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Abstract

Recently, enabling pretrained language models
(PLMs) to perform zero-shot crossmodal tasks
such as video question answering has been ex-
tensively studied. A popular approach is to
learn a projection network that projects visual
features into the input text embedding space
of a PLM, as well as feed-forward adaptation
layers, with the weights of the PLM frozen.
However, is it really necessary to learn such ad-
ditional layers? In this paper, we make the first
attempt to demonstrate that the PLM is able
to perform zero-shot crossmodal tasks without
any crossmodal pretraining, when the observed
visual concepts are injected as both additional
input text tokens and augmentation in the in-
termediate features within each feed-forward
network for the PLM. Specifically, inputting
observed visual concepts as text tokens helps
to inject them through the self-attention lay-
ers in the PLM; to augment the intermediate
features in a way that is compatible with the
PLM, we propose to construct adaptation lay-
ers based on the intermediate representation of
concepts (obtained by solely inputting them to
the PLM). These two complementary injection
mechanisms form the proposed Deep Concept
Injection, which comprehensively enables the
PLM to perceive instantly without crossmodal
pretraining. Extensive empirical analysis on
zero-shot video question answering, as well as
visual question answering, shows Deep Con-
cept Injection achieves competitive or even bet-
ter results in both zero-shot and fine-tuning set-
tings, compared to state-of-the-art methods that
require crossmodal pretraining.

1 Introduction

Pretrained language models have been shown to be
a powerful base model to deal with tasks beyond
natural language processing, such as visual ques-
tion answering (Lu et al., 2019; Dai et al., 2022)
and video question answering (Sun et al., 2019; Li
et al., 2020a; Lin et al., 2021; Yang et al., 2021,
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Figure 1: Unlike existing methods of crossmodal pre-
training on millions of vision-text pairs, our Deep Con-
cept Injection enables PLMs for zero-shot crossmodal
tasks in a training-free manner. The core idea is to
leverage concepts as the bridge to inject the visual infor-
mation in the inference process of PLMs as both input
and constructed adaptation layers.

2022b). These tasks require reasoning over infor-
mation from multiple modalities. Thus, the key
challenge is to find a common representation so
that the information from different modalities can
be fused and processed by the PLM. Conventional
methods (Lu et al., 2019; Sun et al., 2019) usually
rely on a two-stage training process to obtain sat-
isfying results on downstream datasets. Assum-
ing pretrained language models and feature ex-
tractors like vision-text contrastive models (e.g.,
CLIP (Radford et al., 2021)) are available, the
first stage aims at crossmodal pretraining on web-
collected vision-text dataset with techniques like
masked token modeling (Li et al., 2020a; Zellers
et al., 2021) or contrastive learning (Xu et al., 2021;
Li et al., 2022; Yang et al., 2021) to learn the align-
ment and fusion of visual and textual inputs. In
the second stage, the model is further fine-tuned
with human annotation on specific downstream
datasets (Antol et al., 2015; Yang et al., 2021; Yu
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et al., 2019; Li et al., 2020a; Xu et al., 2017; Lei
et al., 2018; Marino et al., 2019) to obtain better
models for specific tasks.

However, such a two-stage training process has
been criticized to be lack of efficiency, flexibility
and generalization (Lin et al., 2021, 2023; Yang
et al., 2022b; Li et al., 2023a). Therefore, re-
searchers (Yang et al., 2022b; Li et al., 2023a) have
been actively exploring the possibility of relying
solely on the first crossmodal pretraining stage and
aims at learning a general vision-language model
that can perform well without any additional down-
stream fine-tuning. Successful representative meth-
ods in this line of work like FrozenBiLM (Yang
et al., 2022b) freeze the language model and only
train a few projection layers and a few adaptation
layers during the training process to improve the
efficiency. This line of research, while notable for
its effectiveness, raises a pertinent question: Is the
training of the projection networks truly necessary?

In this paper, we challenge the prevailing
methodology and propose a novel method that elim-
inates the need for training projection networks
while enabling the PLMs to perform zero-shot
crossmodal tasks. As in Figure 1, our approach,
Deep Concept Injection (DCI), injects the observed
visual concepts as both additional input text tokens
and augmentation in intermediate features within
each feed-forwards network to enable PLMs to per-
ceive and reason over multimodal inputs.

Our key insights are two-fold. First, towards
zero-shot crossmodal tasks, it is necessary to repre-
sent the observed visual information in a way that
the PLM directly understands, and our solution is to
represent the observation using concepts. Inspired
by (Lin et al., 2023) and (Wang et al., 2022), these
visual concepts can be extracted through retrieval
over a predefined vocabulary given the visual input,
with the help of pretrained vision-text contrasting
models like CLIP (Radford et al., 2021).

Second and more importantly, in modern PLMs
based on Transformers (Vaswani et al., 2017), there
are two complementary ways of fusing multimodal
information. One commonly used way is to provide
visual information as additional elements in the in-
put, where the interaction between visual input and
textual input is modeled in the self-attention lay-
ers. However, self-attention layers were trained on
natural sentences but not between concept words
and a natural sentence. Moreover, the other pos-
sibility within feed-forward networks has been ig-
nored. We propose to leverage the intermediate

representations of concept words (when they are
solely input to the PLM) to construct adaptation
layers and to achieve crossmodal fusion by estimat-
ing conditional distribution of the concept given
the visual observation and the current word being
processed in the PLM.

With the above two key insights, there remains
one design choice to complete Deep Concept In-
jection: how do we choose the set of concepts?
One intuitive solution is to leverage existing ontol-
ogy in computer vision datasets (Krizhevsky et al.,
2012; Krishna et al., 2017; Carreira and Zisser-
man, 2017). However, such generic datasets might
not be aligned with the specific downstream tasks
we are interested in. To obtain task-relevant prior,
we explore two orthogonal solutions. We first ex-
ploit the setting where the access to all the possible
answer words of the dataset is allowed, which is
actually true for open-ended question answering
datasets (Xu et al., 2017; Yu et al., 2019; Yang et al.,
2021). Second, to further eliminate the assumption
over prior information about the task and dataset,
we propose to obtain the set of relevant concepts by
querying the language model. With extensive em-
pirical analysis on fourteen datasets, the proposed
Deep Concept Injection achieves competitive or
even better performance than state-of-the-art meth-
ods, without any crossmodal pretraining. We be-
lieve this paper will stimulate further research and
exploration in the field, potentially opening new
paths towards more efficient and versatile utiliza-
tion of PLMs for crossmodal tasks.

