature, we also
use generated responses of Llama-2-7b-chat with temperature 1.0.

E.2 Datasets
Dataset Descriptions. TriviaQA is a challenging reading comprehension dataset, containing question-
answer pairs whose answers can be found on Wikipedia and the web. Similar to previous works, we use
TriviaQA as an open-domain QA benchmark. Natural Question is a question-answering dataset containing
questions issued to the Google search engine. We use Natural Questions as an open-domain QA benchmark.
SQuAD-1 is a reading comprehension dataset containing questions posed by crowdworkers based on
Wikipedia articles. We include SQuAD-1 as a reading comprehension benchmark, where the annotated
contexts are provided in the prompt. Meadow is created by research groups working on COVID-19
problems. We use this dataset for open-ended generation, where the LM is expected to provide a title for a
paper given the abstract of the paper. The correctness is justified by comparing the generated title to the
true title.

Dataset Setup. TriviaQA contains 11,322 data points, Natural Questions contains 3,600 data points,
SQuAD-1 contains 10,570 data points, and Meadow contains 1,000 data points. The prompt templates
used are similar to those in Kuhn et al. (2023); Lin et al. (2023), and are as follows:
TriviaQA: following from Lin et al. (2023), we use the exact same prompt used in Touvron et al. (2023a):
Answer these questions:
In Scotland, a bothy/bothie is a?
A: House
{question}
A:
Natural Question: Similar to Lin et al. (2023), we use an in-context learning prompt with five demonstra-
tions:
where are the fa cup semi finals played. [SEP] A: the new Wembley
Stadium.[SEP]
who was alf married to in home and away [SEP] A: Ailsa Stewart.[SEP]
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what is the name of the first book in the twilight series [SEP] A:
Twilight.[SEP]
when is tornado season in the united states [SEP] A: March through
June.[SEP]
where did the idea of a messiah come from [SEP] A: Judaism.[SEP]
question [SEP] A:
SQuAD-1: Each data point in SQuAD-1 is a (question, context, reference) triplet, where the context is
annotated to provide useful information to answer the question. We prompt SQuAD-1 using zero-shot
prompting:
Answer the following question based on the context.
{question}
Context: {context}
A:
Meadow: Each data point in Meadow is a (abstract, title) pair. We prompt Meadow using one-shot
prompting:
Abstract: Coronavirus disease 2019 (COVID-19) threatens vulnerable
patient populations, resulting in immense pressures at the local,
regional, national, and international levels to contain the virus.
Laboratory-based studies demonstrate that masks may offer benefits
in reducing the spread of droplet-based illnesses, but few data are
available to assess mask effects via executive order on a popula-
tion basis. We assess the effects of a county-wide mask order on
per-population mortality, intensive care unit (ICU) utilization, and
ventilator utilization in Bexar County, Texas. METHODS: We used pub-
licly reported county-level data to perform a mixed-methods before-
and-after analysis along with other sources of public data for anal-
yses of covariance. We used a least-squares regression analysis to
adjust for confounders. A Texas state-level mask order was issued on
July 3, 2020, followed by a Bexar County–level order on July 15, 2020.
We defined the control period as June 2 to July 2 and the postmask
order period as July 8, 2020–August 12, 2020, with a 5-day gap to ac-
count for the median incubation period for cases; longer periods of
7 and 10 days were used for hospitalization and ICU admission/death,
respectively. Data are reported on a per-100,000 population basis
using respective US Census Bureau–reported populations. RESULTS:
From June 2, 2020 through August 12, 2020, there were 40,771 reported
cases of COVID-19 within Bexar County, with 470 total deaths. The
average number of new cases per day within the county was 565.4 (95%
confidence interval [CI] 394.6–736.2). The average number of posi-
tive hospitalized patients was 754.1 (95% CI 657.2–851.0), in the ICU
was 273.1 (95% CI 238.2–308.0), and on a ventilator was 170.5 (95% CI
146.4–194.6). The average deaths per day was 6.5 (95% CI 4.4–8.6).
All of the measured outcomes were higher on average in the postmask
period as were covariables included in the adjusted model. When ad-
justing for traffic activity, total statewide caseload, public health
complaints, and mean temperature, the daily caseload, hospital bed
occupancy, ICU bed occupancy, ventilator occupancy, and daily mor-
tality remained higher in the postmask period. CONCLUSIONS: There
was no reduction in per-population daily mortality, hospital bed,
ICU bed, or ventilator occupancy of COVID-19-positive patients at-
tributable to the implementation of a mask-wearing mandate. [SEP]
Title: Analysis of the Effects of COVID-19 Mask Mandates on Hospital
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Resource Consumption and Mortality at the County Level [SEP]
Abstract: {abstract} [SEP]
Title:

