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Abstract

Data-generation based zero-shot learning, al-
though effective in training Small Task-specific
Models (STMs) via synthetic datasets gener-
ated by Pre-trained Language Models (PLMs),
is often limited by the low quality of such syn-
thetic datasets. Previous solutions have primar-
ily focused on single PLM settings, where syn-
thetic datasets are typically restricted to specific
sub-spaces and often deviate from real-world
distributions, leading to severe distribution bias.
To mitigate such bias, we propose FuseGen,
a novel data-generation based zero-shot learn-
ing framework that introduces a new criteria
for subset selection from synthetic datasets
via utilizing multiple PLMs and trained STMs.
The chosen subset provides in-context feed-
back to each PLM, enhancing dataset qual-
ity through iterative data generation. Trained
STMs are then used for sample re-weighting as
well, further improving data quality. Extensive
experiments across diverse tasks demonstrate
that FuseGen substantially outperforms exist-
ing methods, highly effective in boosting STM
performance in a PLM-agnostic way.1

1 Introduction

Despite the prevalence of powerful Pre-trained Lan-
guage Models (PLMs) (Achiam et al., 2023; Team
et al., 2023; Devlin et al., 2019) such as GPT-4,
Small Task-specific Models (STMs) are indispens-
able due to their compact size and efficiency, espe-
cially for resource-constrained environments (Bom-
masani et al., 2021). To compensate for the scarcity
of high-quality training data, synthetic data gener-
ated by PLMs has been widely applied for STM
training (Ye et al., 2022a; Wang et al., 2023). In
particular, data-generation based zero-shot learn-
ing (Ye et al., 2022a; Meng et al., 2022; Gao et al.,
2023; Ye et al., 2022b) trains STM using the dataset

1The code is available at https://github.com/
LindaLydia/FuseGen.

synthesized by one PLM through task-related label-
descriptive prompts, requiring only the task name
(e.g. movie review sentiment analysis) and label
categories (e.g. positive/negative). This zero-shot
trained STM is significantly smaller than the origi-
nal PLM with comparable performance (Ye et al.,
2022a), thus is particularly advantageous for do-
mains with limited computational resources (e.g.
on mobile devices) or strict data privacy constraints
(e.g. in finance applications).

However, the long-standing low-quality issue of
synthetic data impedes the practical application of
STMs to a wider range (Gao et al., 2023; Ye et al.,
2022b). Previous works on improving synthetic
data quality mainly focus on enhancing data diver-
sity (Fan et al., 2018; Holtzman et al., 2020; Su
and Collier, 2022; Yu et al., 2024), reducing re-
dundancy (Bolón-Canedo et al., 2013; Deng et al.,
2023), and implementing data-importance-guided
in-context feedback (Ye et al., 2022b) or sample
re-weighting (Gao et al., 2023). Despite notable
advancements, they primarily rely on one single
PLM as source, inevitably overlooking the inherent
distribution biases of synthetic datasets.

To thoroughly investigate these biases and their
impact on STM performance, we conduct two pi-
lot studies. As illustrated in Figure 1, we use the
dataset cartography approach (Swayamdipta et al.,
2020) to plot the cartography of synthetic datasets
given by different PLMs. Dataset samples are cate-
gorized into easy-to-learn (marked in red), ambigu-
ous (marked in black) and hard-to-learn (marked in
blue) based on their confidence and variability, de-
fined as the mean and standard deviation of model
probabilities for their labels across training epochs.
Since easy-to-learn samples aid convergence and
ambiguous samples are vital for boosting perfor-
mance (Swayamdipta et al., 2020), an ideal dataset
should predominantly contain diverse easy-to-learn
and ambiguous samples, with fewer hard-to-learn
samples which are often mislabeled (Swayamdipta
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(a) Llama-2 ZeroGen K = 1 (84.23)
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(b) Llama-2 ProGen K = 1 (84.24)
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(c) Llama-2 Ours K = 6 (86.60)
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(d) Flan-T5 ZeroGen K = 1 (88.18)
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(e) Flan-T5 ProGen K = 1 (85.80)
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(f) Flan-T5 Ours K = 6 (88.73)

Figure 1: Synthetic dataset cartography (Swayamdipta et al., 2020) using 1, 000 samples generated by Llama-2
and Flan-T5 for movie review semantic analysis. ZeroGen (Ye et al., 2022a) uses zero-shot prompt for generation,
while ProGen (Ye et al., 2022b) and FuseGen (Ours) use few-shot prompt with feedback, with ProGen relying on a
single PLM and FuseGen leveraging multiple PLMs. K is the number of PLMs. Numbers within parentheses are
the results of STM trained with Self-boosting Weight Adjustment (see Section 3.4) and evaluated over IMDb (Maas
et al., 2011) dataset. Results for more PLMs are provided in Figure 8 in Appendix C.1.

Figure 2: Performance of STM trained using 6, 000 syn-
thetic data samples generated by various PLMs. “mixed”
uses a dataset comprising 6, 000 total samples given by
the 6 listed PLMs (1, 000 samples per PLM). “FuseGen”
(Ours) uses the 6 listed PLMs and 6, 000 samples.

et al., 2020). This composition of diverse samples
promises better STM performance. In a second
study, we provide the comparison between STMs
trained with different datasets that vary in sources
and generation methods, as illustrated in Figure 2.

These visualization analyses reveal three key ob-
servations: (1) Synthetic datasets from different
PLMs exhibit significant distribution biases. For
example, Figures 1(a) and 1(d) show that the zero-
shot synthetic dataset produced by Llama-2 (Tou-
vron et al., 2023) primarily includes easy-to-learn
samples, whereas that of Flan-T5 (Chung et al.,
2022) contains a more balanced mixture of all 3 cat-
egories. (2) Distribution biases are difficult to over-
come by only relying on a single PLM. ProGen (Ye
et al., 2022b), an advanced single-PLM generation

method, only slightly improves the ratio of easy-to-
learn and ambiguous samples (Figure 1(b)), while
adversely increases the proportion of hard-to-learn
samples in some cases (Figure 1(e)). (3) Simply
mixing samples from multiple PLMs is ineffective.
As demonstrated in Figure 2, plainly combining
data generated by multiple PLMs improves STM
performance compared to most single-PLM cases,
but is still worse than the best single PLM.

To tackle these challenges, we propose FuseGen,
a smart data-generation based zero-shot learning
framework that mitigates inherent dataset distribu-
tion bias by harnessing the diversity of a PLM clus-
ter. In FuseGen, given a specific task and its label
categories, synthetic datasets are initially generated
by various PLMs in a zero-shot manner, which
are then used to train their respective STMs. To
alleviate distribution bias, FuseGen selects supe-
rior samples generated by multiple PLMs as shared
in-context feedback, and prompts each PLM to
accumulate higher-quality data iteratively. To se-
lect relevant in-context samples, FuseGen pivots
on an efficient cross-model criteria that consid-
ers both dataset composition and individual sam-
ple importance. To mitigate the negative impact
of poor-quality samples, FuseGen further uses a
self-boosting method to dynamically adjust sample
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weights to optimize STM in training. As demon-
strated in Figures 1(c), 1(f) and 2, with these novel
techniques, FuseGen effectively reduces distribu-
tion biases and achieves better STM performance
than state-of-the-art methods.

Our contributions can be summarized as follows:
(1) We introduce a novel data-generation based

zero-shot learning framework, FuseGen, which col-
laboratively leverages multiple PLMs to generate
higher-quality synthetic dataset without incurring
any additional queries to PLMs themselves. Fur-
ther, FuseGen neither requires access to nor fine-
tunes the parameters of PLMs.
(2) We propose a novel cross-model criteria for

selecting in-context samples, which then serves as
generation feedback, and a self-boosting method
for improving STM performance.
(3) Extensive evaluations on 9 Natural Language

Inference (NLI), Understanding (NLU) and Gener-
ation (NLG) tasks with 6 open-source and 2 closed-
source PLMs demonstrate the consistent superior-
ity of FuseGen over single-PLM methods. This
PLM-agnostic nature eliminates the reliance on
specific PLMs for downstream tasks.

