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Abstract

In Simultaneous Machine Translation (SiMT),
training with a simultaneous interpretation (SI)
corpus is an effective method for achieving
high-quality yet low-latency systems. How-
ever, constructing such a corpus is challenging
due to high costs, and limitations in annotator
capabilities, and as a result, existing SI corpora
are limited. Therefore, we propose a method to
convert existing speech translation (ST) cor-
pora into interpretation-style corpora, main-
taining the original word order and preserv-
ing the entire source content using Large Lan-
guage Models (LLM-SI-Corpus). We demon-
strated that fine-tuning SiMT models using
the LLM-SI-Corpus reduces latencies while
achieving better quality compared to models
fine-tuned with other corpora in both speech-
to-text and text-to-text settings. The LLM-SI-
Corpus is available at https://github.com/
yusuke1997/LLM-SI-Corpus.

1 Introduction

Simultaneous machine translation (SiMT)! (Luong
and Manning, 2015; Gu et al., 2017; Ma et al.,
2019; Arivazhagan et al., 2019) translates input in
real-time by incrementally processing partial seg-
ments rather than waiting the whole sentence com-
pletion. While offline machine translation (MT)
works without time restrictions, SiIMT begins trans-
lating at certain points due to time limitations;
therefore, balancing its latency and quality is cru-
cial. This challenge is especially difficult in lan-
guage pairs with drastically different word orders,
such as English and Japanese (SVO vs. SOV) (He
et al., 2015; Chen et al., 2021; Deng et al., 2023).
To manage word order differences in simultane-
ous settings, one strategy is to maintain the source
language word order as much as possible to keep

“These authors contributed equally to this work.
!Also, we called Simultaneous Speech Translation. We
simplify the notation to SiMT in this paper for brevity.
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Figure 1: The corpora used in this study, each created
from the same TED Talks data. TED Talks are accom-
panied by English-Japanese offline MT data. NAIST-
SIC-Aligned-ST (Ko et al., 2023) is an SI dataset cre-
ated by transcribing audio data of these talks by hu-
man interpreters. NAIST English-to-Japanese Chunk-
wise Monotonic Translation Evaluation Dataset 2024
(NAIST-CWMT) (Fukuda et al., 2024) is manually cre-
ated based on offline MT data from TED Talks, follow-
ing the CWMT guideline (Okamura and Yamada, 2023),
and used only for testing purposes. Our LLM-SI-Corpus
was created by LLMs based on the CWMT guideline
and comprises training, development, and test sets.

up with the input, minimizing latency while main-
taining quality (Cai et al., 2020; Han et al., 2021;
Guo et al., 2023). To address the balance between
quality and latency, the one of the best ways to
learn this interpretation strategy for SIMT systems
is to utilize simultaneous interpretation (SI) data
to train the model (Ko et al., 2023). While sev-
eral SI datasets have been proposed for English
and Japanese, they remain relatively limited in size
compared to MT corpora. Furthermore, acquiring
this data is costly and resource-intensive, making
manual dataset construction impractical for scaling.

Moreover, even if such issues were resolved,
it remains uncertain whether professional SI tran-
scripts are optimal for SiMT. The specialized na-
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ture of SI causes translation quality to vary among
interpreters due to differences in skills and expe-
riences. Time constraints and cognitive overload
in SI contribute to these variations, influenced by
factors such as summarization, repetition, and omis-
sions. Consequently, the quality of existing SI cor-
pora is inconsistent, making them less faithful to
the source and not ideal for training SiMT.

To address these challenges, Fukuda et al. (2024)
manually created test data (chunk-wise) follow-
ing Chunk-Wise Monotonic Translation (CWMT)
guideline (Okamura and Yamada, 2023), with flu-
ency and adequacy verified by professional inter-
preters. A key feature of chunk-wise is its mono-
tonic alignment with the source, maintaining the
entire source content, making it well-suited for the
goals of SIMT. CWMT is designed for English-
to-Japanese SI to reduce latency by segmenting
sentences into grammatical chunks and translate
sequentially. However, despite its potential, the re-
liance on human labor for dataset creation remains
a significant barrier for scaling.

Therefore, we propose a method to convert
existing speech translation (ST) corpora into SI-
style data (LLM-SI-Corpus), closely maintaining
the original word order and preserving the entire
source content based on the CWMT guideline using
Large language odels (LLMs) as shown in Figure 1.
We demonstrated that fine-tuning SiMT models
with the LLM-SI-Corpus, in both text-to-text and
speech-to-text settings, achieves better translation
quality with minimal latency compared to models
fine-tuned with other corpora and the pretrained
model.

To summarize, our contributions are as follows:

* We proposed a method for automatically con-
structing a training dataset for SIMT systems
using LLMs following the CWMT guideline

* We constructed the LLM-SI-Corpus, a large-
scale training dataset for SIMT.

* We confirmed that the LLM-SI-Corpus is ef-
fective in improving both translation quality
and latency in SiMT systems.

2 Background and Related Work

2.1 Simultaneous Machine Translation

In SiMT, the model processes partial source sen-
tences of length .J to incrementally generate par-
tial target sentences of length I, guided by its

policy. Various policies have been proposed, pri-
marily categorized as fixed and adaptive. Fixed
policies (Dalvi et al., 2018; Ma et al., 2019; El-
bayad et al., 2020; Zhang and Feng, 2021) de-
cide READ/WRITE operations based on prede-
fined rules, such as the wait-k policy (Ma et al.,
2019), which reads & source tokens initially and
then alternates between writing and reading one
token. Conversely, adaptive policies (Zheng et al.,
2020; Liu et al., 2020; Papi et al., 2023a,b) predict
READ/WRITE operations based on the current
source and target prefix, achieving a better balance
between latency and translation quality.

2.2 SI Corpora

Existing SI corpora are constructed from real-time
human interpretation. In English to Japanese, sev-
eral SI corpora are constructed (Toyama et al.,
2004; Shimizu et al., 2014; Doi et al., 2021).
Doi et al. (2021) developed a large-scale SI cor-
pus (NAIST-SIC) supporting both English to/from
Japanesez. However, in the NAIST-SIC, most of
the data lack sentence alignment, making them dif-
ficult to use for model training. To address this
limitation, Zhao et al. (2024) proposed NAIST-
SIC-Aligned for text-to-text alignment, and Ko
et al. (2023) introduced NAIST-SIC-Aligned-ST
for speech-to-text alignment, resulting in a paral-
lel English-Japanese SI corpus available for use.
Fukuda et al. (2024) constructed a test dataset
from NAIST-SIC-Aligned-ST based on CWMT
(described in Section 2.3). For the other language
pairs, Pan (2019); Zhang et al. (2021) (English-
Chinese), Kunz et al. (2021); Zhao et al. (2021);
Machacek et al. (2021) (English-German), Paulik
and Waibel (2009); Bernardini et al. (2016); Wang
et al. (2021); Przybyl et al. (2022) (the other lan-
guage pairs include English) have been established.

However, SI corpus construction requires con-
siderable time, money, and effort, resulting in a
small corpus size. To address this challenge, He
et al. (2015) proposed a sentence rewriting method
to automatically generate more monotonic trans-
lations for Japanese-to-English SiMT by defining
syntactic transformation rules. However, spoken
language presents challenges for syntactic parsing,
and the rule-based approach often reduces fluency
and is limited to specific language pairs, making it
difficult to apply this method broadly.

They provide only a part of English-to-Japanese data.
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2.3 Chunk-Wise Monotonic Translation

Chunk-wise monotonic translation (CWMT) is
strategy used by simultaneous interpreters, partic-
ularly for distant language pairs such as English
and Japanese (Mizuno, 2016; Okamura and Ya-
mada, 2023; Fukuda et al., 2024). This guideline
addresses grammatical differences, as directly pre-
serving the source word order could lead to unnat-
ural translations in the target. To balance trans-
lation latency and quality when translating from
English to Japanese, interpreters aim to maintain
the sequential order of information chunks from
the source as much as possible (Doi et al., 2021;
Camayd-Freixas, 2011). Interpreters divide sen-
tences into manageable chunks based on gram-
matical characteristics and translate them sequen-
tially, preserving chunk order. Fukuda et al. (2024)
defines these chunk boundaries and the chunk-
ing workflow using rule-based methods based on
CWMT. The details of the guideline and workflow
are described in Appendix A.

2.4 Style differences among SI, Offline
Translation, and CWMT

There are significant style gaps among SI, offline
translation, and CWMT as described in Fukuda
et al. (2024); Ko et al. (2023). The examples are
shown in Appendix B. The findings include:

* The SI translates the first half of the input
earlier than the latter half with some unnat-
uralness and omission, whereas the offline
translation preserves naturalness in Japanese
through long-distance reordering from the in-
put English (See Table 6 in Appendix B).

¢ The offline translation and CWMT both in-
clude all content words from the source; how-
ever, their distinction lies in the order. In
offline translation, long-distance reordering
occurs to preserve naturalness, whereas, in
CWMT, the order of source language chunks
is maintained with some unnaturalness (See
Table 7 in Appendix B).

