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Abstract

With the rapidly-growing deployment of large
language model (LLM) inference services, pri-
vacy concerns have arisen regarding to the user
input data. Recent studies are exploring trans-
forming user inputs to obfuscated embedded
vectors, so that the data will not be eaves-
dropped by service provides. However, in this
paper we show that again, without a solid and
deliberate security design and analysis, such
embedded vector obfuscation failed to protect
users’ privacy. We demonstrate the conclusion
via conducting a novel inversion attack called
Element-wise Differential Nearest Neighbor
(EDNN) on the glide-reflection proposed in
(Mishra et al., 2024), and the result showed
that the original user input text can be 100%
recovered from the obfuscated embedded vec-
tors. We further analyze security requirements
on embedding obfuscation and present several
remedies to our proposed attack.

1 Introduction

Inference services of language models are now
gaining popularity, with a considerable number
of language models having been deployed on the
cloud server. However, users might concern about
the privacy of their data when requesting inference
service, that is, their data would be eavesdropped
by malicious service providers.To address this prob-
lem, recent research has turned to adopting obfus-
cation techniques on the embedding matrix, ensur-
ing that user inputs cannot be recovered from the
obfuscated embeddings by service providers. Em-
bedding obfuscation becomes appealing since the
obfuscated embeddings can be directly forwarded
to inference process as efficient as plaintext embed-
dings, leading to practical potential for real appli-
cations compared with secure multi-party compu-
tation (MPC) and homomorphic encryption (HE).
For example, the state-of-the-art work in (Mishra
et al., 2024) leverages glide-reflection for embed-

ding obfuscation combined with the user-side key-
based hashing, to claim a private and secure infer-
ence solution.

Nonetheless, recent studies show that a ma-
licious server can indeed reconstruct user data
through embedding inversion attacks (EIA) (Qu
et al., 2021; Kugler et al., 2021). Consequently,
without formal security analysis, concerns persist
regarding the potential existence of novel EIAs
capable of extracting user information from these
embedding obfuscation methods. In this paper, we
analyze the security of the glide-reflection method-
ology used in (Mishra et al., 2024), ultimately
uncovering its vulnerability. We innovatively de-
sign an Element-wise Differential Nearest Neigh-
bor (EDNN) attack to effectively break the security
of the glide-reflection. Our experimental outcomes
conclusively demonstrate that the EDNN entirely
recovers 100% of the user data tokens which os-
tensibly secured by the glide-reflection. Subse-
quently, we present an insight on why the naive
linear-transformation based obfuscation, like glide-
reflection, fails to safeguard user data. We further
discuss the security requirements of embedding ob-
fuscation and demonstrate that the deliberate secu-
rity design is necessary. We also introduce several
possible defenses against EIA base on our analysis.

2 Obfuscation schema based on
glide-reflection

In this section, we describe the system and threat
model of obfuscation schema in (Mishra et al.,
2024). Then we give the formal description of
the schema and explain its vulnerability.

2.1 System and threat model

The system model is composed of two entities. A
data user desires to request inference service us-
ing its private data. A model server is deployed
with a fine-tuned language model to offer inference
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service.
The schema adopts a typical threat model for

secure language model inference as used in recent
works (Zhou et al., 2022, 2023). The model server
might be compromised and act as an adversary, aim-
ing to obtain the user’s private data. It possesses
the knowledge of the pretrained model and is ca-
pable of executing embedding inversion attacks,
as demonstrated in (Kugler et al., 2021; Qu et al.,
2021), on the embedding matrix of the fine-tuned
model. Consequently, this enables the direct recov-
ery of the plaintext tokens and the reconstruction
of the user’s sensitive data.

2.2 Description of schema
In the schema, the user will apply key-based en-
cryption on tokens of vocabulary and utilize glide-
reflection to obfuscate embedding matrix of pre-
trained model. The encrypted tokens and obfus-
cated embeddings will be shuffled simultaneously
so as the server cannot recognize user data accord-
ing to token orders in inference process.

