
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 2086–2099
November 12-16, 2024 ©2024 Association for Computational Linguistics

Advancing Process Verification for Large Language Models via Tree-Based
Preference Learning

Mingqian He1, Yongliang Shen1†, Wenqi Zhang1, Zeqi Tan1, Weiming Lu1†

1Zhejiang University
{mingqianhe, syl, zhangwenqi, zqtan, luwm}@zju.edu.cn

Abstract

Large Language Models (LLMs) have demon-
strated remarkable potential in handling com-
plex reasoning tasks by generating step-by-step
rationales. Some methods have proven effec-
tive in boosting accuracy by introducing ex-
tra verifiers to assess these paths. However,
existing verifiers, typically trained on binary-
labeled reasoning paths, fail to fully utilize the
relative merits of intermediate steps, thereby
limiting the effectiveness of the feedback pro-
vided. To overcome this limitation, we propose
Tree-based Preference Learning Verifier (Tree-
PLV), a novel approach that constructs reason-
ing trees via a best-first search algorithm and
collects step-level paired data for preference
training. Compared to traditional binary clas-
sification, step-level preferences more finely
capture the nuances between reasoning steps,
allowing for a more precise evaluation of the
complete reasoning path. We empirically eval-
uate Tree-PLV across a range of arithmetic
and commonsense reasoning tasks, where it
significantly outperforms existing benchmarks.
For instance, Tree-PLV achieved substantial
performance gains over the Mistral-7B self-
consistency baseline on GSM8K (67.55% →
82.79%), MATH (17.00% → 26.80%), CSQA
(68.14% → 72.97%), and StrategyQA (82.86%
→ 83.25%). Additionally, our study explores
the appropriate granularity for applying pref-
erence learning, revealing that step-level guid-
ance provides feedback that better aligns with
the evaluation of the reasoning process.

1 Introduction

Large Language Models (LLMs) have demon-
strated the ability to decompose complex ques-
tions into step-by-step problem-solving processes
(Brown et al., 2020; Achiam et al., 2023; Liu et al.,
2023; Frieder et al., 2024), achieving strong rea-
soning performance across a variety of tasks.

†Corresponding author.

To enhance the reliability of reasoning paths, the
best-of-N decoding strategy (Nakano et al., 2021;
Askell et al., 2021; Cobbe et al., 2021) is employed,
where N candidate solutions are generated by the
LLMs, and the most plausible one is selected based
on specific rules (Golovneva et al., 2022; Prasad
et al., 2023), such as coherence, logical consistency,
and alignment with known facts. Recently, some
studies have introduced an auxiliary model, termed
a verifier (Cobbe et al., 2021), to assess the quality
of candidate solutions. The training of verifiers can
be divided into outcome supervision (Cobbe et al.,
2021; Yu et al., 2023a; Hosseini et al., 2024) and
process supervision (Li et al., 2022; Lightman et al.,
2023; Wang et al., 2023) based on the granularity
of the supervision signal (see Figure 1). Outcome
supervision labels the entire path based on the fi-
nal result, while process supervision evaluates the
correctness of each individual step.

Whether employing outcome supervision or pro-
cess supervision, verifiers are typically trained us-
ing binary classification (Uesato et al., 2022; Light-
man et al., 2023; Wang et al., 2023), which may not
align ideally with the goals of optimizing verifiers.
In the best-of-N decoding, verifiers are expected
to rank candidate paths accurately. However, bi-
nary labels, offering rudimentary correct or incor-
rect signals, fail to capture the relative merits of
different paths. Such coarse supervisory signals
are insufficient to provide the detailed feedback
necessary for verifiers to discern which steps are
more effective, thereby limiting the potential for
further improvements. Moreover, the annotations
used in training, often derived from answers, in-
herently contain some degree of noise. Even if
the final answer is correct, the reasoning process
may not be entirely accurate. Unfaithful reasoning
and spurious shortcuts can also lead to the correct
answer (Creswell and Shanahan, 2022; Lyu et al.,
2023; Turpin et al., 2024). Consequently, training
verifiers using binary classification is particularly

2086

Problem Best Path
Candidate Path 1

Candidate Path N
· · ·

Ranking

VerifierGenerator

Correct Path

Wrong Path

(1) Outcome Supervision

(2) Process Supervision

Step kStep 3Step 1 Step 2

Candidate Path

Process Supervision Outcome
Supervision

Labeling Training and Inference

Binary Classification Verifier

Best-of-N

Problem

Path 1 Path 2

Step 1 Step 2
Step k

Step k

low highreward
Step 3

Step 3

Path 1

Path 2

(3) Tree-PLV

Preference-based Verifier

Figure 1: A comparison of different methods: Traditional verifiers rely on binary labels for outcome and process
supervision, whereas Tree-PLV employs preferences instead of scalar values.

vulnerable to noisy labels, which constrains the
verifier’s capacity to precisely validate the steps.

To tackle these challenges, we propose a shift
from a binary to a preference-based verifier.
Trained through preference learning, it ranks the
relative merits of different reasoning paths, allow-
ing for more nuanced partitioning than simply judg-
ing them as correct or incorrect. The advantages of
adopting this step-level preference-based verifier
for ranking the reasoning paths include:

• Granular Validation at the Step Level: Ver-
ifiers based on preference learning can capture
subtle differences between steps, thereby provid-
ing more precise feedback.