E.3 Correctness Functions

Rouge score. Recall-Oriented Understudy for Gist Evaluation (Rouge) score has originally been
designed to evaluate machine translation or text summarization tasks. The Rouge score counts the
overlapping n-grams between generated reference texts. Widely used n-grams include unigrams (Rouge-
1), bigrams (Rouge-2), and the longest common subsequence (Rouge-L). Specifically, it is computed
through

ROUGE =
|(n-gram ∈ Generation) ∩ (n-gram) ∈ Reference|

|Reference| .

METEOR score. The Metric for Evaluation of Translation with Explicit Ordering (METEOR) score
has also been originally designed to evaluate machine translation and text summarization. Different from
the Rouge score, the METEOR score considers the accuracy and fluency of the generation, as well as
word order. The calculation of the METEOR score can be found in Banerjee and Lavie (2005).

BERT-similarity. The BERT-similarity is based on sentence-bert (Reimers and Gurevych, 2019).
Specifically, in the first step, reference and generation texts are encoded as 768-dimensional feature
vectors, respectively. Then, the correctness values are computed by calculating the cosine similarity
between reference and generation vectors. In our implementation, we use sentence-Bert with bert-nli-
mean-tokens pre-trained weights as the encoding model.

ChatGPT evaluation. ChatGPT evaluation is calculated by prompting GPT-3.5-turbo with the question,
reference, and generation; and asking it to evaluate the correctness of the generation. The template used
in calculating ChatGPT correctness follows that in Lin et al. (2023):

Rate the level of consistency between the answer to the question and
the reference answer, from 0 to 100.
Question: In Scotland a bothy/bothie is a?
Reference: House
Answer: House
Rating: 100.
Question: Where in England was Dame Judi Dench born?
Reference: York
Answer: London
Rating: 0.
Question: {question}
Reference: {reference}
Answer: {generated}
Rating:

E.4 Inconsistency due to Correctness Thresholding

We provide more evidence to show the inconsistency of AUARC and AUPRC metrics caused by the ad
hoc correctness thresholding. The plots are in Fig 5, 6, 7, 8, and 9.
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Figure 5: The assessed results for AUARC (left) and AUPRC (right) of uncertainty/confidence measures for GPT-
3.5-turbo on the TriviaQA benchmark using the METEOR correctness score with varying thresholds.
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Figure 6: Results for Meadow using GPT-3.5-turbo and the Rouge score.
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Figure 7: Results for TriviaQA using GPT-3.5-turbo with temperature 1.5 and the bert-similarity metric.

0.0 0.5 1.0
Threshold

0.675

0.700

0.725

0.750

0.775

0.800

0.825

AU
RO

C

(a) AUROC

0.0 0.5 1.0
Threshold

0.65

0.70

0.75

0.80

0.85

AU
AR

C

UEigV
UEcc
UDeg
USE
UNLL

(b) AUARC

0.0 0.5 1.0
Threshold

0.74

0.76

0.78

0.80

0.82

AU
PR

C

UEigV
UEcc
UDeg
USE
UNLL

(c) AUPRC

Eig
V Ecc Deg SE NLL

Uncertainty/Confidence Measure

0

100

200

300

400

500

Ou
tp

ut
 R

an
ge

s

UEigV
UEcc
UDeg
USE
UNLL

(d) Output ranges

Figure 8: Results for TriviaQA using Llama-2-7b-chat and the Rouge score.
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Model Dataset Correctness Temperature UEcc UDeg UEigV UNLL USE CVerb

Llama-2

nq-open

bert 0.6 0.302±0.044 0.044±0.011 0.046±0.007 0.121±0.016 0.122±0.025 nan
meteor 0.6 0.293±0.027 0.072±0.010 0.077±0.015 0.167±0.021 0.137±0.024 nan
rougeL 0.6 0.297±0.039 0.058±0.010 0.051±0.010 0.147±0.021 0.124±0.019 nan
rouge1 0.6 0.297±0.038 0.057±0.011 0.051±0.010 0.148±0.021 0.124±0.020 nan