2 Related Work

Data-generation based Zero-shot Learning. A
recent line of research focuses on exploiting the
data generation capabilities of PLMs (Ye et al.,
2022a; Meng et al., 2022; Ye et al., 2022b; Gao
et al., 2023) to generate synthetic data for train-
ing a target model (Meng et al., 2022; Ye et al.,
2022a,b; Gao et al., 2023). The dataset is gen-
erated by prompting PLM with task and label
descriptions. A critical challenge for this ap-
proach is that generated datasets often contain low-
quality samples. Recent attempts to address this
include techniques to enhance dataset diversity (e.g.
Top-k sampling (Fan et al., 2018), nucleus sam-
pling (Holtzman et al., 2020), diversely attributed
prompts (Yu et al., 2024), and contrastive search
decoding (Su and Collier, 2022)). Additionally,
feature selection (Bolón-Canedo et al., 2013) helps
eliminate redundant information within the dataset.
Finally, methods like progressive generation with
in-context feedback (Ye et al., 2022b) and sample
re-weighting (Ye et al., 2022b) focus on identifying
and amplifying the influence of high-quality sam-
ples. Despite significant progress, existing studies
often overlook the inherent data distribution bias
in synthetic datasets generated by a single PLM. In

contrast, our work explores avoiding this bias by
leveraging diverse multiple PLMs.

Fusion of PLMs. Recent studies suggest that
it is possible to combine the capabilities of mul-
tiple PLMs to obtain a model with stronger per-
formance (Wan et al., 2024a,b; Li et al., 2024).
Existing PLM knowledge-fusion techniques can
be grouped into training-time fusion and test-time
fusion (Mavromatis et al., 2024). Training-time
fusion methods (Wan et al., 2024a,b) fuse PLMs’
token-level predictions produced during training
time to fine-tune a target PLM, requiring abundant
computational resources. Test-time fusion methods
do not fine-tune PLMs, but utilize methods such
as logits averaging (Mavromatis et al., 2024) and
majority voting (Li et al., 2024) to fuse the knowl-
edge of PLMs at test time. In addition, interactions
and collaborations among PLM agents (Liu et al.,
2024; Du et al., 2023) have been investigated.

All these works demonstrate that collaboration
among diverse PLMs helps. However, all existing
works require direct access to training samples,
which means they are not applicable to the setting
of data-generation based zero-shot learning, the
problem we aim to solve.

3 FuseGen

3.1 Preliminaries
In data-generation based zero-shot learning (Ye
et al., 2022a; Gao et al., 2023) with a single PLM,
given a downstream task like text classification, a
PLM P with parameter ΦP first generates a syn-
thetic dataset D = {(xi, yi)}Ni=1 of size N . This is
accomplished by using a proper task-related label-
descriptive prompt T (·) (examples are provided in
Appendix A.1) as follows:

xi ∼ P(·|T (yi),ΦP) . (1)

D is then used to train an STM m with the follow-
ing training objective:

L =
N∑

i=1

ℓ(m(xi), yi), (2)

where ℓ is a common loss function, e.g. cross-
entropy loss.

3.2 FuseGen Architecture Overview
Different from previous works, we focus on multi-
PLM setting and propose FuseGen. The FuseGen
workflow is illustrated in Figure 3. In a nutshell,
FuseGen consists of two main components: Cross-
model Dataset Generation (CDG) (Section 3.3)
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Figure 3: Illustrated Workflow of FuseGen with two components: Cross-model Data Generation (CDG) and Cross-
model Data Quality Improvement (CDI). CDG iteratively executes parallel synthetic data generation, cross-model
data quality evaluation and cross-PLM in-context learning. CDI implements self-boosting weight adjustment for
sample-reweighted training of STM.

and Cross-model Data Quality Improvement (CDI)
(Section 3.4). For CDG, given a fixed number of
samples to generate in total, PLMs progressively
generate datasets for multiple rounds, each round
using an improved subset of samples generated
from previous rounds as in-context examples. This
is realized in three steps: (1) Parallel Synthetic
Data Generation: each PLM generates its own
dataset and trains a respective STM. (2) Cross-
model Data Quality Evaluation: the quality of gen-
erated samples is evaluated using a cross-PLM cri-
teria to select a desirable subset. (3) Cross-PLM
In-context Learning: the cross-PLM subsets are
used as in-context examples to prompt PLMs to
generate new datasets. Step (1) is then repeated.
After the required number of samples is reached,
we perform CDI which re-weights samples with
a self-boosting strategy. Algorithm 1 provides an
overview of the above steps, with each function
detailed in Appendix B.

3.3 Cross-model Dataset Generation

In FuseGen, each PLM iteratively generates a to-
tal of N samples across J + 1 rounds, incorpo-
rating feedback from STMs after each of the first
J rounds. In each round, a total of N

J+1 samples
are generated using the accumulated knowledge of
multiple PLMs from previous rounds as feedback.
Specifically, the following steps are taken:

Parallel Synthetic Dataset Generation. In each
round, each of K PLMs (denoted as {Pk}Kk=1) gen-

Algorithm 1 FuseGen
Input:
K PLMs, empty synthetic dataset {Dk ← ∅}Kk=1, target num-
ber of synthetic samples N for each PLM, sample selection
hyper-parameter α,R, S, number of feedback steps J taken to
obtain in total N synthetic samples, random initialized STM
m(0), test dataset of downstream task A, initialized sample

weights
{
{w(0)

k,i}Ni=1

}K

k=1
, learning rate η, number of weight

adjustment epochs E1, number of STM training epochs E2.
Output: STM m̃ that obtains the effectively aggregated
knowledge from K PLMs.
1: Initialize in-context feedback samples D̂ ← ∅.
2: for j = 0 to J do
3: for k = 1 to K in parallel do
4: Dk ← S_AccumulativeSynDataGeneration(Dk,

D̂, N , J , j).
5: mk ← S_STMTraining(Dk, m(0), E2).
6: end for
7: m̃← S_STMTraining(∪K

k=1Dk, m(0), E2).
8: D̂ ← C_SampleSelection(∪K

k=1Dk, {mk}Kk=1, m̃,
α, R, S).

9: end for
10: m̃ ← S_WeightAdjustSTMTraining(∪K

k=1Dk, m(0),

∪K
k=1

{
{w(0)

k,i}Ni=1

}
, E1, E2).

erates a synthetic dataset Dk = {(xk,i, yk,i)}
N

J+1

i=1

of size N
J+1 in parallel with the same task-related

label-descriptive prompt T (·) as described in Sec-
tion 3. Each dataset is then used to train a separate
STM mk following Equation (2). This step pro-
duces K separate STMs and K synthetic datasets.

Cross-model Data Quality Evaluation. In this
step, we aim to select a desirable subset from D =⋃K

k=1Dk to guide data generation. To accomplish
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this goal, we utilize the knowledge of trained STMs
at hand and develop a simple yet efficient criteria
for data-quality evaluation.

As discussed in Section 1 , easy-to-learn sam-
ples of low-variability and ambiguous samples of
high-variability are both vital for constructing a
desirable dataset, valuable for training convergence
and model generalization ability, respectively. In-
spired by this, we first use cross-model variability
dk,i to categorize each sample, defined as:

dk,i = STD(p1,k,i[yk,i], ..., pk′,k,i[yk,i], ..., pK,k,i[yk,i])
(3)

where pk′,k,i[yk,i] denotes STM model mk′’s pre-
dicted probability of synthetic label yk,i on that
sample xk,i, and STD represents standard devia-
tion2. To prompt the generation of a dataset that
includes both low-variability (low dk,i) and high-
variability (high dk,i) data, we select a small num-
ber of candidates (of size R ≪ N ) comprised of
αR top high-variability and (1 − α)R top low-
variability samples, where α is a hyper-parameter
that controls the percentage of high-variability sam-
ples. The goal here is to efficiently select a smaller
and more manageable subset from a large set of
candidates. The selected subset can then be pro-
cessed by more computationally intensive ranking.
To further identify samples that are vital for train-
ing, we train an STM m̃ using D and leverage the
noise-resistant influence function proposed in Pro-
Gen (Ye et al., 2022b) to select the top-S influential
samples from the R candidate samples (S < R).
Our results validate that these selected samples
originate from various PLMs (See Appendix C.4.)

