
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 2242–2252
November 12-16, 2024 ©2024 Association for Computational Linguistics

Prefixing Attention Sinks can Mitigate Activation Outliers
for Large Language Model Quantization

Seungwoo Son1,2*, Wonpyo Park2, Woohyun Han2, Kyuyeun Kim2, Jaeho Lee1,2†

1POSTECH 2Google
{swson, jaeho.lee}@postech.ac.kr

{wppark, woohyun, kyuyeunk}@google.com

Abstract
Despite recent advances in LLM quantization,
activation quantization remains to be challeng-
ing due to the activation outliers. Conventional
remedies, e.g., mixing precisions for different
channels, introduce extra overhead and reduce
the speedup. In this work, we develop a sim-
ple yet effective strategy to facilitate per-tensor
activation quantization by preventing the gen-
eration of problematic tokens. Precisely, we
propose a method to find a set of key-value
cache, coined CushionCache, which mitigates
outliers in subsequent tokens when inserted as
a prefix. CushionCache works in two steps:
First, we greedily search for a prompt token
sequence that minimizes the maximum activa-
tion values in subsequent tokens. Then, we
further tune the token cache to regularize the
activations of subsequent tokens to be more
quantization-friendly. The proposed method
successfully addresses activation outliers of
LLMs, providing a substantial performance
boost for per-tensor activation quantization
methods. We thoroughly evaluate our method
over a wide range of models and benchmarks
and find that it significantly surpasses the es-
tablished baseline of per-tensor W8A8 quanti-
zation and can be seamlessly integrated with
the recent activation quantization method.

1 Introduction

Tremendous capabilities of large language models
(LLMs) come with a tremendous computational
cost. Modern language models often have over
hundreds of billions of parameters, requiring sig-
nificant memory and computation for prediction
and training. For instance, OPT-175B (Zhang et al.,
2022), one of the most popular open-sourced lan-
guage models, requires at least 350GB of memory
and the order of 1018 floating point operations to
generate a new token1 (Hoffmann et al., 2022).

*Work done during internship at Google.
†Contact: jaeho.lee@postech.ac.kr
1assuming the context length 2048

Quantization is an effective strategy to reduce
the computational cost of LLMs. Recent works
demonstrate that the precision of LLM weight pa-
rameters can be greatly reduced by post-training
quantization (PTQ), with minimal degradations in
its generation quality. For example, Huang et al.
(2024) shows that one can quantize the weights of
the LLaMA3-70B to 4 bits, with less than 0.5%p
drop in its zero-shot prediction accuracy. Roughly,
the reduced precision translates into 4× increase in
the generation throughput, and similar reduction in
memory requirements (Lin et al., 2024).

LLM activations, however, remain challenging
to be quantized. The key obstacle is the activation
outlier, i.e., a small number of activations that are
substantially larger than others (Bondarenko et al.,
2021; Dettmers et al., 2022; Sun et al., 2024). Such
outliers elongate the quantization range and flattens
out most non-outlier activations, leading to large
performance losses even at W8A8 quantization.

To address this issue, recent works propose to
mitigate outliers based on various relaxations of
the stringent static, per-tensor quantization. One
line of work applies quantization separately to each
channel depending on the outlier proneness (Bon-
darenko et al., 2021; Dettmers et al., 2022). These
methods, however, are difficult to be implemented
on conventional hardwares. Another line of work
reparameterizes the activations and weights in a
way that the impact of outliers are amortized (Xiao
et al., 2023; Ashkboos et al., 2024). These algo-
rithms focuses on attaining high generative qual-
ity by adopting per-token or dynamic quantization,
leaving the most hardware-friendly option—static
per-tensor quantization—less explored.

To fill this gap, we take a novel approach for mit-
igating activation outliers in LLMs. In particular,
we focus on answering the following key question:

Can we find a good prefix that mitigates
the activation outliers in the subsequent

2242

Figure 1: Activation magnitudes in LLaMA2-7B, before and after CushionCache. CushionCache mitigates
the activation outliers in LLMs by inserting and tuning the several prefix tokens to the model, which acts as an
attention sink. Adding such sink tokens alleviates outliers in the subsequent tokens and enables a better activation
quantization of the model with coarse quantization granularities.

tokens on a pretrained LLM?

Our answer is positive; we develop a very sim-
ple yet effective method, coined CushionCache, to
discover a prefix2 which reduces the outlier in the
following tokens processed by the given LLM. By
inserting this prefix, one then can quantize the acti-
vations of the LLM with much smaller quantization
error, leading to an improved generation quality.

To design our method, we draw inspirations from
a recent observation that the outliers may originate
from attention sinks (Bondarenko et al., 2023)—the
“no-operation” tokens that receive much attention
from other tokens (Xiao et al., 2024). By adding
sink-like tokens as a prefix, one may be able to
separate out outlier activations as well, rendering
the subsequent tokens outlier-free. In a nutshell,
our method works in two steps.
1. Greedy initialization. We search for a sequence

of sink-like prompt tokens in a greedy manner,
so that the activations of the subsequent tokens
are less prone to outliers (Section 4.1).