The contribution of this paper could be summa-
rized as follows:

• We first challenge the current methodology
of zero-shot crossmodal tasks on the neces-
sity of training additional layers and provide
a negative answer by injecting observed vi-
sual concepts to PLMs to enable zero-shot
crossmodal tasks without any additional
training;

• We propose a novel method, Deep Concept
Injection, to introduce visual information to
PLMs by both inputting the most probable
concepts as additional textual input and con-
structing adaptation layers conditioned ob-
served concepts;

• We provide insightful empirical analysis to fa-
cilitate future research, including the necessity
of crossmodal pretraining when downstream
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Figure 2: Injecting the observed visual concepts as both additional input text tokens and augmentation in the
intermediate features within each feed-forwards network for the PLM enables zero-shot crossmodal tasks without
any crossmodal pretraining. The most probable concepts extracted from visual input are additional input text so that
visual information will be fused with textual information in the self-attention layers (intuitively, “cook, kitchen, ...”
provide context for the question); the concept information is further injected in every feed-forward network via
adding intermediate representation of concepts weighted with the conditional distribution given current word being
processed and the visual input (intuitively, “cook, kitchen, ...” + “wearing” makes it closer to “apron”). Detailed
descriptions of the proposed Deep Concept Injection can be found in Sec 2. This figure is best viewed in color when
zoomed in.

fine-tuning is still desired, comparisons with
other alternatives that don’t require additional
training, and DCI’s versatile usage

2 Technical Approach

In this section, we first present some preliminar-
ies (more detailed related work is discussed in the
supplementary material) and then introduce the
Deep Concept Injection in detail. We propose DCI
based on two key ideas: speak the “language” that
PLMs understand and comprehensively leverage
both ways in Transformer block for crossmodal
fusion. The first idea motivates us to leverage con-
cepts (e.g., action, objects, attributes and etc.) as
the bridge to transform visual information into text
representations. The second idea motivates us to
also utilize feed-forward networks for crossmodal
fusion. Last we discuss possible ways of acquiring
prior information for vocabulary construction.

2.1 Preliminaries
Crossmodal tasks. These tasks require the model
to fuse information from multiple modalities, e.g.,
vision and text to return a text response. Specifi-

cally, we mainly consider video question answer-
ing and image captioning/visual question answer-
ing tasks in this paper. In video question answer-
ing, given a video v and question t as input, the
model is required to predict the correct answer that
matches the ground-truth al from an answer cor-
pus A = {a1, .., a|A|}. In image captioning/visual
question answering, the problem setting is con-
ceptually identical; the only difference is that the
visual input is a single image. In the model descrip-
tions, we will adopt video question answering for
illustration.
Pretrained Vision-Text Contrastive Models. We
mainly leverage pretrained image-text contrastive
models. It consists of a visual encoder FV :
RH×W −→ RD and a text encoder FT : WL −→
RD, where H,W are the height and width, L is the
length of the sentence, D is the dimension of the
common embedding space and W is the set of all
the words. In this paper, we mainly use it as the
concept extractor because of its strong zero-shot
recognition abilities (Radford et al., 2021).
Pretrained Language Models. The key is to
train a model G : WL −→ R|W| that predicts the
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probability of a word given certain context as in-
put. Depending on the actual objective design, the
prediction could be for a masked word (Devlin
et al., 2018; He et al., 2020) or the next word (Raf-
fel et al., 2019; Chung et al., 2022). The net-
work architecture could be also categorized as
encoder-only (Devlin et al., 2018; He et al., 2020),
encoder-decoder (Raffel et al., 2019; Chung et al.,
2022), or decoder-only (Brown et al., 2020). All
the PLMs used in this paper are based on Trans-
former (Vaswani et al., 2017), which consists of nB

Transformer blocks and each block’s main building
components are self-attention layers that models
the interaction among different words, and feed-
forward networks that process each word individu-
ally. The feed-forward network essentially consists
of two linear layers with one activation layer.

2.2 Deep Concept Injection

In this section, we describe how to inject ob-
served concepts comprehensively and enable cross-
modal fusion in both self-attention layers and feed-
forward networks.

2.2.1 Injection as Additional Textual Input.
To enable crossmodal fusion through self-attention,
we extract visual concepts as additional textual in-
put through the retrieval process as follows. First,
we construct the word vectors from a predefined
concept vocabulary C; specifically, for each word
ci, we use the text encoder to obtain its word vec-
tor FT (wi). For the input video v, we encode it
with the pretrained image encoder FV (v) frame by
frame. Then we compare the similarity between
the frame embeddings and each of the words to
retrieve k most similar words,

w1,1, ..., w1,k, w2,1, ..., wF,k =

arg
k

max
i

FT (wi)
⊤FV (v), (1)

where F is the number of frames in the video v.
Then the retrieved concepts are fed into the pre-

trained text model with the question t in parallel to
obtain final prediction about answer al,

P (al|v, t) = G(w1,1, ..., w1,k, w2,1, ..., wF,k, t).
(2)

We follow the temporal order of frames to con-
catenate retrieved words frame by frame with the
question sentence t. Note for simplicity, we use
a single variable t to denote the actual sentence

of the question and the context text, which con-
tains multiple words. As shown in Figure 2, “cook,
kitchen, ...” will interact with question words in the
self-attention layer and help to provide information
about visual observation, which helps the model to
reason over multimodal inputs.

2.2.2 Injection as Augmentation in the
Intermediate Features of Feed Forward
networks.

Since the concept words are not really natural sen-
tences and thus the interaction is not perfectly mod-
eled in the self-attention layers. The ignored pos-
sibility of mutlimodal fusion in PLMs lies in the
feed-forward networks. We first describe how the
augmentation can be added in a way that the PLM
understands and then describe why this process can
be considered as constructing adaptation layers.

The key of realizing any training-free augmen-
tation for a pretrained model is to speak in the
“language” that the model understands. Therefore,
we first extract intermediate representation of each
concept when they are input to the PLM individu-
ally,

ê0,j,wi = G0,j(wi), (3)

where ê0,j,wi represents the intermediate represen-
tation of a concept wi, which is input to the feed-
forward network in the j-th Transformer block of
the PLM. Similarly, we can extract the output rep-
resentation of the feed-forward network in each
Transformer block for each concept word,

ê2,j,wi = G2,j(wi). (4)

Note that these extraction processes only need
to be done once for all the future crossmodal infer-
ence, which makes the amortized complexity to be
negligible.

As shown in Figure 2, during inference for cross-
modal tasks as in Eq. 2, for simplicity, we denote
the input intermediate representation and the out-
put intermediate representation of whichever word
is currently being processed as e0,j and e2,j , re-
spectively. To fuse crossmodal information, we
first compute the conditional distribution with the
approximation that e0,j is independent of v,

P (wi|e0,j , v) ≈
P (wi|e0,j)P (wi|v)

P (wi)
. (5)

The factorized terms can be obtained as follows,

P (wi|e0,j) =
exp (ê⊤0,j,wi

e0,j)∑
l exp(ê

⊤
0,j,wl

e0,j)
, (6)
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P (wi|v) = Topk(Max-pool(

exp (FT (wi)
⊤FV (v))∑

l exp(FT (wl)⊤FV (v))
)), (7)

where the Max-pool is applied along the temporal
axis for the video input to handle multiple input
frames and Topk indicates that we only keep the
most relevant k concept’s probability to be non-
zero and then scale the distribution so that the sum-
mation of probabilities is 1. This process essen-
tially keeps the most relevant and probable visual
concepts of the visual input, which we also find
important empirically. We don’t assume extra in-
formation about P (wi) and thus we simply apply
the uniform distribution. In practice, we simply
scale the product of P (wi|e0,j) and P (wi|v) to en-
sure the summation to be 1 to obtain the estimation
of P (wi|e0,j , v).