Cross-PLM In-context Learning. After
selecting S in-context samples (denoted as D̂),
we add them to the original prompt T (·), re-
sulting in T (x̂1, . . . , x̂S ; ·) (see examples in Ap-
pendix A.1). We then send the feedback prompt to
each PLM to generate N

J+1 new samples following
xk,i ∼ Pk(·|T (x̂1, . . . , x̂S ; yk,i),ΦPk

), where ΦPk

denotes the parameter of Pk. In this way, PLMs
can learn from each other and generate datasets
with improved quality.

3.4 Cross-model Data Quality Improvement

After CDG process that improves overall data dis-
tribution, we perform one last step of re-weighting

2Different from Swayamdipta et al. (2020), we do not in-
clude confidence (i.e. mean of predicted probability in our
criteria, as the synthetic label is not used for in-context sam-
ples (see Appendix A.1 for in-context sample examples).

samples by their quality, determined by a Self-
boosting Weight Adjustment (SWA) approach.

As hard-to-learn samples (refer to Figures 1(c)
and 1(f)) and low-quality samples (e.g. meaning-
less or irrelevant) still exist post-CDG, we down-
weight these samples in each training round of
the final STM m̃. Specifically, a weight wk,i (uni-
formly initialized as 0.5) is assigned to each sam-
ple in D = {{(xk,i, yk,i)}Ni=1}

K

k=1. At the e1-th
weight-adjustment round of m̃, we update wk,i

using the following boosting strategy inspired by
TrAdaBoost (Dai et al., 2007):

w
(e1+1)
k,i = w

(e1)
k,i β−errork,i(1−correctk,i),

k = 1, . . . ,K, i = 1, . . . , N ,
(4)

where β = 1

1+
√

2 ln (NK)
E1

> 0 is a constant value for

weight adjustment, E1 is the number of total epochs
for weight adjustment, errork,i = 1 − pk,i[yk,i] is
the prediction error of m̃ on data sample xk,i, and
correctk,i = 1 if m̃ predicts sample xk,i correctly,
otherwise correctk,i = 0. Normalization is applied
afterwards to guarantee that

∑K
k=1

∑N
i=1w

(e1)
k,i =

0.5NK. After normalization, wk,i for correctly
inferred samples increases while that for wrongly
inferred samples decreases. A new STM is trained
from scratch with the new weights after each ad-
justment step. Training details are provided in Al-
gorithms 1 and 2. With SWA, the training objective
for m̃ using all synthetic data D is given by:

L =

K∑

k=1

N∑

i=1

wk,i · ℓ(m̃(xk,i), yk,i) . (5)

Unlike SunGen (Gao et al., 2023), which uti-
lizes a self-guided sample re-weighting method
with bi-level SGD optimization to enhance its STM
performance, our SWA achieves comparable STM
performance without requiring this computation-
ally expensive optimization step (see Section 4
and Appendix C.6). This translates to a signifi-
cantly smaller computational cost.

4 Experiments

4.1 Experimental Settings

Models. In our experiments, we evaluate on 6 open-
source PLMs: GPT-2-xl (GPT-2) (Radford et al.,
2019), Llama-2-7b-chat-hf (Llama-2) (Touvron
et al., 2023), Vicuna-7b-1.5v (Vicuna) (Chiang
et al., 2023), OPT-6.7b (OPT) (Zhang et al., 2022),
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IMDb SST-2

m̃G m̃L m̃V m̃O m̃C m̃F m̃G m̃L m̃V m̃O m̃C m̃F

ZeroGen ♠ 85.07±1.49 82.14±0.83 81.36±2.98 80.54±3.63 81.49±3.33 87.06±0.64 80.99±2.25 79.47±3.65 82.33±3.16 82.00±2.29 86.49±0.13 81.88±1.86

SunGen ♠ 86.94±0.99 86.59±1.20 84.93±1.17 85.21±0.64 84.76±2.67 89.79±1.33 83.45±0.79 84.30±0.28 84.04±0.30 83.49±1.22 87.18±0.08 83.53±0.86

ProGen ♠ 85.68±2.68 84.33±0.26 82.14±2.30 85.57±0.19 87.41±1.01 88.00±0.53 83.60±1.54 79.53±1.72 82.53±1.69 82.78±0.44 86.64±1.03 83.17±1.12

FuseGen (Ours) 90.06±0.30 87.51±0.23

Yelp QNLI

m̃G m̃L m̃V m̃O m̃C m̃F m̃G m̃L m̃V m̃O m̃C m̃F

ZeroGen ♠ 89.73±0.43 89.74±0.76 85.67±3.21 87.13±3.36 82.00±3.32 92.41±0.48 58.30±1.35 70.79±1.72 70.88±0.22 56.64±0.63 60.77±0.18 57.95±1.84

SunGen ♠ 91.85±0.56 89.30±0.55 89.06±0.88 91.22±0.38 88.86±1.78 93.13±0.31 62.26±0.63 74.20±0.13 74.35±0.38 57.50±0.88 65.64±1.04 58.21±1.17

ProGen ♠ 91.26±2.88 89.82±1.59 88.55±0.18 89.00±0.83 88.81±1.69 91.71±0.58 58.38±1.78 69.56±0.79 70.29±1.70 57.46±1.46 61.08±0.38 69.44±0.31

FuseGen (Ours) 93.47±0.32 74.92±0.36

MNLI-matched MNLI-mismatched

m̃G m̃L m̃V m̃O m̃C m̃F m̃G m̃L m̃V m̃O m̃C m̃F

ZeroGen ♠ 41.99±1.63 48.52±1.12 45.87±0.30 36.16±0.18 32.65±0.07 47.37±1.81 46.38±1.93 50.04±1.27 48.10±0.97 36.74±0.47 33.00±0.09 49.95±1.17

SunGen ♠ 44.66±0.35 49.43±0.04 46.27±0.65 37.44±0.12 32.71±0.07 49.04±0.70 47.45±0.42 51.67±0.27 48.63±0.55 38.35±0.31 33.02±0.06 51.66±0.67

ProGen ♠ 43.35±1.28 48.69±1.51 47.50±0.99 36.79±2.48 32.81±0.08 48.56±1.10 46.57±1.84 50.57±1.19 49.65±1.48 40.27±1.55 33.01±0.10 50.24±1.50

FuseGen (Ours) 49.76±0.55 51.70±0.50

AgNews SQuAD

m̃G m̃L m̃V m̃O m̃C m̃F m̃G m̃L m̃V m̃O m̃C m̃F

ZeroGen ♠ 77.86±3.31 83.40±0.07 81.25±2.25 84.81±0.33 83.17±0.33 81.87±2.91 9.32±0.99 7.37±1.46 5.05±0.05 7.72±0.60 8.60±0.79 5.95±0.98

SunGen ♠ 80.94±0.33 84.44±0.31 82.50±2.90 85.68±0.03 84.12±0.59 85.57±1.69 9.66±1.20 7.55±1.62 5.09±0.05 8.92±0.85 8.60±0.69 6.97±1.44

ProGen ♠ 78.68±1.91 83.93±1.23 81.46±1.57 85.66±0.97 84.74±0.43 84.59±0.37 8.08±0.58 7.42±1.39 6.96±0.79 7.51±1.83 9.43±0.55 6.60±1.16

FuseGen (Ours) 86.89±0.23 10.09±0.64

Table 1: Comparison of FuseGen and baselines with K = 6. Methods marked by ♠ are single-PLM methods. m̃G,
m̃L, m̃V , m̃O, m̃C , m̃F represents the final STM performance with single PLM GPT-2, Llama-2, Vicuna, OPT,
ChatGLM3 and Flan-T5, respectively. Best result is marked as bold, and the second best is marked with underline.

MarkedNews

m̃G m̃L m̃V m̃O m̃C m̃F

ZeroGen ♠ 77.16±0.71 74.49±2.07 74.10±0.47 77.80±0.76 80.33±1.23 76.12±1.27
SunGen ♠ 78.01±0.61 76.75±0.82 76.39±1.19 78.15±0.27 82.16±0.60 77.85±0.51
ProGen ♠ 77.17±2.24 76.51±2.00 76.14±1.59 77.93±2.12 82.70±0.73 78.75±1.09

FuseGen (Ours) 83.85±0.48

Table 2: Results of FuseGen and baselines with K =
6, N = 1, 000 using Markednews dataset. Best result
is marked as bold, and the second best is marked with
underline.