2. Quantization-aware prefix tuning. We train the
greedily initialized prefix further to minimize
the combined loss of the prediction loss and
quantization error (Section 4.2).
Our experiments demonstrate that the proposed

CushionCache is highly effective in making LLMs
more quantizable. The technique is versatile, con-
sistently improving the quantized performance of
LLMs under various scenarios, from per-token to
per-tensor static quantization. The method can also

2more precisely, the key-value cache; we only care about
the keys and values, rather than the token itself,

be seamlessly combined with existing quantization
algorithms to further boost their performances. To
summarize, we contribute the following.

• We introduce CushionCache, a new prefix dis-
covery method for mitigating LLM outliers to
improve the quantization performance.

• Through extensive experiments, we show that
CushionCache can consistently improve the
performance of quantized LLMs under a wide
range of setup. In particular, we improve the
prior state-of-the-art W8A8 per-tensor static
range quantization of LLaMA3-8B over 30%p
in zero-shot accuracy on downstream tasks.

• Through our analysis, we demonstrate that
CushionCache effectively replaces the role of
attention sink tokens.

2 Related Work

Outliers in LLMs. The fact that there exists usu-
ally large entries in LLM activations, or outliers,
has been reported by multiple works. Kovaleva
et al. (2021) and Timkey and van Schijndel (2021)
report the existence of outliers in large transformer-
based language models (e.g., BERT), and find that
they appear mostly in a small number of chan-
nels and layers. Bondarenko et al. (2021) make
a similar observation in the context of quantiza-
tion, and finds that quantizing the activations lead
to a large degradation in generation quality; the
work also reports that semantically meaningless
tokens can have higher tendencies to have outliers.

2243

Dettmers et al. (2022) confirm the same finding
while quantizing GPT-scale models, and studies
how the model scale affects the prevalence of out-
liers over tokens and layers. More recently, Sun
et al. (2024) investigates a similar phenomenon
in newer LLM variants and confirms that certain
tokens are more likely to suffer from outliers.

Per-channel activation quantization. A line of
work proposes to mitigate outliers in LLM acti-
vation quantization by applying different scaling
factors or precision to each channel. Bondarenko
et al. (2021) splits activation channels into several
groups and perform quantization on each group.
LLM.int8() (Dettmers et al., 2022) applies higher
precision (e.g., FP16) to a small number of outlier-
prone channels, while quantizing the other chan-
nels to lower bits (e.g., INT8). These works, how-
ever, are difficult to be implemented in conven-
tional hardwares, as they requires scaling along the
contracting dimension of matrix multiplication.

Per-token, with reparameterization. Another
line of work proposes to quantize the activations
per-token to reduce the impact of outliers with bet-
ter hardware acceleration. Many of these works
adopt reparameterization of weights to mitigate
the outliers further. ZeroQuant (Yao et al., 2022)
applies per-tensor quantization and knowledge dis-
tillation to achieve reasonable INT8 quantization
performance. SmoothQuant (Xiao et al., 2023),
Outlier Suppression+ (Wei et al., 2023), and Om-
niQuant (Shao et al., 2024) migrates the activation
magnitudes to the weights to normalize the scales
of the activations. More recently, QuaRot (Ashk-
boos et al., 2024) rotates the activations so that
the outlier magnitudes are distributed over multi-
ple axes in the reparametrized space. While these
methods are effective, per-token quantization are
typically slower than per-tensor quantization at the
same quantization precision as it requires larger
scale which has a size of the number of tokens.

Per-tensor quantization. Notably, Xiao et al.
(2023) also provides two options for per-tensor acti-
vation quantization: one with dynamic quantization
range, and another with static range. While these
options tend to be faster than per-token (with static
range being the fastest), their generation quality is
much lower than per-token, especially on recent
models such as LLaMA3 (Touvron et al., 2023).

Attention sinks and outliers. Recent works re-
port an intriguing phenomenon in large transform-

ers, termed attention sink. Xiao et al. (2024) find
that a small number of semantically meaningless
tokens, usually at the beginning of the sequence,
tend to receive unusually large attention. Darcet
et al. (2024) make a similar observation for vi-
sion transformers, and show that training ViTs with
additional meaningless tokens can help make the
attention structures more semantically meaning-
ful. Bondarenko et al. (2023) hypothesize that the
sink tokens may be the root cause of the activation
outliers, and propose a new architecture that pre-
vents the outliers from emerging when pretrained
from scratch. Our work shares a similar intuition,
but critically differs in that we mitigate outliers
by fine-tuning the pretrained LLM. This means no
modification to the network architecture is needed
and does not need to train the model from scratch.

3 Preliminaries

Key-value cache. Modern language models, typ-
ically based on decoder-only architecture, are built
as a sequence of transformer blocks which pro-
cess a sequence of tokens to predict the next token
(Vaswani et al., 2017). That is, at each decoding
step, the transformer f(·) performs:

tn+1 = f(t1, t2, . . . , tn) (1)

where t1, · · · , tn are the preceding tokens used as
context. LLM iteratively applies Eq. (1) autoregres-
sively to generate text as a sequence of tokens.