squad

bert 0.6 0.308±0.041 0.071±0.013 0.064±0.013 0.072±0.008 0.181±0.027 nan
meteor 0.6 0.299±0.049 0.252±0.027 0.247±0.029 0.419±0.018 0.407±0.024 nan
rougeL 0.6 0.359±0.045 0.139±0.033 0.150±0.027 0.187±0.028 0.332±0.036 nan
rouge1 0.6 0.360±0.044 0.141±0.034 0.150±0.027 0.195±0.032 0.337±0.035 nan

triviaqa

bert 0.6 0.312±0.052 0.020±0.005 0.028±0.007 0.244±0.012 0.061±0.008 nan
meteor 0.6 0.305±0.048 0.041±0.007 0.049±0.010 0.271±0.020 0.052±0.007 nan
rougeL 0.6 0.305±0.050 0.026±0.005 0.033±0.006 0.206±0.020 0.051±0.007 nan
rouge1 0.6 0.307±0.049 0.026±0.005 0.034±0.006 0.209±0.019 0.052±0.007 nan

Llama-2-chat

nq-open

bert
0.6 0.199±0.040 0.046±0.008 0.052±0.010 0.101±0.015 0.062±0.010 nan
1.0 0.236±0.033 0.035±0.008 0.038±0.007 0.097±0.017 0.055±0.012 nan

meteor
0.6 0.190±0.039 0.062±0.008 0.067±0.010 0.176±0.018 0.072±0.009 nan
1.0 0.224±0.034 0.044±0.006 0.046±0.007 0.209±0.023 0.074±0.015 nan

rougeL
0.6 0.198±0.039 0.053±0.011 0.057±0.010 0.167±0.013 0.060±0.012 nan
1.0 0.227±0.035 0.035±0.007 0.033±0.006 0.211±0.021 0.069±0.016 nan

rouge1
0.6 0.199±0.039 0.054±0.010 0.057±0.010 0.167±0.014 0.061±0.013 nan
1.0 0.227±0.035 0.034±0.007 0.033±0.006 0.212±0.021 0.069±0.015 nan

squad

bert
0.6 0.208±0.033 0.065±0.014 0.075±0.017 0.048±0.007 0.063±0.012 nan
1.0 0.276±0.039 0.067±0.011 0.063±0.010 0.038±0.006 0.098±0.012 nan

meteor
0.6 0.216±0.038 0.303±0.026 0.265±0.022 0.063±0.013 0.182±0.029 nan
1.0 0.300±0.046 0.292±0.035 0.250±0.027 0.064±0.011 0.274±0.021 nan

rougeL
0.6 0.239±0.036 0.177±0.026 0.143±0.020 0.052±0.011 0.127±0.020 nan
1.0 0.304±0.036 0.179±0.033 0.137±0.024 0.053±0.012 0.210±0.027 nan

rouge1
0.6 0.238±0.037 0.183±0.027 0.148±0.022 0.053±0.010 0.129±0.021 nan
1.0 0.303±0.035 0.185±0.033 0.143±0.025 0.053±0.012 0.213±0.026 nan

triviaqa

bert
0.6 0.140±0.024 0.062±0.016 0.061±0.015 0.020±0.004 0.027±0.007 nan
1.0 0.213±0.030 0.025±0.006 0.034±0.006 0.014±0.002 0.036±0.006 nan

meteor
0.6 0.145±0.027 0.067±0.017 0.064±0.015 0.034±0.009 0.075±0.016 nan
1.0 0.206±0.032 0.035±0.007 0.046±0.005 0.049±0.008 0.084±0.007 nan

rougeL
0.6 0.141±0.021 0.062±0.014 0.061±0.014 0.024±0.005 0.034±0.005 nan
1.0 0.204±0.035 0.027±0.006 0.040±0.004 0.022±0.002 0.051±0.007 nan

rouge1
0.6 0.141±0.021 0.062±0.014 0.062±0.013 0.024±0.005 0.034±0.006 nan
1.0 0.203±0.035 0.027±0.006 0.040±0.004 0.022±0.002 0.051±0.007 nan