ChatGLM3-6b-base (ChatGLM3) (Du et al., 2022)
and Flan-T5-xl (Flan-T5) (Chung et al., 2022). 2
closed-source PLMs are also used for generating
synthetic datasets: GPT-3.5-turbo-instruct (GPT-
3.5) (OpenAI, 2021) and GPT-4-turbo-preview
(GPT-4) (OpenAI, 2023). For the choice of STM,
we use bert-base-uncased (BERT), a pre-trained
model, to perform downstream classification tasks.
The trained STM is evaluated over a real-world
human-annotated dataset (test dataset) A that is
never used during training.

Datasets. We select 8 well-developed datasets
to evaluate our framework: 1) IMDb (Maas et al.,
2011) and SST-2 (Socher et al., 2013; Wang et al.,
2019) for movie review semantic analysis task, 2)
Yelp-polarity (Zhang et al., 2015) for restaurant
review semantic analysis task, 3) AgNews (Zhang
et al., 2015) for news category classification task, 4)
QNLI (Wang et al., 2019) for question-information
entailment classification task, 5) MNLI (both
matched and mismatched) (Williams et al., 2018)

for sentence-pair relation classification task, 6)
SQuAD (Rajpurkar et al., 2016) for question an-
swering task. To test the effectiveness of FuseGen
on unseen tasks, we further create a new dataset
named MarkedNews from AgNews. MarkedNews
categorizes articles containing the symbol “$” as
“Money with $ included”, and all other articles re-
tain their original AgNews categories. This cre-
ates a new 5-class classification task: “World”,
“Sports”, “Business”, “Technology”, and “Money
with $ included”. We adopt the original test dataset
as A except for QNLI and MNLI, where ground-
truth labels are unavailable. In these cases, we use
the validation sets instead. The experiments run on
A100-80G.

Baselines. We compare our framework with
several existing data-generation based zero-shot
learning methods, including 1) ZeroGen (Ye et al.,
2022a) which directly trains an STM using the
generated synthetic data, 2) SunGen (Gao et al.,
2023) which recovers a robust synthetic dataset
through sample-level weight optimization, and 3)
ProGen (Ye et al., 2022b) which progressively gen-
erates data using self-given in-context feedback
through prompt. To ensure a fair comparison, all
methods generate the same number of samples. In
other words, each single-PLM method produces a
total of N ×K samples.

Implementation Details. Unless otherwise
stated, the following setting is applied: N = 1, 000
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synthetic data samples generated by each PLM are
used for FuseGen; the BERT models (STMs) are
trained with Adam optimizer with a learning rate of
2×10−5 and training epochs (E2) of 3. When train-
ing STMs, weight adjustment is performed for 30
iterations (E1 = 30). Each experiment is repeated
3 times using different random seeds, and averaged
accuracy is reported. α = 0.5, R = 40, S = 8
is used to select in-context samples for construct-
ing feedback prompt, except for QNLI and MNLI
datasets, where R = 20, S = 4 is used in order to
fit the maximum input length of each PLM. J = 4
is used for iterative generation (both FuseGen and
ProGen). For SunGen, 50 samples are used for
sample-weight backward gradient estimation.

4.2 Main Results
Tables 1 and 2 summarizes the main results of our
FuseGen framework and compared baseline meth-
ods. To ensure comprehensive evaluation, each
single-PLM baseline method is evaluated using
samples generated from each of the PLMs. F1
score is reported for SQuAD while classification
accuracy (ACC) is reported for other datasets.

Open-source PLMs. Tables 1 and 2 show that
FuseGen consistently outperforms all baselines us-
ing the same number of generated samples. Our
method achieves up to 1.2% increase in STM per-
formance over the best-performing single-PLM
baseline, which exploits the optimal PLM for each
task. SunGen performs consistently well among
single-PLM baselines, but the ideal PLM varies
by task. However, in zero-shot setting, where no
task-specific samples are available, pre-selecting a
PLM for optimal training performance is impracti-
cal. FuseGen is free from such pre-selection. Re-
sults for SQuAD with more synthetic samples are
included in Appendix C.5.

Unseen Tasks. Evaluation results for FuseGen
and baselines over our new dataset MarkedNews
are shown in Table 2, with synthetic data genera-
tion prompts detailed in Appendix A.1. FuseGen
outperforms all baselines consistently, demonstrat-
ing its ability to enhance downstream STM perfor-
mance even when PLMs lack prior knowledge of
the unseen classification task.

Closed-source PLMs. We also conduct experi-
ments on the fusion of two popular closed-source
models (GPT-3.5 and GPT-4) using QNLI dataset
with K = 2. Results in Table 3 (each m̃k is trained
with 6, 000 samples) demonstrate the superior per-
formance of FuseGen compared to baselines.

QNLI

m̃GPT−3.5 m̃GPT−4

ZeroGen ♠ 74.25±1.11 72.11±2.97

SunGen ♠ 76.66±0.84 75.46±0.96

ProGen ♠ 74.84±1.09 74.83±2.00

FuseGen (Ours) 77.59±0.53

Table 3: Comparison of FuseGen and baseline methods
on closed-source PLMs with QNLI dataset and K = 2.

Figure 4: Comparison of FuseGen between using multi-
PLM (last bar) and single-PLM with QNLI dataset.

FuseGen’s consistent superiority across diverse
tasks and models underscores its PLM-agnostic na-
ture. This eliminates the need of relying on specific
models for downstream tasks, making it a more
flexible and efficient solution.

4.3 Ablation Study

4.3.1 Multi-PLM v.s. Single-PLM
We evaluate the impact of multi-PLM fusion by
comparing FuseGen between using multi-PLM
(K = 6) and single-PLM (K = 1). Results are
provided in Figure 4. Since cross-model variabil-
ity evaluation in CDG can not be performed for
K = 1, random selection is applied here to select
R candidate samples, whereas CDI is applied to
both cases. Figure 4 shows that multi-PLM collab-
oration is vital for further improving the quality of
synthetic dataset, yielding better STM performance
than relying on single-PLM. Detailed results on
more datasets are provided in Appendix C.7.

We further study the impact of K on the per-
formance of FuseGen. Figure 5 shows the aver-
age and standard deviation (STD) of the perfor-
mance of FuseGen with K = 1, 2, 3, 4, 5 across all
CK
6 possible combinations. Each run is repeated

with 3 different seeds and a constant total synthetic
sample budget, N × K = 6, 000 is used for all
the runs. These results demonstrate that, as K
increases, the expectation of the final STM per-
formance improves, while the randomness (STD)
decreases. This indicates that FuseGen is able to
mitigate the degree of randomness on the final per-
formance by incorporating a greater number of
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Figure 5: Change in performance of FuseGen with the
change of K.

Figure 6: STM performance of FuseGen (m̃) with K =
1 (diagnose) and K = 2 (others) and N ×K = 6, 000
using QNLI dataset.

PLMs in the collaboration.

4.3.2 Pair-wise PLM Fusion
We additionally perform experiments for every pos-
sible pairing of the 8 PLMs (K = 2, N = 3, 000)
to investigate the pair-wise collaboration between
PLMs. Results are included in Figure 6. By com-
paring the pair-wise fusion results with single-PLM
performance (diagnose in Figure 6), we show that
even the strongest single PLMs, i.e. GPT-4 and
GPT-3.5, benefit from FuseGen through collabo-
ration with other (weaker) PLMs, resulting in en-
hanced STM performance. This highlights that
FuseGen’s enhancements are PLM-agnostic, re-
quiring no prior knowledge of PLM performance.
This flexibility is particularly important given the
plethora of open-source and closed-source PLMs
available today.