From this observation, both SI and CWMT pri-
oritize aligning source inputs as closely as possible,
whereas offline allows for long-distance reorder-
ing. The significant difference in word order be-
tween English and Japanese poses a substantial
challenge in SI, as highlighted in a prior study
(Mizuno, 2016). Under the real SI scenario, in-
terpreters prioritize delivering interpretation simul-

Prompt Template
System
You are a skilled simultaneous interpreter designed to output
JSON. Please save the results in
{"chunk_pairs: List[Tuple[English, Japanese]], 'output’: Japanese}"

User

Instructions:

First, split the following text into minimal chunks around clauses,
phrases, relativizers, and conjunctions.

Next, translate it into Japanese chunk-by-chunk fluently and
adequately.

Finally, while ensuring you do not reference subsequent chunks,
connect each chunk using demonstrative pronoun, conjunctions,
punctuation, and sentence splitting.

I-“““t-‘ ---------- And that’s the kind of thing the
nput: Sent .| investment in the young that makes
{sentence} entence: | ;s great allows us to contribute

<

Example

{"chunk_pairs": [
["And that’s the kind of thing", "ELTEh A EDEDELDTHS"],
["the investment in the young", "E&EADZEM"],
["that makes us great”, "fAf-5ZRKMSLLEDIZTS"],
["allows us to contribute”, " }AT=6AEMTEEL5(1235"],],
"output": "ELTELAEDEDLDTHS, EE~DREMN, Fl-b%
ERESLVLBHOICL, RSN EBRTED L5175, ")

Step1: Chunking source sentence:

And that’s the kind of thing / the investment in the young / that makes
us great / allows us to contribute

Step2: Chunk-by-Chunk translation:

ZLTEALEDEDENTHS | BEE~DBREH | I=LEHRBELLLLD
1233 | RI-LRERTEDLI12T D

Step3: Connecting each chunk naturally:
ZLTEMDEDREDEDTHS, EE~DREA, Ai-bERBELLLVBDIC
L. A= NERTEDLSIST 3.

Figure 2: The prompt template used for constructing the
LLM-SI-Corpus based on the CWMT workflow. Each
color indicates a prompt and its corresponding outputs.

taneously to convey content promptly and preserve
their working memory, which may involve some
omission and summarization. The current limita-
tion in CWMT lies in their approach to maintaining
fluency. Thus, it is challenging to do automatically,
and it takes a high cost when annotating manually.

3 SI-Corpus Construction with LLMs

To address the limitations of the current SI cor-
pus, we leverage LL.Ms, which are known for their
high translation performance and ability to per-
form purpose-specific translations based on instruc-
tions (Moslem et al., 2023; Zheng et al., 2024).
For our purpose, we follow the CWMT guidelines
to automatically convert ST into SI corpora using
LLMs to be more monotonic while maintaining
fluency, making it suitable for SiMT training.

3.1 Prompt for Creating LL.M-SI-Corpus

Our prompt is based on CWMT guidelines by Oka-
mura and Yamada (2023). CWMT has three pro-
cesses as described in Section 2.3: chunking based
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on grammatical characteristics, translation of each
chunk, and concatenating the translated chunks into
sentences. We simplify the process compared to
the original to make it more suitable for LLMs?, as
described in Figure 2.

For chunking, we designed the instruction to
split based on grammatical features, specifically
around clauses, phrases, relativizers, and conjunc-
tions. Next, LLMs translate each chunk while main-
taining fluency and adequacy. Finally, LLMs gener-
ate the CWMT output by connecting chunks using
demonstrative pronouns, conjunctions, and punc-
tuation to maintain the original chunk sequential
order while ensuring you do not reference subse-
quent chunks. These processes are summarized
in a single prompt*. The outputs are formatted in
JSON ° to ensure that all operations are performed
according to the instructions, without any shortcuts,
and the output is generated at each step®.

3.2 Dataset Selection

In this study, we focus on the English-Japanese
direction and selected the NAIST-SIC-Aligned-ST
corpus (Ko et al., 2023)7 as the seed dataset. As
shown in Figure 1, the NAIST-SIC-Aligned-ST cor-
pus is based on TED Talks, which consist of audio,
transcriptions, and sentence-by-sentence transla-
tions of the transcripts (offline translations), with
the addition of interpreters’ interpretations. The
data size for training, development, and testing
is 65,083, 165, and 511 sentences, respectively.
This choice enables a comparison among models
fine-tuned with the LLM-SI-Corpus, interpreter
transcriptions, and offline translation to investigate
which data better addresses the tradeoff between
latency and quality.

?Although the operation of LLMs is not always stable,
Section 4 shows that LLMs successfully produced CWMT-
like monotonic sentences, achieving our goal of constructing
the dataset to improve both latency and quality in ST models
at a low cost.

“In the pilot study, we found similar results when we input
data for each process separately as a pipeline or all at once
into the LLMs. Thus, to address the cost issue, we chose to
input all data at once as the prompt.

Shttps://platform.openai.com/docs/guides/
text-generation/json-mode

®We also employ various prompt tuning techniques, such as
adding specific words to the instructions and using delimiters.
Most of the prompt tuning techniques used in this study are
described in Bsharat et al. (2024).

"This type of dataset is currently only available in the
NAIST-SIC dataset family (Shimizu et al., 2014; Doi et al.,
2021; Zhao et al., 2024; Ko et al., 2023; Fukuda et al., 2024);
therefore, the work is limited to the En-Ja direction, and we
plan to explore other language pairs in future work.

Source: OFFLINE = Target:

Metrics (1) GPT-4 GPT-3.5 Chunk-wise SIC
BLEU 13.8 15.5 162 79
BLEURT 55.9 56.0 59.0 40.8
COMET 82.3 83.2 84.3 71.7
COMET-QE  82.6 82.8 829 63.1

Table 1: Quality comparison between OFFLINE and
each SI corpus. BLEU and ChrF indicate the similarities
of textual alignment. BLEURT, COMET, and COMET-
QE compare semantic similarity, as shown in Table 3.

3.3 LLM-SI-Corpus Construction by LLMs

We created two corpora using LLMs, GPT-
3.5% (Ouyang et al., 2022) and GPT-4° (OpenAl
et al., 2024) from the transcription of NAIST-SIC-
Aligned-ST. GPT-4 is known to have a higher
ability to follow instructions and generate higher-
quality outputs than GPT-3.5. Therefore, we also
examine the differences in LLM abilities by com-
paring the two corpora. The dataset size matches
the numbers for NAIST-SIC-AlignST. The total
cost of data creation was 20 dollars (0.0003 dollars
per sentence) for GPT-3.5 and 400 dollars (0.006
dollars per sentence) for GPT-4.

4 Quality Analysis of LLM-SI Corpus

Quality Table 1 shows a quality comparison of
the test data with BLEU (Post, 2018), BLEURT (Pu
et al., 2021), COMET (Rei et al., 2020), and
COMET-QE (Chimoto and Bassett, 2022). OF-
FLINE refers to the offline translation from NAIST-
SIC-Aligned-ST (Ko et al., 2023). GPT-4 and
GPT-3.5 are from the LLM-SI-Corpus, which was
created from NAIST-SIC-Aligned-ST. SIC is the
transcript of professional interpreters from NAIST-
SIC-Aligned-ST. Chunk-wise comes from the
NAIST English-to-Japanese Chunk-Wise Mono-
tonic Translation Evaluation Dataset (Fukuda et al.,
2024). The numbers indicate that Chunk-wise
is the closest to OFFLINE across all evaluation
metrics. GPT-3.5 and GPT-4 achieve compara-
ble quality, while SIC demonstrates significantly
lower quality compared to OFFLINE. Furthermore,
focusing on COMET-QE, both the LLM-Corpus
(GPT-3.5 and GPT-4) and Chunk-wise achieve
equivalent quality, suggesting that LL.Ms have the
capability to create data with the same quality as
Chunk-wise which created manually.

$gpt-3.5-turbo-0125
% gpt-4-0125-preview
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OFFLNE Chunk-wise GPT-3.5 GPT-4 SIC
0.478 0.784 0.773  0.764 0.471

Table 2: The table compares word order monotonicity
across different dataset relative to the source. Chunk-
wise and the LLM-Corpus (GPT-3.5 and GPT-4) demon-
strate the same level of monotonicity.

Monotonicity We analyzed the word alignment
and evaluated the extent to which monotonicity im-
proved between the source and different reference
for GPT-3.5, GPT-4, SIC, OFFLINE, and Chunk-
wise. We used Awesome-Align (Dou and Neubig,
2021) to compare the source and reference, and
evaluated the alignment consistency using Spear-
man’s correlation coefficient. Table 2 shows that
GPT-3.5/4 has improved monotonicity compared to
OFFLINE and has achieved similar monotonicity
to the Chunk-wise, which involved human labor.
This indicates that the LLM-SI Corpus, which fol-
lows the CWMT guideline for corpus construction,
contributes to the monotonicity improvement and
that LLM is an effective substitute for manual work.
On the other hand, the monotonicity of SIC is com-
parable to that of OFFLINE, suggesting that the
transcription of a simultaneous interpreter does not
necessarily ensure monotonicity with the source.
This indicates that such data may not be ideal for
training SiMT models aimed at achieving both min-
imal latency and high quality.