• Improving Verifier Robustness: Focusing on
ranking rather than binary judgments enhances
the verifier’s stability. As long as the relative
ordering of steps is consistent, the training of the
verifier remains robust against label noise.

• Enhancing Model Explainability: The detailed
feedback provided by preference learning offers
deeper insights into the reasoning process, mov-
ing beyond mere correctness on the final result.

Therefore, we introduce Tree-based Preference
Learning Verifier (Tree-PLV), a novel method in-
spired by preference learning principles. Tree-
PLV transcends traditional verifiers by modeling
rewards based on comparisons between paths. Our
method not only focuses on instance-level rewards
derived from the outcomes but also emphasizes
step-level optimization. This allows Tree-PLV to
utilize intermediate steps to provide more finely

grained feedback. Specifically, we employ a best-
first search strategy during inference to construct a
reasoning tree, with the initial problem statement
as the root and each step as a node. Upon devel-
oping the tree, we construct our dataset by tracing
paths from the root to each leaf node. At each level,
we form pairs by conducting pairwise comparisons
among child nodes, preferring those with higher
rewards. This dataset serves to train our verifier
using a ranking loss, greatly enhancing its ability
to discern subtle nuances in reasoning sequences.

We conduct an empirical evaluation of Tree-PLV
across diverse reasoning tasks, focusing on arith-
metic reasoning with the GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) datasets,
and commonsense reasoning on the CSQA (Talmor
et al., 2018) and StrategyQA (Geva et al., 2021)
datasets. We benchmark Tree-PLV against existing
verifiers, including self-consistency (Wang et al.,
2022) as a strong baseline. Our results indicate
substantial performance gains across all datasets.
For instance, when compared to the Mistral-7B
self-consistency baseline, our method showed the
following increases in accuracy: GSM8K (67.55%
→ 82.79%), MATH (17.00% → 26.80%), CSQA
(68.14% → 72.97%), and StrategyQA (82.86% →
83.25%). Notably, Tree-PLV, when trained with
data from GSM8K, demonstrates robust general-
ization to the more challenging MATH dataset.

2 Tree-PLV

In this section, we introduce the Tree-PLV method,
which leverages tree-based preference learning to
advance verification for large language models in
the context of stepwise reasoning processes. We

2087

Problem: Ann's favorite store was having a
summer clearance... She also bought 4 tops, all
at the same price. How much did each top cost?

0.75

Step 1: Ann spent $75 in total.

0.25

Step 2: She bought 5 pairs of
shorts for $7 each, so she
spent 5 * $7 = $35 on shorts.

0.125

Step 2: She spent $7 * 5 =
$35 on 5 pairs of shorts.

0.75

Step 2: She spent $75 on 5
pairs of shorts at $7 each and
2 pairs of shoes at $10 ...

1.0

Step 3: So, the total amount
she spent on 5 pairs of shorts
and 2 pairs of shoes ...

0.25

Step 3: So, 5 * $7 + 2 * $10 =
$75, which means 5 * 7 + 2 *
10 = 75, which means 5 * 7...

0.75

Step 3: The total amount
spent on the shorts and
shoes is 5 * $7 + 2 * $10 = ...

Step 3: So, Ann spent $75 - (5 * $7... The answer is 5.

Step 3: 5 * $7 + 2 * $10 = $35 + $2... The answer is 5.

Step 3: The total amount spent...The answer is 18.75.

·····

Completion

·····

Figure 2: The construction process of the reasoning tree. Best-first search consistently selects the child node with
highest reward for further expansion. To evaluate the quality of the i-th step, we sample N completions from it,
denoted as Pi. The reward is then calculated based on the proportion of these N paths that yield the correct answer.

begin by outlining the problem formulations (§ 2.1).
Next, we detail how to construct a reasoning tree
that represents reward preferences at each step
(§ 2.2). Finally, we describe how we gather paired
data for step-level preference learning and imple-
ment this into our verifier training (§ 2.3).

2.1 Problem Formulations

Following the best-of-N evaluation protocol pro-
posed by Lightman et al. (2023), we generate N
candidate solutions {y(1), y(2), . . . , y(N)} from the
generator model for a given input x. Each solution
y consists of a sequence of steps {y1, y2, . . . , yn}.
These solutions are then ranked by the verifier, and
the highest-rated one is selected as the most plausi-
ble solution.

2.2 Reasoning Tree Construction

To provide precise step-level preference feedback,
we implement a best-first tree search algorithm
designed to generate paired data critical for prefer-
ence learning. As Figure 2 depicts, our method con-
structs a reasoning tree step-by-step, where each
node represents a reasoning step. Expansion starts
from the root of the tree at each search iteration.

At step i of the tree expansion, we have a
partial solution y1:i−1 consisting of the previous
i − 1 reasoning steps. We use a reward function
R(yi|x, y1:i−1) to evaluate the quality of the next
potential step yi, given the input x and the current
partial solution y1:i−1. The tree search proceeds
by expanding the most promising node at each
iteration, i.e., the node whose child (the next po-
tential step) has the highest reward according to

R. This guided exploration allows us to construct
high-quality reasoning paths through the tree, pro-
viding paired data for preference learning between
competing steps.

