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Abstract

A common retrieve-and-rerank paradigm in-
volves retrieving relevant candidates from a
broad set using a fast bi-encoder (BE), fol-
lowed by applying expensive but accurate cross-
encoders (CE) to a limited candidate set. How-
ever, relying on this small subset is often
susceptible to error propagation from the bi-
encoders, which limits the overall performance.
To address these issues, we propose the Com-
paring Multiple Candidates (CMC) framework.
CMC compares a query and multiple embed-
dings of similar candidates (i.e., neighbors)
through shallow self-attention layers, deliver-
ing rich representations contextualized to each
other. Furthermore, CMC is scalable enough to
handle multiple comparisons simultaneously.
For example, comparing 10K candidates with
CMC takes a similar amount of time as com-
paring 16 candidates with CE. Experimental
results on the ZeSHEL dataset demonstrate
that CMC, when plugged in between bi-encoders
and cross-encoders as a seamless intermedi-
ate reranker (BE-CMC-CE), can effectively im-
prove recall@k (+6.7%-p, +3.5%-p for R@16,
R@64) compared to using only bi-encoders
(BE-CE), with negligible slowdown (<7%). Ad-
ditionally, to verify CMC’s effectiveness as the
final-stage reranker in improving top-1 accu-
racy, we conduct experiments on downstream
tasks such as entity, passage, and dialogue rank-
ing. The results indicate that CMC is not only
faster (11x) but also often more effective than
cross-encoders with improved prediction accu-
racy in Wikipedia entity linking (+0.7%-p) and
DSTC7 dialogue ranking (+3.3%-p).

1 Introduction

The two-stage approach of retrieval and rerank-
ing has become a predominant method in tasks
such as entity linking (EL) (Wu et al., 2020; Zhang
and Stratos, 2021; Xu et al., 2023), open-domain
question answering (ODQA) (Nogueira and Cho,
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2019; Agarwal et al., 2022b; Shen et al., 2022; Qu
et al., 2020), and dialogue systems (Mele et al.,
2020). Typically, bi-encoders (BE) are used to ef-
ficiently retrieve relevant candidates from a large
set of documents (e.g., knowledge base), and then
cross-encoders (CE) effectively rerank only a lim-
ited subset of candidates already retrieved by BE
(Nogueira and Cho (2019); Figure 1.a-b).

The current BE-CE approach, although widely
adopted, has an efficiency-effectiveness trade-off
and is susceptible to error propagation. When less
accurate BE retrieves candidates, the whole frame-
work risks the error propagation of missing the gold
candidates due to inaccuracies from the retriever.
Simply increasing the number of candidates is not
a viable solution considering the slow serving time
of CE12. Consequently, users are faced with the
dilemma of deciding which is worse: error propa-
gation from BE versus the slow runtime of CE.

To resolve this issue, various strategies have
been proposed to find an optimal balance in
the efficiency-effectiveness trade-off. Prior works
(Khattab and Zaharia (2020); Zhang and Stratos
(2021); Cao et al. (2020); Humeau et al. (2019))
have enhanced bi-encoder architectures with a late
interaction component. However, these models
only focus on single query-candidate pair inter-
action. Also, they sometimes require storing entire
token embeddings per candidate sentence which
results in tremendous memory use (Figure 1.c).

Our proposed Comparing Multiple Candidates
(CMC) makes reranking easy by comparing simi-
lar candidates (i.e., neighbors) together. By jointly
contextualizing the single vector embeddings from
each candidate through shallow bi-directional self-
attention layers, CMC achieves high prediction ac-
curacy and runtime efficiency that are comparable

1For the serving time of cross-encoders, see §D.1.
2Furthermore, increasing the number of candidates for CE

does not necessarily improve end-to-end accuracy (Wu et al.,
2020). We confirm this in the experiments. See appendix D.6.
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Figure 1: Model architectures for retrieval tasks. (a), (b), and (c) are existing architectures. (d) is our proposed
‘Comparing Multiple Candidates (CMC)’ architecture, which computes compatibility score by comparing the embed-
dings of a query and K multiple candidates via self-attention layers. Contrary to (a)-(c), CMC can process multiple
candidates at once rather than conducting several forward passes for each (query, candidate) pair.

to, or better, than existing methods which require
single or multiple vector embeddings.

In other words, CMC only takes a single forward
pass for input (query, candidate1, ..., candidatek)
with a pre-computed single vector em-
bedding. In contrast, models such as CE
and other late interaction models take k
separate forward passes for input pairs
(query, candidate1), ..., (query, candidatek),
sometimes requiring multiple vector embeddings
per each candidate. CMC maintains both the
efficiency of BE with pre-computed single-vector
candidate embeddings, and the effectiveness of
CE with interactions between query and multiple
candidates (Figure 1.d).

Practitioners can plug in CMC as the seamless
intermediate reranker (BE-CMC-CE) which can en-
hance retrieval performance with negligible extra
latency. This improvement is crucial for prevent-
ing error propagation from the retrieval process,
resulting in more reliable candidates for the final
stage (Figure 2-3). On the other hand, CMC also can
serve as a fast and effective final-stage reranker im-
proving top-1 accuracy (BE-CMC). If there’s a time
constraint, using CMC as the final reranker can be a
good option, as running a cross-encoder requires
significantly more time (Table 3; Figure 4).

In experiments, we evaluate CMC on Zero-SHot
Entity-Linking dataset (ZeSHEL; Logeswaran et al.
(2019)) to investigate how much CMC seamlessly en-
hances a retriever’s performance when plugged in
to BE (BE-CMC). The results show CMC provides
higher recall than baseline retrievers at a marginal
increase in latency (+0.07x; Table 1). Compared to
standard BE-CE, plugging in CMC as the seamless
intermediate reranker (BE-CMC-CE) can provide
fewer, higher-quality candidates to CE, ultimately

improving the accuracy of CE reranking. (Table 2).
To examine the effectiveness of CMC which acts as
the final stage reranker, we evaluate CMC on entity,
passage, and dialogue ranking tasks. We observe
that CMC outperforms CE on Wikipedia entity link-
ing datasets (+0.7p accuracy) and DSTC7 dialogue
ranking datasets (+3.3p MRR), requiring only a
small amount (0.09x) of CE’s latency (Table 3).

The main contributions of the paper are as fol-
lows:

• We present a novel reranker, CMC, which im-
proves both accuracy and scalability. CMC con-
textualizes candidate representations with sim-
ilar candidates (i.e., neighbors), instead of
solely focusing on a single query-candidate
pair (§3).