5 Experimental Setup

To evaluate the effectiveness of the LLM SI-Corpus,
we conducted experiments in speech-to-text set-
tings. We also conducted text-to-text experiments,
as presented in Appendix C, which showed a sim-
ilar trend to the speech-to-text results. We imple-
mented the baseline using Fairseq (Ott et al., 2019;
Wang et al., 2020) and SimulEval (Ma et al., 2020).

Speech-to-Text Settings Following the settings
of Fukuda et al. (2023); Ko et al. (2023), we employ
pretrained language models for both encoder and
decoder using Fairseq (Ott et al., 2019; Wang et al.,
2020), and integrating into the Transformer archi-
tecture (Vaswani et al., 2017). We used Hubert-
Large (Hsu et al., 2021) as the encoder, and we
used mBARTS50 (Tang et al., 2021) as the decoder.
We trained the model with MuST-C v2.0 (Cattoni
et al., 2021) as continuous pertaining, and then
fine-tuned the models for 3K steps, evaluating their
performance every 200 steps, and terminated the

fine-tuning if there was no improvement in the loss
score for eight consecutive evaluations. For decod-
ing policy, we applied test-time wait-k (Ma et al.,
2019)'% to determine whether the tradeoff between
latency and quality is solely a result of differences
in the dataset. The value of wait-k ranges from
1 to 17 at two intervals. One unit for k£ was set
to 160 frames and when k = 3, after reading 3 x
160 frames, the model would WRITE and READ
alternately. The detailed settings are described in
Appendix C.

Training Datasets We used MuST-C v2.0 for
En-Ja (Di Gangi et al., 2019) for pre-training and
it is as the baseline (Pretrain). We then fine-tuned
the pre-trained model using different types of data:
offline ST translation data (OFFLINE), NAIST-
SIC-Aligned-ST (SIC), which consists of human
interpretation transcriptions, and two versions of
the LLM-SI-Corpus (GPT-4 and GPT-3.5). All fine-
tuning datasets come from the same audio sources,
allowing for a comparison of the impact of different
translation styles from each dataset.

Evaluation Datasets We choose three evalua-
tion dataset: tst-COMMON from the MuST-C
v2.0 (tst-COMMON) (Di Gangi et al., 2019), the
test dataset from NAIST-SIC-Aligned-ST!! (SIC-
test), and NAIST English-to-Japanese Chunk-wise
Monotonic Translation Evaluation Dataset 20242
(Chunk-wise). These choices are based on differ-
ences in translation styles, which could influence
evaluations using reference-dependent metrics. tst-
COMMON represents an offline translation style,
where frequent word order reordering occurs, but
the source content is preserved in the target. SIC-
test consists of interpreter transcriptions, where
some source content is omitted due to time con-
straints and high cognitive load. Chunk-wise aligns
the target word order with the source as much as
possible while preserving the source content.

Evaluation Metrics Table 3 shows a list of
translation quality evaluation used in our exper-
iments'?, highlighting the characteristics of each
metric. BLEU (Post, 2018) focuses on textual n-

1%We followed examples in GitHub repository: https://
github.com/ahclab/naist-simulst

"https://dsc-nlp.naist.jp/data/NAIST-SIC/
Aligned-ST, (Ko et al., 2023)

Zhttps://dsc-nlp.naist.jp/data/NAIST-SIC/
Aligned-Chunk_Mono-EJ, (Fukuda et al., 2024)

BWe also evaluated with BERTScore (Zhang et al., 2020),
but the trend is very similar to BLEURT.
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Quality Metrics Textual Meaning Reference Source

BLEU v v
BLEURT v v
COMET v v v
COMET-QE v v

Table 3: Quality metrics used in our experiments

gram matching between the generated sentences
and their reference sentences. BLEURT (Pu et al.,
2021), COMET (Rei et al., 2020), and COMET-
QE (Chimoto and Bassett, 2022) utilize embed-
dings from language models to focus on semantic
meanings. BLEURT evaluates the generated sen-
tences against reference sentences, while COMET
also considers both source sentences and refer-
ence sentences.In contrast, COMET-QE directly
assesses the similarity between the source and gen-
erated sentences, thus avoiding the ambiguity that
may arise from using references. For latency eval-
uation, we choose Average Lagging (AL) (Ma
et al., 2019), Length Adaptive Average Lagging
(LAAL) (Papi et al., 2022), and Average Token
Delay (ATD) (Kano et al., 2023)14,

6 Experimental Results on Speech-to-Text

Evaluation 1: tst-=COMMON Figure 3 shows
the results of speech-to-text experiments. When
we focused on BLEU-AL in Figure 3 for k£ = 1,
k =3, and k = 5, the LLM-SI-Corpus (GPT-3.5
and GPT-4) achieved higher BLEU scores than
OFFLINE, indicating improvements in both la-
tency and quality. However, as the value of k
increases, the BLEU score in Pretrain starts to sur-
pass that of LLM-SI-Corpus and OFFLINE when
exceeds around k£ = 9. This pattern persists across
LAAL and ATD as well. This is attributed to the
alignment of training and evaluation data, leading
to enhanced BLEU scores. Next, in {BLEURT,
COMET}-{AL, LAAL}, both quality and latency
in LLM-SI-Corpus (GPT-3.5 and GPT-4) surpasses
OFFLINE and Pretrain. Also, in COMET-QE, the
LLM-SI-Corpus demonstrates superior quality and
latency performance at all latencies in AL, LAAL,
and ATD, indicating that the model trained on the
LLM-SI-Corpus can perform high-quality transla-
tions with low latency. Despite the trends observed
in text-to-text settings, the quality gap remains evi-
dent in speech-to-text settings even as k increases.

YWe cover all evaluation metrics used in the shared task of
IWSLT 2024: https://iwslt.org/2024/simultaneous.

Evaluation 2: SIC-test Figure 4 shows the result
of SIC-test. Focus on BLEU-AL, the result indi-
cates that the LLM-SI-Corpus exhibits higher qual-
ity than OFFLINE up to around k = 5. However,
OFFLINE and SIC perform better as k increases
because these align with the training and evalua-
tion data, thereby improving the BLEU score. The
same trends are observed in LAAL and ATD. Next,
in {BLEURT, COMET}-{AL, LAAL, ATD}, both
quality and latency in LLM-SI-Corpus (GPT-3.5
and GPT-4) surpasses OFFLINE and Pretrain. The
same as in COMET-QE, the LLM-SI-Corpus out-
performs OFFLINE and Pretrain at all latencies in
AL, LAAL, and ATD, indicating that the model
trained on the LLM-SI-Corpus can perform high-
quality translations with low latency.

Evaluation 3: Chunk-wise Figure 5 shows that
the LLM-SI-Corpus consistently exhibits superior
quality and latency performance across all quality
evaluation metrics. The quality gap among models
is noticeable, particularly when wait-£ is small, and
remains significant even as wait-k values increase.
GPT-4 achieves a better balance between quality
and latency than GPT-3.5, likely due to its higher
model capabilities. OFFLINE achieved compara-
ble results on both tst-COMMON and SIC-test,
however, in this test set, the results were weaker,
indicating that OFFLINE has difficulty achieving
more monotonic translation.

Summary The results indicate that the LLM-SI-
Corpus delivers better translation quality with mini-
mal latencies across all semantic similarity-focused
evaluation metrics. Even in BLEU, the LLM-SI-
Corpus achieves equivalent translation quality, es-
pecially when k is small. In the SIC fine-tuned
model on the ATD evaluation setting, we observed
significantly longer lags compared to other fine-
tuned models. This trend is also observed in Ko
et al. (2023). This observation may be attributed to
the fact that some transcripts in SIC are extremely
short relative to the source length. Fine-tuning
with such data may lead to undesired generation
results, such as excessive repetition (Table 12 in
Appendix E), leading to longer lags. While achiev-
ing a shorter output length is advantageous in the
ATD setting, this evaluation metric may overem-
phasize a shorter output, which could be unfair, as
shorter outputs may omit important content from
the source.Outputs that are excessively shortened
or lengthened should be penalized, and we leave
this for future work.
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Figure 3: The results of tst-COMMON on speech-to-text settings. Each plot, from left to right, represents wait-k
values ranging from 1, 3,5,7,9,11, 13,15, 17.

SIC (speech-to-text)
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Figure 4: The results of SIC-test on speech-to-text settings. Each plot, from left to right, represents wait-k values
ranging from 1,3,5,7,9,11,13,15,17.