Then we leverage the conditional distribution to
augment the output intermediate representation of
the feed-forward network by adding the representa-
tion of concepts weighted based on the conditional
distribution,

e2,j = (1− λ) · e2,j+
λ ·

∑

i

P (wi|e0,j , v) · ê2,j,wi . (8)

Both the calculation of the conditional probabil-
ity and the augmentation of the output intermediate
representation can be done in parallel for each word
as matrix multiplication, which leads to the equiva-
lence to a feed-forward adaptation network

e2,j = (1− λ) · e2,j+
λ · Linear2(Act(Linear1(e2,j ; θ1)); θ2), (9)

where θ2 is the weight matrix of the second lin-
ear layer Linear2 whose row i is the transpose of
ê2,j,wi , θ1 is the weight matrix of the first linear
layer Linear1 whose column i is ê0,j,wi and Act
consists of both soft-max and element-wise multi-
plication with P (wi|v).

Intuitively, as verified in Figure 3, intermediate
representation of “[mask]” could not be close to
the answer “hat” but after adding the representation
of observed concepts, the model can make correct
prediction. Therefore, by further injecting the vi-
sual concept in the feed-forward network of each
block, the visual information is comprehensively
fused with the textual input for the PLM to make
better prediction for crossmodal tasks.

2.3 Prior Information Acquisition for
Vocabulary Construction

Existing computer vision datasets provide a generic
vocabulary of visual concepts C. Inspired
by (Wang et al., 2022), we curate a comprehen-
sive visual concept vocabulary of verbs, objects
and attributes from Visual-Genome (Krishna et al.,
2017; Kuznetsova et al., 2020). We denote the
variant using this generic vocabulary as DCI. How-
ever, such a vocabulary could be too general for
downstream tasks.

We first explore a setting with the access to the
answer word vocabulary which either consists of
the most frequent answers from the training set
provided in the open-ended setting or consists of
the answer words from the choices in the multiple-
choice setting. This does not leak any information
for 8 datasets of open-ended video question answer-
ing. We denote this variant as DCI-A.

To generally obtain prior information about the
task to narrow down from a generic vocabulary,
we propose to prompt a PLM to ask about relevant
visual concepts

P (wi|I) = I(t), (10)

where t is the question (and context) and I is not
necessarily the same PLM we use for crossmodal
tasks, although in our implementation we use the
same model for simplicity of implementation. Then
we can narrow down a subset of most nc probable
concept words from the generic vocabulary C. We
denote this variant as DCI-LM.

3 Experimental Results

In this section, we will first introduce the implemen-
tation and evaluation settings. Then we organize
the following subsections by answering a set of im-
portant questions. More ablations, further analysis
and other details are in the supplementary material.

3.1 Implementation and Evaluation Settings
We mainly compare with state-of-the-art video-
language models using frozen PLMs and learned
projection layers, FrozenBiLM and provide case
studies in contrast to BLIP-2 (Li et al., 2023a) and
LLaVA-1.5 (Liu et al., 2023). We follow their set-
tings respectively to implement and evaluate our
methods. Based on empirical results, we use k = 4,
λ = 0.01, and nc = 1500. More details and com-
prehensive ablation studies are provided in the sup-
plementary material due to space limit.
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Model MM Samples GPU hours iVQA ANet-QA TGIF How2QA TVQA LSMDC

Zero-shot Setting

Random NA NA 0.1 0.1 0.1 25.0 20.0 0.1
VQA-T (Yang et al., 2022a) 72M 380 13.3 12.3 - 53.1 - -
Reserve (Zellers et al., 2022) 1B 196K - - - - - 31.0

Flamingo3B (Alayrac et al., 2022) 2.1B - 32.7 - - - - -
Flamingo9B (Alayrac et al., 2022) 2.1B - 35.2 - - - - -

Flamingo80B (Alayrac et al., 2022) 2.1B 553K 40.7 - - - - -

CLIP (Radford et al., 2021) NA NA 9.2 1.2 3.6 47.7 26.1 1.2
DeBERTa-V2 (He et al., 2020) NA NA 12.1 23.0 32.3 52.7 55.1 50.0

FrozenBiLM (Yang et al., 2022b) 10M 160 26.8 25.9 41.9 58.4 59.7 51.5
DCI (ours) 0 0 28.0 25.1 45.2 62.8 60.7 52.4

DCI-A (ours) 0 0 30.2 25.6 45.6 63.1 60.9 52.8
DCI-LM (ours) 0 0 28.5 25.2 45.3 62.9 60.6 52.6

Fine-tuning Setting

MERLOT (Zellers et al., 2021) 180M - - 41.4 69.5 - 78.7 52.9
SiaSamRea (Yu et al., 2021) 5.6M - - 39.8 60.2 84.1 - -
VQA-T (Yang et al., 2022a) 72M 380 35.4 39.0 - 85.3 - -
Reserve (Zellers et al., 2022) 1B 196K - - - - 86.1 -
All-in-one (Wang et al., 2023) 138M 11K - - 66.3 - - -
VindLU (Cheng et al., 2023) 25M 2.0K - 44.7 - - 79.0 -

FrozenBiLM (Yang et al., 2022b) 10M 160 39.6 43.2 68.6 86.7 82.0 63.5

FrozenBiLM* 0 0 31.6 41.8 67.4 75.8 70.8 57.1
DCI-A (ours) 0 0 42.6 42.8 68.5 89.3 81.7 61.6

Table 1: Comparison with the state-of-the-art methods on manually-labeled video question answering datasets
in terms of accuracy (%) and efficiency. Our DCI is built upon CLIP and DeBERTa-V2, as FrozenBiLM. MM
Samples indicate the number of video-text samples used in the crossmodal pretraining process. GPU hours denote
the additional computation required for it. Bold indicates the best results and underline means relatively better than
FrozenBiLM. “-” means unclear from the original paper and “NA” is not applicable. * indicates FrozenBiLM is
fine-tuned without loading pretrained projection and adaptation layers from the crossmodal pretraining stage.

FrozenBiLM is evaluated on 8 video ques-
tion answering datasets: iVQA (Yang et al.,
2021), ActivityNet-QA (Yu et al., 2019), TGIF-
QA (Jang et al., 2017), How2QA (Li et al., 2020a),
TVQA (Lei et al., 2018), LSMDC (Maharaj et al.,
2017), which are manually labeled; MSRVTT-
QA (Xu et al., 2017) and MSVD-QA (Xu et al.,
2017), which are generated automatically from
video captions and we report them separately in
the supplementary material due to quality concern
raised in (Lin et al., 2023). We follow its evaluation
setting for each of the datasets to report results. Our
models use the same CLIP ViT-L/14 (Radford et al.,
2021) model and the same DeBETa-V2-XL (He
et al., 2020) model as the FrozenBiLM model. In
the fine-tuning setting, to maintain a fair compari-
son in terms of trainable parameters, we train the
same adaptation layers as FrozenBiLM.

For image captioning comparison with BLIP-2
on NoCaps (Agrawal et al., 2019), we use the same
Q-Former (after its first Vision-and-Language Rep-
resentation Learning stage) based on ViT-g (Fang
et al., 2022) and the pretrained FlanT5-XL (Chung
et al., 2022). After Q-former, the extracted features
of an image will have an axis for different learned
queries, which can be handled in the same way
as the temporal dimension in the video question

answering setting illustrated in Section 2.