GPT-3.5

meadow

bert 1.0 0.284±0.035 0.178±0.030 0.174±0.025 0.112±0.022 0.177±0.027 0.288±0.033

meteor 1.0 0.292±0.045 0.134±0.027 0.137±0.026 0.074±0.012 0.132±0.018 0.263±0.050

rougeL 1.0 0.278±0.045 0.130±0.022 0.131±0.025 0.056±0.010 0.113±0.022 0.289±0.046

rouge1 1.0 0.290±0.047 0.126±0.018 0.135±0.020 0.059±0.013 0.113±0.018 0.299±0.047

nq-open

bert 1.0 0.151±0.025 0.050±0.012 0.065±0.014 0.039±0.008 0.050±0.007 0.487±0.005

meteor 1.0 0.154±0.027 0.050±0.011 0.063±0.011 0.046±0.011 0.060±0.009 0.452±0.018

rougeL 1.0 0.151±0.022 0.048±0.011 0.062±0.012 0.034±0.009 0.052±0.008 0.487±0.006

rouge1 1.0 0.153±0.023 0.048±0.011 0.063±0.012 0.034±0.009 0.051±0.008 0.487±0.006

squad

bert 1.0 0.204±0.025 0.237±0.024 0.240±0.019 0.065±0.012 0.113±0.013 0.181±0.029

meteor 1.0 0.181±0.012 0.151±0.016 0.193±0.020 0.054±0.017 0.086±0.014 0.182±0.032

rougeL 1.0 0.222±0.025 0.270±0.023 0.269±0.016 0.037±0.010 0.100±0.011 0.168±0.035

rouge1 1.0 0.226±0.024 0.276±0.023 0.270±0.017 0.039±0.010 0.103±0.011 0.168±0.035

triviaqa

bert
0.5 0.215±0.042 0.212±0.040 0.212±0.041 0.043±0.006 0.052±0.009 nan
1.0 0.152±0.025 0.129±0.020 0.133±0.020 0.039±0.007 0.052±0.012 0.182±0.025

1.5 0.142±0.018 0.053±0.011 0.074±0.012 0.031±0.007 0.081±0.009 nan

meteor
0.5 0.215±0.049 0.211±0.045 0.208±0.047 0.179±0.021 0.234±0.019 nan
1.0 0.156±0.026 0.131±0.024 0.131±0.022 0.146±0.011 0.209±0.012 0.194±0.036

1.5 0.137±0.024 0.059±0.011 0.077±0.012 0.119±0.010 0.176±0.015 nan

rougeL
0.5 0.214±0.046 0.210±0.042 0.207±0.041 0.041±0.007 0.050±0.008 nan
1.0 0.151±0.024 0.126±0.019 0.129±0.019 0.038±0.007 0.059±0.009 0.181±0.026

1.5 0.138±0.025 0.059±0.012 0.079±0.011 0.034±0.008 0.104±0.007 nan

rouge1
0.5 0.216±0.046 0.212±0.043 0.209±0.042 0.040±0.007 0.050±0.008 nan
1.0 0.152±0.024 0.126±0.018 0.130±0.021 0.039±0.007 0.060±0.009 0.176±0.027

1.5 0.137±0.023 0.060±0.011 0.078±0.012 0.034±0.008 0.105±0.008 nan

Table 4: RCE results for various experimental configurations.
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Figure 9: Results for TriviaQA using Llama-2-7b-chat using temperature 1.0 and the Rouge score.

F Additional Experimental Results

Prompt Reference Generation P(UEcc ≤ u) P(UDeg ≤ u) P(UEigV ≤ u) P(USE ≤ u) P(UNLL ≤ u)

Q: Who did Dr. Crippen murder? his wife His wife 0.999 0.881 0.822 0.649 0.247
Q: What are the only two musical notes which have no flats? c and f B and F 0.999 0.761 0.769 0.898 0.691
Q: Which Eastenders actor has played the policeman Nick Rowan on TV? nick berry Mark Jordon 0.999 0.972 0.978 0.954 0.918
Q: Which ‘B‘ was the name of the mechanical shark used in the original ‘Jaws‘
film?

bruce Bruce 0.999 0.761 0.769 0.337 0.183

Q: Which actor does the interviewing in ’Interview with a Vampire’? christian slater Brad Pitt 0.999 0.858 0.856 0.861 0.893
Q: What did my true love bring to me on the Sixth Day of Christmas? six geese-a-laying Six geese a-laying 0.999 0.761 0.769 0.736 0.688
Q: In January 1957, Russell Endean became the first batsman to be dismissed
from a test cricket match for doing what?

handling the ball Handling the ball 0.999 0.761 0.769 0.901 0.368

Q: What are the first names of the two dancing instructors in the UK television
series ‘Hi De Hi’?

barry and yvonne Barry and Yvonne 0.999 0.761 0.769 0.846 0.627

Q: Who became the host of the UK television game show Blankety Blank in
1984?

les dawson Les Dawson 0.999 0.761 0.769 0.180 0.040

Q: How much, in pounds sterling, does the Best in Show Winner receive at the
annual Crufts Dog Show?