Qualitative Analysis Table 4 shows the qual- cantly worse, translating only (1) ‘Here was some
ity gap among different models when evaluating  lawyer or money manager who, while the rest was
tst-=COMMON with & = 7. GPT-4 produces the  omitted. In such cases when the output length is
longest output, retaining most of the information  short, ATD, which is a latency metrics that account
from the source while preserving the original word  for both the start and end timing of the translation,
order, whereas GPT-3.5 translates only (1) and (2), may favor shorter outputs. However, outputs that
omitting the rest. Other models, fine-tuned with  are too short compared to the source often result in
OFFLINE, SIC, and Pretrain, performed signifi- missing information. While it is important to con-
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Chunk-wise (speech-to-text)
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Figure 5: The results of Chunk-wise on speech-to-text settings. Each plot, from left to right, represents wait-k

values ranging from 1, 3,5,7,9,11,13, 15, 17.

Source (1) Here was some lawyer or money manager who, / (2) for the rest of his life, /
(3) gets to tell people  /  (4) that he went into a burning building /  (5) to save a living creature, /
(6) just because he beat me by five seconds.

Reference (1) Fra# 72 o 7= D EREM FHE 72 5 72 H* (some lawyer or money manager) | (2) #%13%% % & T (for the rest
of his life) 1 3) \WHilF 2 TU & 5 (gets to tell people) | (4) B IIRZAE L BEHIDOHFIZAD (he went
into a burning building) | (5) &2 W% - 72D 72 & (to save a living creature) | (6) K& D b PHETIZE W72
7213 72 DT (just because he beat me by five seconds),

Pretrain (1) T ZIZIXA#E LB SRS DHED D\ F U 72 (here was some lawyer or money manager)
SIC (1) FRF#ELD < R — < VD (some lawyer or money manager),

OFFLINE (1) Z ZIZI3R#EL P X — Y ¥ =D W\ E T (here was some lawyer or money manager),

GPT-3.5 (1) ZZiC EREL O I =T v =D W F U Tz (here was some lawyer or money manager) | (2) 30 DA
% 8 Z U 7z (spend for the rest of his life).

GPT-4 H Z 2, W o2r0oHr #ELFTLEER -V YNV FELE

(here was some lawyer or money manager), | (2) W X O &£ E O K b O

Ml (for the rest of  his life). | (3) NZIT(BRHET £ U7z (kept telling people), |

4) IR X DM A > 72 & (he went into a burning building), | (5) EETWVWBHEEY RS =D

(to save a living creature),

Table 4: Example of output sentences in Pretrain, SIC, OFFLINE, GPT-3.5, and GPT-4 on tst-COMMON in waitk=7
on Speech-to-Text setting. From (3) to (6) is omitted in GPT-3.5, while most information is maintained in GPT-4.

sider both the start and end timing of translations
in simultaneous settings, since overly long transla-
tions can delay the timing of the next sentence, it’s
equally important to maintain a balance between
the source and target lengths because too short tar-
get outputs compared to the source may not neces-
sarily reflect good translation quality. Additional
examples and their analysis for both speech-to-text
and text-to-text settings are in in Appendix D.

7 Discussions

We picked several important discussion themes,
with further discussions provided in Appendix E.

7.1 1Is the CWMT guideline effective for SI?

Based on our observations of chunk-wise, the test
data following the CWMT achieves chunk order
synchronization without omissions. This align-
ment, free of omissions, fits well with existing
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Source (1) A few weeks later, / (2) the department / (3) received a letter / (4) from the homeowner / (5) thanking us / (6)
for the valiant effort displayed in saving her home.
Reference (1) #CEMM .  (several weeks later) [/ (2) JHBEEI (the fire brigade is) | (4) ZXED S (from the landlord)
[ (6) KEDBEDBERTEENZ T 5 (for bravery in the event of a fire) | (5) B D (thank you) /
3) FHkzH 5\ FE U7z U got aletter),
Pretrain (1) BOHRI# (several weeks later) | (2) BURF 1% (the government) | (3) FHk %% D £ U7z (I sent a letter)),
SIC (1) BOHER# (several weeks later).
Offline () # 8 R % (several weeks later). /@ BOF OE . (the government) [/
) Pz %D F U7 U sent a letter),
GPT-3.5 () #oHE B % . (several weeks later) | (2) & @D ¥ M & (the department) /
(3) FH%EZIFHL - 7= got a letter), | (4) HEDF —F =05 (from the home owner), | (5) Fh 7= 5
VI (thank us) 1 (3) DFHE (letter. 1(6) XREMERT 272D ITELDRER D 12DITRE N 5H
BREE IS 5, (thanking her for the valiant efforts shown to save her home to ensure its safety)
GPT-4 (1) % [ #(several weeks later), / (2) % D ¥F P D3(the department) | (3) FH% (a letter) |

4) BHE» SFRAE D S (from home to owner) [ (3) 32T HL - 7= (received), | (5) T #vik. Fh7z B 12 &
DEERTH DT, (it is our way of saying thank you) | (6) DR E R D 1-DIZBRARB NI IH

7z (a valiant effort was made to save her home),

Table 5: Examples of the generated texts for k = 7 in speech-to-text settings on tst-COMMON. The bracketed

numbers indicate the corresponding phrases in the source text.

machine translation evaluation metrics, which pri-
oritize precise content correspondence between the
source and target texts. However, such test data
does not account for other SI strategies, such as
summarization or deletion, a key technique for re-
ducing latency in SI. Additionally, the strict focus
on chunk order alignment can result in unnatural or
redundant translations. Therefore, creating an SI
corpus that incorporates strategies like summariza-
tion remains a critical challenge for future work.

7.2 Which is better GPT-4 vs. GPT-3.5?

Both GPT-3.5 and GPT-4 demonstrate equivalent
proficiency in preserving word order, indicating a
similar ability to understand prompts. If the pri-
mary goal is to maintain word order simply, GPT-
3.5 is sufficient. However, for those prioritizing out-
put quality, GPT-4 may offer better performance, as
shown in Table 5. While both GPT-3.5 and GPT-4
generally maintain the source word order, GPT-4
occasionally reorders words for improved natural-
ness, which is acceptable. In contrast, GPT-3.5
is more consistent with maintaining the original
word order but lacks fluency. Further details are
provided in Appendix D. Additionally, the results
in Section 6 show that GPT-3.5 surpasses GPT-4
in some BLEU scores, indicating that metrics fo-
cused solely on textual similarity cannot capture
the trade-off between naturalness and word order.
This highlights the need for new evaluation metrics.

Overall, the models fine-tuned with LLM-SI-

Corpus outperform those fine-tuned with the other
kinds of data. These results suggest that LLMs with
a sufficient level of instruction-following capability
are effective for constructing corpora to train mod-
els better suited for simultaneous settings. Addi-
tional discussions are provided in the Appendix. E.

8 Conclusion and Future Directions

In this study, we proposed a method for converting
ST corpora to SI corpora using LLMs to improve
the monotonicity yet maintain the quality. This cor-
pus creation method follows the CWMT guidelines,
focusing on the English-to-Japanese direction.

To evaluate the effectiveness of our LLM-SI-
Corpus, we conducted experiments in three scenar-
ios: a general offline ST corpus (tstCOMMON),
an SI corpus (SIC-test), and a CWMT test cor-
pus (Chunk-wise), in both speech-to-text and text-
to-text settings. In all cases, the SIMT models
fine-tuning with the LLM-SI-Corpus outperformed
others, achieving lower latency and higher quality.
Moreover, while manually constructing SI corpora
is costly, the LLM-SI-Corpus can be produced for
only 20 dollars. Therefore, it can be easily applied
to other ST corpora or adapted to other languages
since it utilizes LLMs.

For future work, we plan to explore the applica-
tion of other SI techniques, such as summarization,
extend these methods to larger-scale ST corpora,
and expand their use to speech-to-speech settings.
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9 Limitations

Lack of SiMT evaluation data, methods, and
definitions The existing metrics for evaluating
SiMT systems present challenges in reducing la-
tency due to their reliance on ST test data, such as
tst-COMMON, despite the diverse techniques in-
volved in SI. This reliance on ST data for evaluation
is a major limitation of this work. Therefore, there
is an urgent need to establish evaluation metrics and
data tailored to SiMT. Furthermore, although vari-
ous SI techniques are available, there has been no
thorough discussion from an engineering perspec-
tive on which techniques are essential for SIMT.
Addressing this gap will be a key focus of our fu-
ture work. These issues were highlighted through
our comprehensive experiments and analysis.

Expanding SI Corpora In this study, we con-
structed the LLM-SI-Corpus based on the NAIST-
SI-Aligned-ST corpus for comparison with existing
SI corpora. Our method is cost-effective and appli-
cable to various other ST corpora. Additionally, we
demonstrated that LLM outputs are effective for
developing SiMT corpora, and we plan to explore
their applicability to other SiMT methods, such
as handling omissions, in future work. We hope
that expanding into multiple languages and enhanc-
ing data augmentation will contribute to further
advancements in the SiMT field.