As the context length grows, the computational
cost to process all previous tokens also grows larger,
slowing down the generation significantly. A pop-
ular solution is to cache and reuse the keys and
values of the preceding tokens computed during
the previous iteration. This trick relies on the fact
that preceding tokens affect the outcome of the
current token only through their keys and values:

(sn,1, . . . , sn,n) = Attention(qn, k1:n)

on =

n∑

i=1

vi · sn,i

where qi, ki, vi denotes the query, key, and value
vectors for each token and si,j denotes the attention
score for the i-th token query on j-th token key. By
storing and reusing the cached values (called KV
cache), one only needs to process new tokens as:

tn+l+1 = f(tn+1:n+l | k1:n, v1:n), (2)

2244

where tn+1:n+l denotes l tokens given at the cur-
rent step and k1:n, v1:n are the keys and values of
the preceding context of length n, computed during
the previous iteration. During the prefill phase, l
may be the length of the prompt, and during the de-
coding phase, we can simply use l = 1, processing
only a single token at a time.

Quantization. Quantization is an act of casting
a high-precision tensor (typically FP) into a lower-
precision tensor (typically INT), to save the mem-
ory to store and computation to process the tensor.
In neural network quantization, a popular choice is
the linear quantization, which performs

Xint = round((Xfp − z)/s), (3)

where Xint,Xfp denotes the quantized and original
tensors, z, s ∈ R denote zero-point and scaling fac-
tor, and round(·) denotes the rounding operation.
The scaling factor is typically selected as

s =
max(Xfp)−min(Xfp)

2N−1 − 1
, (4)

where N denotes the number of bits for the inte-
ger format. The zero-point is determined as either
z = min(Xfp) or z = 0, for the asymmetric and
symmetric quantization, respectively.

Activation quantization with static range. By
quantizing both activation and weight matrices, one
can avoid performing computation-heavy FP ma-
trix multiplications. That is, for the case of symmet-
ric quantization (for simplicity), we approximate:

WfpXfp ≈ sWsX ·WintXint, (5)

where the right-hand side can be computed using
an integer matrix multiplication, and a single multi-
plication of FP16/32 quantities (for scaling factors).
The combined scaling factor need not be multiplied
back to the matrix immediately, and can be used in
the subsequent operations directly.

In many cases, the scaling factors sW, sX can
be pre-computed based on the validation set statis-
tics. This method, called static-range quantization,
enables more acceleration than computing these
values dynamically during the inference.

Outliers and complications. In LLMs, the ac-
tivation Xfp tends to have a very large entry
(Dettmers et al., 2022; Sun et al., 2024). In such
case, the magnitude of max(Xfp) and min(Xfp)
will be very large, making the scaling factor sX

very large. This leads to a high sparsity in the ten-
sor Xint, and a much degraded generation quality.

This problem can be alleviated in various ways:
One can change the scaling factor dynamically over
time (i.e., per-tensor dynamic quantization), or ap-
ply different scaling factors for each channel or
token (i.e., per-channel/token quantization). As
these methods require on-the-fly computations of
scaling factors, the methods are typically slower.

Granularity and the communication cost. The
drawback of finer quantization granularity becomes
more significant in the distributed setup, as it affect
the communication cost between nodes.

To see this, consider the case of multiplying ma-
trices with tensor parallelism, e.g., Megatron-LM
(Shoeybi et al., 2019). Comparing with the per-
tensor static quantization, per-tensor dynamic quan-
tization requires an additional AllReduce operation
over the nodes to aggregate the (high-precision)
scaling factor. The overhead is even more signif-
icant for per-token dynamic quantization, as the
number of scaling factors is multiplied by the num-
ber of tokens, increasing the cost of AllReduce.

4 Method

We now describe CushionCache, an algorithm to
find a prefix which can mitigate activation outliers
in the subsequent tokens, thereby alleviating the
quality degradation from activation quantization.

CushionCache aims to find a set of prefix that
minimizes the quantization error of the activations.
More concretely, let Xi denote activation of a trans-
former block for the input token ti. Our goal is to
minimize the squared difference between the origi-
nal and the quantized activations, i.e.,

Lq(t1, ..., tn) =
n∑

i=1

‖Xi − q(Xi)‖22, (6)

where q(·) denotes the quantization function, spec-
ified as q(X) = s · round((X − z)/s) + z. In
practice, we consider the summation of the er-
ror Lq of all transformer blocks, but we omit this
for the notational simplicity. Similarly, we define
Lq(t1:n|p1:m) as the sum of squared error for t1:n
given the prefix p1:n, where the scaling factor s and
zero-point z are determined for t1:n only.