100 pounds £100 0.999 0.920 0.908 0.830 0.787

Q: In the Billy Bunter stories, what is the surname of Bunter’s form teacher? quelch Quelch 0.999 0.761 0.769 0.999 0.558
Q: Which play is featured in the film The Producers? springtime for hitler Springtime for Hitler 0.999 0.761 0.769 0.967 0.341
Q: What provoked the war between Honduras and El Salvador in 1969? a football match A soccer match 0.999 0.761 0.769 0.535 0.711
Q: Which character was played by Linda Thorson in The Avengers? tara king Tara King 0.999 0.824 0.885 0.919 0.399
Q: According to a traditional English proverb, what is better than none? half a loaf A bad excuse 0.999 0.972 0.978 0.931 0.908
Q: In which Welsh village is there only one gay, apparently?! llandewi breffi Llanddewi Brefi 0.999 0.926 0.963 0.950 0.906
Q: On September 28th, NASA announced that what had been detected on Mars? flowing water Possible signs of life 0.999 0.965 0.963 0.813 0.930
Q: What are the first four words of the Bible, as recorded in Genesis? in the beginning god In the beginning, God 0.653 0.650 0.651 0.574 0.557
Q: Which national anthem was originally called the ’War Song for the Rhine
Army’?

marsellaise German national anthem 0.694 0.858 0.837 0.785 0.888

Q: Name the UK budget holiday company specialising in Turkey and Greece
which went bust in July 2010?

goldtrail Goldtrail 0.999 0.920 0.902 0.894 0.655

Q: Who has been President of France twice, but never been elected to the
position?

alain poher François Mitterrand 0.999 0.920 0.902 0.854 0.864

Q: What is the name of Madonna’s proposed chain of fitness clubs? hard candy fitness Hard Candy Fitness 0.999 0.761 0.769 0.996 0.183
Q: Elvis Presley sang a few lines in German on which US hit song? wooden heart Wooden Heart 0.999 0.761 0.769 0.998 0.270
Q: What was the name of the book that was a collection of Aubrey Beardsley’s
work, published by Leonard Smithers in 1897?

a book of fifty drawings The Yellow Book 0.999 0.761 0.769 0.950 0.775

Q: Dishes prepared with spinach can be referred to as what? la florentine Spinach dishes 0.999 0.920 0.902 0.943 0.899
Q: Which English civil engineer’s most famous project was the construction of
Tower Bridge over the River Thames in London?

sir john wolfe-barry Sir John Wolfe Barry 0.999 0.761 0.769 0.830 0.633

Q: Where did the space probe New Horizons launched by NASA in 2006 aim
to investigate?

pluto and the kuiper belt Pluto and the Kuiper Belt 0.999 0.905 0.904 0.905 0.576

Q: Where woud you find a nave or an apse? in a church In a church 0.999 0.761 0.769 0.236 0.185
Q: What is the name of Jay-Z and Beyonce’s daughter? blue ivy Blue Ivy 0.999 0.976 0.965 0.975 0.354
Q: ’Feel Like Making Love’ and ’The First Time Ever I Saw Your Face’ were
hit singles for which female artist?

roberta flack Roberta Flack 0.999 0.761 0.769 0.864 0.046

Q: In the nursery rhyme, who pulled pussy out of the well? little tommy stout Tommy 0.999 0.976 0.987 0.962 0.882
Q: "In the film of the same name, what was the name of ""The Hustler""?" """fast eddie"" felson" Fast Eddie Felson 0.999 0.761 0.769 0.708 0.692
Q: In Camberwick Green on Children’s TV who was the commander of Pippin
Fort?

captain snort Captain Snort 0.999 0.761 0.769 0.961 0.156

Q: In Chigley on Children’s TV who owned the steam railway and drove the
steam engine ’Bessie’?

lord belborough Lord Belborough 0.999 0.761 0.769 0.951 0.401

Q: Who won the gold medal in the women’s Skeleton Bob at the 2010 Vancouver
Winter Olympics?

amy williams Amy Williams 0.999 0.881 0.822 0.676 0.265

Q: What decoration, a Cross, was first awarded in 1995 to Corporal Wayne
Mills for his actions in Bosnia?