• CMC can serve as the seamless intermediate
reranker which can significantly improve re-
trieval performance with only a negligible
increase in latency. This results in a more
confident set of candidates for the final-stage
reranker that improves end-to-end accuracy
compared to conventional bi-encoders (§4.3)

• Experimental results show that the final stage
reranking of CMC is highly effective on pas-
sage, entity, and dialogue ranking tasks com-
pared to various baselines among the low-
latency models (§4.4).

• Additionally, we show that CMC can benefit
from domain transfer from sentence encoders
while BE and many others cannot (§4.5).

2 Background and Related Works

2.1 Retrieve and Rerank
Two-stage retrieval systems commonly consist of
a fast retriever and a slow but accurate reranker.
Although the retriever is fast, its top-1 accuracy
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Figure 2: Overview of the proposed CMC framework that compares multiple candidates at once. CMC can seamlessly
enhance retriever, finding top-K’ candidates, or function as a direct reranker which outputs top-1 candidate.
Candidate embeddings for bi-encoders and CMC are both precomputed while query embeddings for bi-encoders and
CMC are computed in parallel on the fly. After bi-encoders retrieve top-K candidates, CMC indexes the corresponding
candidate embeddings and passes through a two-layer transformer encoder. Here, the additional latency is limited to
the execution of self-attention layers.

tends to be suboptimal. Therefore, a candidate set
Cq = {cq,1, cq,2, . . . , cq,K} ⊆ C whose elements
are K most relevant candidates in the corpus C is
retrieved for further reranking.

A reranker sθ(q, cq,j)(1 ≤ j ≤ K) is a model
trained to assign a fine-grained score between the
query q and each candidate cq,j from the rela-
tively small set of candidates Cq. It is an expres-
sive model that is slower but more accurate than
the retriever. The candidate with the highest score
c∗q = argmaxcq,j∈Cq

sθ(q, cq,j) is the final output
of the retrieve-and-rerank pipeline where query q
should be linked.

2.2 Related Work

Bi-encoders and Cross-encoders In two-stage
retrieval, the compatibility score between the query
and candidate can be computed by diverse func-
tions. Nogueira et al. (2019a) retrieve candidates
using the bag-of-words BM25 retriever and then ap-
ply a cross-encoder reranker, transformer encoders
that take the concatenated query and candidate to-
kens as input (Logeswaran et al., 2019; Wu et al.,
2020). Instead of BM25 retriever, other works (Lee
et al., 2019; Gillick et al., 2019; Karpukhin et al.,
2020) employ a pre-trained language model for a
bi-encoders retriever to encode a query and a candi-
date separately and get the compatibility score. The
scalability of bi-encoders as a retriever arises from
the indexing of candidates and maximum inner-
product search (MIPS); however, they tend to be

less effective than cross-encoders as candidate rep-
resentations do not reflect the query’s information
(Figure 1.a-b). To enhance the performance of bi-
encoders, follow-up works propose a task-specific
fine-tuned model (Gao and Callan, 2022), injecting
graph information (Wu et al., 2023; Agarwal et al.,
2022a), and multi-view text representations (Ma
et al., 2021; Liu et al., 2023).

Late Interaction Late interaction models, which
typically function as either a retriever or a reranker,
enhance bi-encoder architectures with a late in-
teraction component between the query and the
candidate.

Poly-encoder (Humeau et al., 2019) and Mix-
Encoder (Yang et al., 2023) represent query infor-
mation through cross-attention with a candidate to
compute the matching score. However, these mod-
els have overlooked the opportunity to explore the
interaction among candidates.

Sum-of-Max (Khattab and Zaharia, 2020; Zhang
and Stratos, 2021) and DeFormer (Cao et al., 2020)
rely on maximum similarity operations or extra
cross-encoder layers on top of bi-encoders. How-
ever, they lack scalability due to the need to pre-
compute and save every token embedding per each
candidate.3 As a collection of documents continu-
ously changes and grows, this storage requirement

3For example, 3.2TB is required for storing ∼5M entity
descriptions from Wikipedia, each with 128 tokens. In contrast,
storing a single vector embedding per entity description for
bi-encoders only requires 23GB.
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poses practical limitations on managing and updat-
ing the document indices.
CMC differs from these models in its enhanced

scalability by comparing a single embedding for
each candidate. This approach provides a deeper
exploration of relational dynamics from interac-
tions across multiple candidates while improving
time and memory efficiency.

Listwise Ranking CMC is not the first approach
to compare a list of documents to enhance rank-
ing performance (Han et al., 2020; Zhang et al.,
2022; Xu et al., 2023). These listwise ranking
methods process cross-encoder logits for the list
(query, candidate1, . . . , candidateK) to rerank K
candidates from cross-encoders. However, these
approaches lack scalability and efficiency due to
reliance on cross-encoder representations.

Unlike previous listwise ranking models, we pro-
pose a method that employs representations from
independent sentence encoders rather than cross-
encoders. Boosting scalability with independent
representations, CMC can seamlessly enhance re-
trievers by maintaining prediction accuracy.

3 Proposed Method

3.1 Model Architecture

Comparing Multiple Candidates, CMC, employs
shallow self-attention layers to capture both query-
candidate and candidate-candidate interactions. Un-
like other late interaction models which compute
the compatibility scores by only considering a
single query-candidate pair (Khattab and Zaharia,
2020; Humeau et al., 2019; Yang et al., 2023), CMC
compares each candidate to the query and other
candidates at the same time (Figure 1.(d)). The self-
attention layer in CMC processes the concatenated
representations of the query and multiple candi-
dates, derived from the independent query and can-
didate encoders. In this way, CMC obtains enhanced
representations of the query and every candidate
by contextualizing them with each other. Also, this
architecture is scalable to a large set of corpus by
pre-computing and indexing candidate embeddings.
For example, processing 2K candidates only takes
twice as long as processing 100 (Figure 4).

Query and Candidate Encoders Prior to CMC,
the first-stage retriever (e.g., bi-encoders) re-
trieves the candidate set with K elements Cq =
{cq,1, ...cq,K} for query q. CMC then obtains the

aggregated encoder output (e.g., [CLS] token em-
bedding) of query sentence tokens hsent

q and can-
didate sentence tokens hsent

cq,j from the query en-
coder Encqry and the candidate encoder Enccan.
These encoders play the same role as conventional
bi-encoders by condensing each query and candi-
date information into a single vector embedding
but are trained separately from the first-stage stage
retriever.

hsent
q = agg(Encqry([CLS]x0q . . . xkq )) (1)

hsent
cq,j = agg(Enccan([CLS]x0cq,j . . . xkcq,j )) (2)

xq and xcq,j are tokens of each query and candi-
date. The aggregator function agg extracts [CLS]
embedding from the last layer of encoder4.