The traditional approaches regard the correct-
ness of a step as its quality, relying on metrics like
perplexity (PPL) or self-evaluation by LLMs to
design the reward function R. However, recent
studies have shown that LLMs frequently struggle
to effectively recognize errors (Huang et al., 2023;
Hong et al., 2023; Ren et al., 2023b), which can
degrade performance. To address this, we lever-
age the model’s look-ahead capability to assess a
step’s quality by its potential to lead to the correct
conclusion. Specifically, to evaluate a candidate
step yi, we use the same model to simulate N sub-
sequent reasoning trajectories starting from yi, de-
noted as N completions Pi = {P 1

i , P
2
i , . . . , P

N
i }.

The quality of the step yi is quantified by the pro-
portion of trajectories reaching the correct answer:

R(yi) =

∑N
j=1 1[a[P

j
i] = g]

N
(1)

where a[P j
i] is the outcome of the j-th trajectory

P j
i and g represents the golden answer.
After determining the node with the highest re-

ward value according to R(yi|x, y1:i−1), we ex-
pand the tree by generating new child nodes. To
achieve this, we sample k potential subsequent
reasoning steps yji+1 ∼ πθ(yi+1|x, y1:i) for j =
1, . . . , k, where πθ is the language model used for
reasoning. Each of these candidate steps {yji+1}kj=1

becomes a new child node connected to the previ-
ously selected node. If the selected node represents

2088

the last step, indicating the end of the reasoning
chain, we omit the expansion phase, and this itera-
tion concludes. Guided by the reward function R,
this approach ensures a systematic exploration and
expansion of reasoning paths in the search tree.

2.3 Step-Level Pairwise Training
A reasoning tree illustrates all potential reasoning
paths, starting from the root and branching out to
various leaf nodes. Our objective is to create a
dataset Dpair consisting of pairs that express prefer-
ences of reasoning paths. We generate this dataset
by tracing each unique path from the root to the
leaves of the tree. Within this dataset, each en-
try consists of a triplet in the form {(x, y+, y−)},
where x denotes the initial problem statement, y+

is the preferred reasoning sequence that leads to
an accurate solution, and y− is a less desirable
reasoning chain that results in an incorrect answer.

To collect the paired data {(x, y+, y−)}, we con-
duct pairwise comparisons between sibling nodes
at each decision point along the tree. Sibling nodes
are the various possible next steps in the reason-
ing process branching from the same prior context
y1:i−1. If the reward difference between a prefer-
able step y+i and a less preferable step y−i meets the
minimum margin α, we create a pair (x, y+, y−)
that includes the initial problem x, the superior rea-
soning sequence y+, and the inferior alternative y−.
Specifically, for the preferable step y+i , we sample
a path that leads to a correct solution among its
completions P+

i . This constitutes the complete rea-
soning path y+. Conversely, the less preferable
step y−i is assembled with one of the subsequent
paths P−

i that begins from it to form y−, which
ultimately leads to incorrect outcomes. Based on
the pairwise instance data {(x, y+, y−)}, we gather
two types of step preferences during our training.
The first type is derived from the reward function R
for the current step yi, which assesses the choices
at each decision point. The second type of pref-
erence implicitly decomposes the outcome-guided
instance preference into step-by-step comparisons,
examining each potential path leading to possible
outcomes. This breakdown allows us to allocate
the instance preference to both the decision points
and the completion steps in the reasoning process,
ensuring that steps on the correct path are preferred
over those on the incorrect path.

The verifier is built upon a large language model
with an additional randomly initialized linear layer
that outputs a scalar value. During evaluation, we

take the value linked to the end token to represent
the aggregate reasoning score.

We train the verifier using a step-level ranking
loss function designed to promote the choice of the
most effective solutions, defined as:

L = −
n∑

i=d

log σ
(
rϕ(x, y

+
1:i)− rϕ(x, y

−
1:i)

)
(2)

Here, d is the index where the two reasoning paths
diverge, and rϕ(x, y1:i) represents the output of
our verifier for an input x and a sequence of steps
{y1, . . . , yi} with parameters ϕ.

3 Experiments

3.1 Experimental Setup
Tasks and Datasets In our evaluation, we se-
lect benchmarks from two distinct reasoning cate-
gories: arithmetic reasoning and commonsense rea-
soning. These tasks encompass diverse reasoning
paradigms, enabling a comprehensive assessment
of our method’s effectiveness. For arithmetic rea-
soning, we utilize GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). GSM8K
comprises grade school math problems, whereas
MATH includes complex competition-level math
problems. We use the entire GSM8K test set and
a subset of 500 problems from MATH, which is
identical to the test set of Lightman et al. (2023).
For commonsense reasoning, we employ CSQA
(Talmor et al., 2018) and StrategyQA (Geva et al.,
2021). CSQA challenges the model with multiple-
choice questions that often require reasoning based
on complex semantics and prior knowledge. Strate-
gyQA involves true-or-false questions that demand
implicit multi-hop reasoning to derive answers.

Metrics Following the methodology suggested
by Lightman et al. (2023), we adopt a best-of-N
evaluation paradigm. For arithmetic reasoning, we
generate 64 solutions for each problem. However,
for commonsense reasoning, due to the relatively
limited search space for answers in these tasks, we
generate 10 solutions for each question.

Models Our experiments leverage a series of
models to serve as the generator, including
LLaMA2-7B/13B (Touvron et al., 2023) and
Mistral-7B (Jiang et al., 2023). For arithmetic rea-
soning tasks, we additionally conduct experiments
with two specialized models: a version of Mistral-
7B fine-tuned on MetaMATH (Yu et al., 2023b),
and WizardMath-7B (Luo et al., 2023).