3.2 DCI’s Effectiveness in Training-free
Setting

As shown in Table 6, compared to state-of-the-art
zero-shot video question answering model Frozen-
BiLM, without training on 10 million video-text
pairs for 160 GPU hours, all the proposed DCI
variants generally achieve better or competitive re-
sults on all the 6 manually-labeled video question
answering datasets. On some of the datasets like
iVQA and TGIF-QA, the absolute improvement is
up to 3.7% and the relative improvement is up to
12.7%. In spite of the huge difference in terms of
the number of parameters in the model (890M v.s.
80B) and the huge number of multimodal samples
(2.1B) and cost of training (553K TPU hours), com-
pared to Flamingo80B, our proposed DCI method
successfully reduces the gap between FrozenBiLM
and such gigantic multimodal large language mod-
els. We leave further scaling model size used by
DCI as future research.

3.3 Effects of Vocabulary Construction
Methods

As shown in Table 6, we observe that generally
the DCI-A variant performs the best (such as the
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Model Projection Layer iVQA ActivityNet-QA TGIF-QA How2QA TVQA LSMDC

FrozenBiLM Learned 26.8 25.9 41.9 58.4 59.7 51.5

FrozenBiLM* Learned 27.3 24.7 41.0 53.5 53.4 50.7
CLIP+DeBERTa Random 7.0 14.2 22.8 46.8 39.4 46.8
CLIP+DeBERTa Constructed 24.5 24.1 39.5 55.8 57.9 51.0
CLIP+DeBERTa Concepts 26.5 25.1 40.8 57.6 59.4 51.4

Table 2: Comparison between FrozenBiLM and its counterpart without training on the projection from visual input
to PLMs. “Projection Layer” indicates how the projection layers are obtained. * denotes no adaptation layers are
added for fair comparisons.

PredictionDCI 
(Only Input)

Input

DCI Hat 

Vodka 

Question: What is 
the man wearing 

on his head?

Figure 3: Attention visualization of DCI with only injections as inputs and full DCI. With the help of augmentation
in the intermediate features, “[mask]” token attends more to “hat”, which leads to the correct prediction. Best
viewed when zoomed in.

2.2% absolute improvement from the generic vo-
cabulary on iVQA), which is expected as the pos-
sible answer words in each dataset provide strong
prior information about the task and the dataset.
We also find that using the PLM to narrow down
from the generic vocabulary helps to improve the
performance but not as significant as DCI-A. As
the hyper-parameters are tuned with only iVQA,
it is still encouraging to observe a rather consis-
tent improvement from DCI-LM. But generally the
performance improvement is not as significant as
the improvement from pretraining-required Frozen-
BiLM to our pretraining-free DCI method.

3.4 DCI’s Effectiveness in Fine-tuning Setting

Despite this method being proposed in a training-
free manner, it is important to understand whether
DCI effectively helps to avoid the costly cross-
modal pretraining stage. Therefore, we also fine-
tune the models with our DCI method. Similar to
FrozenBiLM, we freeze the PLM but just update
the parameters of the same configured adapter net-
works from scratch to keep the same number of
trainable parameters. As shown in Table 6, com-
pared to directly fine-tuning FrozenBiLM with-
out the crossmodal pretraining stage, our DCI-
A equipped model significantly improves the ac-
curacy by up to 13.5% absolute improvement,
which demonstrates the effectiveness of the pro-
posed method for fusing visual information beyond
zero-shot setting. When comparing with Frozen-
BiLM with 10M of more examples for crossmodal
pretraining, our DCI-A still outperforms it by up
to 3% of absolute gain, which further indicates it
is more important to inject visual information
in a way that PLMs easily understand than to
simply train them extensively.

3.5 Alternative Methods without Training
Based on the insights discussed in Eq. 9, we pro-
vide a baseline with a constructed projection layer
that requires no additional training and also helps
us understand methods like FrozenBiLM. The main
idea is instead of learning the projection layers, the
“projected” visual features in the text embedding
space could be obtained by weighted-averaging
concept embeddings with the conditional distribu-
tion of concepts given the visual input. Formally,
et =

∑
i P (wi|v)t ·ewi , where et is the “projected”

visual feature of the t-th frame and ewi is the word
embedding of word wi. We further provide another
baseline where instead of weighting the word em-
beddings of concepts, we directly concatenate the
most relevant concepts as additional textual input.
It is essentially only injecting concepts as inputs,
without augmentation in the intermediate features.

As in Table 2, we evaluate these baselines
on 6 manually-labeled video question answering
datasets, and this baseline performs surprisingly
well. The constructed variant significantly out-
performs the random initialization and performs
slightly lower than the learned FrozenBiLM, which
indicates that most of the ability of the learned
projection layers and the adaptation layers can be
instantly obtained with the simple constructed pro-
jection layer. Such constructed projection layers or
learned projection layers are inferior to directly ap-
pending the most relevant concepts, which implies
that a sequence of concept words is a better repre-
sentation than a single projected visual feature.

3.6 How do the Constructed Adaptation
Layers help inject visual information?

In Figure 3, we visualize the average attention in
the last transformer block for results from DCI with
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Model MM GPU in-domain near-domain out-domain overall
Samples Hours C S C S C S C S

BLIP-2 (Fine-tuned) 129M + 325K 450 123.7 16.3 120.2 15.9 124.8 15.1 121.6 15.8

BLIP-2 129M 380 104.1 14.2 102.0 13.8 114.1 14.1 104.8 14.9
DCI (Ours) 0 0 107.2 16.8 105.5 15.3 111.1 14.8 107.0 15.3

Table 3: Image captioning results on NoCaps. FLAN-T5-XL is used for fair comparisons. Note that here GPU hours
of BLIP-2 are estimated based on the provided configuration in the paper. BLIP-2 fine-tuned on MSCOCO (Chen
et al., 2015) is listed for reference.

Explain the advantages of this 
product.

The audi e - tron is an advanced 
and futuristic car with a sleek 
angular design and an 
aerodynamic body.

Tell me something about the 
history of this place.

The Great Wall of China is a 
fortification built by the ancient 
Chinese dynasty as a defense 
against the nomadic tribes that 
invaded China during the warring 
states period.

What do you know about this 
type of flower?

Orchids are a genus of flowering 
plants in the orchid family.

Is this photo usual? 

Unusual.

Why is it unusual? 

A house that is upside down in the 
air. 

Where is it originated from?

Orchids are a genus of flowering 
plants in the orchid family that 
originated in the eastern tropics 
and subtropics of Asia, Australia, 
Pacific Islands, and New Guinea. How to get out of it?

Slide.

(a) Dialogue results using Q-former-ViT-g + Flan-T5-XXL + DCI.

Explain the advantages of this 
product.