conspicuous gallantry George Cross 0.999 0.844 0.783 0.801 0.899

Q: What was the French sounding winner of the 2011 Epsom Derby? pour moi Pour Moi 0.999 0.761 0.769 0.321 0.101
Q: Who originally provided the voice for TV’s ’Basil Brush’? ivan owen Ivan Owen 0.999 0.761 0.769 0.987 0.454
Q: "Which actress played ’Valeria"" in the film Carry On Screaming?" fenella fielding Fenella Fielding 0.999 0.761 0.769 0.862 0.206
Q: Which of the ’Spice Girls’ advertised ’Milky Way’ ob t.v.? emma bunton (baby spice) Victoria Beckham (Posh Spice) 0.999 0.949 0.963 0.985 0.847
Q: Give any year in the life of the Portuguese prince known as Henry the
Navigator.

1394-1460 1394-1460 0.999 0.761 0.769 0.680 0.671

Q: On which horse did Sir Gordon Richards ride his only Epsom Derby winner? pinza Pinza 0.999 0.824 0.885 0.987 0.229
Q: What was the name of the aeroplane in which Wiley Post became the first
pilot to fly solo around the world?

’winnie mae’ Winnie Mae 0.999 0.761 0.769 0.849 0.654

Q: Who was the husband of Rebekah Brooks from 2002 to 2009? ross kemp Ross Kemp 0.999 0.761 0.769 0.826 0.746
Q: Whole Again and Eternal Flame were Number Ones for which girl group in
2001?

atomic kitten Atomic Kitten 0.999 0.761 0.769 0.180 0.026

Q: During a penalty shoot out in soccer where should the non participating
players be

in the centre circle Outside of the penalty area 0.999 0.985 0.987 0.987 0.960

Q: On which game show was Bobby Charlton once a contestant and winner double your money A Question of Sport 0.999 0.961 0.963 0.987 0.952
Q: From ’On Her Majesty’s Secret Service’ (1969), as Bond passes a janitor in
Draco’s headquarters, the man can be heard whistling what?

the goldfinger (1964) theme "Goldfinger" 0.999 0.944 0.940 0.984 0.886

Q: A Paris grocer was jailed for two years in 1978 stabbing wife what? a wedge of hard cheese Knife 0.999 0.976 0.987 0.974 0.849

Table 5: Examples of correctness and the according uncertainty levels.
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F.1 Qualitative Illustration

x: In 1840 the world’s first postage stamps printed were the
Penny Black and which other?
y: twopenny blue
ŷ: The Penny Red
P(USE ≤ u): 0.825
P(UNLL ≤ u): 0.864

x: Championship dragon boat racing calls for a specialised long
boat, a team of paddlers (typically 20), a sweeper to steer and
which other of these?
y: a drummer and drum
ŷ: A drummer
P(USE ≤ u): 0.946
P(UNLL ≤ u): 0.704

x: Who has the highest suicide rate in the UK?
y: men - by a ratio of roughly 4 to 1
ŷ: Middle-aged men
P(USE ≤ u): 0.745
P(UNLL ≤ u): 0.894

x: Which East Midlands club holds the Football League record
for most games played?
y: nots county
ŷ: Notts County
P(USE ≤ u): 0.842
P(UNLL ≤ u): 0.793

We provide more instances to show the qualitative effect of our RCE-based assessment in Table 5.

F.2 Recalibration with Histogram Binning

We use equal-mass histogram binning to recalibrate, in a post-hoc manner, the performance of an
uncertainty (or confidence) measure on a specific benchmark. Specifically, given a dataset {(ui, ai)}ni=1 of
uncertainty and correctness values computed over a benchmark, where each ui =U(x; ŷi), ai =A(xi; ŷi),
and ŷi is a response generated by the LM. Then, we first randomly split it into the calibration set
{(ui, ai)}ncal

i=1 and the test set {(ui, ai)}ni=ncal+1. Similar to the operations in Sec. 4.3, we partition the
range of U into B bins {binb}Bb=1 whose boundaries are quantiles of {(ui, ai)}ni=ncal+1. Then, we estimate
the expected correctness level over the binb as

crcb,cal :=
1

|Ib,cal|
∑

i∈Ib,cal
ai

where Ib,cal ≜ {i : 1 ≤ i ≤ ncal, ui ∈ binb}. We re-calibrate the measure U , defining Ucal via
Ucal(x; ŷ) = crcb,cal for any U(x; ŷ) ∈ binb. We split the benchmark data equally into calibration and
test sets and evaluate the performance of the calibrated measure on the test set. Table 3 and Fig. 10 and 11
list the RCE results of USE for GPT-3.5-turbo before and after calibration. We observe the calibrated
measure is significantly better rank-calibrated, showing the effectiveness of this strategy.