Self-attention Layer The shallow self-attention
layers process concatenated embeddings of a query
and all candidates. This lightweight module enables
parallel computation (efficient) and outputs con-
textualized embeddings via interactions between
query and candidates (effective). In the reranking
perspective, Representing candidates together with
self-attention layers (Attn) enables fine-grained
comparison among candidates. The self-attention
layers consist of two layers of vanilla transformer
encoder (Vaswani et al., 2017) in Pytorch without
positional encoding.
[
hCMC
q ;hCMC

cq,1 ; . . . ;h
CMC
cq,K

]
= Attn

([
hsent
q ;hsent

cq,1 ; . . . ;h
sent
cq,K

])

(3)
Subsequently, the reranker computes the final

prediction c∗q via dot products of query and candi-
date embeddings from the self-attention layer:

c∗q = argmax
cq,j∈Cq

hCMC
q ·

(
hCMC
cq,j

)⊤
(4)

3.2 Training

Optimization The training objective is mini-
mizing the cross-entropy loss regularized by the
Kullback-Leibler (KL) divergence between the
score distribution of the trained model and the bi-
encoder. The loss function is formulated as:

L(q, C̃q) =
∑K

i=1(−λ1yi log(pi) + λ2pi log
(
pi
ri

)
)

(5)
4For entity linking tasks, both the query (mention) and

candidate (entity) sentences include custom special tokens
that denote the locations of mention and entity words. These
include [SEP], [query_start], [query_end], and [DOC]
tokens following Wu et al. (2020).
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yi and pi are the ground truth and predicted prob-
ability for i-th candidate. The retriever’s probability
for the candidate is represented as ri. λ1 and λ2 are
weights combining the two losses.

Negative Sampling We sample hard negatives
based on the first-stage retriever’s score for each
query-candidate pair (q, cq,j): ∀j ∈ {1, . . . ,K} \
{gold index},

cq,j ∼
exp(sretriever(q, cq,j))∑K

k=1&
k ̸=gold index

exp(sretriever(q, cq,k))
(6)

In experiments, CMC and other baselines follow the
same optimization and negative sampling strategy.5

3.3 Inference

Offline Indexing CMC can pre-compute and in-
dex the embeddings of candidates in the collection
(e.g., knowledge base), unlike cross-encoders (Fig-
ure 1). This offline indexing scheme significantly
reduces inference time compared to cross-encoders,
making the runtime of CMC comparable to that of
bi-encoders (§4.4). While reducing time complex-
ity, CMC is highly memory-efficient requiring less
than 1% of index size needed by Sum-of-Max and
Deformer, which store every token embedding per
candidate. This is because CMC only stores a single
vector embedding per candidate.

Parallel Computation of Query Representations
The end-to-end runtime for retrieving and rerank-
ing with CMC can be comparable to that of bi-
encoder retrieval. The runtime can be further im-
proved by parallelizing query encoders in both bi-
encoder and CMC (Figure 2). Ideally, the additional
latency for running CMC is limited to the execution
of a few self-attention layers.

CMC as the Seamless Intermediate Reranker
CMC can serve as a seamless intermediate reranker
that maintains the latency-wise user experience
while providing improved retrieval performance
when combined with a bi-encoder. Thanks to the
parallel computation discussed above, plugging
in CMC after bi-encoders should minimally im-
pact retrieval latency compared to just using the
bi-encoder. The process starts with the first-stage
retrievers, such as bi-encoders, retrieving a broad
set of candidates. CMC then narrows this set down to

5The code and link to datasets are available at
https://github.com/yc-song/cmc

fewer, higher-quality candidates with a more man-
ageable number (e.g., 64 or fewer) for the reranker.
Since CMC, the seamless intermediate reranker, fil-
ters candidates from the first-stage retriever with
negligible additional latency, its runtime is com-
parable to that of bi-encoders. As a result, the
improved candidate quality boosts the prediction
accuracy of the final-stage reranker (e.g., cross-
encoders) with only a marginal increase in compu-
tational cost (Figure 3; §4.3).

CMC as the Final Stage Reranker CMC can obvi-
ously serve as the final-stage reranker to increase
top-1 accuracy. Enriching contextualized represen-
tations of the query and candidates helps improve
top-1 accuracy in reranking while maintaining ef-
ficiency with a single vector embedding. Notably,
CMC remains effective even when the number of
candidates varies during inference, despite being
trained with a fixed number of candidates. For ex-
ample, when trained with 64 candidates on the MS
MARCO passage ranking dataset, CMC still per-
forms effectively with up to 1K candidates. This
demonstrates not only the scalability of CMC but
also its robustness in processing a diverse range of
candidate sets (§4.4).

4 Experiments

4.1 Dataset

To evaluate the robustness of CMC, we conduct
experiments on various ranking tasks where the
retrieve-and-rerank approach is commonly used.
For entity linking, we utilize datasets linked to the
Wikipedia knowledge base (AIDA-CoNLL (Hof-
fart et al., 2011), WNED-CWEB (Guo and Barbosa,
2018), and MSNBC (Cucerzan, 2007)), as well as
a ZEro-SHot Entity Linking dataset (ZeSHEL; Lo-
geswaran et al. (2019)) based on the Wikia7 knowl-
edge base. The candidates are retrieved from bi-
encoders fine-tuned for each knowledge base (Wu
et al., 2020; Yadav et al., 2022). For passage rank-
ing, we conduct an experiment on MS MARCO
with 1K candidates from BM25 as the first-stage
retriever following Bajaj et al. (2016). For dialogue
ranking tasks, we test our model on DSTC7 chal-
lenge (Track 1) (Yoshino et al., 2019), where can-
didates are officially provided. The primary metric
used is recall@k, as datasets typically have only

6recall@64 of Poly-encoder and Sum-of-max from Zhang
and Stratos (2021) is reported as 84.34 and 89.62, respectively.