In the token encryption step, every token v in the
vocabulary V of pretrained model will be encrypted
by Blake (Aumasson et al., 2013) with a user spe-
cific key to generate an encrypted vocabulary.

In the embedding obfuscation, suppose that the
embedding matrix Ed×M contains M embedding
vectors {ei|i ≤M}, ei ∈ Rd where d is the dimen-
sion of embeddings. The glide-reflection applied
on ei can be formalized as:

e′i = ei − 2 · ei · li
li · li

· li + ti, (1)

where li = 1⃗ · ai and ti = 1⃗ · bi are two vectors
constructed by two random values ai, bi uniformly
sampled from [0, 1)1.

During runtime usage, the user is able to tok-
enize its input data and request inference service
with encrypted tokens. Then the server can use the
encrypted vocabulary and the obfuscated embed-
ding matrix to complete inference process.

2.3 Vulnerability
The security of the schema lies on the glide-
reflection, while we discover that it cannot hide
the differential information within each embedding
vector. Specifically, recall that in the equation 2,

1This can be found in the implementation of the schema:
https://github.com/abhijitmishra/sentinellm-aaai2024. We
also test the case that each element of li, ti is random, but the
model accuracy will decrease to nearly 50%.

each element of li has the identical value, as well
as ti, leading to e′i[k1]− e′i[k2] = ei[k1]− ei[k2]
for any k1, k2 ∈ [1, d]. Therefore, we can construct
an attack to draw the relationship between the ob-
fuscated embeddings and original embeddings by
checking element-wise difference of embeddings.

3 Proposed attack: EDNN

The authors of (Mishra et al., 2024) have eval-
uated the security of glide-reflection against the
nearest neighbor (NN) attack, and the accuracy
of token recovery for which turns out to be neg-
ligible. By extending NN, we propose an effi-
cient inversion attack called Element-wise Differen-
tial Nearest Neighbor (EDNN) to break the glide-
reflection. The EDNN selects the closest token
from pretrained embeddings as the real token by
utilizing the difference of vector elements for neigh-
bor retrieval. Therefore, it is effect on the glide-
reflection which does not change the element dif-
ferences within embedding vector.

Algorithm 1 EDNN
Input: A obfuscated and fine-tuned embedding

matrix Ẽd×M = {ẽi}i≤M , a pretrained embed-
ding matrix Ed×M = {ei}i≤M , a pretrained
vocabulary V

Output: A recovered vocabulary VR
1: Initialize distance matrix DM×M = {0}M×M

and output vocabulary VR = {}.
2: for i, j ← 1 to M do
3: D[i][j] = ∥(ẽi − lshift(ẽi)) − (ej −
lshift(ej))∥

4: for i← 1 to M do
5: k = argmin(D[i])
6: VR ← VR

⋃{V[k]}.
return VR.

We present the details of EDNN in Algorithm 1,
where Ẽd×M is the obfuscated embedding matrix
after fine-tuning. The algorithm will output a vo-
cabulary VR which stores the recovered tokens cor-
responded to the obfuscated embeddings Ẽd×M .
To compute the element difference inside embed-
ding vector, the algorithm use lshft(·) function to
cyclically shift the vector to the left by one posi-
tion and calculate element-wise subtraction. The
algorithm will evaluate the distance between every
pairs of plaintext and encrypted tokens. Then for
each encrypted token, the algorithm is able to out-
put the plaintext token with the minimum distance
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Figure 1: 2D plot of 100 embeddings from: (a)
element-wise difference of original pretrained model,
(b) element-wise difference of transformed model after
10 iterations of glide reflection.

in the embedding space as its substitute.
To explain the attack effect of EDNN, we fit

the embeddings of 100 tokens into 2D plot by
T-distributed Stochastic Neighbor Embedding (t-
SNE) (Van der Maaten and Hinton, 2008) and scale
them into (−1, 1) as shown in Figure 1. By compar-
ing the results of Figure 2 and 1b, we can observe
that the element-wise differences inner each em-
bedding vector from the original model and the
transformed model are the same.