4.3.3 In-context Sample Selection
In-context sample selection is a critical component
of the FuseGen framework, as it influences the
quality of feedback from STMs to PLMs, which in
turn affects the generation quality of PLMs. In this
section, we compare various in-context sample se-

Variability Influ-
ence mG mL mV mO mC mF m̃

Low High

Rand. % 52.47 67.48 65.90 50.52 56.68 67.66 72.89
! % % 53.77 66.18 61.33 50.96 53.37 66.13 73.76
% ! % 54.98 65.48 60.76 49.79 54.28 65.47 73.81
! ! % 58.59 70.85 66.31 50.38 55.23 67.83 74.14

Rand. ! 54.25 70.44 70.74 51.19 56.68 68.84 74.07
! % ! 54.00 70.07 67.75 51.12 55.70 66.49 74.08
% ! ! 54.85 66.47 64.46 50.08 56.50 70.50 74.16

! ! ! 59.68 71.48 72.37 52.37 57.33 72.12 74.92
FuseGen (Ours)

Table 4: Comparison of different in-context sample
selection methods with QNLI as test dataset. “Variabil-
ity” is cross-model variability, and “Rand.” stands for
random sampling for in-context sample candidate se-
lection. mG, mL, mV , mO, mC , mF each represents
mGPT−2, mLlama−2, mV icuna, mOPT , mChatGLM3,
mFlan−T5 and m̃ is the final STM trained using D. Best
result is marked as bold and the second best marked
with underline for each STM (each column).

mG mL mV mO mC mF m̃

FuseGen (Ours) 59.68 71.48 72.37 52.37 57.33 72.12 74.92

w/o SWA 56.72 69.99 70.94 51.98 56.39 68.65 73.41

w/o CDG & SWA 51.24 65.81 70.61 50.83 53.01 55.73 69.41

SDG+mixed 52.13 69.22 70.11 51.79 54.87 68.58 70.20

Table 5: Comparison between FuseGen and its ablations
using N = 1, 000 with QNLI as test dataset.

lection strategies, including random selection, high-
variability and low-variability selection. The lat-
ter two exclusively select top-R high-variability or
low-variability samples, respectively. We also eval-
uate each strategy with and without fine-grained
influence-based selection. The results are shown
in Table 4. We also report the performance of each
mk trained with SWA using the corresponding Dk

during the FuseGen process in Table 4. Our in-
context sample selection strategy surpasses other
alternatives consistently, not just in the final STM
performance, but also for each intermediate small
model mk produced during FuseGen. This un-
derscores the efficacy of our selection approach
and FuseGen’s ability to produce higher-quality
datasets for all PLMs involved.

4.3.4 Effectiveness of SWA and CDG

As FuseGen consists of 2 components, CDG and
CDI (mainly achieved by SWA), we perform ab-
lation study by removing SWA and CDG step by
step from FuseGen, resulting in 2 ablations: “w/o
SWA” and “w/o CDG & SWA”. Note when both
CDI and CDG are removed, datasets are generated
from multiple PLMs using zero-shot prompt and
naively combined (the "mixed" case in Figure 2).
We further add ablation “SDG+mixed” (also with-
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time [s] m̃G m̃L m̃V m̃O m̃C m̃F

1k
SunGen 43.3 57.46 72.01 72.14 50.71 55.45 57.31

SWA 0.1 56.95 71.13 72.21 51.96 55.12 57.43

6k
SunGen 240.8 62.26 74.20 74.35 57.50 65.64 58.21

SWA 0.5 62.59 74.58 74.35 58.42 64.81 58.47

Table 6: Comparison on running time for each weight
adjustment epoch and STM performance between Sun-
Gen and SWA with QNLI as test dataset. Best result is
marked as bold.

(a) Effect of α (b) Effect of N (c) Effect of J

Figure 7: Ablation results on different hyper-parameters
used for FuseGen with QNLI as test dataset.

out SWA) which naively combines datasets given
by multiple PLMs using self-guided data genera-
tion (SDG) for in-context feedback (same as K = 1
in Section 4.3.1). Results are summarized in Ta-
ble 5 and Table 10 in Appendix C.6. From Table 5,
we observe a 1.51% drop in m̃ performance when
removing SWA, and another 5.51% drop when fur-
ther removing CDG, demonstrating that SWA is
effective in boosting knowledge transfer from syn-
thetic dataset to STM and CDG is effective in fusing
the knowledge of multiple PLMs. Also, CDG (“w/o
SWA”) outperforms “SDG+mixed” by a huge mar-
gin (3.21%), verifying the superiority of collabora-
tive feedback over self-guided feedback.

As SunGen (Gao et al., 2023) also re-weights
samples to boost STM performance, we further
compare the performance of SWA with SunGen
(using 50 samples for estimating gradients of sam-
ple weights), with results shown in Table 6. We
observe that, SunGen’s computational cost is two
orders-of-magnitude higher than SWA, yet delivers
comparable performance. This underscores the ef-
fectiveness and efficiency of SWA, demonstrating
that our FuseGen framework is much more compu-
tationally effective.

4.3.5 Effect of Hyper-parameters
We further study the impact of hyper-parameters α
(ratio of high-variability samples within the R in-
context sample candidates), N (sample generation
budget), and J (feedback times) of FuseGen with
K = 6 in Figure 7. Detailed results with each mk

are included in Tables 12 to 14 in Appendix C.8.
Effect of α. Figure 7(a) shows that, too many or

too few high-variability samples in the candidate
set both hurt the synthetic dataset quality, resulting
in lower STM performance, whereas a balanced
mix (α = 0.5) yields the highest STM results.

Effect of N . Figure 7(b) demonstrates that STM
performance improves with the increase of N . Ad-
ditionally, the performance improvement rate de-
celerates at larger values of N .

Effect of J . From Figure 7(c), we observe that
increasing J results in a slight but consistent im-
provement in performance, likely due to the fact
that more precise guidance is given to PLMs by a
more frequent feedback during the process.

5 Conclusion

We propose a novel data-generation based zero-
shot learning framework FuseGen that harnesses
the collaborative capability of multiple PLMs to
improve synthetic data generation of PLMs. We
first integrate multiple PLMs to alleviate distribu-
tion bias of synthetic datasets through cross-PLM
in-context samples selection, for constructing bet-
ter feedback recursively. To further improve STM
performance, we employ a self-boosting weight
adjustment strategy to down-weight low-quality
samples. Extensive experiments and ablation stud-
ies on various NLI and NLU tasks demonstrate
that FuseGen is highly effective, query-efficient
and PLM-agnostic without the reliance on specific
PLMs for downstream tasks, making it a more flex-
ible and resource-efficient solution.

Limitations

This work sheds lights on the possibility of multi-
PLM collaboration in the field of zero-shot learning.
However, it does not delve deeply into the interrela-
tionships between pairs of PLMs. A more thorough
investigation could yield insightful conclusions re-
garding which PLMs are most complementary to
one another. Meanwhile, aside from seeding the
same feedback to all PLMs, more personalized
feedback can be constructed to better suit the in-
herit distribution bias of each PLM, which may
further boost STM performances.
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A Prompts Used in Experiments

A.1 Task-related Label-descriptive Prompts

We present the prompts used for synthetic
dataset generation in Table 7. For information-
question entailment analysis task (QNLI) and
sentence pair relation analysis task (MNLI),
we leverage the open-source Wikipedia-short
(https://github.com/yumeng5/SuperGen/
tree/main/pretrain_corpus) dataset, which
contains short Wikipedia sequences (5 to 30
words) extracted from sentences in Wikipedia.
We use these sentences as the information source
for the prompts. In other words, each occurrence
of <information> or <sentence1> within the
prompt is replaced with a randomly-chosen
Wikipedia-short sequence before feeding it to
PLMs.

Below we also provide 2 examples of the few-
shot prompts used in FuseGen . We need to clarify
that, label information is not included in the in-
context samples.

Few-shot prompt for movie review se-
mantic analysis

The movie review is: This is an excellent romantic
comedy that relies more on wit and character than on
silly, typical formula. A lot of people I know walked
away from this movie disappointed, but I found it an
enjoyable experience. I also don’t understand why
Hollywood thinks that ’quirkiness’ is more important
than story, or why they can’t seem to create movies
in which the plot is interesting and makes sense.
The movie review is: There’s a lot of talent wasted
here. Haggis overuses his themes and is unable to let
his characters go in this soapy melodrama.
The movie review is: The movie is not fast paced
and some of the drama was a bit too much for me,
but I did like it.
The movie review is: There is a certain helplessness
in allowing ourselves to be tricked by the tricky cuts
that grace the first half of the film. It allows us to
suspend our disbelief and see what we want to see.
It’s not a movie I’d love to watch again, but it is one
I’m glad I got to see.
The movie review is: I will be the first to admit that
the animation is crude in some parts. What I liked
about the movie is that it had a very fun story line
and I loved the songs. The movie review is: There’s
no reason you shouldn’t enjoy this semi-tangential
off-shoot of a popular video game; it’s a fun, goofy
movie that doesn’t rely on the whole ’cinematic
universe’ concept
The movie review is: engaging and entertaining,
with excellent performances from David Niven and
Barbara Stanwyck. 2.Sheila is stunning in the movie,
a lady obsessed with the detective, especially when
working in an area with limited light. 3.The climax is
shocking - but it’s entirely appropriate, as the plot’s
terrible.