2089

Models Verifiers
Arithmetic Commonsense

GSM8K MATH500 CSQA StrategyQA

LLaMA2-7B

Self-Consistency 33.97 4.00 55.12 76.82
ORM 55.72 5.80 56.27 61.95
Self-Explore 51.40 7.20 57.82 72.47
Math-Shepherd 58.30 6.00 58.23 70.78
Tree-PLV (Ours) 62.70 14.00 64.21 79.81

LLaMA2-13B

Self-Consistency 54.51 3.40 64.62 78.77
ORM 66.34 9.40 66.34 64.74
Self-Explore 65.66 9.60 66.67 78.64
Math-Shepherd 68.01 6.60 67.89 71.23
Tree-PLV (Ours) 76.12 18.20 71.66 83.64

Mistral-7B

Self-Consistency 67.55 17.00 68.14 82.86
ORM 70.74 14.40 63.96 67.14
Self-Explore 72.18 20.00 67.49 77.99
Math-Shepherd 74.91 21.20 70.11 79.22
Tree-PLV (Ours) 82.79 26.80 72.97 83.25

Table 1: Results comparison (accuracy %) on arithmetic and commonsense reasoning tasks, with various generators.
Bold indicates the best results and underline indicates the second best.

Method GSM8K MATH500

Mistral-7B: MetaMATH

Self-Consistency 83.55 35.00
ORM 85.67 29.20
Self-Explore 86.05 34.80
Math-Shepherd 87.11 35.40
Tree-PLV (Ours) 87.72 37.20

WizardMath-7B

Self-Consistency 88.93 38.80
ORM 84.31 24.00
Self-Explore 88.86 39.60
Math-Shepherd 89.16 39.80
Tree-PLV (Ours) 90.14 40.20

Table 2: Results (accuracy %) of the arithmetic reason-
ing task on generators with stronger capabilities.

Data Collection To construct the training dataset,
we selected 6,000 problems from each of the
GSM8K and CSQA training sets to generate paired
data. We applied a margin threshold of α = 0.375
to filter these pairs, resulting in approximately 100k
and 120k valid pairs for GSM8K and CSQA, re-
spectively. For additional evaluation, we sampled
750 questions from the StrategyQA training set,
which yielded 15k pairs. The verifier then trains
for an epoch on the corresponding dataset based
on task types. See Appendix B for more detailed
training parameter settings2.

Baselines We conducted a comparative eval-
uation against several well-established verifiers.
Specifically, we compared Tree-PLV with two ver-

2The code is available at https://github.com/
Hareta-Leila/Tree-PLV.

ifiers trained using cross-entropy loss with binary
labels: the outcome-supervised verifier, termed
ORM (Lightman et al., 2023), and Math-Shepherd
(Wang et al., 2023), a state-of-the-art process-
supervised verifier that leverages automatically an-
notated data. Additionally, we adopted the self-
consistency (Wang et al., 2022) as a strong baseline,
following Lewkowycz et al. (2022). Regarding
paired data generation, we also considered Self-
Explore (Hwang et al., 2024) as a baseline method.
It identifies the first erroneous step in a solution and
uses the preceding steps to sample a correct path.
These sequences are then paired to form training
data. We evaluated the quality of data by compar-
ing a verifier trained on this data with ours.

3.2 Main Results

Arithmetic Reasoning As shown in Tables 1,
our proposed method significantly outperforms
other methods across all scenarios within the
GSM8K and MATH500 datasets. For the GSM8K
dataset, Tree-PLV consistently surpasses compet-
ing approaches. For instance, using the LLaMA2-
13B generator, Tree-PLV achieves an accuracy of
76.12%, outperforming the second-best method,
Math-Shepherd, by 8.11%. The Tree-PLV, initially
trained on the GSM8K dataset, yields effective re-
sults on the more complicated MATH500 dataset,
illustrating its strong generalization capabilities. Its
adaptability stems from the training approach of
Tree-PLV, which focuses on comparing the quality
of steps rather than simply identifying correct or
incorrect paths. This strategy makes the verifier

2090

https://github.com/Hareta-Leila/Tree-PLV
https://github.com/Hareta-Leila/Tree-PLV

10 20 30 40 50 64
N = number of solutions per problem

60

65

70

75

80

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

GSM8K

10 20 30 40 50 64
N = number of solutions per problem

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

MATH500

Self-Consistency ORM SELF-EXPLORE MATH-SHEPHERD Tree-PLV

Figure 3: Performance of different verifiers across varying numbers of solution (N) generated by Mistral-7B.

more versatile. Additionally, Tree-PLV requires
only 22.7% of the training data size used by Math-
Shepherd, significantly reducing data requirements.

Table 2 displays the results of arithmetic rea-
soning tasks using advanced generators, namely
Mistral-7B: MetaMATH and WizardMath-7B, on
the GSM8K and MATH500 datasets. In all sce-
narios, our method, Tree-PLV, consistently out-
performs the others. With Mistral-7B: Meta-
MATH, it achieves accuracies of 87.72% on
GSM8K and 37.20% on MATH500. Similarly,
with WizardMath-7B, Tree-PLV delivers the high-
est accuracies of 90.14% and 40.20% on GSM8K
and MATH500, respectively. These results under-
line Tree-PLV’s robust performance and adaptabil-
ity in tackling complex arithmetic reasoning tasks
across various generator settings.