7now Fandom: https://www.fandom.com
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Test Speed Index Size
Method R@1 R@4 R@8 R@16 R@32 R@64 (ms) (GB)

Single- BM25 25.9 44.9 52.1 58.2 63.8 69.1
View Bi-encoder (BE♠) 52.9 64.5 71.9 81.5 85.0 88.0 568.9 0.2

Arbo-EL 50.3 68.3 74.3 78.4 82.0 85.1 - -
GER 42.9 66.5 73.0 78.1 81.1 85.7 - -
Poly-encoder (Poly) ♡ 40.0±0.7 60.2±0.9 67.2±0.7 72.2±0.8 76.5±0.8 80.2±0.8 581.0 0.2
BE + Poly♡ 56.9±0.8 74.8±0.6 80.1±0.7 84.2±0.5 87.5±0.4 90.2±0.3 574.6 0.4
Sum-of-max (SOM)♡ 27.1±1.8 64.1±1.4 73.2±0.9 79.6±0.7 84.1±0.4 88.0±0.4 6393.0 25.7
BE + SOM♡

58.5±1.0 76.2±1.1 81.6±1.0 85.8±0.9 88.9±0.7 91.4±0.6
2958.3 0.2

- w/ offline indexing 597.3 25.9
BE♠ + CMC(Ours) 59.1±0.3 77.6±0.3 82.9±0.1 86.3±0.2 89.3±0.2 91.5±0.1 607.2 0.4

Multi- MuVER 43.5 68.8 75.9 77.7 85.9 89.5 - -
View MVD 52.5 73.4 79.7 84.4 88.2 91.6 - -

MVD + CMC(Ours) 59.0 77.8 83.1 86.7 89.9 92.4 - -

Table 1: Retrieval performance over ZeSHEL dataset. The best and second-best results are denoted in bold and
underlined. BE♠ is bi-encoder from Yadav et al. (2022) which is used for CMC. ♡ indicates our implementation as
recall@k for all k are not provided in previous work6. results on BE + Reranker (e.g., BE+CMC) are conducted over
the top 512 candidates from the first-stage retriever and averaged over experiments with 5 random seeds.

one answer or rarely a few answers per query. Fur-
ther details are presented in §B.

4.2 Training Details
CMC and other baselines are trained under the same
training strategies. All models use the same loss
function and negative sampling (§3.2) with the
AdamW optimizer and a 10% linear warmup sched-
uler. Also, we examine diverse sentence encoder
initialization for CMC and late interaction models,
including vanilla BERT and BERT-based models
fine-tuned on in- and out-of-domain datasets. After
training, we select the best results for each model.8

For ZeSHEL, training CMC and other low-latency
baselines for one epoch on an NVIDIA A100 GPU
takes about 4 hours. The training details for each
dataset are in §C, and the ablation studies for di-
verse training strategies are presented in §4.5 and
§D.5.

4.3 CMC as the Seamless Intermediate
Reranker

We conduct two experiments on the ZeSHEL
dataset to verify the impact of CMC as the seam-
less intermediate retriever (BE+CMC+CE). We ex-
amine whether the introduction of CMC can im-
prove retrieval performance with negligible over-
head as promised. In the first experiment, we com-
pare the performance and speed of CMC plugged
in with bi-encoders (BE+CMC) with other retrieval
pipelines. Remarkably, even when other rerankers
are plugged in with the same bi-encoder, CMC
still achieves the highest Recall@k (Table 1) at

8If more favorable results are found in prior works over
the same candidates, we use those results.

a marginal latency increase. In the second experi-
ment, we assess how a more confident set of candi-
dates retrieved by BE+CMC contributes to improv-
ing end-to-end (BE+CMC+CE) accuracy compared
to solely using bi-encoders (Figure 3).

Baselines To assess CMC’s effectiveness in en-
hancing retrieval, we evaluate BE+CMC on 512
bi-encoder retrieved candidates and compare it to
baselines categorized into two types: single- and
multi-view retrievers.9 We use bi-encoders (Yadav
et al., 2022) and MVD (Liu et al., 2023) as the
first-stage retrievers for the single-view and multi-
view settings, respectively. For the baselines, we
select the state-of-the-art retrievers for the ZeSHEL
dataset. For single-view retrievers, we select the
poly-encoder (Humeau et al., 2019), Sum-of-max
(Zhang and Stratos, 2021), Arbo-EL (Agarwal
et al., 2022b), and GER (Wu et al., 2023). Among
these, Arbo-EL and GER utilize graph information,
unlike CMC and other baselines. For multi-view re-
trievers, we include MuVER (Ma et al., 2021) and
MVD (Liu et al., 2023).

Experimental Results In Table 1, plugging in
CMC with a single-view retriever outperforms base-
lines across all k, demonstrating its effectiveness in
the end-to-end retrieval process. With a marginal
increase in latency (+0.07x), CMC boosts recall@64
to 91.51% on the candidates from the first-stage
retriever, which has a recall@64 of 87.95%. Espe-
cially, the recall of Poly-encoder and Sum-of-max
lags behind CMC even when they are plugged in

9Single-view retrievers consider only a single global view
derived from the entire sentence, whereas multi-view retrievers
divide candidate information into multiple local views.
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Figure 3: Illustration of candidate retrieval for cross-
encoders (CE). Suppose cross-encoders can process up
to M candidates due to limited scalability. (a) In bi-
encoder (BE) retrieval, the BE-CE framework takes M
candidates and risks missing the gold candidates due
to inaccurate bi-encoders, causing the entire system to
suffer from error propagation from the retriever and
fail to get the correct candidate. (b) When CMC is intro-
duced as the seamless intermediate reranker (BE-CMC-
CE), CMC can consider a significantly larger pool (K) of
BE candidates. This allows CMC to provide much fewer
K’ (K>M>K’) and higher-quality candidates to the CE
while increasing the chance to include the positive can-
didate.

with the same bi-encoders (BE+Poly & BE+SOM).
Sum-of-max, which closely follows CMC, requires
a tremendous index (60x of CMC) to achieve com-
parable latency to CMC. To show that CMC seam-
lessly enhances any retriever type, we examine
the increase in recall of CMC upon a multi-view
retriever (MVD+CMC). The results show that CMC
consistently improves recall performance, moving
from 91.55% to 92.36% at recall@64. This demon-
strates CMC’s general capability to enhance recall
performance, regardless of the first-stage retriever.
For the effect of the number of candidates from the
first-stage retriever, see §D.2.

We question whether BE+CMC can reduce the la-
tency of the overall retrieval and reranking process
while maintaining the overall accuracy (Figure 3).
In essence, if we can have fewer but higher quality
candidates, end-to-end accuracy can be improved
while CE forward passes are called fewer times
with a reduced set of candidates. To examine the
quality of candidates from the seamless interme-
diate reranker CMC, we report the final reranking
accuracy of cross-encoders when candidates are re-
trieved by BE+CMC and compare it to conventional
BE retrieval (Table 2).

Table 2 shows that cross-encoders outperform
conventional bi-encoders, even with fewer candi-

Retrieved (k) Recall@k Unnormalized Accuracy Comparative

Bi-encoder CMC
Forgotten
Realms

Lego
Start
Trek

Yugioh
Macro
Avg.