Dataset Quality In this study, we used GPT-
3.5 and GPT-4 with a simple prompt for data cre-
ation. Therefore, there is room for improvement
in the selection of LLMs and the refinement of
prompts. Thus, it may become possible to create
higher quality datasets at a lower cost when the API
prices decrease or by switching to other strong LMs
such as Gemini (Team et al., 2024), Claude 3 and
Qwen (Bai et al., 2023). Additionally, employing
prompt strategies that leverage the capabilities of
LMs, such as Chain of Thought (CoT) (Wei et al.,
2022), Tree of Thought (ToT) (Yao et al., 2023a)
and ReAct (Yao et al., 2023b), could potentially
lead to the production of higher quality datasets.

Other SI techniques In this study, we addressed
CWMT, focusing on chunking within SI tech-
niques. However, there are many other SI tech-
niques (Camayd-Freixas, 2011; Okamura and Ya-
mada, 2023), such as omission and summarization,
and addressing these is also necessary to achieve
better SI. Furthermore, the evaluation methods for
these techniques are still in development and have

not yet been fully established, making them a criti-
cal focus for SiMT research. While LLMs demon-
strate prompt understanding based on CWMT by
making translations more monotonic, the next step
is to investigate whether they can identify less im-
portant words that can be omitted from a technical
SI standpoint. Additionally, assessing their ability
to perform balanced omission and summarization
based on syllable counts to achieve low latency
and high quality will be an important challenge to
explore in future work.

10 Ethical Considerations

License of Source Dataset The NAIST-SIC-
Aligned-ST corpus used in this study is available
only for research purposes. We have used this cor-
pus for research, so there are no license violations.
Moreover, the LLM-SI-Corpus was created from
the NAIST-SIC-Aligned-ST corpus and thus in-
herits its terms of use!’. In terms of distribution,
redistribution of interpretation transcripts is pro-
hibited; therefore, we release only our transcripts
and the corresponding audio segment information
and do not contain any audio data or the original
transcripts. Furthermore, the README file of the
LLM-SI-Corpus clearly states the source of the
data, the license, and acknowledgments, and prop-
erly documents the original data information. Note
that, it is permitted to cite example sentences from
the NAIST-SIC-Aligned-ST corpus.

Ownership rights about outputs of the LLMs
The LLM-SI-Corpus was created using GPT-3.5
and GPT-4 and is therefore subject to OpenAl’s
license terms'®. OpenAl assigns to us all rights,
titles, and interests in and to the output. As a re-
sult, we retain the ownership rights. There are no
restrictions on distributing the datasets, but in line
with NAIST-SIC-Aligned-ST, we distribute only
for research purposes. However, these terms may
change, and there may be a need to impose distri-
bution restrictions depending on the terms.

Moderations Since the LLM-SI-Corpus funda-
mentally originates from TED Talks, it does not
contain any potentially harmful information. Fur-
thermore, we checked using OpenAl Moderation
APIs!7 and found no examples of harmful content.

15https://dsc—nlp.naist.jp/data/NAIST—SIC/
Aligned-ST/

16https://openai.com/policies/terms—of—use

17https://platform.openai.com/docs/guides/
moderation
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1. Before conjunctions or relative pronouns that
introduce clauses (excluding when they mod-
ify the subject).

2. After infinitives, prepositions, or gerunds
when followed by three or more words.

3. When the subject consists of three or more
words.

4. Before and after punctuation marks such as
commas (excluding lists of individual words),
semicolons, hyphens, etc.

5. After prepositional phrases or adverbial
phrases at the beginning of a sentence (or di-
rectly after conjunctions or relative pronouns
that introduce clauses).

Based on these guidelines, Fukuda et al. (2024)
defines its chunking workflow. First, rules 1, 3, 4,
and 5 are applied to each source sentence chunk,
and then the translated chunks are concatenated
while preserving boundaries. Rule 2 is optionally
applied in the last step to avoid the influence of the
prior steps causing extremely small chunk trans-
lations. This chunk-wise approach enables inter-
preters to navigate the challenges posed by gram-
matical differences between the source and target
languages while managing the demands for transla-
tion speed and accuracy.

Based on this chunking workflow and CWMT
guideline, Fukuda et al. (2024) constructed a test
dataset, and its fluency and adequacy were evalu-
ated by a professional interpreter. The procedure is
as follows:

1. Translate each chunk from the beginning of
the sentence.

2. Translate in a way that the connection between
chunks is natural when considering the entire
sentence.

3. Translate without including information from
the following chunks.

4. Additionally, for the sake of maintaining the
fluency of the sentence, the following opera-
tions are permitted, but applied carefully:

(a) Repeating the information from the pre-
vious chunk.

(b) Deferring the information to be trans-
lated to the following chunk.

(c) Omitting unnecessary information.

The CWMT-like test dataset proposed by Fukuda
et al. (2024) has been validated and analyzed
by Doi et al. (2024) confirming its effectiveness.

B Style differences among SI, Offline
Translation and CWMT (Details)

There are significant style gaps among SI, offline
translation, and CWMT as described in Fukuda
et al. (2024); Ko et al. (2023). Table 6 and Table 7
are examples describing their differences.

C Experiments (Details)

Speech-to-Text Settings Following the settings
of Fukuda et al. (2023); Ko et al. (2023), we employ
pretrained language models for both encoder and
decoder'® by integrating them into the Transformer
architecture (Vaswani et al., 2017).We used Hubert-
Large (Hsu et al., 2021) as the encoder, which in-
cludes a feature extractor and transformer encoder
layers. The feature extractor, trained on 60k hours
of unlabeled speech data from Libri-Light (Kahn
et al., 2020), consists of a 7-layer convolutional net-
work with kernel sizes of (10,3,3,3,3,2,2), strides of
(5,2,2,2,2,2,2), and 512 channels. For the decoder
side, we use the decoder parts of mBART50 (Tang
et al., 2021), an encoder-decoder model pretrained
with 50 language pairs. The decoder consists of 12
layers of transformer decoders, and the embedding
layer and linear projection weights are shared, with
a vocabulary size of 250K. The inputs are wave-
forms with a 16kHz sampling rate that are normal-
ized to zero mean and unit variance. During train-
ing, each source audio is augmented (Kharitonov
et al., 2021) with a probability of 0.8. We train the
model with MuST-C v2.0 (Cattoni et al., 2021) as
continuous pretraining. We fine-tuned the models
for 3K steps, evaluating their performance every
200 steps, and terminated the fine-tuning if there
was no improvement in the loss score for eight
consecutive evaluations. To avoid overfitting to
the small SI data, the following parameters are
fixed (Tsiamas et al., 2022): the feature extractor
and feed-forward layers of the encoder and the em-

"Our baselines are almost the same as the base-
line of IWSLT2023 Speech-to-Text settings (https:
//github.com/facebookresearch/fairseq/tree/
iwslt2023/examples/simultaneous_translation), but,
due to an implementation issue, we have switched the encoder
from wav2vec 2.0 (Baevski et al., 2020) to HuBERT (Hsu
et al., 2021).
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Source

And (1) ’'m/ (2) not here to / (3) say that / (4) men are to / (5) blame for the / (6) crisis and what / (7) happened
in my / (8) country.

OFFLINE

UD U Z DREFE (but this economy) | (6) fTEMERFAD (crisis and what) | (8) [EI"TD (country) / (7) Hj%l%%i;

DT (happened in my) ! (1) FhlE (I'm) | (4) BYEIZ (men are to) | (5) FEN B B & (blame for the) | 3) E D
D35 DX (say that) [ (2) D £X A (not here to),

SI

DFEMED (men are to). 1 (5) N T (blame for the) 1 2) B D £ A, FAEE D (not here to) / (8)
E D, €@l (country) | (6) BIXED (crisis and what). 1 (5) BALIE (blame for the).

Table 6: Translation style difference between offline and SI. The number indicates the corresponding words in the
source. The example is coming from (Ko et al., 2023).

(1) Groups like Anonymous / (2) have risen up / (3) over the last 12 months / (4) and have become a major player

(1) Anonymous &\ 5 27 )V — 71X (Groups like Anonymous) / (3) Z D124 FIE Y (over the last 12 months) /
Q) THERDWTWT (have risen up) | (5) & > T 4 Y BIEBIZE\NT (in the field of online attacks) | (4) K E

Source
/ (5) in the field of online attacks.
OFFLINE
AFAENZ 72 o T £ T (and have become a major player),
CWMT

(1) 7 ) =AD& D770V —"TH (Groups like Anonymous) / (2) BEEL T E TWE T (have risen up).
/(3) WFE127 A7z o T (over the last 12 months). 1 (4) T U TCEBRZ T LAY —IZHm>TVWET
(and have become a major player), | (5) &> 74 Y IED 5387235\ T (in the field of online attacks),

Table 7: Translation style difference between offline and CWMT. The number indicates the corresponding words in

the source. The example is coming from (Fukuda et al., 2024).

bedding, self-attention, and feed-forward layers of
the decoder.