While effective, one should note that such a post-hoc recalibration strategy concerns a specific
benchmark and is not a focus of our work. We leave devising benchmark-agnostic calibrated uncer-
tainty/confidence measures for future work.
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(d) TrviaQA

Figure 10: Indication diagrams of USE and USE,cal (post-calibrated) for GPT-3.5-turbo (temperature 1.0) on various
benchmarks with the Meteor correctness.

F.3 Critical Difference Diagrams
Here, we propose to combine the RCE metric with the critical difference (CD) diagram (Demšar, 2006).
Critical Difference diagrams are built on the Wilcoxon signed rank test and the Friedman test, giving a
non-parametric comparison of multiple approaches aggregated over several trials.

12345

5.0000UEcc 3.4188UDeg
3.2125UEigV

2.3250USE

1.0437UNLL

Figure 12: CD diagram of Llama-2-chat on TriviaQA.

As a demonstration, the CD diagram of assessed measures for Llama-2-chat on TriviaQA is shown
in Fig. 12. The positions of various methods represent their averaged ranks over various experimental
configurations (e.g., temperature, LM, bootstrap, etc), where a lower averaged rank indicates that the
corresponding measure (e.g., 1.04 for UNLL) performs better than others in an averaged sense. Here,
a thick horizontal segment connects measures (e.g., UDeg and UEigV) if the difference between their
averaged ranks is within the critical length determined by related hypothesis testing procedures. Measures
that are disconnected (e.g., UEcc, UDeg, and UNLL) have statistically significant differences in performance.

F.4 Robustness Analysis
The RCE of uncertainty measures in practice may be affected by several factors. Therefore, we conduct
ablation studies to analyze whether RCE is robust to two crucial key factors: correctness scores and model
temperatures.

Correctness functions. We show RCEs for various models and correctness scores on TriviaQA and
SQuAD in Fig 13. Each result is obtained using bootstrapping with 20 fixed seeds. We observe that
the ranking of uncertainty measures is robust to correctness scores. For instance, we show the critical
diagrams using GPT-3.5 on TriviaQA with varying correctness scores in Fig 14. In this setting, UNLL,
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(a) Bert Similarity
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(b) Meteor Score
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(c) Rouge Score
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(d) Rouge1 Score

Figure 11: Indication diagrams of USE and USE,cal (post-calibrated) for GPT-3.5-turbo (temperature 1.5) on
TriviaQA with various correctness scores.

USE and CVerb rank consistently higher across different correctness scores. Second, as shown in Table 4,
RCE values using different correctness scores are relatively stable. For instance, when using GPT-3.5
on TriviaQA, the RCE values of NLL are 0.065, 0.054, 0.037, and 0.039 with bert_similarity, meteor,
rouge-L, and rouge-1 scores, which are close.

Temperature setting. We show the RCEs for various models and temperatures on TriviaQA and SQuAD
in Fig. 15. As above, each result is obtained using bootstrapping with 20 fixed seeds. The findings are
similar to those regarding correctness scores. First, as shown in Fig. 16, while RCE values are not constant,
UNLL ranks consistently highest across different temperatures. When only the best uncertainty measure is
considered, the RCE rankings at different temperatures give consistent results. Second, the RCE values
are stable across different temperatures. For instance, when using GPT-3.5 with the Rouge-L score, the
RCE values are 0.041, 0.038, 0.034 with temperatures 0.5, 1.0, and 1.5.

Influence of sample size. We show that the empirical RCE is robust regarding the influence of sample
size, which is crucial in scenarios where labeled data is hard to acquire. To this end, we conducted
a new experiment using less data in the RCE computation, simulating scenarios where only a small
amount of labeled data can is available. Specifically, we utilize 20%, 40%, 80%, 100% of the TriviaQA
dataset in computing the empirical RCE values of uncertainty/confidence measures for the GPT-3.5 model
with temperature 1.0. The RCE results under the Bert-similarity and RougeL correctness are in Table 6.
The binning scheme is the same as the one used in the paper (i.e., 20 equal-mass bins). From the new
experimental results, we observe that the RCE results are fairly stable, up to reasonable standard deviations
(denoted by the subscript numbers), for moderately large datasets.