Latency
(%)

1 8 - 77.72 78.92 65.14 62.76 48.64 63.87 38.90%
2 16 - 81.52 80.17 66.14 63.69 49.64 64.91 48.85%
3 64 - 87.95 80.83 67.81 64.23 50.62 65.87 100%
4 64 8 82.45 80.67 66.56 64.54 50.71 65.62 43.04%
5 256 8 82.86 80.92 66.89 64.42 50.86 65.77 43.36%
6 512 8 82.91 80.75 67.14 64.35 51.01 65.81 43.55%
7 64 16 85.46 80.5 66.97 64.47 50.68 65.66 56.76%
8 256 16 86.22 80.75 67.31 64.63 51.1 65.95 57.08%
9 512 16 86.22 80.83 67.64 64.49 50.95 65.98 57.27%
10 256 64 90.91 81.17 67.64 64.37 50.92 66.03 104.46%
11 512 64 91.51 81.00 67.89 64.42 50.86 66.04 104.65%

Table 2: Unnormalized accuracy10 of cross-encoders
across various candidate configurations on the ZeSHEL
dataset. We underlined when the cross-encoders show
superior accuracy with candidates filtered by CMC com-
pared to those from bi-encoders. The top-performing
scenarios in each category are highlighted in bold.
We measure the comparative latency required for run-
ning cross-encoders over 64 bi-encoder candidates
(260.84ms). For your reference, the CMC runtime 2x
when increasing the number of candidates by 16x (from
128 to 1048), while able to compare up to 16k candi-
dates at once. (§D.1)

dates retrieved by CMC. Cross-encoders with 16
candidates from CMC are 1.75x faster and achieve
slightly better accuracy compared to using 64 bi-
encoder candidates (line 3 vs. 8-9). Furthermore,
cross-encoders reach the best accuracy with 64 can-
didates from CMC, surpassing the accuracy obtained
with the same number of bi-encoder candidates,
with only a marginal increase in latency (line 3 vs.
11).

4.4 CMC as the Final Stage Reranker
Baselines Baselines are categorized into high-,
medium-, and low-latency models. We adopt cross-
encoders as our primary baseline for the high-
latency model. For the medium-latency models, we
include Deformer and Sum-of-max, which utilize
all token embeddings to represent candidate infor-
mation. For the low-latency models, we include the
Bi-encoder, Poly-encoder, and Mixencoder, all of
which require a single vector embedding for rep-
resentation and have a serving time similar to that
of the Bi-encoder. In this context, CMC is classified
as a low-latency method because it requires a sin-
gle embedding for the candidate and takes 1.17x
serving time of the Bi-encoder.

10The unnormalized accuracy of the reranker in ZeSHEL
is defined as the accuracy computed on the entire test set. In
contrast, the normalized accuracy is evaluated on the subset
of test instances for which the gold entity is among the top-k
candidates retrieved by the initial retriever. For example, if
the retriever correctly identifies candidates for three out of
five instances and the reranker identifies one correct candidate,
unnormalized accuracy is 1/5 = 20%, and normalized accuracy
is 1/3 = 33%.
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Tasks Entity Linking Passage Ranking Dialogue Ranking Compuational Efficiency
Datasets Wikipedia ZeSHEL MS MARCO Dev DSTC7 Challenge Total Speed Extra Memory

Accuracy Accuracy R@1 MRR@10 R@1 MRR@10
High-latency Cross-encoder 80.2±0.2 65.9† 25.4 36.8 64.7 73.2 12.9x -
Medium-latency Deformer 79.6±0.8 63.6±0.3 23.0† 35.7† 68.6 76.4 4.39x 125x

Sum-of-max
80.7±0.2 58.8±1.0 22.8

†
35.4

†
66.9 75.5

5.20x -
- w/ offline indexing 1.05x 125x

Low-latency Bi-encoder 77.1† 52.9† 22.9 35.3 67.8 75.1 1x 1x
Poly-encoder 80.2±0.1 57.6±0.6 23.5 35.8 68.6 76.3 1.01x 1.0x
MixEncoder 75.4±1.4 57.9±0.3 20.7† 32.5† 68.2† 75.8† 1.12x 1.0x
CMC (Ours) 80.9±0.1 59.2±0.3 23.9 35.9 68.0 75.7 1.17x 1.0x

Table 3: Reranking Performance on four datasets with three downstream tasks: Entity Linking (Wikipedia-KB based
datasets (Hoffart et al., 2011; Guo and Barbosa, 2018; Cucerzan, 2007), ZeSHEL (Logeswaran et al., 2019), Passage
Ranking (MS MARCO Passage Ranking (Bajaj et al., 2016), and Dialogue Ranking (Gunasekara et al., 2019). The
best result is denoted in bold and the second-best result is underlined. MRR stands for mean reciprocal rank. In
the entity linking datasets, the results are averaged across five random seeds. To show the computing resources
required for the reranking process, we define reranking latency in terms of relative latency and additional memory
usage compared to bi-encoders. † indicates that more favorable results are sourced from Wu et al. (2020); Yang et al.
(2023); Yadav et al. (2022), respectively.

Comparison with Low-latency Models CMC is
highly effective across diverse datasets, outperform-
ing or being comparable to other low-latency base-
lines. Notably, CMC surpasses bi-encoders on every
dataset with only a marginal increase in latency.
This indicates that replacing simple dot products
with self-attention layers across multiple candi-
dates can enhance reranking performance, likely by
taking advantage of the relational dynamics among
the candidates. Evaluated against the Poly-encoder
and MixEncoder, CMC demonstrates superior pre-
diction capability in tasks like passage ranking
and entity linking, which require advanced reading
comprehension capability.

Comparison with Medium-latency Models
When compared with Medium-latency models such
as Deformer and Sum-of-max, CMC demonstrates
its capability not only in memory efficiency but also
in maintaining strong performance. CMC mostly sur-
passes these models in entity linking and passage
ranking tasks. Also, CMC offers significant improve-
ments in speed over Deformer (1.17x vs. 4.39x)
and Sum-of-max without caching (1.17x vs. 5.20x).
For Sum-of-max with caching, it requires a huge
memory index size (125x) to accomplish a similar
latency to CMC. If a 125x index size is not avail-
able in practice, the speed becomes impractical
introducing scalability limitations. This analysis
implies that CMC’s single-vector approach is sig-
nificantly faster and more memory efficient, while
still demonstrating a comparable ability to repre-
sent candidate information with fewer tokens, often
surpassing more complex methods.

Figure 4: The relationship between the number of can-
didates and the corresponding time measurements in
milliseconds for two different models: Cross-encoder
(CE) and Comparing Multiple Candidates (CMC).

Comparison with High-latency Models Given
the importance of computational resources and
serving time in applications, CMC is a practical al-
ternative to cross-encoders, with 11.02x speedup
and comparable reranking accuracy. CMC outper-
forms the cross-encoder in the Wikipedia entity
linking (+0.7p accuracy) and DSTC7 dialogue rank-
ing (+3.3p MRR). Also, CMC presents a competitive
result in MS MARCO and ZeSHEL dataset, achiev-
ing the second- or third-best in prediction. This
comparison suggests that the self-attention layer in
CMC effectively substitutes for the token-by-token
interaction in cross-encoders while enhancing the
computational efficiency of the reranking process.