Commonsense Reasoning The results in Ta-
ble 1 highlights Tree-PLV’s strong performance
in commonsense reasoning tasks. Regardless of
the dataset or the generator used, Tree-PLV consis-
tently outperforms other verifiers, demonstrating
its versatility and robustness. In the CSQA dataset,
specifically, Tree-PLV improves accuracy by up to
5.98%, 3.77%, and 3.03%, when compared with
the second-best model. This high level of accuracy
becomes even more pronounced with the Strate-
gyQA dataset, confirming Tree-PLV’s strong ca-
pabilities in handling intricate reasoning tasks. In
contrast, both ORM and Math-Shepherd, which
are trained using a binary supervision strategy, fail
to show similar improvement. This underperfor-
mance could indicate the limitations inherent to
binary supervision, especially in tasks that require
complex reasoning. It is more prone to introduc-
ing noise into the binary supervision signal, which
could consequently limit the verifier’s capabilities.

We attribute these improvements to the follow-

ing factors: 1) The training method of our verifier
utilizes step-level preference learning, allowing for
a nuanced evaluation of step quality that is better
aligned with the best-of-N ranking paradigm. 2)
The reward function, in our approach, is used to
compare sibling steps instead of annotating them,
which minimizes the impact of label noise. 3)
Our approach improves the diversity of the data
by incorporating comparisons among similar steps,
thereby enriching the dataset and improving the
robustness of our method.

4 Analysis

4.1 Different Amounts of Candidate Solutions

The number of candidate solutions impacts the per-
formance of verification. As the number of so-
lutions increases, more potentially superior can-
didates are introduced. However, there’s a trade-
off, as more solutions mean higher computational
overhead and diminishing performance gains. For
our study, we set a maximum of 64 solutions. As
shown in Figure 3, we found that all methods show
an enhancement in performance as the number of
solutions increases and finally stabilizes at 64, con-
sistent with Wang et al. (2023)’s findings. Through-
out the study, the Tree-PLV method consistently
outperforms the others across all quantities of solu-
tions. Remarkably, as the number of solutions rises,
Tree-PLV continues to widen the performance gap,
underscoring its robustness and superior capacity
to leverage a greater number of solutions.

4.2 Granularity of Preference Learning

We further analyze the appropriate granularity for
applying preference learning, aiming to determine
the most effective level of feedback for Tree-PLV.
Specifically, we compare our step-level preference
with instance-level and conventional token-level

2091

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH

56

64

72

80

88
%

 A
cc

ur
ac

y
(B

es
t-o

f-6
4)

GSM8K

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH

8

16

24

32

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

MATH500
instance-level binary
instance-level preference
token-level preference
step-level preference

Figure 4: A performance comparison of verifiers trained with different levels of feedback granularity.

training methods (Christiano et al., 2017; Ouyang
et al., 2022). Additionally, we include a verifier
trained using instance-level binary classification in
our comparison for a comprehensive analysis. The
results presented in Figure 4 demonstrate that veri-
fiers trained with preference learning consistently
outperform those trained using binary classification
across all levels of granularity. This finding sug-
gests that preference learning is better aligned with
the ranking evaluation pattern. Furthermore, step-
level guidance exhibits the best performance, indi-
cating that it represents the most suitable granular-
ity. In contrast to instance-level sparse supervision,
it provides more detailed and informative feedback.
Moreover, in step-by-step inference scenarios, step-
wise preference proves to be more reasonable than
token-level supervision, and such step-level align-
ment is also more consistent with the intuitive hu-
man process of evaluating reasoning.

4.3 Impact on Reasoning Path Distribution

Recent studies have highlighted the difficulties
large language models encounter in accurately
identifying their errors (Huang et al., 2023; Hong
et al., 2023). To assess our verifier’s effective-
ness, we generate reasoning paths using greedy
decoding, which are then scored by the original
model’s generation confidence and by Tree-PLV.
We compare the score distributions from both meth-
ods. Figure 6 shows Tree-PLV’s capability to sepa-
rate correct and incorrect reasoning paths. In con-
trast, generation confidence scores produce overlap-
ping distributions for both categories, highlighting
their limited differentiation capacity. Specifically,
Tree-PLV increases the scores of correct paths by
35%, whereas the confidence scores show only
a marginal 2% higher score for them. This pro-
nounced disparity between the two methods not
only confirms the superior performance of Tree-
PLV in evaluating the quality of reasoning paths

but also emphasizes the critical need for an effec-
tive verifier to accurately assess model outputs.

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH
50

60

70

80

90

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

MCTS
Tree-PLV

Figure 5: Performance comparison of MCTS and Tree-
PLV across different generators on GSM8K.

4.4 Reward Design

Our proposed reward function R evaluates the qual-
ity of the current step by assessing the proportion
of its latent complete paths that reach accurate con-
clusions. Some research demonstrates the advan-
tages of integrating models’ self-evaluation capabil-
ities into inference to enhance accuracy (Hao et al.,
2023; Ren et al., 2023a; Xie et al., 2023). Inspired
by this, we also developed a reward function that
relies on self-evaluation. As per Hao et al. (2023),
we first construct a reasoning tree based on Monte
Carlo Tree Search (MCTS) that incorporates self-
evaluation. We then collect preference data from
each step of this tree to train a verifier under the
same setting. The results, as shown in Figure 5,
reveal that the self-evaluation-based reward does
not perform as effectively as our proposed reward
function. This trend is consistent across different
generators, where the performance of the verifier
trained with self-evaluation rewards significantly
lagged behind our Tree-PLV. Our comparative anal-
ysis reveals that relying solely on the model’s in-
trinsic ability to evaluate reasoning steps falls short
in reliability. Additional results on the MATH500
dataset are provided in the Appendix C.