We hypothesize that there exist prefix tokens p
that can reduce the expected activation quantization
error of the tokens. That is, we find

p̂1:m = argmin
p1:m

E [Lq(t1:n | p1:m)] , (7)

2245

where the expectation is taken over the probability
distribution of tokens t1:n. Once we find such prefix
p̂1:m, their keys and values are cached and reused at
the inference time to avoid redundant computation:

tn+1 = f(t1:n | k̂1:m, v̂1:m), (8)

where k̂ and v̂ corresponds to the key-value caches
of the prefix p̂1:n, which we call CushionCache.

We solve the minimization (eq. 7) with a strategy
based on prefix tuning. This is done in two steps:
Initializing prefixes based on greedily searched
prompts (Section 4.1), and Quantization-aware Pre-
fix tuning (Section 4.2).

4.1 Greedy Prefix Search

We carefully initialize the prefix as the prefix tun-
ing is known to be very sensitive to initial values.
We follow Li and Liang (2021) to search for the
prefix that are activations of hard prompt tokens,
i.e., input tokens that correspond to real text. As
the search complexity grows exponentially with
respect to the embedding size, we propose to use a
greedy search algorithm with tailored heuristics.

In a nutshell, our method is a greedy search with
early stopping. We add new tokens to the prompt
one-by-one, selected to minimize the quantization
error. If the new token does not decrease the error
much, we stop adding to prevent overfitting and
computational overhead from long prompts.

Concretely, at each step, we first draw a single
sample text t1:n from the dataset; we use the C4
dataset (Raffel et al., 2020), which is commonly
used for calibration or validation purposes, to draw
a sentence of length n = 512. Then, based on the
current state of prompts p1:k, we search for the next
prompt token pk+1 by solving

pk+1 = argmin
p∈E

Lq(t1:n|p1:k, p), (9)

where E denotes the embedding table; we can solve
this problem rapidly by batched inference. If the
discovered new token reduces the quantization er-
ror by some fraction τ > 0, i.e., satisfies

Lq(t1:n|p1:k+1) < τ · Lq(t1:n|p1:k), (10)

then we append this token to the prompt and pro-
ceed to the next iteration. Otherwise, or if the max
length is met, we stop searching for a new token.
We use τ = 0.5 for all experiments, which consis-
tently shows a good performance.

Algorithm 1 Greedy prefix search

Require: validation dataset D, embedding table
E , max length m, threshold τ

1: p = [] . initialize the prompt
2: while len(p) < m do
3: t ∼ Unif(D) . draw a text
4: p∗ = argminp′∈E Lq(t|p, p′).
5: if Lq(t|p, p∗) > τ · Lq(t|p) then
6: break
7: end if
8: p.append(p∗) . add new token
9: end while

10: return p

Note that this algorithmic design provides some
flexibility. More specifically, one can initialize the
prompt with nonempty sequence before the search,
as a heuristic that can help speed up the prompt
search procedure. We find that filling in nonseman-
tic words, e.g., <bos> or \n, is particularly useful;
this observation is well-aligned with the findings
of Bondarenko et al. (2021); Sun et al. (2024).

4.2 Quantization-aware Prefix Tuning

Using the intermediate activations of the greedily-
searched prompt as an initial prefix, we fine-tune
the CushionCache via prefix tuning (Li and Liang,
2021). Precisely, we freeze the model parameters
and train the prefix with the loss

L = Lpred + λ · Lq (11)

where Lpred is the cross entropy loss for the next-
token prediction and λ is a hyperparameter that
balances two losses. Here, we apply stop-grad to
scaling factors and zero-points of the quantization
function, as is typical in quantization-aware train-
ing literature (Jacob et al., 2018).

By optimizing this loss function, we ensure that
the CushionCache not only improves the prediction
accuracy but also minimizes the quantization error.
This tuning does not require excessive amount of
memory, as we only train the prefix.

5 Experiments

5.1 Experimental Setup

Models. We evaluate our method on five LLM
models: LLaMA2 and 3 (Touvron et al., 2023),
Mistral (Jiang et al., 2023), OPT (Zhang et al.,
2022) and BLOOM (Le Scao et al., 2022).

2246

WikiText-2 (↓) LLaMA2-7B LLaMA3-8B Mistral-7B-v0.1 OPT-6.7B BLOOM-7B

FP16 5.47 6.13 5.25 10.86 11.37

Per-tensor Static 9250.33 9759.46 85.51 11.45 11.93
+ CushionCache (ours) 5.98 (-99.9%) 7.41 (-99.9%) 5.84 (-93.2%) 11.00 (-3.9%) 11.50 (-3.6%)
SmoothQuant-O3 15439.73 14022.91 618.27 10.85 11.55
+ CushionCache (ours) 5.87 (-99.9%) 7.37 (-99.9%) 5.60 (-99.1%) 10.68 (-1.6%) 11.38 (-1.5%)