In summary, to achieve the best accuracy, we
recommend the 3-stage retrieval pipeline of bi-
encoders + CMC + cross-encoders (BE-CMC-CE)
that is both more accurate and substantially faster
than the widely adopted bi-encoder + cross-encoder
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(BE-CE), as shown in Table 2 and §4.3. If there’s
a time constraint, using CMC as the final reranker
can be a good option since inferring with 16 can-
didates using a cross-encoder takes approximately
the same amount of time as comparing around 10K
candidates with CMC (Figure 4)

4.5 Ablation Study

Through the experiments, we notice an improved
reranking performance on CMC when transferring
the sentence encoder from another domain. To ex-
amine whether this is CMC-specific characteristic,
we conduct an experiment that investigate how dif-
ferent sentence encoder initializations affect the
performance of late-interaction models. For each
model, we consider sentence encoder initializations
with BERT-based bi-encoders fine-tuned for an in-
domain (ZeSHEL; (Yadav et al., 2022)) and out-
domain (MS-MARCO; (Guo and Barbosa, 2018)),
as well as vanilla BERT (Devlin et al., 2018);
then for each combination of model and sentence-
encoder initialization, we fine-tune the model on
ZeSHEL dataset and report its test set results.

In Table 4, different initialization strategies show
different effects for each model. CMC and Poly-
encoder show significant performance increases
with out-of-domain sentence encoder initialization.
This can be attributed to both models utilizing sin-
gle candidate embeddings. Other models, such as
Sum-of-max and MixEncoder, show negligible im-
pact from sentence encoder initialization, whereas
Deformer and Bi-encoder perform best with vanilla
BERT. These findings suggest that CMC and the
poly-encoder, which compress candidate informa-
tion into single embeddings, can benefit from ini-
tialization from out-of-domain sentence encoders.
As a practical recommendation, we advise prac-
titioners to try out-of-domain initialization when
using CMC for potentially improved performance.

5 Conclusion

In this paper, we present a novel and intuitive
retrieval and reranking framework, Comparing
Multiple Candidates (CMC). By contextualizing
the representations of candidates through the self-
attention layer, CMC achieves improvements in pre-
diction performance with a marginal increase in
speed and memory efficiency. Experimental re-
sults show that CMC acts as a seamless intermediate
reranker between bi-encoders and cross-encoders.
The retrieval pipeline of BE-CMC-CE is not only

(Valid/Test) Sentence Encoder Initialization
Vanilla
BERT

Fine-tuned with

Model
In-domain
(ZeSHEL)

Out-of-domain
(MS MARCO)

Medium- Deformer 65.40/63.58 64.42/62.43 57.01/57.46
Latency Sum-of-max 59.57/58.37 58.77/57.65 59.15/58.79
Low- Bi-encoder 55.54/52.94 55.54/52.94 49.32/44.01
Latency Poly-encoder 53.37/52.49 55.75/54.22 57.41/58.22

MixEncoder 58.63/57.92 58.32/57.68 58.52/57.70
CMC (Ours) 56.15/55.34 58.04/56.20 60.05/59.23

Table 4: Comparison of unnormalized accuracy on
valid/test set of ZeSHEL over different sentence en-
coder initialization (Vanilla BERT (Devlin et al., 2018),
Bi-encoder fine-tuned for in- (Yadav et al., 2022) and
out-of-domain (Guo et al., 2020)) dataset. We denote
the best case for each method as bold.

more accurate but also substantially faster than
the widely adopted bi-encoder + cross-encoder
(BE-CE). Meanwhile, experiments on four differ-
ent datasets demonstrate that CMC can serve as the
efficient final stage reranker. These empirical re-
sults emphasize CMC’s effectiveness, marking it as
a promising advancement in the field of neural re-
trieval and reranking.

Limitations

In the future, we plan to test the CMC’s performance
with over 1000 candidates with batch processing.
It has not yet been extensively researched whether
CMC can effectively retrieve from a large collection,
e.g., a collection comprising more than 1 million
candidates. Furthermore, we plan to tackle the issue
that arises from the concurrent operation of both a
bi-encoder and CMC index, which currently requires
double the index size. This is a consequence of
running two separate encoder models in parallel.
To address this, we will investigate an end-to-end
training scheme, thereby enhancing the practicality
and efficiency of running both the Bi-encoder and
CMC simultaneously.
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A Potential Risks

This research examines methods to accelerate the
retrieval and reranking process using efficient and
effective CMC. While the proposed CMC might ex-
hibit specific biases and error patterns, we do not
address these biases in this study. It remains uncer-
tain how these biases might affect our predictions,
an issue we plan to explore in future research.

B Detailed Information of Datasets

Wikipedia Entity Linking For standard entity
linking, we use AIDA-CoNLL dataset (Hoffart
et al., 2011) for in-domain evaluation, and WNED-
CWEB (Guo and Barbosa, 2018) and MSNBC
(Cucerzan, 2007) datasets for out-of-domain eval-
uation. These datasets share the same Wikipedia
knowledge base. For comparison with the baseline
results from Wu et al. (2020), we employ the 2019
English Wikipedia dump, containing 5.9M entities.
We employed a bi-encoder as an initial retriever
that yields an average unnormalized accuracy of
77.09 and a recall@10 of 89.21. Unnormalized
accuracy is measured for each dataset and macro-
averaged for test sets.

AIDA-CoNLL dataset is licensed under a Cre-
ative Commons Attribution-ShareAlike 3.0 Un-
ported License. We are not able to find any license
information about WNED-CWEB and MSNBC
datasets.

Zero-shot Entity Linking (ZeSHEL) ZeSHEL
(Logeswaran et al., 2019) contains mutually ex-
clusive entity sets between training and test data.
The dataset comprises context sentences (queries)
each containing a mention linked to a correspond-
ing gold entity description within Wikia knowl-
edge base. Unlike Wikipedia entity linking datasets
where the entity set of train and test set overlaps,
the entity set for ZeSHEL is mutually exclusive
and this setup tests the model’s ability to gener-
alize to new entities. We employed a bi-encoder
from (Yadav et al., 2022) whose recall@64 is 87.95.
On top of these candidate sets, we report macro-
averaged unnormalized accuracy, which is calcu-
lated for those mention sets that are successfully re-
trieved by the retriever and macro-averaged across
a set of entity domains. For statistics of entity link-
ing datasets, see Table 5. ZeSHEL is licensed under
the Creative Commons Attribution-Share Alike Li-
cense (CC-BY-SA).