2092

0.0 0.2 0.4 0.6 0.8 1.00

30

60

90

120 0.89
0.87

(a) LLM distribution

Overall
Correct
Wrong

0.0 0.2 0.4 0.6 0.8 1.00

8

16

24

0.71
0.36

(b) Verifier distribution

Overall
Correct
Wrong

Figure 6: Distributions of the LLM’s generation confidence and verifier score on correct/incorrect reasoning paths.
The median scores for correct and wrong paths are highlighted with lines of the same respective colors.

0.125 0.250 0.375 0.500

81.0

81.5

82.0

82.5

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

Figure 7: Results on GSM8K, showing verifiers trained
with data sampled using different margins.

4.5 Margin Value for Preference Collection

We delve deeper into the analysis by applying vary-
ing margins to filter data. As shown in Figure 7,
increasing the margin value raises the proportion of
paired data with more noticeable path differences,
thereby reducing noise and improving the perfor-
mance of the verifier. However, when the margin
value reaches 0.5, the verifier’s performance de-
clines, indicating that excessively high margins
can diminish the comparison of similar paths and
reduce the richness of the data. Results on the
MATH500 dataset are provided in the Appendix C.

4.6 Efficiency of Data Generation

We further analyze our tree-based framework
across the dimensions of data generation efficiency.
We compare the average number of training data
per problem generated by different methods over
10 iterations, as shown in Figure 8. Math-Shepherd
consistently labels ten paths. In contrast, Self-
Explore struggles with datasets where the model
already performs well, as it inherently relies on
incorrect paths to form pairs. Our framework en-
hances the utilization of single paths through the
branching structure of a tree, demonstrating signifi-
cant scalability and efficiency in data generation.

GSM8K CSQA0

5

10

15

20

Av
g.

 Tr
ai

ni
ng

 D
at

a
pe

r P
ro

bl
em

SELF-EXPLORE
MATH-SHEPHERD

Tree-PLV

Figure 8: A comparison of methods’ efficiency in gen-
erating training data.

5 Related Work

Recent studies (Lightman et al., 2023; Cobbe et al.,
2021; Yu et al., 2023a) have demonstrated that in-
corporating a verifier can significantly enhance per-
formance in reasoning tasks. Primarily, there are
two methods for training verifiers: outcome super-
vision and process supervision. Unlike these ap-
proaches, which rely on supervised learning with
binary labels, our methodology employs prefer-
ence learning to achieve step-level alignment. We
provide a detailed discussion of additional related
work in Appendix A.

6 Conclusion

In this paper, we propose Tree-PLV, an innovative
verifier developed through step-level preference
learning. Utilizing a best-first tree search frame-
work to construct reasoning trees, this method cre-
ates a diverse and robust dataset, ensuring a rich
pool of paired data for preference training. By
leveraging step-level preferences instead of con-
ventional binary labels, our methodology provides
more granular and detailed feedback, enhancing the
verification of reasoning paths. Our empirical find-
ings highlight the efficacy of Tree-PLV, showing
significant performance improvements over exist-
ing benchmarks across a variety of arithmetic and

2093

commonsense reasoning tasks. In future work, we
aim to delve deeper into integrating our verifier
within the reasoning process by combining it with
various search algorithms, thereby refining the ver-
ification of intermediate reasoning steps.

Limitations

While Tree-PLV is effective at scoring complete
solutions, its potential to provide feedback that as-
sists and refines the reasoning process during the
inference phase has not been explored in this work.
Additionally, aside from assisting in reasoning to
encourage successful outcomes, some studies treat
verifiers as reward models in reinforcement learn-
ing scenarios. However, our current research fo-
cuses on developing highly reliable verifiers, rather
than employing reinforcement learning to enhance
the generator. Addressing these aspects will be the
focus of our future research.

Ethics Statement

The development of Tree-PLV aims to improve
the accuracy and reliability of reasoning assess-
ments in Large Language Models. Although our
method poses no immediate ethical concerns, we
acknowledge the potential for misuse if applied in
sensitive areas such as automated decision-making.
We recommend rigorous evaluation and oversight
to prevent bias and ensure data privacy in all appli-
cations. It is crucial to maintain transparency and
adhere to ethical standards in the deployment of
such technologies.

Acknowledgements

This work is supported by the "Pioneer" and
"Leading Goose" R&D Programs of Zhejiang (No.
2024C01034), the National Natural Science Foun-
dation of China (No. 62376245), the Fundamental
Research Funds for the Central Universities (226-
2024-00170), the project of the Donghai Labora-
tory (Grant no. DH-2022ZY0013) and MOE Engi-
neering Research Center of Digital Library.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas

Joseph, Benjamin Mann, Nova Dassarma, Nelson
Elhage, Zac Hatfield-Dodds, Danny Hernandez, John
Kernion, Kamal Ndousse, Catherine Olsson, Dario
Amodei, Tom B. Brown, Jack Clark, Sam McCan-
dlish, Christopher Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment. ArXiv, abs/2112.00861.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Antonia Creswell and Murray Shanahan. 2022. Faith-
ful reasoning using large language models. arXiv
preprint arXiv:2208.14271.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths,
Tommaso Salvatori, Thomas Lukasiewicz, Philipp
Petersen, and Julius Berner. 2024. Mathematical ca-
pabilities of chatgpt. Advances in Neural Information
Processing Systems, 36.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2022. Roscoe: A suite of
metrics for scoring step-by-step reasoning. arXiv
preprint arXiv:2212.07919.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154–8173, Singapore. Association for Com-
putational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu,
and Changshui Zhang. 2023. A closer look at the
self-verification abilities of large language models in
logical reasoning. arXiv preprint arXiv:2311.07954.