Per-tensor Dynamic 8.01 23.86 67.86 11.73 11.81
+ CushionCache (ours) 5.69 (-29.0%) 7.30 (-69.4%) 5.59 (-91.8%) 10.99 (-6.3%) 11.43 (-3.2%)
SmoothQuant-O2 8.13 25.12 66.16 10.87 11.59
+ CushionCache (ours) 5.66 (-30.4%) 7.29 (-71.0%) 5.56 (-91.6%) 10.68 (-1.7%) 11.39 (-1.7%)

Per-token Dynamic 5.47 6.22 5.30 11.20 11.47
+ CushionCache (ours) 5.37 (-1.8%) 6.15 (-1.1%) 5.21 (-1.7%) 10.77 (-3.8%) 11.37 (-0.9%)
SmoothQuant-O1 5.49 6.19 5.27 10.86 11.38
+ CushionCache (ours) 5.36 (-2.4%) 6.15 (-0.6%) 5.20 (-29.0%) 10.67 (-1.7%) 11.35 (-0.3%)

Table 1: Perplexity of W8A8-quantized LLMs on raw-WikiText2. Green denotes the relative decrease.

7 Zero-shot Tasks (↑) LLaMA2-7B LLaMA3-8B Mistral-7B-v0.1 OPT-6.7B BLOOM-7B

FP16 65.63 68.83 69.14 60.50 56.20

Per-tensor Static 36.37 35.86 48.83 57.94 55.87
+ CushionCache (ours) 64.47 (+28.10) 67.85 (+31.99) 67.75 (+18.91) 59.85 (+1.91) 55.91 (+0.04)
SmoothQuant-O3 36.32 36.22 37.45 60.61 55.96
+ CushionCache (ours) 64.67 (+28.35) 66.99 (+30.77) 68.39 (+30.94) 60.87 (+0.26) 56.66 (+0.75)

Per-tensor Dynamic 61.94 58.94 52.02 59.23 56.46
+ CushionCache (ours) 65.34 (+3.40) 68.66 (+9.72) 69.02 (+17.00) 60.28 (+1.05) 58.47 (+2.01)
SmoothQuant-O2 61.24 58.67 51.08 60.57 56.14
+ CushionCache (ours) 65.65 (+4.41) 68.74 (+10.07) 69.15 (+18.07) 60.60 (+0.03) 58.99 (+2.85)

Per-token Dynamic 65.43 68.92 68.90 59.48 56.55
+ CushionCache (ours) 65.78 (+0.35) 68.58 (-0.34) 69.83 (+0.93) 60.65 (+1.17) 56.72 (+0.17)
SmoothQuant-O1 65.64 68.64 69.09 60.55 56.35
+ CushionCache (ours) 65.97 (+0.33) 68.78 (+0.14) 69.99 (+0.90) 61.01 (+0.46) 56.80 (+0.45)

Table 2: Average zero-shot accuracies of W8A8-quantized LLMs. We average over LAMBADA, HellaSwag,
PIQA, WinoGrande, OpenBookQA, RTE, and COPA. Green is the accuracy gain and red is the drop.

Datasets. We measure the perplexity on the held-
out set of WikiText-2 validation dataset (Merity
et al., 2016). For zero-shot evaluation, we use seven
tasks from the LM evaluation harness benchmark
by EleutherAI (Gao et al., 2023). Precisely, we
use LAMBADA, HellaSwag, PIQA, WinoGrande,
OpenBookQA, RTE, and COPA datasets.

Base algorithms. We apply CushionCache on
two base activation quantization algorithms: Naïve
activation quantization and SmoothQuant (Xiao
et al., 2024). We consider three different scenar-
ios: Per-tensor static, per-tensor dynamic, and per-
token dynamic quantization. Note that for each
case, the SmoothQuant has a corresponding ver-
sion, called O3, O2, and O1, respectively.

Configuration: Quantization. We mostly fol-
low the setup of Li et al. (2024) and the TensorFlow
default. We use symmetric group-wise quantization
for model weights, and asymmetric quantization
for the activations. For SmoothQuant, we use the
migration strength α = 0.8, which worked consis-

tently well throughout our experiments. For static
range quantization, we calibrate using the training
split of WikiText-2 (Merity et al., 2016).

Configuration: Prefix tuning. We follow the
setup of Li and Liang (2021) and tune for 2 epochs.
We set the hyperparameter λ = 0.01.

5.2 Main Results: W8A8 Quantization

In Tables 1 and 2, we provide the performance
achieved by the quantized language models, quan-
tized with and without the proposed CushionCache.
We report the WikiText perplexity and zero-shot
accuracy in the tables, respectively.

For per-tensor static range quantization, Cush-
ionCache successfully improves the performance
of the model; the boost is quite substantial in
LLaMA and Mistral, often providing over 30%p
gains in terms of zero-shot accuracies. Intriguingly,
the gain is much more pronounced in LLaMA-style
models, which adopt the pre-LayerNorm and gated
linear units. For per-tensor dynamic range quantiza-
tion, similarly, we make consistent improvements

2247

LLaMA3-8B Zero-shot acc. (%)

FP16 68.83

Per-tensor Dynamic 58.94
+ Greedy-searched init. 67.78 (+8.84)
+ Prefix tuning 68.13 (+0.35)
+ Quantization-aware loss 68.66 (+0.53)

Table 3: Ablation study. We compare the contribution
of each algorithmic component by sequentially adding
them. We apply W8A8 per-tensor dynamic quantiza-
tion on the LLaMA3-8B model.