The movie review is: Many don’t like the hero, and
still others were glad they saw it and it was good.
With that said, there are some surprising plot holes,
inconsistencies and potential points of plot-holes that
also need to be addressed before anyone can put their
money into the film. If anyone was wondering how
people like things and don’t like other people like
things, this movie is a great example.

The new movie review in negative sentiment
which is diverse in the expression compared to the
above given samples is:

Few-shot prompt for information-
question entailment analysis

The Information-Question pair is: Soon after, the
account began to go viral, attracting the attention
of reddit streams, content aggregators, art critics,
and Renoir\u2019s own descendants.[SEP]and
Renoir’s own accounts suggests that they met in early
November 1881 when the baron stopped at their
boardinghouse. ”Below a quadriga in the Louvre
courtyard, Henri left his easel with his model and ran
up the stairway to Duret with the idea of showing
him what he had accomplished.“ (from Renoir’s
biography by Fr?
The Information-Question pair is: She made her
American debut in 1910, with the New York
Symphony Orchestra, under conductor Walter
Damrosch.[SEP]If this photo were to depict a
specific moment in history, or an individual’s life,
which historical period or individual would it most
closely resemble?
The Information-Question pair is: The Fall Line
is an American true crime podcast that covers
lesser-known cases of murder and disappearance
from minority communities in Georgia.[SEP]The
founder is the founder. If the owner owns the club, is
it the ’Alamo’ of crime blogs (or is it an ’evil bar’)?
The Information-Question pair is: She was a
Member of the Supreme Council of the Uzbek
SSR.[SEP]Who was the head of the Uzbek SSR
during her time on the Supreme Council?

The new Information-Question pair which is
diverse in the expression compared to the above
given samples is: Information: “<information>”
Question (answer not in above information):

B Detailed Algorithms

We provide the detailed algorithms for each func-
tion used in Algorithm 1 here in Algorithm 2.

C Additional Experimental Results

C.1 Dataset Cartography of More Synthetic
Datasets

C.1.1 Dataset Cartography Visualization
Dataset cartography (Swayamdipta et al., 2020) ap-
proach characterizes each sample by its confidence
and variability, which are defined as the mean and
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Dataset (task) type prompt label

IMDb and SST2
(semantic analysis
of movie review)

zero-shot “The movie review in positive/negative sentiment for a movie is: ” positive/negative

few-shot

“The movie review is: <sample_1>
The movie review is: <sample_2>...
The movie review is: <sample_S>
The movie review in positive/negative sentiment which is diverse
in the expression compared to the above given samples is: ” positive/negative

Yelp
(semantic analysis

of restaurant review)

zero-shot “The restaurant review in positive/negative sentiment is:” positive/negative

few-shot

“The restaurant review is: <sample_1>
The restaurant review is: <sample_2>...
The restaurant review is: <sample_S>
The new restaurant review in positive/negative sentiment which is diverse in
the expression compared to the above given samples is: ” positive/negative

QNLI
(information-question
entailment analysis)

zero-shot
“Information: <information>
Question (answer in/not in above information): ” entailment/not_entailment

few-shot

“The Information-Question pair is: <sample_1>
The Information-Question pair is: <sample_2>...
The Information-Question pair is: <sample_S>
The new Information-Question pair which is diverse in the expression
compared to the above given samples is: Information: <information>
Question (answer in/not in above information): ” entailment/not_entailment

MNLI (matched
and mismatched)

(sentence pair
relation analysis)

zero-shot

“<sentence1> In other words, /
<sentence1> Furthermore, /
There is a rumor that <sentence1> However, the truth is: ”

entailment/
neutral/

contradiction

few-shot

“The sentence pair is: <sample_1>
The sentence pair is: <sample_2>...
The sentence pair is: <sample_S>
The new sentence pair which is diverse in the expression
compared to the above given samples is: <sentence1> In other words, /
<sentence1> Furthermore, /
There is a rumor that <sentence1> However, the truth is: ”

entailment/
neutral/

contradiction

AgNews
(news articles
classification)

zero-shot “The news articles is in the category of World/Sports/Business/Technology: ”
World/Sports/

Business/Technology

few-shot

“The news article is: <sample_1>
The news article is: <sample_2>...
The news article is: <sample_S>
The new news article in the category of World/Sports/Business/Technology
which is diverse in the expression compared to the above given samples is: ”

World/Sports/
Business/Technology

MarkedNews
(self-defined news

articles classification)

zero-shot

“A news article in the category of World that does not include ‘$’/Sports that
does not include ‘$’/Business that does not include ‘$’/Technology that does
not include ‘$’/Money with ‘$’ included: ”

World/Sports/
Business/Technology/
Money with $ included

few-shot

“The news article is: <sample_1>
The news article is: <sample_2>...
The news article is: <sample_S>

The new news article in the category of World that does not include ‘$’/
Sports that does not include ‘$’/Business that does not include ‘$’/
Technology that does not include ‘$’/Money with ‘$’ included which is
diverse in the expression compared to the above given samples is: ”

World/Sports/
Business/Technology/
Money with $ included

Table 7: Prompt used for synthetic dataset generation.

standard deviation of the model probability of its
related label across all training epochs. For exam-
ple, if the model correctly predict a sample’s label
across training epochs, it will have high confidence
and low variability. These samples are regarded
as easy-to-learn samples , whereas those with low
variability yet low confidence are identified as hard-
to-learn samples. Conversely, samples with high
variability are deemed ambiguous.

We provide dataset cartography of synthetic
datasets generated by 6 different PLMs (GPT-2,
Llama-2, Vicuna, OPT, ChatGLM3 and Flan-T5)
in Figure 8 . In left-subplot of each sub-figure in

Figure 8, we display the variability (x-axis) and
confidence (y-axis) of all samples. The right sub-
plots depict histograms detailing the distributions
of confidence, variability, and correctness. Notice
that exactly 1, 000 samples are scattered onto each
plot, although samples may overlap with each other,
creating a visually sparser impression.

Comparing dataset cartography generated by the
same PLM, we can see that FuseGen helps to im-
prove the dataset composition by introducing more
ambiguous samples to balance the prevalence of
the easy-to-learn samples, while ensuring hard-to-
learn samples remain a minority.
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(a) GPT-2 ZeroGen K=1 (84.83)
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(b) GPT-2 ProGen K=1 (85.74)
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(c) GPT-2 Ours K=6 (87.85)
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(d) Llama-2 ZeroGen K=1 (84.23)
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(e) Llama-2 ProGen K=1 (84.24)
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(f) Llama-2 Ours K=6 (86.60)

0.00 0.05 0.10 0.15 0.20
variability

0.3

0.4

0.5

0.6

0.7

co
nf

id
en

ce

ambiguous

easy-to-learn

hard-to-learn

0.0
0.2
0.3
0.5
0.7
0.8
1.0

0.4 0.6
confidence

0

200

400

600

800

de
ns

ity

0.0 0.1 0.2
variability

0

200

400

600

de
ns

ity

0.00.20.30.50.70.81.0
correctness

0

200

400

600

800

de
ns

ity

(g) Vicuna ZeroGen K=1 (82.37)
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(h) Vicuna ProGen K=1 (83.60)
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(i) Vicuna Ours K=6 (87.50)
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(j) OPT ZeroGen K=1 (84.97)
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(k) OPT ProGen K=1 (87.57)
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(l) OPT Ours K=6 (88.47)
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(m) ChatGLM3 ZeroGen K=1 (86.43)
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(n) ChatGLM3 ProGen K=1 (87.07)
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(o) ChatGLM3 Ours K=6 (88.56)
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(p) Flan-T5 ZeroGen K=1 (88.18)
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(q) Flan-T5 ProGen K=1 (85.80)
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(r) Flan-T5 Ours K=6 (88.73)