4 Experiment

Experimental details. We encrypted the model
according to (Mishra et al., 2024) and fine-tune the
model with specific task. Then we evaluate EDNN
on the fine-tuned model to recover its encrypted
tokens.

Datasets and models. We use the same setting
as (Mishra et al., 2024) and conduct experiments
on datasets including the General Language Under-
standing Evaluation (GLUE) benchmark dataset
(Wang et al., 2018), the CoNLL2003 Named Entity
Recognition Dataset (Sang and De Meulder, 2003)
and the XNLI dataset (Conneau et al., 2018) . We
use BERT, RoBERTa, and mBERT models from
Huggingface2.

Element-wise differential comparison. For
each embedding obfuscated by glide-reflection, we
first evaluate the distance of element-wise differ-
ential to its corresponding original embedding and
other nearest embedding. The results in Fig. 2
shows that after fine-tuning, the element-wise dif-
ferentials between each embedding and irrelevant
embeddings exhibit a three-order-of-magnitude dis-
crepancy compared to its original embedding, fa-
cilitating the EDNN to capture the correspondence
between obfuscated embeddings and their original
counterparts.

2https://huggingface.co

Figure 2: Distance of element-wise differentials under
GLUE SST2 dataset. The figure records the density of
distance between every encrypted token and its corre-
sponding plain token (blue) or other nearest token (red).

Table 1: Token recovery accuracy of obfuscated model
after 10 times glide-reflection

Model Task Recovery acc
BERT GLUE all tasks 100%

RoBERTa GLUE all tasks 100%
BERT CoNLL2003 NER 100%

RoBERTa CoNLL2003 NER 100%
BERTMultilingual XNLI In-language 100%
BERTMultilingual XNLI Zero-shot 100%

Attack accuracy. In Table 1, we test the token
recovery accuracy of EDNN under different iter-
ations of glide-reflection marked by nglide. The
results show that EDNN is able to recover all ob-
fuscated tokens even after fine-tuning the model on
GLUE, CONLL2003 and XNLI datasets.

5 Analysis and possible defenses

In this section, we analyze the security require-
ments for the embedding obfuscation and propose
security requirements for embedding obfuscation.

5.1 Security analysis
In embedding obfuscation, a secret transforma-
tion will be performed on the embedding matrix
Ed×M = {ei ∈ R(d)|i ≤ M} of the pretrained
model. In order to maintain the model accuracy,
a linear transformation is usually used to ensure
that the model can still adapt to the transformed
embeddings through fine-tuning. We can formalize
the transformation by:

ϕ : R(n) −→ R(n)

α 7→ Wα+ b⃗
(2)

where W ∈Md,d(R) and b ∈ R(n) are random ma-
trix and vector from some secret distribution. For
example, for the transformation in the equation 2,
we have W = Id,d− 2

dEd,d and b⃗ = b⃗1, where Id,d
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is the diagonal matrix with all diagonal elements 1,
Ed,d is the matrix with all elements 1, b is a random
number in [0, 1).

The server cannot directly obtain α from ϕ(α)
since it is not givenW, b. Nevertheless, considering
that the server is aware of the embedding matrix
of the pre-trained model, as described in the threat
model, it can carry out EIA if the transformed ma-
trix fails to adequately obfuscate the information
related to the original matrix. Subsequently, we
propose the following two security requirements
for the transformation.

Fixed-point nonexistence. There should not ex-
ist a probabilistic polynomial time (PPT) adversary
who is able to get an invariant of the transformer ϕ,
even without the total knowledge of W and b.