2094

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. arXiv preprint arXiv:2402.06457.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim,
Seonghyeon Ye, and Minjoon Seo. 2024. Self-
explore to avoid the pit: Improving the reasoning
capabilities of language models with fine-grained re-
wards. arXiv preprint arXiv:2404.10346.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. arXiv preprint arXiv:2307.10169.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, B. Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. Making
language models better reasoners with step-aware
verifier. In Annual Meeting of the Association for
Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. arXiv preprint arXiv:2301.13379.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Olek-
sandr Polozov, Christopher Meek, Dragomir Radev,
and Jianfeng Gao. 2022. Learning math reasoning
from self-sampled correct and partially-correct solu-
tions. arXiv preprint arXiv:2205.14318.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and
Mohit Bansal. 2023. Receval: Evaluating reasoning
chains via correctness and informativeness. arXiv
preprint arXiv:2304.10703.

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lak-
shminarayanan. 2023a. Self-evaluation improves se-
lective generation in large language models. arXiv
preprint arXiv:2312.09300.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. 2023b. Investigating the fac-
tual knowledge boundary of large language mod-
els with retrieval augmentation. arXiv preprint
arXiv:2307.11019.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel
Bowman. 2024. Language models don’t always say
what they think: unfaithful explanations in chain-of-
thought prompting. Advances in Neural Information
Processing Systems, 36.

2095

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
2023. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. CoRR,
abs/2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,
MingSung Kan, Junxian He, and Qizhe Xie. 2023.
Self-evaluation guided beam search for reasoning. In
Neural Information Processing Systems.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.
Outcome-supervised verifiers for planning in mathe-
matical reasoning. arXiv preprint arXiv:2311.09724.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023b.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2022. Solving math word problems via co-
operative reasoning induced language models. arXiv
preprint arXiv:2210.16257.

2096

A Related Work

Multi-step Reasoning Challenging reasoning
tasks have spurred innovative research in large lan-
guage models (LLMs), which are essential for han-
dling complex queries (Kaddour et al., 2023; Light-
man et al., 2023; Huang et al., 2023). A prominent
strategy employed is the Chain-of-Thought (CoT)
prompting technique (Wei et al., 2022), along with
its derivatives (Kojima et al., 2022; Wang et al.,
2022; Yao et al., 2024). These methods decompose
the reasoning process into sequential steps, system-
atically approaching problem-solving by mimick-
ing human-like reasoning. To further enhance the
accuracy of these intermediate steps, recent stud-
ies leverage extensive synthetic datasets, which
are either distilled from cutting-edge models (Yu
et al., 2023b; Luo et al., 2023) or composed of self-
generated rationales (Zelikman et al., 2022; Yuan
et al., 2023; Ni et al., 2022), to fine-tune the LLMs.
Such training effectively sharpens the models’ abil-
ity to produce CoT reasoning that leads to correct
answers.

In addition, there is an increasing emphasis on
test-time verification, a process that generates mul-
tiple solutions and ranks them through a separate
verifier (Cobbe et al., 2021) to select the most accu-
rate one. The DIVERSE framework (Li et al., 2022)
demonstrates the effectiveness of employing a vari-
ety of CoT prompts in conjunction with a verifier
to tackle reasoning challenges. CoRe (Zhu et al.,
2022) implements a dual-process system by fine-
tuning both the generator and the verifier, thereby
enhancing the performance of LLMs on math word
problems.

Training Verifiers The training process for ver-
ifiers is typically approached as a binary classifi-
cation task. In closely related work, Uesato et al.
(2022) introduces two distinct training methodolo-
gies for verifiers, differentiated by the granular-
ity of the supervision signal: outcome supervision
(Cobbe et al., 2021; Yu et al., 2023a; Hosseini et al.,
2024) and process supervision (Li et al., 2022; Ue-
sato et al., 2022; Lightman et al., 2023; Wang et al.,
2023). Verifiers trained under outcome supervision
utilize only the final result of a reasoning path for
learning, while those trained under process super-
vision benefit from incremental feedback at each
step within the CoT.

The training objective for this binary classifi-
cation does not align well with its intended ap-
plication in ranking scenarios. The binary labels

provide a coarse supervisory signal, which fails
to differentiate the efficacy of various steps, thus
capping potential enhancements in performance.
Addressing these issues is not straightforward, as
accurately assessing the quality of each step in-
volves subjective judgments that are difficult to
standardize, even with human annotations. Math-
Shepherd (Wang et al., 2023) employs heuristic
rules to annotate individual steps; however, the ver-
ifier trained on these refined labels does not show
improvement compared to its binary version. Our
method, Tree-PLV, fundamentally rethinks the ver-
ifier’s role by incorporating step-level preference
learning. This approach more effectively captures
subtle differences among paths and better aligns
with the ranking evaluation paradigm.