F.5 Conclusive Comparison
While the RCE values and rankings are often stable when correctness score and temperature vary, there are
exceptional situations where uncertainty measures rankings might fluctuate. This poses a challenge when
aiming for conclusive comparisons for uncertainty measures across varying hyperparameter situations.
To make conclusive comparisons aiming to identify a best method, we can use CD diagrams by taking
multiple hyperparameter choices into account. For example, to draw conclusions agnostic to model
temperature, we plot CD diagrams that show RCE rankings averaged from data collected at different
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Figure 13: Box plots with various correctness functions under various configurations. The first row is for GPT-3.5-
turbo on TriviaQA; the second row is for GPT-3.5-turbo on SQuAD; the third is for Llama-2-7b-chat on TriviaQA;
and the fourth row is for Llama-2-7b-chat on SQuAD.

Proportion Correctness UEcc UDeg UEigV UNLL USE CVerb

bert

20% 0.176±0.022 0.153±0.023 0.152±0.024 0.058±0.009 0.080±0.015 0.254±0.042

40% 0.171±0.020 0.151±0.021 0.154±0.020 0.048±0.010 0.083±0.013 0.211±0.045

80% 0.162±0.022 0.153±0.016 0.151±0.017 0.043±0.010 0.062±0.012 0.203±0.031

100% 0.152±0.025 0.129±0.020 0.133±0.020 0.039±0.007 0.052±0.012 0.182±0.025

rougeL

20% 0.178±0.020 0.153±0.024 0.153±0.023 0.061±0.010 0.098±0.016 0.238±0.035

40% 0.172±0.022 0.153±0.021 0.156±0.017 0.048±0.009 0.090±0.010 0.194±0.040

80% 0.156±0.020 0.145±0.017 0.146±0.017 0.042±0.009 0.073±0.013 0.190±0.030

100% 0.151±0.024 0.126±0.019 0.129±0.019 0.038±0.007 0.059±0.009 0.181±0.026

Table 6: RCE results for GPT-3.5-turbo (temperature 1.0) performing on the TriviaQA data with various dataset
sizes under the Bert-similarity and RougeL correctness.
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Figure 14: CD diagrams using GPT-3.5 on TriviaQA with different correctness scores.
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Figure 15: Box plots based on the generations of GPT-3.5-turbo and Llama-2-7b-chat with varying temperatures.
The first row represents GPT-3.5-turbo with temperatures 0.5, 1.0, and 1.5, while the second row represents Llama-
2-7b-chat with temperatures 0.6 and 1.0. Both results are evaluated on TriviaQA dataset.
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Figure 16: CD diagrams on using GPT-3.5 TriviaQA with temperature 0.5, 1.0, and 1.5.
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Figure 17: Conclusive comparison via critical difference diagrams. The first plot is with GPT-3.5-turbo on TriviaQA
with temperatures 0.5, 1.0, and 1.5; the second is with Llama-2-chat on TriviaQA with temperatures 0.6 and 1.0.

temperatures, as shown in Fig. 17. Based on these results, comparisons agnostic to the temperature can be
made: UNLL overall outperforms other methods with GPT-3.5 and Llama-2-chat on TriviaQA; UEigV and
UDeg overall show statistically similar performance with Llama-2-chat on TriviaQA.

F.6 Library Information

The details of the main libraries used in our experiments are as in Table 7.

Package Version Package Version

transformer (Wolf et al., 2020) 4.32.1 nltk (Bird et al., 2009) 3.8.1
spacy (Honnibal and Montani, 2017) 3.6.1 torch (Paszke et al., 2019) 2.0.1
rouge-score (Lin, 2004) 0.1.2

Table 7: Information on main libraries used.

F.7 Artifact License and Terms

We use four datasets, namely, Natural Questions, TriviaQA, SQuAD-1, and Meadow. Natural Questions
is under the CC BY-SA 3.0 license, TriviaQA and Meadow are under the Apache License 2.0, and
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SQuAD-1 is under the CC BY-SA 4.0 license. We used two LLMs, namely ChatGPT-3.5 and Llama-2.
ChatGPT-3.5-turbo usage is subject to OpenAI’s Sharing & Publication Policy and Usage Policies. Llama-
2 is under the Llama-2 Community License (Meta, 2023). Our implementation and the data collected are
under the MIT License.

Our use of the existing artifacts is consistent with their original intended use. Our created artifacts
intend to verify our proposed method in our submission, which is consistent with the original access
conditions.

G AI Assistant Usage

We used Copilot to assist with coding.
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