Per-Token Dyn. Perf. LLaMA3-8B Mistral-7B

ppl (↓) 6.13 5.25
FP16 acc.(↑) 68.83 69.14

SmoothQuant-O1 ppl 6.93 5.49
(W6A6) acc. 66.72 67.51

ppl 6.74 (-2.7%) 5.40 (-1.6%)
+ CushionCache acc. 67.60 (+0.88) 68.42 (+0.91)

SmoothQuant-O1 ppl 130.32 18.57
(W4A4) acc. 40.25 51.11

ppl 29.09 (-77.7%) 12.45 (-33.0%)
+ CushionCache acc. 48.78 (+8.53) 55.58 (+4.47)

Table 4: W6A6/W4A4 quantization. We addition-
ally evaluate per-token quantization with lower bits, as
W8A8 does not degrade much performance in general.

over both vanilla quantization and SmoothQuant.
For per-token dynamic quantization, the gain is

somewhat marginal, as the base quantization algo-
rithms already tend to achieve a close performance
to the FP16 model; we revisit per-token case for
lower precision in Section 5.4.

5.3 Ablation Study

In Table 3, we sequentially add our key algorithmic
components to validate their efficacy. In particu-
lar, the components are (1) greedy-searched initial
value, (2) prefix tuning, and (3) the quantization-
error-based regularizer.

We observe that each component makes nontriv-
ial contributions for achieving near-FP16 zero-shot
accuracy. Interestingly, we find that the greedy-
searched initialization is especially effective, con-
tributing ∼91% of the accuracy gain. This sug-
gests that our search mechanism can be used as
a compute-light standalone method in the cases
where it is difficult to conduct prefix-tuning, due to
a limited on-device memory.

5.4 4/6-bit Per-token Quantization

To confirm the effectiveness of CushionCache un-
der per-token dynamic quantization, we addition-
ally evaluate with a lower precision (Table 4). In
particular, we use W6A6 and W4A4.

Model Top-1 Top 10% Median

LLaMA2-7B 2461.40 0.59 0.23
+ CushionCache (ours) 25.83 0.59 0.24

LLaMA3-8B 288.32 0.16 0.06
+ CushionCache (ours) 4.94 0.16 0.06

Mistral-7B-v0.1 352.05 0.12 0.04
+ CushionCache (ours) 3.51 0.12 0.04

Table 5: Top-1, top 10%, and the median activation
magnitudes of three LLMs. Here, we inspect the in-
put activations to the last transformer block.

The results confirm that the proposed Cushion-
Cache is also effective in boosting the quantization
performance of per-token activation quantization al-
gorithms. In particular, CushionCache helps keep-
ing the accuracy degradation quite low (∼1%p) for
W6A6 quantization of both LLaMA3 and Mistral.

5.5 Other experiments

In the Appendix A, we provide additional experi-
ments results on the following topics:
• Evaluations on MMLU dataset (Appendix A.1)
• Latency measurements (Appendix A.2)
• Compatibility with other quantization methods

(Appendix A.3)

6 Analysis

We now conduct a brief sanity check. In particular,
we ask the following questions.
• Did the outliers disappear? (Section 6.1)
• Did the CushionCache really replace the role of

attention sink? (Section 6.2)
• Will it be computationally viable to run Cushion-

Cache for large models? (Section 6.3)

6.1 Change of Activation Magnitudes

In Table 5, we report various order statistics of the
activation magnitudes that appear in LLaMA2/3
and Mistral. In particular, we focus on the input ac-
tivations to the last transformer block of these mod-
els, and measure the top-1, top 10%, and median
(i.e., top 50%) activation magnitude. We average
over ten samples, with a sequence length 4096.

The effect of CushionCache is quite dramatic.
In particular, we find that the CushionCache can
reduce the scale of the activation outlier to 1-2%
of the previous value. The ratio between the top-1
and the median decreases from roughly 10,000:1 to
100:1. We also note that the other order statistics,
i.e., top 10% and median, remains roughly the same
before and after the CushionCache.

2248

Figure 2: Top-1/2/3 and median activation magnitudes at each layer of LLaMA3-8B. The left panel shows the
activations without CushionCache, having significant outliers except for initial layers. The right panel shows the
activation with CushionCache, having significantly reduced outliers in every layers.

Figure 3: Attention patterns before and after applying CushionCache in LLaMA3-8B and Mistral-7B. The
first and third panels show the attention patterns in models without CushionCache, where the attention sinks are
quite prevalent in the generated token sequence. The second and fourth panels illustrate the attention patterns after
inserting CushionCache. By adding the CushionCache, the attention is redirected toward the CushionCache tokens,
preventing the attention sink from arising in the subsequent tokens.