The 2021 Audi e-tron is a 
futuristic vehicle with several 
advantageous features. Here 
are a few benefits that come to 
mind based on the keywords 
provided:
1.Aerodynamic design: The e-
tron's sleek and angular design 
not only looks futuristic but also 
improves its aerodynamics, 
reducing wind resistance and 
improving fuel efficiency.
2.Electro drivetrain: The e-tron 
is an electric vehicle (EV), which 
means it runs on electricity 
instead of gasoline. This 
reduces the vehicle's carbon 
footprint and dependence on 
non-renewable energy sources.
3.Driverless capabilities: The e-
tron features advanced driver 
assistance systems (ADAS), 
including Level 3 autonomy, 
which enables semi-
autonomous driving. This 
means the vehicle can …

Tell me something about the 
history of this place.

The Great Wall of China is an 
incredible historical site that 
spans over 4,000 years of 
Chinese history. It was initially 
constructed during the 7th 
century BC to protect China 
from invading armies, and it has 
been continuously expanded 
and renovated over the 
centuries.
Here are some key points about 
the history of the Great Wall of 
China:
1.The Great Wall was first built 
during the Qin Dynasty (221-
206 BC) by Emperor Qin Shi 
Huang as a defensive 
fortification against the 
Mongols.
2.Over the centuries, the wall 
was expanded and fortified by 
successive Chinese dynasties, 
including the Han, Sui, and 
Ming dynasties.
3.The wall stretched over 400 
miles (640 km) and was …

What do you know about this 
type of flower?

Firstly, it's worth noting that 
the orchid is the largest family 
of flowering plants, with over 
30,000 species worldwide. The 
orchid family (Orchidaceae) 
includes a wide range of 
flowers, from small and delicate 
to large and showy, and they 
come in a variety of colors, 
shapes, and sizes.
Based on the keywords you 
provided, it appears that the 
orchid in the image is a Cattleya 
orchid. Cattleya is a genus of 
orchids that includes over 50 
species, many of which are 
popular for their large, showy 
blooms. Cattleya orchids are 
native to Central and South 
America and are known for 
their bright colors, sweet 
fragrance, and long-lasting 
blooms.
In terms of the characteristics 
of the orchid itself, …

Is this photo usual? 

No.

Why? 

The photo of a house upside 
down in the air is not a usual or 
common scene. It is an unusual 
and quirky image that evokes a 
sense of wonder and humor. 
The use of keywords such as 
"upside," "houseboat," 
"precarious," "movable," and 
"unusual" suggest that the 
photo is not a typical 
representation of a house. 

Tell me one way to get out of the 
house? 

Based on the keywords provided, 
one way to get out of the upside-
down house is through the 
"sliding" or "slipping" route.

(b) Dialogue results using Q-former-ViT-g + LLAMA2-7B-Chat + DCI.

Figure 4: The proposed DCI method generalizes well to multimodal dialogue. Best viewed when zoomed in.

only injection as inputs and full DCI. We observe
that the augmentation in the intermediate feature
space helps the model attend more to extracted
concepts that are relevant to the correct answer.
Without the augmentation in the intermediate fea-
ture space brought by the Constructed Adaptation
Layers, the model predicts a wrong answer even
when the correct answer is retrieved as a concept.
This verifies that the Constructed Adaptation Lay-
ers are complementary to injecting visual concepts
as input to the PLM.

3.7 Versatile Usage of DCI

Zero-shot Image Captioning. As shown in Ta-
ble 3, compared to BLIP-2 relying on 129M of mul-
timodal samples for training the alignment between
visual input and large language models, our DCI
successfully outperforms in almost every metric
setting on the challenging NoCaps image caption-
ing task that stresses on the generalization to novel
objects. This encouraging result demonstrates that
our DCI method generalizes beyond VideoQA.
Zero-shot Multimodal Dialogue. We show the

zero-shot dialogue results in Figure 4. We find
the zero-shot multimodal dialogue results to be im-
pressive. With the proposed DCI method, PLMs
such as FLAN-T5-XXL and the latest LLAMA2-
7B-Chat can instantly be used for multimodal di-
alogue without any training. For instance, for the
Great Wall image, our method retrieves concepts
like "china, history, journey, tourism, geography,
fortress, travel, dynasty, exploring, castle, fortifi-
cation. . . " These concepts highlight how DCI suc-
cessfully captures the key semantic elements of
the image, enabling the model to reason effectively
about the question and generate plausible answer
about the history of the Great Wall.

4 Related Work

Pre-trained Vision-Text Contrastive Models. Re-
cently, a family of contrastively pre-trained models
are introduced, which are learned from large-scale
vision-text data (Miech et al., 2020; Radford et al.,
2021; Li et al., 2023a). These models typically con-
tain a visual encoder and a text encoder, and learn
to map visual and text embeddings into a common
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space. They sample positive/ negative pairs from
aligned/unaligned image/video and texts, and train
the visual and text encoders with a contrastive ob-
jective in a self-supervised manner. With access
to large-scale multimodal data (e.g., 400 million
web image-text pairs), they are shown superior on
zero-shot recognition tasks. The resulting visual
encoders have also been shown to be great feature
extractors for downstream tasks (Li et al., 2020b;
Yang et al., 2021, 2022b; Wang et al., 2022; Shen
et al., 2021).
Crossmodal Tasks with Pretrained Language
Models. Conventional methods (Lu et al., 2019;
Sun et al., 2019; Yang et al., 2021) usually rely on
a two-stage training process to obtain satisfying
results on downstream datasets. Assuming pre-
trained language models and feature extractors like
vision-text contrastive models (e.g., S3D (Miech
et al., 2020) and CLIP (Radford et al., 2021)) are
available, the first stage aims at training on web-
collected vision-text dataset with techniques like
masked token modeling (Li et al., 2020a; Zellers
et al., 2021) or contrastive learning (Xu et al., 2021;
Luo et al., 2021; Li et al., 2022; Yang et al., 2021)
to learn to align and fuse visual and textual in-
puts. In the second stage, the model is further
fine-tuned with human annotation on downstream
datasets (Yang et al., 2021; Yu et al., 2019; Li et al.,
2020a; Xu et al., 2017; Zhou et al., 2018; Wang
et al., 2019) for better downstream performance.

Such a two-stage training process has been criti-
cized for a lack of efficiency and flexibility because
of the huge cost of the first training stage (Lin
et al., 2021, 2023), and they are also not general
enough (Yang et al., 2022b; Li et al., 2023a). There
are two lines of following research trying to ad-
dress the limitation of the two-stage training pro-
cess. One line of work (Lin et al., 2021, 2023)
focuses on obtaining competitive models with only
the second training stage on downstream datasets
and one successful idea is to transform every modal-
ity into concept text (Lin et al., 2021, 2023) so that
the PLM can immediately understand and lever-
age the information from other modalities without
the expensive first training stage. However, such
methods still rely on human annotation and specific
training towards each downstream dataset.

The other line of work (Alayrac et al., 2022;
Yang et al., 2022b; Li et al., 2023a) relies solely
on the first training stage and aims at learning a
general vision-language model that can perform
well in the zero-shot setting without any additional

downstream fine-tuning. During the training pro-
cess, successful methods in this line of work such
as FrozenBiLM (Yang et al., 2022b) freeze the lan-
guage model and only train a few projection layers
and a few feed-forward adaptation layers to project
the visual features extracted by a frozen feature
extractor like CLIP, to improve the efficiency. The
typical training target is, with the video/image as
input, generating the associated text. It is notewor-
thy that, although the pretrained model exhibits
the ability to perform zero-shot crossmodal tasks
such as video questions answering, to obtain higher
performance on downstream tasks, fine-tuning is
still crucial (Yang et al., 2022b; Liu et al., 2023)
to achieve superior performance. Unlike existing
research, we explore a more challenging new prob-
lem where there is no additional training or labeled
training samples for downstream tasks.