B Experimental Details

B.1 Dataset Description

Table 3 presents the reasoning benchmarks used
in this paper, along with examples. We utilize the
same test sets as Wang et al. (2023) for GSM8K
and MATH500, and as Wei et al. (2022) for CSQA.

For StrategyQA, there are 2,290 test cases (i.e.,
questions paired with TRUE/FALSE labels). How-
ever, there are no additional cases that can be lever-
aged by Tree-PLC to construct the training set. To
address this issue, we randomly sampled 750 test
cases to create the training data, leaving the remain-
ing 1,540 cases for testing.

B.2 Training Data

To construct the training set for Tree-PLV, we select
6,000 problems each from the GSM8K and CSQA
training datasets to generate paired data. We sam-
ple 8 subsequent trajectories (N=8) to calculate the
reward for each step. By applying a margin thresh-
old of α = 0.375, we filter these pairs, resulting
in approximately 100k valid pairs from GSM8K
and 120k from CSQA. Additionally, we sampled
750 questions from the StrategyQA training set,
yielding 15k pairs.

B.3 Training Details

Considering our limited computational resources,
we use Mistral-7B as the backbone to train our
verifier via the LoRA (Hu et al., 2021) training
method for one epoch. We choose a learning rate
of 1e-6, implemented with a cosine learning rate
scheduler. Specifically for arithmetic reasoning,
the base model is fine-tuned on MetaMATH, fol-

2097

Dataset N Example Problem

GSM8K 1319 James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint.
How many total meters does he run a week?

MATH500 500 A regular hexagon can be divided into six equilateral triangles. If the perimeter
of one of the triangles is 21 inches, what is the perimeter, in inches, of the regular
hexagon?

CSQA 1221 Where would you find magazines along side many other printed works? Answer
Choices: (A) doctor (B) bookstore (C) market (D) train station (E) mortuary

StrategyQA 1540 Could a silverfish reach the top of the Empire State Building?

Table 3: Reasoning benchmarks we use in this paper with examples. N: number of test cases.

lowing Wang et al. (2023). Furthermore, ORM,
Self-Explore, and Math-Shepherd are trained under
settings identical to those we use.

B.4 Prompt Examples

We present a prompt example for generating solu-
tions and performing reasoning. We employ few-
shot learning to guide the model towards producing
outputs in the step-by-step format.

Solve the questions step by step. Make each
step clear and logical, leading to the next. If
a step directly leads to an answer, end it with
"The answer is: ". If not, proceed to the next
step until you find the solution.

Four years ago, Kody was only half as
old as Mohamed. If Mohamed is currently
twice as 30 years old, how old is Kody?
Step 1: If Mohamed is currently twice as old as
30 years old, then Mohamed is currently 2 * 30
= 60 years old.
Step 2: Four years ago, Mohamed was 60 - 4 =
56 years old.
Step 3: Four years ago, Kody was only half as
old as Mohamed, so Kody was (1/2) * 56 = 28
years old.
Step 4: Therefore, Kody is currently 28 + 4 =
32 years old. The answer is: 32.

<more examples>

B.5 Preference Pair

We present an example of preference pairs
{(x, y+, y−)} used for training Tree-PLV, where
x represents the problem statement, y+ denotes
the preferred reasoning sequence, and y− is a less

desirable path.

x: One pie costs $4 for a piece. Each pie is
having 3 pieces. During one hour the bakery
can make 12 pies. Creating one pie costs the
bakery $0.5. Considering the bakery would be
able to sell all pie pieces, how much money
would it make?

y+:
Step 1: Each pie is having 3 pieces.
Step 2: 12 pies is equal to 3 * 12 = 36 pieces.
Step 3: Each piece costs $4, so the bakery
would earn 36 * $4 = $144 if it could sell all of
its pieces.
Step 4: The cost of making one pie is $0.5, so
the cost of making 12 pies is 12 * $0.5 = $6.
Step 5: The bakery would make 144−6 = $138.
The answer is: 138.

y−:
Step 1: Each pie is having 3 pieces.
Step 2: 12 pies is equal to 3 * 12 = 36 pieces.
Step 3: The bakery can make 36 pieces during
one hour.
Step 4: One piece costs $4 and a pie costs $0.5,
so it costs the bakery (1/3) * $4 + (2/3) * $0.5 =
$1.5 to create one pie.
Step 5: The bakery would make 12 * $1.5 =
$18 during one hour. The answer is: 18.

C Additional Experiment Results

C.1 Additional Results of Reward Design

In Figure 9, we show the additional results on the
MATH500 dataset for verifiers in Section 4.4. The
results of the experiment are consistent with our pa-

2098

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH

8

16

24

32

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)
MCTS
Tree-PLV

Figure 9: Performance comparison of MCTS and Tree-
PLV across different generators on MATH500.

0.125 0.250 0.375 0.50024.5

25.0

25.5

26.0

26.5

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

Figure 10: Results on MATH500, showing verifiers
trained with data sampled using different margins.

per’s analysis; our reward design is comparatively
more effective.

C.2 Additional Results on Different Margins
In this section, we provide the experimental results
of different verifiers on MATH500 in Section 4.5.
As shown in Figure 10, the performance trend of
the verifiers with different margin values is consis-
tent with the trend on GSM8K.

2099