Text-to-Text Settings We train an NMT model
through pretraining'®, then fine-tuned it using SI
data. For pretraining, we used WMT21 En-Ja
datasets (Akhbardeh et al., 2021) (JParaCrawl
v3 (Morishita et al., 2022), News Commentary
v16 (Tiedemann, 2012), WikiTitles v3 (Tiedemann,
2012), WikiMatrix vl (Schwenk et al., 2021),
JESC (Pryzant et al., 2018), KFTT (Neubig, 2011))
and MuST-C v2.0 (Cattoni et al., 2021). We use
SentencePiece (Kudo and Richardson, 2018) for
subword tokenization with a Unigram Language
Model (Kudo, 2018). The vocabulary size is 32K
tokens with a character coverage of 0.99995 on
a shared dictionary. The tokenizer was trained
on the pretraining data. We use a Transformer-
big model (Vaswani et al., 2017), warmup update
at 4000, dropout at 0.3, and the learning rate at
0.0005. The model is trained for 100K steps, with
evaluation conducted every 2K steps. Training is
terminated if there is no improvement in the best
loss after eight consecutive evaluations. During
fine-tuning, we trained for 3K steps, with evalu-
ations conducted every 200 steps. Fine-tuning is
also finished if there are no updates after eight con-
secutive evaluations. The evaluation metrics and

Our baselines are based on the English-to-Japanese Text-
to-Text translation at IWSLT2022 settings: https://github.
com/ksudoh/IWSLT2022_simul_t2t_baseline_enja

test datasets are the same as those described in
Section 5.

C.1 Results on Text-to-Text Setting

Evaluation 1: tst-COMMON Figure 6 shows
the result of tst-COMMON in text-to-text settings.
Focusing on k=1 and k=3 in BLEU, the LLM-
SI-Corpus (GPT-3.5 and GPT-4) achieves higher
BLEU scores with lower latency than OFFLINE.
However, as the value of k increases, the BLEU
scores for GPT-3.5 and GPT-4 begin to stagnate
compared to the Pretrained and OFFLINE models.
In {BLEURT, COMET}, the quality of the LLM-
Corpus surpasses that of OFFLINE when £ is less
than 5, after which the quality of all three mod-
els becomes similar. Additionally, compared to
the Pretrained model, the translation quality of the
LLM-Corpus remains superior at all latency levels.
In COMET-QE, which focuses on semantic similar-
ity between the source and generated text directly,
the LLM-SI-Corpus outperforms OFFLINE when
k is up to around 9, indicating that models fine-
tuned with the LLM-SI-Corpus can achieve high-
quality translations with relatively low latency.

On the other hand, the results from SIC show
lower quality at all k values, despite demonstrating
an advantage in latency, particularly achieving the
lowest latency in ATD. The reason SIC achieves the
lowest latency may be due to its shorter outputs, as
shown in Table 8. This could be attributed to omis-
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Figure 6: The results of tst-COMMON on text-to-text settings. Each plot, from left to right, represents wait-k values

ranging from 1,3,5,7,9,11,13,15,17.

sions and other factors in the SIC corpus®’, which
lead to shorter outputs compared to the source
length, resulting in the lowest quality but the small-
est latency among the models.

Evaluation 2: SIC-test Figure 7 shows the re-
sult of SIC-test in text-to-text settings, in which we
highlight BLEU-AL, where the LLM SI-Corpus
exhibits higher quality than OFFLINE up to about
k=5. The same trend is observed in LAAL. How-
ever, SIC performs better at high latency because
it aligns the training and evaluation data at the sen-
tence level, thereby improving the BLEU score. In
contrast, the LLM-SI-Corpus demonstrates higher
quality than SIC at low latencies. Conversely, when
focusing on ATD, SIC shows the best results in both
latency and quality, suggesting that the shorter out-
put sentences are attributed to omissions and trun-
cations. Meanwhile, when focusing on {BLEURT,
COMET, COMET-QE}, SIC exhibits the worst
translation quality. This is likely due to the effects
of omissions, where missing information from the
source text leads to decreased semantic similarity.
Conversely, the LLM-SI-Corpus outperforms OF-
FLINE up to a moderate level of latency, and in
terms of COMET-QE, it achieves comparable or
better results at all latencies.

2This trend has also been reported by Ko et al. (2023).

Evaluation 3: Chunk-wise Additionally, when
focusing on {AL, LAAL}, SIC tends to trans-
late slightly faster than any other corpus, but the
quality is the lowset, and this was also seen in
tst-COMMON. Figure 8 shows the test results of
Chunk-wise in text-to-text settings. The LLM-SI-
Corpus consistently delivers better translation qual-
ity than other models. For latency measuring with
ATD, although SIC has a latency advantage, its
translation quality is significantly lower. Addition-
ally, when focusing on {AL, LAAL}, SIC tends to
translate slightly faster than any other corpus, but
the quality is the lowset, and this was also seen in
tst-COMMON.

Summary We evaluated the models using three
different test datasets. When measuring quality
with BLEU, the results vary depending on the char-
acteristics of the test data. If measured using tst-
COMMON and SIC-test, the model fine-tuned with
OFFLINE performs slightly better than the LLM-
SI-Corpus, but the LLM-Corpus outperforms when
evaluated with chunk-wise. These variations sug-
gest that BLEU scores are significantly influenced
by the translation characteristics of the reference.
Moreover, in semantic evaluation metrics using ref-
erences, such as BLEURT and COMET, the LLM-
SI-Corpus achieves comparable or superior trans-
lation quality at all latencies. In the reference-free
metric COMET-QE, the LLM-SI-Corpus consis-
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Figure 8: The results of Chunk-wise on text-to-text settings. Each plot, from left to right, represents wait-k values

ranging from 1,3,5,7,9,11,13,15,17.

tently demonstrates better quality across all test
datasets.

When focusing on ATD to measure latency, the
LLM-SI-Corpus tends to produce longer outputs,
leading to slightly higher latency. However, this in-
creased latency is necessary to balance quality and
latency, as output examples show that the model
fine-tuned with LLM-SI-Corpus achieves higher

quality compared to other models with lower la-
tency, however such latency is necessary to balance
latency and quality, as output examples show that
model fine-tuned with LLM-SI-Corpus achieves
good quality compared to other models, which
achieves small latency. These findings indicate that
while achieving low latency is considered prefer-
able in simultaneous settings, excessively small
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latency in ATD increases the risk of producing out-
puts that are too short to fully translate the source
content, thereby reducing translation quality.

D Qualitative Analysis

D.1 Text-to-Text setting on tst-COMMON
when k=7

Table 13 demonstrates the equivalent quality of
GPT-3.5 and GPT-4, with a small reordering be-
tween (4) and (5) observed in both models. Ta-
ble 8 shows that GPT-4, with a small reordering,
demonstrates better fluency than GPT-3.5, while
both models successfully translate all the content
from the source. A small reordering between (2)
and (3) appears in GPT-4, whereas GPT-3.5 main-
tains the exact word order from the source, sacri-
ficing fluency at each chunk boundary Although
our motivation in this work is to keep word order
in the source, we also consider small reorderings
necessary to maintain its fluency. Our focus is
on long-distance reordering, such as the complete
switch between (1) and (3) observed in the refer-
ence, which should be avoided. Such long-distance
reordering leads to increased latency because trans-
lating (3) in the reference is only possible once (3)
in the source becomes available, and the rest can
only be translated after (3). Table 9 shows that GPT-
4 achieves both fluency and word order, though the
output becomes longer. In contrast, GPT-3.5 omits
(5), the latter part of the source, indicating that
GPT-4 produces better quality compared to GPT-
3.5.

D.2 Speech-to-Text setting on tst-COMMON
when k=7

In Table 10, both GPT-3.5 and GPT-4 could trans-
late all information in the source but GPT-4 is better
at quality and maintains its fluency.

D.3 Summary

From these analyses, we report that while both
GPT-3.5 and GPT-4 have the ability to follow the
prompt to maintain the word order in the source,
GPT-4 could manage the prompt and fluency at the
same time better than GPT-3.5 (Table 13, Table 8,
Table 10). We also note that the severity of omitting
information from the source is more serious in GPT-
3.5 than GPT-4 (Table 9, Table 4). We leave the
investigation of whether the omission is attributed
to the ability gap between GPT-3.5 and GPT-4 for
future work.

E Discussions (Details)

E.1 Word Order

We investigate the extent to which the source word
order is preserved in the target, focusing on ex-
amples generated with a wait-k value of 7 in the
text-to-text setting as shown in Table 11. In the
source, the phrase order is structured as (1), (2),
(3), and (4), whereas in the reference, which comes
from the TED Talk subtitles, the order is (1), (4),
and (2), with (3) omitted. Both GPT-3.5 and GPT-4
fine-tuned models maintain the original word order
of the source, yielding (1), (2), (3), and (4) sequen-
tially. Conversely, the OFFLINE fine-tuned model
retains all the content from the source but reorders
it as (1), (4), (3), and (2). In contrast, the SIC fine-
tuned model translates only (1), omitting the rest.
This example demonstrates that both GPT-3.5 and
GPT-4 achieved maintaining phrase order in the
source. These results suggest that while GPT-4 is
considered superior to GPT-3.5 in terms of model
ability, however for this task, the source language
phrase order preservation, GPT-3.5 satisfies to ful-
fill the task.