The predominant approach for reranking in

ZeSHEL dataset is based on top-64 candidate sets
from official BM25 (Logeswaran et al., 2019) or
bi-encoder (Wu et al., 2020; Yadav et al., 2022).
On top of these candidate sets, we report macro-
averaged normalized accuracy, which is calculated
for those mention sets that are successfully re-
trieved by the retriever and macro-averaged across
a set of entity domains.

Dataset # of Mentions # of Entities
AIDA Train 18848

5903530
Valid (A) 4791
Valid (B) 4485

MSNBC 656
WNED-WIKI 6821

ZeSHEL
Train 49275 332632
Valid 10000 89549
Test 10000 70140

Table 5: Staistics of Entity Linking datasets.

MS MARCO We use a popular passage rank-
ing dataset MS MARCO which consists of 8.8
million web page passages. MS MARCO origi-
nates from Bing’s question-answering dataset with
pairs of queries and passages, the latter marked as
relevant if it includes the answer. Each query is
associated with one or more relevant documents,
but the dataset does not explicitly denote irrele-
vant ones, leading to the potential risk of false
negatives. For evaluation, models are fine-tuned
with approximately 500K training queries, and
MRR@10, Recall@1 are used as a metric. To
compare our model with other baselines, we em-
ployed Anserini’s BM25 as a retriever (Nogueira
et al., 2019b). The dataset is licensed under Cre-
ative Commons Attribution 4.0 International.

DSTC 7 Challenge (Track 1) For conversation
ranking datasets, we involve The DSTC7 challenge
(Track 1) (Yoshino et al., 2019) . DSTC 7 involves
dialogues taken from Ubuntu chat records, in which
one participant seeks technical assistance for di-
verse Ubuntu-related issues. For these datasets, an
official candidate set which includes gold is pro-
vided. For statistics for MS MARCO and DSTC 7
Challenge, see Table 6

C Training Details

Negative Sampling Most of previous studies that
train reranker (Wu et al., 2020; Xu et al., 2023)
employ a fixed set of top-k candidates from the
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Datasets Train Valid Test # of Candidates
per Query

MS MARCO 498970 6898 6837 1000
DSTC 7 100000 10000 5000 100

Table 6: Statistics of MS MARCO & Conversation
Ranking Datasets.

retriever. In contrast, our approach adopts hard neg-
ative sampling, a technique derived from studies
focused on training retrievers (Zhang and Stratos,
2021). Some negative candidates are sampled based
on the retriever’s scoring for query-candidate pair
(q, cq,j):

∀j ∈ {1, . . . ,K} \ {gold index},

c̃q,j ∼
exp(sretriever(q, c̃q,j))∑K
k=1

k ̸=gold index
exp(sretriever(q, c̃q,k))

(7)

To provide competitive and diverse negatives
for the reranker, p% of the negatives are fixed as
the top-k negatives, while the others are sampled
following the score distribution.

As detailed in Table 7, we implement a hard
negative mining strategy for training CMC and com-
parable baseline methods. Specifically, for the MS
MARCO dataset, hard negatives are defined as the
top 63 negatives derived from the CoCondenser
model, as outlined in Gao and Callan (2022). In
the case of entity linking datasets, we adhere to the
approach established by Zhang and Stratos (2021),
where hard negatives are selected from the top 1024
candidates generated by a bi-encoder. Meanwhile,
for dialogue ranking datasets, we do not employ
hard negative mining, owing to the absence of can-
didate pool within these datasets.

Sentence Encoder Initialization The initial
starting point for both the query and candidate en-
coders can significantly impact performance. The
sentence encoders for late interaction models in-
cluding CMC are initialized using either vanilla hug-
gingface BERT (Devlin et al., 2018) or other BERT-
based, fine-tuned models. These models include
those fine-tuned on the Wikipedia dataset (BLINK-
bi-encoder; Wu et al. (2020)) or MS MARCO (Co-
condenser; Gao and Callan (2022)). As the cross-
encoder is the only model without sentence en-
coder, we initialize cross-encoder using pre-trained
BERT (BLINK-cross-encoder; Wu et al. (2020)) or
vanilla BERT.

We initialize the sentence encoder for CMC and
other baselines using (1) vanilla BERT and (2) the

BLINK bi-encoder for Wikipedia entity linking
datasets, and the MS-MARCO fine-tuned Cocon-
denser for other datasets. After conducting experi-
ments with both starting points, we selected the best
result among them. If more favorable results for
baselines are found from prior works that conduct
reranking over the same candidates, we sourced the
numbers from these works.

Optimization Our model employs multi-class
cross-entropy as the loss function, regularized by
Kullback-Leibler (KL) divergence between the
reranker’s scores and the retriever’s scores. The
loss function is formulated as follows:

L(q, C̃q) = −λ1

K∑

i=1

yi log(pi)

+ λ2

K∑

i=1

pi log

(
pi
ri

) (8)

For the query q, yi represents the ground truth
label for each candidate c̃q,i, pi is the predicted
probability for candidate c̃q,i derived from the score
function sθ, ri is the probability of the same can-
didate from the retriever’s distribution, and λ1 and
λ2 are coefficients forming a convex combination
of the two losses.

Extra Skip Connection CMC is trained end-to-
end, where the self-attention layer is trained con-
currently with the query and candidate encoders.
In addition to the inherent skip connections present
in the transformer encoder, we have introduced an
extra skip connection following He et al. (2016) to
address the vanishing gradient problem commonly
encountered in deeper network layers. Specifically,
for an encoder layer consisting of self-attention
layer F(x), the output is now formulated as x +
F(x), with x being the input embedding. This
training strategy ensures a more effective gradient
flow during backpropagation, thereby improving
the training stability and performance of our model.

D Additional Results and Analysis

D.1 Reranking Latency of cross-encoders and
CMC

In Figure 4, we present the plot of runtime against
the number of candidates. For CMC, the model can
handle up to 16,384 candidates per query, which
is comparable to the speed of cross-encoders for
running 64 candidates. Running more than 128 and

22267



Entity Linking Passage Ranking Dialogue Ranking
AIDA-train ZeSHEL MS MARCO DSTC7

max. query length 32 128 32 512
max. document length 128 128 128 512
learning rate {1e-5,5e-6,2e-6} {1e-5,2e-5,5e-5} {1e-5,5e-6,2e-6} {1e-5,2e-5,5e-5}
batch size 4 4 8 8
hard negatives ratio 0.5 0.5 1 -
# of negatives 63 63 63 7
training epochs 4 5 3 10

Table 7: Hyperparameters for each dataset. We perform a grid search on learning rate and the best-performing
learning rate is indicated as bold.