5 Conclusion

In this paper, we present a novel approach to
enabling pretrained language models to perform
video question answering without any training. The
proposed Deep Concept Injection effectively cir-
cumvents the necessity of training projection net-
works, a widely accepted practice in this field, and
instead makes insightful use of observed visual con-
cepts as additional input text tokens and as a means
for augmenting intermediate features. Extensive
results show that they function synergistically to
realize strong zero-shot crossmodal capabilities of
the PLM and to bypass the costly crossmodal pre-
training stage in versatile tasks and settings.
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7 Limitations

One limitation in this work is that only crossmodal
tasks over vision and text are evaluated. Since we
have already covered 15 datasets, we leave fur-
ther exploiting broader combinations and tasks as
future work. However, the proposed approach is
rather generic: as long as there is a concept extrac-
tor for modality X, preferably a pretrained X-text
contrastive model for modality X and text, the pro-
posed DCI can be applied instantly. Another limita-
tion of the proposed method is that it certainly adds
additional running time during inference because
of the extra computation, but the main complexity
still comes from the inference of the large PLM
itself. We also want to acknowledge that more
complex spatial-temporal relationship is still rather
under-explored in this work to be consistent with
the main counterpart model such as FrozenBiLM.

We also note that in the current evaluations, the
size of the PLM used is still rather limited to a
rather small scale. Further scaling up the language
model is another interesting future work. We also
would like to note that we assume there is no access
to good captioning models for all the models eval-
uated. In practice, further augmenting inputs with
captions generated by pretrained captioning mod-
els could possibly further improve the performance,
which is orthogonal to the setting and approaches
explored in this paper.

Due to the nonlinear nature of transformers and
multimodal tasks, the community generally lacks
effective theoretical tools to analyze such large
models, to the best of our knowledge. Therefore,
we leave more theoretical analysis as future work.

While we do not anticipate direct negative social
consequences stemming from the work, it is impor-
tant to note our work relies on pre-trained models,
which could potentially exhibit certain biases.
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A Can DCI serve as a plug-and-play
augmentation for models requiring
additional training?

The motivation of DCI is to eliminate additional
training and to enable PLMs to perform cross-
modal tasks directly. Since there are already trained
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Model Fine-tuned? iVQA ANet-QA TGIF-QA How2QA TVQA LSMDC MSRVTT MSVD

FrozenBiLM (Yang et al., 2022b) No 26.8 25.9 41.9 58.4 59.7 51.5 16.7 33.8
+ DCI-A (ours) No 30.6 26.1 46.3 59.5 59.8 52.4 17.3 35.0

FrozenBiLM (Yang et al., 2022b) Yes 39.6 43.2 68.6 86.7 82.0 63.5 47.0 54.8
+ DCI-A (ours) Yes 40.4 43.3 69.5 87.1 81.9 63.8 47.6 55.0

Table 4: Results (%) of plugging DCI-A into FrozenBiLM on iVQA, ActivityNet-QA, TGIF-QA, How2QA,
TVQA, LSMDC, MSRVTT-QA and MSVD-QA. “Fine-tuned” indicates whether the FrozenBiLM model is further
fine-tuned on each downstream datasets. Bold indicates the better results.

models, it is important and interesting to explore
the flexibility of the proposed DCI as a plug-and-
play augmentation to these trained models. We
take FrozenBiLM for this case study as its trained
and fine-tuned checkpoints have all been released.
Specifically, for the input sequence, we append
the retrieved visual concepts between the projected
visual features and the question text; for the aug-
mentation in the intermediate representations, we
perform exactly the same augmentation process for
every input token.

As shown in Table 4, we extensively evaluate
both FrozenBiLM trained with video-text pairs and
its variants further fine-tuned on each downstream
dataset, with the proposed DCI-A as a plug-and-
play augmentation. We observe that even when the
projection and adaptation layers are well trained or
even fine-tuned towards the specific downstream
task, our DCI-A can still help to better fuse the
visual information with textual information. This
again verifies the necessity of injecting observed
concepts and the complementarity with existing
approaches.

B Speed Comparison

As shown in Table 5, we measure the inference
speed on a V100 GPU with batch size 1 on the
validation set of the iVQA dataset. The running
time is shown in the following table. The increase
in running time of DCI is rather tolerable compared
to other models like FrozenBiLM. The time of one
ablation experiment of DCI typically takes about 1
GPU minute. Models like FrozenBiLM also need
hyper-parameter search, which is much more ex-
pensive.

Method Running time (seconds per iteration)

FrozenBiLM 0.0461 ± 0.0010
DCI (Ours) 0.0495 ± 0.0013

Table 5: Inference speed comparison.

C Comparisons on MSRVTT-QA and
MSVD-QA

MSRVTT-QA (Xu et al., 2017) and MSVD-
QA (Xu et al., 2017), which are generated auto-
matically from video captions and we report them
separately here due to quality concern raised in (Lin
et al., 2023). Despite their wide usage in the exist-
ing literature, their nature of being automatically
generated, which is even shown to be worse than
the automatic pretraining data generation pipeline
proposed in Just-ask (Yang et al., 2021), determines
that they are not suitable for evaluation given all
the other six manually annotated video question an-
swering datasets available. Regardless, we observe
in Table 6 that the proposed DCI method helps
to obtain comparable performance on these two
datasets without expensive crossmodal pretraining
in both zero-shot and fine-tuning settings.

D Comparison with BLIP-2 on Visual
Question Answering

As shown in Table 7, compared to state-of-the-art
zero-shot visual question answering model BLIP-2,
without training on 129 million video-text pairs
for 1 thousand GPU hours, all the proposed DCI
variants still generally achieve better or competi-
tive results on all the 3 visual question answering
datasets. It is noteworthy that on VQAv2, with
a smaller PLM FlanT5-XXL (12B), the proposed
DCI even outperforms Flamingo80B by 9.6% of
absolute accuracy.

E Instruction-tuning without crossmodal
pretraining.