In Fig. 2, we visualize the top-1/2/3 activations
and median for each layer of LLaMA3-8B. The left
panel plots the magnitude of the median and top-3
activations that occur during the standard operation
of LLaMA3-8B. We observe that the median is al-
most zero, indicating that a significant fraction of
all activations are close to zero, with only a few sig-
nificantly large outliers. On the right panel, we plot
the same values after applying the proposed Cush-
ionCache algorithm. We observe that the size of the
top-3 activations have dramatically decreased, lead-
ing to a conclusion that CushionCache effectively
removes the activation outliers.

6.2 Attention on CushionCache

In Fig. 3, we visualize the attention patterns of
LLaMA2 and Mistral, before and after applying
the CushionCache. Attention sinks, as identified by
Xiao et al. (2024); Sun et al. (2024), are tokens that
disproportionately attract attention. By inserting
CushionCache, we observe that the CushionCache
tends to dominate most of the attention from other
tokens, removing the sinks in other tokens.

Model Step 1 Step 2 Total Time

LLaMA2-7B 2.68 hours 3.34 hours 6.02 hours
LLaMA3-8B 12.09 hours 3.70 hours 15.79 hours
OPT-7B 1.38 hours 2.71 hours 4.09 hours

Table 6: Wall-clock time for the search. We use a
server with four NVIDIA A6000 GPUs.

6.3 Time Needed to Search CushionCache

In Table 6, we report the wall-clock time spent for
performing the greedy search and prefix tuning of
CushionCache. We observe that the greedy prefix
search can be quite time-consuming, highly depen-
dent on the side of the embedding table; LLaMA3-
8B has a large embedding table. Another obser-
vation is that the quantization-aware prefix tuning
step takes relatively small time for all models.

7 Conclusion

In this paper, we present CushionCache, a novel ap-
proach for mitigating activation outliers in LLMs
to improve activation quantization performance.
Through extensive experiments, we demonstrate
that CushionCache consistently enhances the per-

2249

formance of per-tensor activation quantization. Our
analysis shows that CushionCache effectively re-
duces the magnitude of activation outliers and
redirects attention sinks, leading to more uniform
and quantization-friendly activations. In contrast
with other approaches to faciliate activation quan-
tization, CushionCache is the first—up to our
knowledge—to fundamentally alter the activation
distribution itself without extensive training, mak-
ing activations easier to quantize.

Limitations

A limitation of our study is that our method is de-
signed for LLMs with the decoder-only transformer
structure. An extension to encoder-decoder LLMs
(Raffel et al., 2020) may require further modifi-
cations to the algorithm. Another limitation is the
lack of a principled mechanism to determine the hy-
perparameter τ , which decides when to stop adding
new tokens. An extensive tuning may incur a non-
negligible computational cost, especially when the
target model is extremely large.

Ethics statement

All experimental results we provide in this paper
is based on publicly available datasets and open-
source models, whose intended use include re-
search purposes. We have used an AI assistant
for the grammar check.

Acknowledgements

This work was supported in part by the National
Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2023-
00213710), and in part by the Korea government
(MSIT) (No. RS-2024-00453301). JL also thanks
Hong-Seok Kim and Radha Chandika for their gen-
erous support during his visit at Google.

References
Saleh Ashkboos, Amirkeivan Mohtashami, Maxim-

ilian L Croci, Bo Li, Martin Jaggi, Dan Alis-
tarh, Torsten Hoefler, and James Hensman. 2024.
QuaRot: Outlier-free 4-bit inference in rotated
LLMs. arXiv preprint 2404.00456.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2023. Quantizable transformers: Re-
moving outliers by helping attention heads do noth-
ing. In Advances in Neural Information Processing
Systems.

Timothée Darcet, Maxime Oquab, Julien Mairal, and
Piotr Bojanowski. 2024. Vision transformers need
registers. In International Conference on Learning
Representations.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and
Andy Zou. 2023. A framework for few-shot lan-
guage model evaluation.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Oriol Vinyals, Jack W. Rae,
and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Advances in Neural Information Processing Sys-
tems.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng,
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xi-
anglong Liu, and Michele Magno. 2024. How good
are low-bit quantized LLaMA3 models? an empiri-
cal study. arXiv preprint 2404.14047.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023.
Mistral 7B. arXiv preprint 2310.06825.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. BERT busters: Outlier
dimensions that disrupt transformers. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021.