E.2 Quality

We focus on the quality using reference-free met-
rics to avoid biases inherent in references. Despite
increasing wait-k values, SIC exhibits low output
quality as observed in the outputs (Figure 3, Fig-
ure 4, Figure 5, Figure 6, Figure 7, Figure 6). Al-
though training SiMT and SiST with real SI data
is assumed to be beneficial for learning real-SI
tactics, relying solely on SI transcripts proves in-
adequate for effective model training. Similarly,
pretrained models trained exclusively on MuST-C
v2.0, which consists of offline translation data with
frequent reordering, do not perform as well as the
OFFLINE model, which is fine-tuned with NAIST-
SIC-Aligned offline translation. This suggests that
even though the translation style is offline, fine-
tuning with additional offline translation data is
effective for this task. Although OFFLINE demon-
strates competitive performance on tst-=COMMON,
even at small wait-k values such as k£ = 3 or higher,
these models result in lower quality at smaller wait-
k values on chunk-wise test datasets, suggesting
potential overfitting to the translation style in tst-
COMMON. Conversely, GPT-3.5 and GPT-4 con-
sistently deliver competitive results across both test
sets.
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Source

(1) I just came back from a community that / (2) holds the secret / (3) to human survival.

Reference  (3) FMI ANFHDETFIZEAD B (to human survival) | (2) W B % #8 5 (holds the secret) |/
) BHB2AI =T 1 PSR- TEZIED D TI (just came back from a community),
Pretrain (1) 5 k5 ¥ 3 Ia=F 1 55 JRE > T (I just came back from a community) | (2) ¥ —2 L v ~ % (the
secret) | 3) NENZFiD & 51270 £ U 7z (holds to human),
SIC (D) AEYT A DSR2 THKZATT (I came back from a community),
OFFLINE () B &5, 2Ia=7 1SR (just came back from a community), [ (2) > TIZMEERL £
U 7z (hid a secret in Chicago),
GPT-35 (1) B & 5 ¥ 3 I 2= 414 m»"6RE>TE 7 I jut came back from a com-
munity)o / 2) ZHUE T TV FIZEBE E REFF U T\ B (holds the scenario secret), |
3) NEDHTEIZ (to human survival),
GPT-4 D) BEDER->TEEDIE, T Ia=7 16T ( just came back from a community). /

(3) UL AFEHIZ (human) 1 (2) B % Fb&D T\ B (holds the secret),

Table 8: Example of output sentences in Pretrain, SIC, OFFLINE, GPT-3.5, and GPT-4 on tst-COMMON in waitk=7
on Text-to-Text setting. GPT-3.5 maintains source word order completely, while GPT-4 allows small reordering in
(2) and (3), which increases fluency.

Source (1) I came to realize, / (2) as a physician, / (3) that I was working toward a goal / (4) which was different from
the goal of evolution / (5) not necessarily contradictory, just different.
Reference (2) FAIX E Hli & U T (as a physician) /(1) KDEF U7 (I came to realize) | (3)
X HBEIZH P > TEWT W E T W I was working toward a goal) | (4) % 1 ik
AL DO HEE & 1Z L > TWE UK (which was different from the goal of evolution) /
G)FIHEEWI DI TIED D FHADNEITE S 7D TT (not necessarily contradictory, just different),
Pretrain (1) 5D IR E U7z (I came to realize)
SIC (D) D3, KD\ DIX (I came to realize).
OFFLINE (1) /&2 W=D T (I came to realize),
GPT-3.5 (1) B E D W7z (I came to realize), | (2) R & U T (as a physician), 1 (3) Fh23H$E L T\ HiZiE
(I was working toward a goal) | (4) F7525 Z & \Z (which was different),
GPT-4 ) AR D EFE U7 I came to realize). | (2) EHE & U Tlas a physician). [/ (3) .

BHEHD M ATV HBEIEX I was working toward a goal). | (4) T HhlEH®H LB, Z 0O
HEEIXEDHED S (it is different, its goal is different from the goal of evolution). |
G) BT UBFIET 2D TR, BIZERDEDTT (not necessarily contradictory, just different),

Table 9: Example of output sentences in Pretrain, SIC, OFFLINE, GPT-3.5, and GPT-4 on tst-COMMON in waitk=7

on Text-to-Text setting. (5) is omitted in GPT-3.5, while the whole content in the source is kept in GPT-4.

E.3 Latency

In this section, our analysis regarding latency con-
centrates on Pretrained, OFFLINE, GPT-3.5, and
GPT-4. We exclude SIC due to its short outputs
with poor quality in Table 5, and serious repeti-
tions in Table 12. In AL and LAAL, both GPT-
3.5 and GPT-4 demonstrate smaller latency com-
pared to Pretrain and OFFLINE across both text-to-
text and speech-to-text settings (Figure 3, Figure 4,
Figure 5, Figure 6, Figure 7, Figure 6). In ATD,
Pretrain and OFFLINE exhibit smaller latency in
text-to-text settings compared to GPT-3.5 and GPT-
4, whereas LLM-SI-Corpus achieves smaller la-
tency than OFFLINE and Pretrain in speech-to-
text settings. This discrepancy arises from the

tendency that Pretrained and OFFLINE produce
shorter translation outputs than GPT-3.5 and GPT-
4 in text-to-text settings (Table 13), serious repeti-
tions, leading to long latency, and such tendencies
are effectively captured by ATD, which accounts
for both start and end timing to measure latency.

E.4 Chunking

Figure 9 shows the differences in the number of
chunks per sentence between the Chunk-wise data
and the LLM-SI-Corpus (GPT-3.5 and GPT-4) in
the test set. It compares how much the chunk sizes
in GPT-3.5 and GPT-4 differ from the chunk-wise
data, assuming the latter is considered the oracle.
The findings indicate that the chunk size in GPT-4
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Source (1) So I went and met with his brother and father (2) and said, (3) "We’re going to give you this money. What are
you going to do with it?"

Reference (1) B X A L BRI AIZEN (I met with his brother and father) | 3) X HBE&%27 U B 32T
fH\NF 3 (We're going to give you this money. What are you going to do with it)? | /(2) L & F L7z
(said),

Pretrain (1) Z AV CTRIIIHD WL as & RIZEZ\N (So I met with his brother and father) | (2) Z 5 &\ ¥ U 7z (said).
SIC () L 2WE U7z (met him),
OFFLINE ()& &-o72Dik, W& RBLE (I met him with brother and father). | (2) Z 5 W E U7z (said).

GPT-35 (1) 7056, FMIED &R &\ F U7z (So I went and met with his brother and father), | (2) Z L T,
SWE U7 (and said). 1 (3) TOWRBTL LS., ZDOEE&%ZEL £ (You understand. I'm giving you
this money)] .

GPT-4 ) S, BT EELAE, ZLT, HORERBIZEVWE UL (So I met with his brother and
father), 1(2) T LT, EVWE U7 (and said). 1(3) [ZDELE2 I izdIFETh, ME2LETH
(I give you this money, what do you do with it)?] .

Table 10: Example of output sentences in Pretrain, SIC, OFFLINE, GPT-3.5, and GPT-4 on tst-COMMON in
waitk=7 on Speech-to-Text setting. GPT-4 is better than GPT-3.5 at fluency.

Source (1) Back in New York, / (2) I am the head of development / (3) for a non-profit / (4) called Robin Hood.

Reference (1) FAld=a — 3 — 27T b (back in New York I am) | (4) @ ¥ > 7 v N F T (at the Robin Hood
Foundation) | (2) f#RFAF D ET#E % U TWFE T (I'm responsible for organizational development),

Pretrain (1) Ny 7 - A ¥ - =2 —3 —7 (back in New York) / (2) FNXBAFEIRTD ™ v 7T (I am the head of
development) | (4) A ¥ > « 7 K EBEENFE T (called Robin Hood),

SIC (H)=z2—3—ZIZRE Y £ (back in New York),

OFFLINE ()Xw 2 - A Y « =a—3—2 TlX (back in New York). / (4) Fhix., m Y - 7y R& WS (Tam
a Robin Hood) | (3) FEE FIFIA D (non-profit organizations). | (2) BIFEFMI D b v 7T (head of
development),

GPT-3.5 (1) =a2—3—2JIZR 3 & (back in New York) | (2) FhIEBAFE D EALHE T (I am the head of development
Yo / (3) FERIZED 7= T (for non-profit organizations), / (4) Q¥ > 7w K EIEIXN S (called Robin
Hood),

GPT-4 (D=2 —3F =R > T (back in New York), | (2) FhiZZ DFAF D EALE T (I am the head of
development ), | (3)Z L, FEER]D 72D D (for non-profit organizations), [ (4) B ¥ > 7 v K EIEEN
HHIED 7DD E DT (it’s called Robin Hood for profit),

Table 11: Example of output sentences in Pretrain, SIC, OFFLINE, GPT-3.5, and GPT-4 on tst-COMMON in
wait-k=7 on Text-to-Text setting.

Source (1) And I spent 30 days / (2) eating nothing but this —/ (3) fun in the beginning, / (4) little difficult in the middle,
/ (5) very dangerous in the end.