Beyond zero-shot training-free setting, we are also
interested in whether the proposed DCI method can
also help to bypass the crossmodal pretraining stage
when instruction tuning resources are available. As
Table 8 shows, compared to training LLaVA-1.5
without crossmodal pretraining, our DCI provides
consistent improvement on five evaluation bench-
marks (Singh et al., 2019; Lu et al., 2022; An-

22411



Model MM Samples GPU hours MSRVTT-QA MSVD-QA

Zero-shot Setting

Random NA NA 0.1 0.1
VQA-T (Yang et al., 2022a) 72M 380 5.6 13.5
Reserve (Zellers et al., 2022) 1B 196K 5.8 -

Flamingo3B (Alayrac et al., 2022) 2.1B - - 27.5
Flamingo9B (Alayrac et al., 2022) 2.1B - - 30.2
Flamingo80B (Alayrac et al., 2022) 2.1B 553K - 35.6

CLIP (Radford et al., 2021) NA NA 2.1 7.2
DeBERTa-V2 (He et al., 2020) NA NA 6.5 11.7

FrozenBiLM (Yang et al., 2022b) 10M 160 16.7 33.8
DCI (ours) 0 0 17.2 34.5

DCI-A (ours) 0 0 17.6 35.1
DCI-LM (ours) 0 0 17.4 34.4

Fine-tuning Setting

MERLOT (Zellers et al., 2021) 180M - 43.1 -
SiaSamRea (Yu et al., 2021) 5.6M - 41.6 45.5
VQA-T (Yang et al., 2022a) 72M 380 41.8 47.5

All-in-one (Wang et al., 2023) 138M 11K 46.8 48.3
VindLU (Cheng et al., 2023) 25M 2.0K 44.6 -

FrozenBiLM (Yang et al., 2022b) 10M 160 47.0 54.8

FrozenBiLM* 0 0 46.2 51.9
DCI-A (ours) 0 0 46.6 54.3

Table 6: Comparison with the state-of-the-art methods on automatically-labeled video question answering datasets
in terms of accuracy (%) and efficiency. Our DCI is built upon CLIP and DeBERTa-V2, as FrozenBiLM. MM
Samples indicate the number of video-text samples used in the crossmodal pretraining process. GPU hours denote
the additional computation required for it. Bold indicates the best results and underline means relatively better than
FrozenBiLM. “-” means unclear from the original paper and “NA” is not applicable. * indicates FrozenBiLM is
fine-tuned without loading pretrained projection and adaptation layers from the crossmodal pretraining stage.

tol et al., 2015; Hudson and Manning, 2019; Li
et al., 2023b). On TextVQA (Singh et al., 2019),
and Pope (Li et al., 2023b) and ScienceQA (Lu
et al., 2022), our crossmodal-pretraining-free even
achieves better results compared to LLaVA-1.5
with crossmodal pretraining. This demonstrates
the versatile usage of the proposed DCI method
and prompts us to rethink the value of crossmodal
pretraining: the performance gap resulting from
the absence of crossmodal pretraining is marginal
compared to the one resulting from a larger-scale
instruction fine-tuning setting, which again chal-
lenges the necessity of crossmodal pretraining in
the image-language domain.

We observe that the model benefits more on
the Language Science subject where the model is
required to perform certain reasoning with com-
monsense based on image context. For example,
as shown in Figure 5, the model is asked which
word best describes the sound this hammer makes,
given an image of some one driving nails on fence.
LLaVA answers buzzing, which is incorrect. But
with concepts such as "hammer, picket, nail, fence"

retrieved, the model successfully answers banging.
Such examples indicate that directly using concepts
as image representation help reduce possible visual
hallucination (which aligns with the improvements
on the POPE dataset) or better recalls the common-
sense knowledge that the PLM possesses.

DCI (Ours)

Concepts extracted:
hammer
picket
nail
fence…

Prediction:
banging

LLaVA

Prediction: 
buzzing

Question:
“Look at the picture. Which word best describes the 
sound this hammer makes? Buzzing, dripping or 
banging?

Image

Groundtruth

banging

Figure 5: Visualization of results on ScienceQA.
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Model MM Samples GPU hours VQAv2 test-dev OK-VQA test GQA test-dev

VLKD (Dai et al., 2022) 3.7M 320 44.5 13.3 -
Flamingo3B (Alayrac et al., 2022) 2.1B - 49.2 41.2 -
Flamingo9B (Alayrac et al., 2022) 2.1B - 51.8 44.7 -

Flamingo80B (Alayrac et al., 2022) 2.1B 553K 56.3 50.6 -

BLIP-2 (Li et al., 2023a) 129M 1K 65.0 45.9 44.7
DCI (ours) 0 0 64.5 46.3 45.2

DCI-A (ours) 0 0 65.9 46.8 45.4
DCI-LM (ours) 0 0 65.4 46.9 45.2

Table 7: Comparison with the zero-shot state-of-the-art on visual question answering in terms of accuracy (%) and
efficiency. Our DCI is built upon the same pretrained models as BLIP-2 ViT-g FlanT5XXL. MM Samples indicate
the number of image-text samples used in the crossmodal pretraining process. GPU hours refer to the additional
computation required for it. Bold indicates the best results. “-” means unclear from the original paper.

Model MM Samples GPU hours TextVQA ScienceQA VQAv2 GQA POPE

LLaVA-1.5 (Liu et al., 2023) (Full tuning) 558K 320 58.2 66.8 78.5 62.0 85.9

LLaVA-1.5 558K 320 53.7 67.6 76.5 59.1 86.3

LLaVA-1.5* 0 0 52.0 67.5 74.3 57.2 85.3
DCI (Ours) 0 0 54.0 69.2 74.9 57.8 86.9

Table 8: Comparison with LLaVA-1.5 in the instruction fine-tuning setting with Vicuna-7B. MM Samples indicate
the number of image-text samples used in the crossmodal pretraining process. GPU hours denote the additional
computation required for it with V-100 machines. “*” indicates that the pretrained projection layers from the
crossmodal pretraining stage are not loaded for fair comparison. Full tuning indicates the setting using larger data
(665K) and batch size (128) as in the paper (Liu et al., 2023), and the rest are all obtained using the same smaller
training setting (166K, 64).

As Additional Input As Augmentation in Features Acc. (%)

✗ ✗ 12.1

✓ ✗ 26.5

✗ ✓ 13.2

✓ ✓ 28.0

Table 9: Accuracy with different combinations of injec-
tion mechanisms on iVQA.

F Ablation Studies

In this section, we report the results of ablation
studies on the iVQA dataset.

F.1 Effect of the two Injection Pathways

As shown in Table 9, we observe that injecting ob-
served visual concepts as additional textual context
contributes to the main improvement over the lan-
guage model-only baseline (no injection is used).
The Constructed Adaptation Layers help to further
improve the performance. This is expected as the
direct injecting of additional textual input leverages
the well-trained self-attention layers to fuse infor-
mation between text and vision, and thus, it is easier
to provide visual information to the PLM. However,
this is not complete or perfect as the PLM may not
be able to directly fuse the visual concepts with
other textual input well because the visual concepts

are not the same as natural sentences. Augment-
ing the intermediate features helps to further inject
visual information explicitly, which complements
the previous mechanism by their designs and is
verified by the empirical results.

F.2 Constructed Adaptation Layers Inserted
in Different Depth

We first ablate on the depth where the constructed
adaptation layers are inserted. As shown in Ta-
ble 10, we generally observe that with fewer layers
used to insert the constructed adaptation layers, the
resulting models perform worse than the default
design where all the blocks are inserted with the
constructed adaptation layers, which is expected
since without training, it is intuitive to gradually
inject visual information block by block.

F.3 Constructed Adaptation Layers with
Different Intermediate Embeddings

We then ablate on the different variants of construct-
ing the adaptation layers where different interme-
diate embeddings are used. As shown in Table 11,
we observe that either using all e0 or all e2 vari-
ants yields lower performance. We suppose this is
consistent with the multiple-layer design within the
feed-forward networks: the early layer also serves
to produce a “distribution” between input and the
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Depth iVQA Accuracy (%)

First Half Feed-forward Networks 27.1
Second Half Feed-forward Networks 27.2

Even Feed-forward Networks 26.9
Odd Feed-forward Networks 26.7

All (Default) 28.0

Table 10: Comparison on the iVQA dataset when different depths of the constructed adaptation layers are inserted
at.