Figure 8: Synthetic dataset cartography (Swayamdipta et al., 2020) using 1, 000 generated samples for movie review
semantic analysis. ZeroGen uses zero-shot prompt for generation, while ProGen and FuseGen (Ours) use few-shot
prompt with feedback but with different K, the number of PLMs involved. Numbers within parentheses are STM
performance evaluated using IMDb after training on the generated dataset, with SWA applied during training.
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Algorithm 2 Functions used in Algorithm 1 for
FuseGen
function S_AccumulativeSynDataGeneration(Dk, D̂, N ,
J , j):

if j = 0 then
Use zero-shot prompt as working prompt T .

else
Use D̂ to create few-shot prompt as working prompt
T .

end if
Generate N

J+1
samples using T and add them to Dk.

return Dk.

function S_STMTraining(D, m(0), E2):
Initialize a trainable STM m← m(0) and train m using
Dk for E2 epochs with Equation (2).
return m.

function C_SampleSelection(D, {mk}Kk=1, m̃, α, R, S):

Reset D̂ ← ∅.
for k′ = 1 to K do

for Each sample (xk,i, yk,i) in D do
Obtain the prediction vector pk′,k,i = mk′(xk,i) ∈
RC and predicted label-position probability
pk′,k,i[yk,i] ∈ R1.
Calculate disagreement score dk,i =
STD(p1,k,i[yk,i], ..., pk′,k,i[yk,i], ..., pK,k,i[yk,i]).

end for
end for
Sort all the samples within D and add the top-(1− α)R
samples with the lowest score and top-αR samples with
the highest samples into D̂.
Calculate the influence score of each sample in D̂ with m̃
using Eq.(3) in Ye et al. (2022b).
D̂ ← {top-S samples with the highest influence score}.
return D̂.

function S_WeightAdjustSTMTraining(D, m(0),
{w(0)

i }Ni=1, E1, E2):
for e1 = 0 to E1 − 1 do

Initialize a trainable STM m ← m(0) and train m
using D for E2 epochs with weighted loss using
{w(e1)

i }Ni=1 and Equation (5).
Adjust sample-level weight w(e1+1)

i ← w
(e1)
i with

m using Equation (4) for each sample (xi, yi), i =
1, . . . , N .

end for
return m.

C.1.2 Relationship Between Synthetic Dataset
Distribution Biases and Performance

We examine 2 statistical metrics, namely the mean
and standard deviation (STD), of the variability
(defined in Swayamdipta et al. (2020)) of each sam-
ple in the synthetic dataset plotted in Figure 8 that
are each given by a single PLMk (Dk). The re-
sults are presented in Table 8. We further conduct
a Pearson Correlation Coefficient test to evaluate
the correlation between these two metrics and the
final STM performance separately. Considering

all values in Table 8, the correlation coefficient
and p-value between the Mean of variability and
STM performance are 0.494 and 0.037 (< 0.050)
respectively, while that between the STD of vari-
ability and STM performance are 0.500 and 0.035
(< 0.050). These results support the hypothesis
that there is a statistically significant positive corre-
lation between both the Mean and STD of sample
variability and the final STM performance.

Method GPT-2 Llama-2 Vicuna OPT ChatGLM3 Flan-T5

ZeroGen
Mean 0.094 0.021 0.033 0.080 0.061 0.068
STD 0.045 0.029 0.042 0.044 0.052 0.052
ACC 84.83 84.23 82.37 84.97 86.43 88.18

ProGen
Mean 0.095 0.021 0.025 0.077 0.066 0.082
STD 0.044 0.031 0.033 0.046 0.052 0.031
ACC 85.74 84.24 83.60 87.57 87.07 85.80

FuseGen
(Ours)

Mean 0.087 0.041 0.030 0.083 0.058 0.096
STD 0.041 0.050 0.039 0.042 0.051 0.042
ACC 87.85 86.60 87.50 88.47 88.56 88.73

Table 8: Mean and standard deviation (STD) of the vari-
ability for each synthetic dataset in Figure 8 with corre-
sponding STM performance (trained with Self-boosting
Weight Adjustment) using IMDb. For FuseGen, results
are the performance of each m̃k.

C.2 T-SNE Visualization of Sample
Distributions

We also visualize the t-distributed Stochastic Neigh-
bor Embedding (t-SNE) of synthetic samples (N =
1, 000) in Figure 9. All samples are embedded with
a pre-trained bert-base-uncased encoder model.

Consistent with the dataset cartography in Fig-
ures 1 and 8, FuseGen generates a higher propor-
tion of ambiguous samples, which pulls the distri-
bution of samples from different semantic classes
closer to each other compared to ZeroGen and Pro-
Gen. This effect is particularly pronounced for
synthetic datasets given by Llama-2 and Vicuna.

C.3 Low-quality Synthetic Dataset Samples

In Table 9, we show examples of low-quality sam-
ples, including samples that are “mislabeled”, of
“low-relevancy”, and of “low-text-quality”. Sam-
ples are selected from synthetic datasets generated
by individual PLMs using zero-shot prompt for the
movie review semantic analysis task. This demon-
strates the importance for improving the overall
data quality of synthesic datasets.

C.4 Source of Selected In-context Samples

We show in Figure 10 that, the selected in-context
samples (desirable subset) and its candidates during
CDG originate from various PLMs. However, the
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Figure 9: t-SNE visualization of each synthetic sample generated by 6 PLMs for movie review task. Different
colors, blue and orange, represents embeddings from different class, positive and negative respectively.

proportion of samples contributed by each PLM
can fluctuate across iterations. This verifies that
knowledge from different PLMs are fused and fed
to each PLM through the feedback prompt, which
further boosts the generation quality of each PLM.

C.5 Larger Synthetic Datasets for Question
Answering Tasks

Note that, as the NLG task is harder than NLI and
NLU tasks, training a BERT with a total of 6, 000
samples does not result in high performance (see
Table 1). Therefore, we additionally performed
experiments with a total of K×N = 6× 6, 000 =
36, 000 samples. FuseGen achieves an F1 score of
15.79. For the baselines, the best and second-best
performing baselines under the smaller synthetic
dataset size setting, i.e., SunGen using GPT-2 and
ProGen using ChatGLM3, result in F1 scores of
13.57 and 13.12 respectively.

C.6 Ablations on More Tasks

We include the ablation results of “w/o SWA”, “w/o
CDG & SWA” and “SDG+mixed”(also w/o SWA)
for more tasks and here due to space limitation.

We also elaborate the explanation of “SDG+mixed”
here. In “SDG+mixed”, SWA is removed and CDG
is replaced with self-based feedback, i.e. random
selection is applied to select R candidate samples
from each Dk. K in-context samples subsets are
than selected based on sample importance from the
K candidate sample sets of size R and are further
fed to respective PLM Pk to generate samples.

As shown in Table 10, the application of SWA
significantly boosts the performance of all STMs,
particularly for {mk}Kk=1. This improvement high-
lights the efficacy of SWA in enhancing the quality
of synthetic datasets through the up-weighting of
higher-quality samples and the down-weighting of
lower-quality samples, thereby reducing the im-
pact of the latter. Furthermore, the application of
CDG also significantly boosts the performance of
all STMs to a greater extent than applying SDG.
This underscores the superiority of cross-model
feedback over the combination of self-guided feed-
back and highlights the efficacy of CDG in harness-
ing the capabilities of multiple PLMs.