Reference (1) Z L T Z LD VW 30H 8 (and all this for 30 days) | (2) BTz & 13 (when I eat it) | (3) TlIEEE L
Mo T2 DM (fun in the beginning) | (4) & CWEEIZ (little difficult in the middle) | (5) B2 1T IEH I Ak
& 720 % U7z (very dangerous in the end).

Pretrain ~ (2) Al TH B2\ (eating nothing) / (1) 30H [ (30 days) / 3) P S U A E U7z (fun in the
beginning).

SIC () =+H (30days). /(2) T3, T, AV, .. (this this this ...).

OFFLINE (1) 30H® (30 days). / 2) ZAREDERNRT, I TEHERNFE U, (eating nothing but this) / (3)
&), BN 5. B ko EHEWTY R (laughs), fun in the beginning).

GPT-3.5 (1) 72456, FAI30HM@E Z U F U7z, (And I spent 30 days) | (2) ZNLIIMTE BREFATLU
(eating nothing but this) / (3) T H 5 # U\ (fun in the beginning),

GPT4  ()Z LT, FII30HMZE I U F U7z (And I spent 30 days) / (2) ZINIIMITH BRTWE R A (eating
nothing but this), 1 (3) Wi IZZE U \NT I (fun in the beginning), [ (4) D UL WTT, BAFIZ, (e
difficult in the middle),

Table 12: SIC results in serious repetition at tst-=COMMON wait-k = 17 on Speech-To-Text settings.
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Source

(1) But still it was a real foot race / (2) against the other volunteers / (3) to get to the captain in charge /
(4) to find out / (5) what our assignments would be.

Reference

3) TN TEHLFEZE R DT (still find the captain) | (4) L% EI D K> TH 5 5 DIZ (to assign a mission)
[ MDKRT > T+ T & (against the other volunteers) | (1) LU \WEEEIZ 7 D F U 7z (it was a real foot
race)s

Pretrain ~ (2) TN THERZWBAIZL BMD AR T > T 1 T 72512 (still, to the other volunteers who trample their feet)
[ (3) F ¥ 7T V1T (the captain) | (1) &% BEAIZ U BED L — AT U7z (it was a real foot race) | (5) Fh7=
L DME % (our assignments) | (4) A2} 572 TT (o0 find out).
SIC ()TH (but),
OFFLINE (1) ZTvT%H., EIZ, 77 b L — AT (it was a real foot race), [ (2) MDD KT > F 1 7 D (the other
volunteers) | (3) ¥ ¥ 7 F V1T (the captain), | FHEEEY (send a letter ). | (5) iRkE% (assignments) (4)
BEU F U7 (find out),
GPT3.5 () ZNTH, ZNIEAYDRED LV — A TU 7 (it was a real foot race), | Q) DR T V5 4 7 7=
HAZX U T (against the other volunteers), | (3) ¥ ¥ 77 M IZ[| D> D 721 (against the captain), |
(5) Fh7= B DFEDY (our assignments) | (4) il % FDVF B 72812 (to find out what would be),
GPT-4 (1) ZNTH, TNIIARYIZEDHEM T U7z (it was a real foot race)s 1 Q) MDD RZ > F 1 7 7= HIiTkt

U T (against the other volunteers). | (3) ¥ ¥ 7T VIZEIFE T 5 728DIZ (to get to the captain in charge). |
(5) Fh7= 5 DFEIIDIMA T & 5 2% (what our targets would be) | (4) FR 5 7= IZ (to find out),

Table 13: Example of output sentences in Pretrain, SIC, OFFLINE, GPT-3.5, and GPT-4 on tst-COMMON in
waitk=7 on Text-to-Text setting. Both GPT-3.5 and GPT-4 achieve fluency allowing small reordering in (4) and (5).

W GPT-4
B GPT-35

180

160

140

120

80

60

40 I

zo [ [

o = m m m_Hullll -,I-,
-8 -7 -6 -5 -4 -3 -2 1 2 3 4 5 6 7

-1 0

Counts
=
15}
8

Difference in Chunk Numbers (Subtraction: Chunk-wise - GPT-4/3.5)

Figure 9: The difference in chunk numbers between
Chunk-wise and GPT-4/GPT-3.5. The total number of
sentences is 511.

is smaller than in the chunk-wise data, while GPT-
3.5 tends to produce larger chunks compared to
the chunk-wise data. Although we included this
analysis, it is important to note that chunking is
only one criterion, and matching chunk sizes does
not necessarily indicate that the translation quality
based on the chunk size is good.

E.5 Misalignment between Source Input and
the SI data

In our corpus analysis, we found that both NAIST-
SIC-Aligned and MuST-C v2.0 contain noise in the
form of misalignment between the source and tar-
get sentences. This misalignment results in the shift
of information, e.g., information in a sentence ap-
pearing in its neighbors, leading to imbalanced sen-
tence correspondences. When dealing with MuST-
C v2.0, difficulty arises in aligning audio input fea-

tures with subtitles due to space limitations, which
may lead to unbalanced correspondences. Simi-
larly, in the case of NAIST-SIC-Aligned, which
utilizes Japanese transcripts of interpreted data,
aligning source text becomes challenging. This
is due to the SI characteristics, involving omis-
sions and summaries, which further complicate the
alignment process due to imbalances between the
source and target transcripts. Some examples are
shown in Table 14, Table 15. Addressing alignment
in unbalanced sentences emerges as a particularly
challenging aspect of SI, representing an important
area for future research.

E.6 Toward Applying to Other Language
Pairs

We conducted a preliminary investigation to de-
termine whether our proposed method could
be scaled to multiple language pairs, includ-
ing English-to-Chinese (en-zh), and English-to-
German (en-de), using the MuST-C v2.0 tst-
COMMON dataset (Di Gangi et al., 2019). We
translated the source into each target language by
replacing the “output:Japanese” with Chinese and
German in the system, as shown in Figure 2. The
same method described in Section 4 was used to
measure monotonicity between the source and tar-
get languages, using Spearman’s correlation co-
efficient based on the alignments obtained from
Awesome-align (Dou and Neubig, 2021). From Ta-
ble 16, we found that our method improves mono-
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Source

Target

Really important.

So I'm committing to potatoes; I’'m committing to milk;
I’m committing to leeks and broccoli all very important
stuff.

Zhs,

M@ blrTcd, A7 b, TLTIND,
ZLT, #F, 7Jayval— Z5\Wo72HDIT
LT,

Because of our differences, we create and sustain life.
So we should embrace our difference and aim for chal-
lenge.

EWRD B 5
FitTRENE 2 AT Z e T E T

Table 14: Example of misalignment sentence pairs in SIC.

Source

Target

I do the philosophy of art, aesthetics, actually,for a living.
I try to figure out intellectually, philosophically, and
psychologically, what the experience of beauty is, what
sensibly can be said about it, and how people go off the
rails in trying to understand it.;

FIEOEF, E£¥%E,
BEELLTWET, B WS EKRIZMZDN, £
WOWTHEMZIEZ D Z it filh, AFEL2M
L ES & LT, WHhIZEBIZESI Dozl &
. R, BFER, DEFERICIILE S 2 LT
WET,

Now this is an extremely complicated subject, in part
because the things that we call beautiful are so different.

I mean just think of the sheer variety a baby’s face,
Berlioz’s "Harold in Italy," movies like "The Wizard
of Oz" or the plays of Chekhov, a central California land-
scape, a Hokusai view of Mt. Fuji, "Der Rosenkavalier,"
a stunning matchwinning goal in a World Cup soccer
match, Van Gogh’s "Starry Night," a Jane Austen novel,
Fred Astaire dancing across the screen.

ELWVWIDRBALLABRASTZT—=ITHY,
B MELWEIRATWSEDIZIE, FERIZK
ERERHOET. WA TZT 4 IZEATH
5T b »ADE,

RNV F—ZAD 42y 7o a)LR] . TAX
DREEFFN] DX S M, F = —K7 OB,
RESA ) 7 A= 7 OEs, bR DE DR,
NEs okt .

Table 15: Example of misalignment sentence pairs in MuST-C v2.0.

Language Data Monotonicity

En-Ja MuST-C 0.522
Ours (GPT-3.5) 0.798

Ours (GPT-4) 0.815

En-Zh MuST-C 0.875
Ours (GPT-3.5) 0.929

Ours (GPT-4) 0.952

En-De MuST-C 0.938
Ours (GPT-3.5) 0.960

Ours (GPT-4) 0.958

Table 16: The table compares word order monotonicity
across three language pairs (en-ja, en-zh, en-de) in the
Must-C v2.0 tst-COMMON, similar to Table 2.

tonicity for the other language pairs, though the
improvement was not as significant as what we ob-
served in English-to-Japanese As this study focuses
on verifying the SI data creation method based on
CWMT, the extension to other languages will be
addressed in future work. Additionally, since the
CWMT guidelines and protocols are specifically
designed for English-to-Japanese, there is room for
improvement, such as exploring more generalized
methods for other languages.

22398