Text-conditioned Distribution with Weighted Average Embeddings with iVQA Accuracy (%)

e0 e0 26.6
e2 e2 27.4

e0 (Default) e2 (Default) 28.0

Table 11: Comparison on the iVQA dataset when different intermediate embeddings are used.

Method iVQA Accuracy (%)

FrozenBiLM 23.8
DCI (Ours) 25.3

Table 12: Comparison with FrozenBiLM on the iVQA
dataset when ImageNet pretrained model is used as the
feature/concept extractor.

internal knowledge elements and then the “distri-
bution” is used to re-weight internal knowledge
elements stored in later linear layers.

F.4 Using ImageNet Classification Model for
Concept Extraction

To understand whether our model generalizes be-
yond vision-text contrastive model for concept ex-
traction, we use the same ViT pretrained on Im-
ageNet21k as FrozenBiLM in its Table 14. As
shown in Table 12, The superior results of our DCI
achieved again verifies it effectiveness of enabling
zero-shot multimodal reasoning without training.
The performance is lower than using CLIP for con-
cept extraction as expected, which is also observed
by (Alayrac et al., 2022) because “our goal is to
use the Vision Encoder as a feature extractor for
the Flamingo models in order to capture the whole
scene and not just the main object”.

F.5 Hyper-parameter Selection

We first vary the three hyper-parameters introduced
in the proposed DCI method, the number of con-
cepts retrieved, the injection weight, and the vo-
cabulary size when we use the PLM to narrow
down from the generic vocabulary. As shown in Ta-
ble 13a, we observe that using k = 4 produces the
best results and changing number of words around

4 does not change the performance too much. As
presented in Table 13b, we find that using a rela-
tively small λ = 0.01 for injection as augmentation
in the intermediate feature works better. When λ is
significant larger, the performance degrades, which
is intuitively understandable as this would change
the intermediate representation of the model too
much. As shown in Table 13c, we observe that sig-
nificantly narrowing down the vocabulary by one
order of magnitude helps to improve the accuracy
but when the vocabulary is too small the perfor-
mance would also degrade. Overall, we find that
within the range we explored, the performance of
the method w.r.t. hyper parameters is stable.

F.6 Performance Breakdown on
ActivytyNet-QA

We report the detailed performance breakdown
based on the manually labeled types of QA in the
ActivityNet-QA dataset. We observe that there are
certain types of questions that our method achieves
significant improvement, such as Color, Number
and Yes-No. We believe this is because that these
important concepts like colors are directly repre-
sented in our method compared to using a projected
visual feature vector, which makes it easier for the
model to obtain the required information for an-
swering the question. Over all the types, all the
methods including our method performs poorly on
Temporal-related QA, which indicates a possible
future direction for further improvement.

G Additional Details

G.1 Implementation Details
We implement the DCI method using PyTorch and
inject our implementation to publicly available
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k Accuracy (%)

2 27.9

4 28.0

6 27.3

(a) The number of retrieved concepts.

λ Accuracy (%)

0.005 27.8

0.01 28.0

0.015 28.0

0.1 26.5

(b) The injection weight.

nc Accuracy (%)

500 27.6

1000 28.1

1500 28.5

2000 28.4

2500 28.2

10738 (Full) 28.0

(c) The vocabulary size.

Table 13: Results for hyper-parameter selection on the iVQA validation set.

Model Motion Spatial Temporal Yes-No Color Object Location Number Other

VQA-T (Yang et al., 2021) 2.3 1.1 0.3 36.3 11.3 4.1 6.5 0.2 4.7
FrozenBiLM (Yang et al., 2022b) 12.7 6.8 1.6 53.2 16.5 17.9 18.1 26.2 25.8

DCI (ours) 11.0 4.8 0.8 55.2 23.2 18.6 10.2 25.7 22.3
DCI-A (ours) 11.3 5.8 1.3 55.3 24.7 16.5 11.2 29.6 22.0

DCI-LM (ours) 10.8 4.9 1.4 55.4 24.6 16.9 11.2 29.2 22.2

Table 14: Results for different types of QA on the ActivityNet-QA test set.

code repositories of the base models, respectively.
We use half precision for model parameters to save
memory and improve speed during inference. All
the experiments on video question answering are
done with 4 Nvidia V100-32GB GPUs. Experi-
ments for comparisons with BLIP-2 are done with
a Nvidia A100-40GB GPU. Experiments for com-
parisons with LLaVA are done with 4 Nvidia A100-
40GB GPUs.

For comparison with LLaVA-1.5 (Liu et al.,
2023) in the instruction-tuning setting, with CLIP-
L (Radford et al., 2021) and Vicuna-7B (Chiang
et al., 2023) we use a smaller batch size (64),
LoRA (Hu et al., 2021) training and only 25%
percent of its 665K instruction tuning data due to
limited training resources.

For video question answering tasks, we follow
the prompt of FrozenBiLM to query the language
model with questions and additional input and de-
termine the answer based on the probability ob-
tained for the “[mask]” token. For visual ques-
tion answering and image captioning, we follow
the same setting of BLIP-2 or LLaVA to generate
answers and then compare with the ground-truth
when comparing with them, respectively.

To construct the vocabulary, we follow
VidIL (Wang et al., 2022) to construct vocabulary.
There are 2,138 verbs, 6,369 objects and 7,233 at-
tributes curated for the vocabulary. Merging and
deduplication results 10,738 unique concept words.
We find that directly using all these concept words

together as one vocabulary has already helped, so
we do not perform further fine-grained processing
among different categories of concept words.

When computing the intermediate representa-
tions for each concept word, we simply average the
representation if there are multiple tokens in the
concept word. For fine-tuning experiments, we fol-
low the same hyper-parameters as used in Frozen-
BiLM. Our code will be made publicly available
upon publication.

G.2 Dataset and Evaluation Metric for
Ablation Study

iVQA (Yang et al., 2021) contains 10,000 instruc-
tional videos. Each video is annotated with one
question and five corresponding answers. In the of-
ficial split, there are 6,000, 2,000, and 2,000 videos
for training, validation, and testing, respectively.
We use the 2,000 videos in the test set for abla-
tion study in the appendix (when not specified)
and follow the test split of all the datasets used in
FrozenBiLM and BLIP-2 to report results in the
main paper. We follow (Yang et al., 2021) to cal-
culate accuracy with five annotations per question.

H More discussion on zero-shot
multimodal dialogue results

One interesting aspect of the results here is that
the model was able to recognize some named en-
tities. After checking the reconized concepts, we
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find that some of the entities are indeed part of the
vocabulary like audi e-tron. For the Great Wall
image, the recognized concepts include “china”,
“fortification”, and “tourism”. The PLM success-
fully inferred the most famous Great Wall based
on these concepts. Currently, we don’t intention-
ally handle named entities in our vocabulary, but
this ability can be further integrated if we can also
provide a list of named entities that we want the
model to recognize, which will be an interesting
future research direction.
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