2187



PLM Sample Text Label Type

GPT-2 A touching portrayal of friendship in the troubled 21st Century. negative mislabeled

GPT-2 We believe the movie <C> is decent but it’s none too unexpected for someone like
me who has fallen asleep watching movies and has seen this film before.

positive mislabeled

GPT-2 The ’Godzilla’ of the year thing is back. Say hello to The Amazing Spider-Man 2 negative low-relevancy

GPT-2 Broken Hearts Way was, on average, better than <T> was positive low-text-quality

GPT-2 Help! My name is Mark Hammer and I have always wanted to write a movie
review. Now, after hours and hours of research, the truth is finally out.

negative low-text-quality

Llama-2 It was a complete waste of time and money, I would not recommend it to anyone.
This movie was just plain bad, with uninteresting characters and a plot that was
predictable from the start. The acting was also subpar and the dialogue was cringe-
worthy. I would give it a 0/10 if I could.

positive mislabeled

Llama-2 After waiting for what felt like an eternity, I finally watched negative low-text-quality

Vicuna The film, directed by a renowned auteur, is a story of a group of people navigating
through a dystopian society.**** It is a thought-provoking piece that leaves the
audience pondering on the state of society and what it takes to survive in a world
that is controlled by a powerful corporation. The cinematography is beautiful and
the score is hauntingly good.

negative mislabeled

Vicuna A great movie that will leave you thinking for days to come. No need to spend a
lot of money to see it. It is a must watch for everyone.

negative mislabeled

Vicuna C++ is a difficult and complex language, but with time and practice, it becomes
easy and manageable.1234567890

positive low-relevancy

OPT But the movie begins with this big, action-packed explosion, which carries right
into the more thoughtful segments of the movie. But wait! There’s more! It
continues through those thoughtful segments and the entire rest of the movie, not
just a handful of sequences.

negative mislabeled

OPT The movie is very disappointing. The story line is nothing but a shameless rip-off.
Even the main cast of the movie is not worth any praise at all. This is a movie to
just go and waste your money. Just don’t!

positive mislabeled

OPT When my teenage self in France was presented with this movie on VHS, I was in
love with the soundtrack, with the French style of acting (something totally alien
to my home in the States), and with the idea that there was a world like this.

negative mislabeled

OPT The packaging is nothing more than an anonymous brown paper bag, and the
theater provided stale popcorn.

positive low-relevancy

OPT \n\n- a negative movie review\n\nThe movie review in negative sentiment for
movie

positive low-text-quality

ChatGLM3 Very disappointing. There was not one LOL moment. No wonder the movie was
not a box office hit.

positive mislabeled

ChatGLM3 Perhaps a crime movie and is interesting to watch . negative mislabeled

ChatGLM3 i’m not the most romantic person and i’m not a chick. positive low-relevancy

ChatGLM3 even a bad magician should be able to catch the rabbit positive low-relevancy

Flan-T5 He works in audio-visual technique and the end product is often flawed. positive mislabeled

Flan-T5 When a thing is a fantasy, it just become real, whether it was imagined or just
played out. When they put on a performance in this movie, it has to be one of the
best, most inspired moments.

negative mislabeled

Flan-T5 if the time has come to say goodbye to Dick Van Patten. positive low-relevancy

Flan-T5 perverse creatures know they should be ashamed to exist. for human beings to
walk around dressed like cannibals in a heavy jungle set up camp.

negative low-relevancy

Flan-T5 And this is just another (incomplete) list of things that negative low-text-quality

Table 9: Examples of low-quality samples in generated synthetic dataset for movie review.

C.7 Multi-PLM v.s. single-PLM on More
Tasks

We provided additional results on the comparison
of multi-PLM (K = 6) and single-PLM (K =

1) across 8 datasets for various tasks in Table 11.
As multi-PLM consistently outperforms all single-
PLM under the each task, we conclude that multi-
PLM collaboration is more effective than relying
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(a) Samples in selected desirable subset of size S = 8

(b) Selected candidates of size R = 40

Figure 10: Proportion of samples in S in-context sam-
ples and R sample candidates that originate from each
PLM at each feedback time (J) in FuseGen with J =
4, R = 40, S = 8, N = 1, 000,K = 6 for movie re-
view sentiment analysis task. Results are averaged using
3 different seeds.

IMDb

mG mL mV mO mC mF m̃

FuseGen (Ours) 87.85 86.60 87.50 88.47 88.56 88.73 90.19
w/o SWA 82.90 78.98 74.34 85.17 85.77 85.43 89.07
w/o CDG & SWA 80.71 75.73 59.41 81.37 81.14 84.35 87.06
SDG+mixed 80.72 76.18 65.05 84.19 84.56 81.19 87.41

SST-2

mG mL mV mO mC mF m̃

FuseGen (Ours) 86.38 84.36 85.52 86.50 86.96 86.32 87.35
w/o SWA 81.87 79.22 82.43 80.99 85.73 80.99 85.38
w/o CDG & SWA 80.68 76.42 76.46 80.80 84.58 78.44 85.01
SDG+mixed 80.75 77.53 79.52 80.86 85.69 80.89 85.71

Yelp

mG mL mV mO mC mF m̃

FuseGen (Ours) 91.94 90.30 90.81 92.50 92.98 92.21 93.54
w/o SWA 90.87 88.09 84.99 87.19 91.72 90.71 92.84
w/o CDG & SWA 89.13 79.17 81.97 86.78 81.50 89.48 92.16
SDG+mixed 89.63 82.39 83.80 86.84 86.32 87.48 92.23

QNLI

mG mL mV mO mC mF m̃

FuseGen (Ours) 60.55 72.48 74.10 57.39 69.89 72.13 74.95
w/o SWA 56.72 69.99 70.94 51.98 56.39 68.65 73.41
w/o CDG & SWA 51.24 65.81 70.61 50.83 53.01 55.73 69.41
SDG+mixed 52.13 69.22 70.11 51.79 54.87 68.58 70.20

Table 10: Comparison between FuseGen and its abla-
tions with K = 6, N = 1, 000, J = 4. Each mk is
trained on Dk of size 1, 000 while m̃ is trained on D of
size 6, 000. Best result is marked as bold for each STM
(each column).

on a single PLM for enhancing STM performance.

multi single

m̃ m̃G m̃L m̃V m̃O m̃C m̃F

IMDb 89.96 87.60 86.14 85.42 87.59 88.84 89.74
SST-2 87.51 84.81 84.39 85.22 85.88 87.43 85.38
Yelp 93.27 93.03 91.07 91.69 92.72 92.08 92.07
QNLI 74.92 64.52 73.22 73.34 59.03 64.93 73.60
MNLI-m 49.76 44.93 49.61 49.11 37.40 32.82 49.34
MNLI-mm 51.70 48.53 51.62 50.76 42.32 33.05 51.47
AgNews 86.89 82.21 85.34 85.36 86.75 86.27 86.36
MarkedNews 83.85 79.98 80.04 79.36 78.60 83.54 80.86

Table 11: Comparison between FuseGen using multi-
PLM (K = 6) and single-PLM (K = 1) with 4
datasets. MNLI-m and MNLI-mm each stands for
MNLI-matched and MNLI-mismatched. Best result
is marked as bold with the second best marked with
underline for each dataset (each row).

α mG mL mV mO mC mF m̃

0.0 54.00 70.07 67.75 51.12 55.70 66.49 74.08
0.25 56.12 70.22 70.45 52.10 56.90 71.12 74.37
0.5 59.68 71.48 72.37 52.37 57.33 72.12 74.92
0.75 55.27 69.13 69.53 52.19 56.59 70.91 74.23
1.0 54.85 66.47 64.46 50.08 56.50 70.50 74.16

Table 12: Comparison of different α used for FuseGen
with QNLI as test dataset. Best result is marked as bold
with the second best marked with underline for each
STM (each column).

N mG mL mV mO mC mF m̃

100 51.33 53.16 53.79 50.62 51.20 51.11 56.27
200 52.23 60.42 60.06 50.71 53.07 59.09 65.11
500 53.53 67.36 67.90 51.67 54.95 64.72 72.18

1, 000 59.68 71.48 72.37 52.37 57.33 72.12 74.92

Table 13: Comparison of different N used for FuseGen
with QNLI as test dataset. Best result is marked as bold
with the second best marked with underline for each
STM (each column).

C.8 Detailed Results for Hyper-parameters

Due to space limitation, we provide detailed results
of hyper-parameters α (ratio of high-variability
samples within the R in-context sample candi-
dates), N (sample generation budget), and J (feed-
back times) here in Tables 12 to 14. We addition-
ally include the performance of each mk as well
(SWA applied). These results indicate that employ-
ing a more balanced mix of high-variability and
low-variability samples (α = 0.5), a larger sample
budget N and more feedback times J all help to
achieve a better STM performance. This enhance-
ment is observed not only for the final STM m̃, but
also for each {mk}Kk=1.
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J mG mL mV mO mC mF m̃

0 56.95 71.13 72.21 51.96 55.12 58.43 74.44
1 57.11 71.50 72.25 52.07 56.53 64.81 74.77
4 59.68 71.48 72.37 52.37 57.33 72.12 74.92
9 59.71 71.60 72.37 52.34 57.70 72.14 75.07

Table 14: Comparison of different J used for FuseGen
with QNLI as test dataset. Best result is marked as bold
with the second best marked with underline for each
STM (each column).
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