Suppose there is a linear invariant map

ψ : R(d) −→ R(f)

α 7→ Aα
(3)

where A ∈ Mf,d(R). Then we haveψ ◦ ϕ = ϕ. It
induce a linear system about A such that

{
AW −A = 0

Ab⃗ = 0.
(4)

The linear system should not have trivial solu-
tion. Otherwise, the adversary is able to decide
whether an obfuscated embedding e′ and an origi-
nal embedding e are related by checking whether
ψ(e) = ψ(e′) holds even if shuffling is performed
on the obfuscated embedding matrix.

The glide-reflection is unable to securely obfus-
cate embeddings, as it fails to satisfy the necessary
security requirement. Recall that the vulnerabil-
ity of glide-reflection lies in the fact that it does
not change the difference between any two ele-
ments within each embedding vector. Without
knowing the specific li and ti used in the equa-
tion 2, the adversary can still construct the follow-
ing matrix Ad×d = to meet with the equation 4:

A =

(
1 −1 0 ··· 0
0 1 −1 ··· 0
··· ··· ··· ··· ···
−1 0 0 ··· 1

)
.

(k, ϵ)-anonymity. While the above requirement
prevent accurate matching between the transformed
and original embeddings, the adversary can still
guess the plaintext token of an transformed embed-
ding according to the distance between obfuscated
and original embeddings. Therefore, it is necessary
to use sufficient noise to obfuscate embeddings.

Compared with traditional differential privacy,
(k, ϵ)-anonymity proposed in (Holohan et al., 2017)

might be more suitable for embedding obfuscation
by combining the k-anonymity and ϵ-differential
privacy. Rather than directly applying noise on ev-
ery embedding with differential privacy (Du et al.,
2023; Yue et al., 2021), (k, ϵ)-anonymity only re-
quires embeddings to be indistinguishable within
a subset of size k. Therefore, it can keep seman-
tic information of the obfuscated embeddings as
much as possible while ensuring the security of
obfuscation.

Formally, if a transformation P(·) satisfies (k, ϵ)-
anonymity on embedding matrix E, there should
exist a subset Fi ⊂ E, |Fi| ≥ k for any ei, ej ∈ Fi

and any subset S of the outputs of P such that

Pr[P(ei) ∈ S] ≤ eϵPr[P(ej) ∈ S], (5)

where ϵ ≥ 0 is the privacy parameter. The equation
5 represents each embedding should be indistin-
guishable within a subset of size k. This indistin-
guishability discretely holds in each subset while
keeping sufficient distances between different sub-
sets.

5.2 Defenses
To mitigate such security risks inherent in the
paradigm, there exist two potential defense strate-
gies. One approach involves the application of
differential privacy, wherein random noise is added
to the embeddings (Yue et al., 2021; Du et al., 2023;
Shen et al., 2023). However, ensuring both privacy
and model accuracy concurrently poses a signif-
icant challenge to design elaborate noise mecha-
nisms.

Alternatively, leveraging cryptographic tools
such as homomorphic encryption (Cheon et al.,
2017) offers another avenue of defense. In this
method, the embedding matrix is encrypted using
homomorphic encryption techniques. To minimize
computational overhead, the server can request de-
cryption after processing several layers, allowing
subsequent layers to be processed in plaintext.

6 Conclusion

In this paper, we investigate the vulnerability of
the glide-reflection used for embedding obfusca-
tion. We devise an innovate embedding inversion
attack to break the security of the glide-reflection.
Furthermore, we conduct a comprehensive analysis
and introduce two essential security requirements
for embedding obfuscation. We explore various
techniques that can be leveraged to enhance the
security of embedding obfuscation.
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Limitations

We have summarized two limitations of this pa-
per. (1) The EDNN attack method proposed in
the paper is to illustrate that the embedding ob-
fuscation scheme based on glide-reflection is not
secure, but we have not tested the effectiveness
of the EDNN attack against other embedding ob-
fuscation schemes. (2) We present two security
requirements for embedding obfuscation and we
believe they are necessary for protecting user data.
However, we have not proposed a concrete scheme
to verify the sufficiency of the aforementioned se-
curity requirements.
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