Test Valid
Method R@1 R@4 R@8 R@16 R@32 R@64 R@1 R@64
Bi-encoder 52.94 64.51 71.94 81.52 84.98 87.95 55.45 92.04
BE + CMC(64) 59.22 77.69 82.45 85.46 87.28 87.95 60.27 92.04
BE + CMC(128) 59.13 77.65 82.72 85.84 88.29 89.83 60.24 93.22
BE + CMC(256) 59.13 77.6 82.86 86.21 88.96 90.93 60.13 93.63
BE + CMC(512) 59.08 77.58 82.91 86.32 89.33 91.51 60.1 93.89

Table 8: Retrieval performance by the number of candidates from the initial retriever. The numbers in parentheses
(e.g., 128 for CMC(128)) indicate the number of candidates which CMC compares, initially retrieved by the bi-encoder.
The best result is denoted in bold and the second-best result is underlined.

16,384 candidates cause memory error on GPU for
cross-encoders and CMC, respectively.

D.2 Effect of Number of Candidates on
Retrieval Performance

In Table 8, we present detailed results of retrieval
performance on varying numbers of candidates
from the initial bi-encoder. Recall@k increased
with a higher number of candidates. It indicates
that CMC enables the retrieval of gold instances that
could not be retrieved by a bi-encoder, which pre-
vents error propagation from the retriever. It is also
noteworthy that CMC, which was trained using 64
candidates, demonstrates the capacity to effectively
process and infer from a larger candidate pool (256
and 512) while giving an increase in recall@64
from 82.45 to 82.91.

D.3 Detailed Information of Entity Linking
Performance

In Table 9, we present detailed results for each
dataset in Wikipedia entity linking task. Also, in
table 10, we present detailed results for each world
in ZeSHEL test set.

Method Valid (A) Test (B) MSNBC*
WNED-
CWEB*

Average

High- Cross-encoder 82.12 80.27 85.09 68.25 77.87
Latency Cross-encoder † 87.15 83.96 86.69 69.11 80.22
Intermediate- Sum-of-max † 90.84 85.30 86.07 70.65 80.67
Latency Deformer† 90.64 84.57 82.92 66.97 78.16
Low- Bi-encoder 81.45 79.51 84.28 67.47 77.09
Latency Poly-encoder† 90.64 84.79 86.30 69.39 80.16

MixEncoder† 89.92 82.69 78.24 64.00 76.27
CMC† 91.16 85.03 87.35 70.34 80.91

Table 9: Unnormalized accuracy on Wikipedia entity
linking dataset (AIDA (Hoffart et al., 2011), MSNBC
(Cucerzan, 2007), and WNED-CWEB (Guo and Bar-
bosa, 2018)). Average means macro-averaged accuracy
for three test sets. The best result is denoted in bold and
the second best result is denoted as underlined. * is out
of domain dataset. † is our implementation.

Valid Test (By Worlds)

Method
Forgotten
Realms

Lego Star Trek Yugioh Avg.

High- Cross-encoder 67.41 80.83 67.81 64.23 50.62 65.87

Latency
Cross-encoder
(w/ CMC)

70.22 81.00 67.89 64.42 50.86 66.04

Intermediate- Sum-of-max 59.15 73.45 58.83 57.63 45.29 58.80
Latency Deformer 56.95 73.08 56.98 56.24 43.55 57.46
Low- Bi-encoder 55.45 68.42 51.29 52.66 39.42 52.95
Latency Poly-encoder 57.19 71.95 58.11 56.19 43.60 57.46

MixEncoder 58.64 73.17 56.29 56.99 43.01 57.36
CMC(Ours) 60.05 73.92 58.96 58.08 45.69 59.16

Table 10: Detailed Reranking Performance on Zero-shot
Entity Linking (ZeSHEL) valid and test set (Logeswaran
et al., 2019). Macro-averaged unnormalized accuracy is
measured for candidates from Bi-encoder (Yadav et al.,
2022).The best result is denoted in bold.
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D.4 Ranking Performance on ZeSHEL BM25
candidate sets

In many previous works (Wu et al., 2020; Xu et al.,
2023), the performance of models over BM25 can-
didates (Logeswaran et al., 2019) has been reported.
In Table 11, we present the performance of CMC to
illustrate its positioning within this research land-
scape.

Methods
Forgotten
Realms

Lego Star Trek Yugioh Macro Acc. Micro Acc.

Cross-encoder (Wu et al., 2020) 87.20 75.26 79.61 69.56 77.90 77.07
ReS (Xu et al., 2023) 88.10 78.44 81.69 75.84 81.02 80.40
ExtEnD (De Cao et al., 2020) 79.62 65.20 73.21 60.01 69.51 68.57
GENRE (De Cao et al., 2020) 55.20 42.71 55.76 34.68 47.09 47.06
Poly-encoder† 78.90 64.47 71.05 56.25 67.67 66.81
Sum-of-max† 83.20 68.17 73.14 64.00 72.12 71.15
Comparing Multiple Candidates (Ours) 83.20 70.63 75.75 64.83 73.35 72.41

Table 11: Test Normalized accuracy of CMC model over
retrieved candidates from BM25. ∗ is reported from Xu
et al. (2023). † is our implementation.

w/ bi-encoder retriever w/ BM25 retriever
Methods Valid Test Test
CMC 65.29 66.83 73.10
w/o extra skip connection 64.78 66.44 73.07
w/o regularization 64.45 66.31 72.94
w/o sampling 65.32 66.46 72.97

Table 12: Normalized Accuracy on ZeSHEL test set for
various training strategies

D.5 Ablation Study on Training Strategies

In Table 12, we evaluated the impact of different
training strategies on the CMC’s reranking perfor-
mance on the ZeSHEL test set. The removal of ex-
tra skip connections results in only a slight decrease
ranging from 0.03 to 0.39 points in normalized ac-
curacy. Also, to examine the effects of a bi-encoder
retriever, we remove regularization from the loss. It
leads to a performance drop but still shows higher
performance than sum-of-max, the most powerful
baseline in the low latency method. Lastly, we tried
to find the influence of negative sampling by using
fixed negatives instead of mixed negatives. The re-
sult shows a marginal decline in the test set, which
might be due to the limited impact of random nega-
tives in training CMC.

D.6 Reranking Performance of
Cross-encoders for Various Number of
Candidates

In Table 13, we evaluated the impact of the differ-
ent number of candidates on the cross-encoder’s
reranking performance on the ZeSHEL test set with
a candidate set from the bi-encoder retriever. Even
with a larger number of candidates, the unnormal-

# of candidates Recall@1
(Unnormalized Accuracy)

16 65.02
64 65.87
512 65.85

Table 13: Normalized Accuracy on ZeSHEL test set for
various training strategies

ized accuracy of the cross-encoder does not in-
crease. Although the number of candidates from
the bi-encoder increases from 64 to 512, recall@1
decreases by 0.01 points.
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