2250

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Ro-
man Castagné, Alexandra Sasha Luccioni, François
Yvon, et al. 2022. BLOOM: A 176B-parameter
open-access multilingual language model. arXiv
preprint 2211.05100.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan
Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. 2024. Evaluating
quantized large language models. arXiv preprint
2402.18158.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
AWQ: Activation-aware weight quantization for on-
device LLM compression and acceleration. In Con-
ference on Machine Learning and Systems.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024. Kivi: A tuning-free asymmetric
2bit quantization for KV cache. In Proceedings of
the International Conference on Machine Learning.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint 1609.07843.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2024. OmniQuant:
Omnidirectionally calibrated quantization for large
language models. In International Conference on
Learning Representations.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-LM: Training multi-billion
parameter language models using model parallelism.
arXiv preprint 1909.08053.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024. Massive activations in large language
models. arXiv preprint 2402.17762.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo
Zhang, Ruihao Gong, Jinyang Guo, and Xianglong
Liu. 2023. Outlier suppression+: Accurate quanti-
zation of large language models by equivalent and
effective shifting and scaling. In Conference on Em-
pirical Methods in Natural Language Processing.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao
Wu, Julien Demouth, and Song Han. 2023.
SmoothQuant: Accurate and efficient post-training
quantization for large language models. In Proceed-
ings of the International Conference on Machine
Learning.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In International
Conference on Learning Representations.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
ZeroQuant: Efficient and affordable post-training
quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. OPT: Open pre-trained transformer language
models. arXiv preprint 2205.01068.

2251

A Additional experiments

In this section, we provide additional experiments
that have been missing in the main script.

A.1 MMLU dataset
We have additionally evaluated the quantized
model on MMLU dataset, which encompasses a
much larger set of tasks including STEM (Table 7).
The results suggest that CushionCache remains to
be effective on MMLU as well.

Model LLaMA2-7B Mistral-7B LLaMA3-8B

FP16 41.27 58.63 62.13

SmoothQuant-O3 23.76 23.62 25.32
+ CushionCache (ours) 38.06 (+14.30) 56.59 (+32.97) 58.99 (+33.67)

SmoothQuant-O2 27.88 25.66 30.94
+ CushionCache (ours) 40.45 (+12.59) 58.05 (+32.39) 60.59 (+29.65)

SmoothQuant-O1 40.76 58.70 61.88
+ CushionCache (ours) 41.65 (+0.89) 59.20 (+0.50) 61.55 (-0.33)

Table 7: Results on MMLU. We compare the results
on the MMLU dataset.

A.2 Generation latency
We have measured the average latency of generat-
ing each token. We have experimented with W8A8-
quantized LLaMA-3B, using the SmoothQuant ker-
nel on a single A6000 GPU; not that this may not
be the best hardware-optimized kernel for our hard-
ware, but can be meaningful in terms of providing
a comparison. We have used the prompts of length
500, and averaged over 1000 generated tokens. We
compare both the time to the first token (TTFT;
prefill phase) and the time per output token (TPOT;
generation phase). in Table 8.

We observe that CushionCache only adds negli-
gible latency, while enabling a much better adop-
tion of the per-tensor static-range quantization tech-
niques which provides a much faster decoding. In
particular, we observe that adding CushionCache
adds only 0.01–0.3ms in TTFT or TPOT, which is
less than 0.5% of the total latency. Furthermore,
as the CushionCache makes the faster option (e.g.,
per-tensor static) a viable option, it can even be
viewed as enabling an overall speedup up to a few
milliseconds.

LLaMA3-8B TTFT (ms) TPOT (ms)

Per-Tensor Static 78.01 48.71 ± 1.58
+ CushionCache (ours) 78.22 48.86 ± 0.55

Per-Tensor Dynamic 81.52 50.56 ± 0.71
+ CushionCache (ours) 81.56 50.93 ± 0.82

Per-Token Dynamic 83.35 51.75 ± 1.22
+ CushionCache (ours) 83.64 51.76 ± 0.95

Table 8: Generation latency. We measure the genera-
tion speed on LLaMA3-8B.

A.3 Other quantization methods
We have conducted additional experiments to
combine with quantization algorithms other than
SmoothQuant. In particular, we have conducted
experiments on the following recent methods:
• AWQ-4bit (Lin et al., 2024): A recent weight-

only quantization algorithm, for demonstrating
that CushionCache effectively boosts the perfor-
mance of weight quantization algorithms.

• QuaRot-4bit (Ashkboos et al., 2024): A recent
weight+activation+cache quantization algorithm,
for demonstrating that CushionCache works well
with SOTA quantization algorithms.

• KIVI-2bit (Liu et al., 2024): A recent KV cache
quantization algorithm, for demonstrating that
the KV cache of the CushionCache-quantized
model can be compressed well with KV cache
quantization methods.

The results are given in Table 9, where we observe
that the CushionCache is indeed versatile, being
able to be combined well with many different quan-
tization methods. Note that for KIVI, we measure
the GSM8K results, as the original paper does not
report perplexity.

LLaMA3-8B WikiText-2 Perplexity

FP16 6.13

AWQ 6.18
+ CushionCache 6.15
+ Per-Cushion Static 8.40
+ Per-Cushion Static + CushionCache 7.01

QuaRot 8.21
+ CushionCache 7.41

LLaMA3-8B GSM8K (%)

FP16 48.75
+ KIVI 42.61

Per-tensor Static 0.06
+ KIVI 0.03
+ KIVI + CushionCache 38.29

Table 9: Other quantization methods. We combine
CushionCache with AWQ, QuaRot, and KIVI.

2252

