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Abstract
The abstract inference capability of the Lan-
guage Model plays a pivotal role in boosting
its generalization and reasoning prowess in
Natural Language Inference (NLI). Entailment
graphs are crafted precisely for this purpose, fo-
cusing on learning entailment relations among
predicates. Yet, prevailing approaches over-
look the polysemy and hierarchical nature of
concepts during entity conceptualization. This
oversight disregards how arguments might en-
tail differently across various concept levels,
thereby missing potential entailment connec-
tions. To tackle this hurdle, we introduce the
concept pyramid and propose the HiCon-EG
(Hierarchical Conceptual Entailment Graph)
framework, which organizes arguments hier-
archically, delving into entailment relations at
diverse concept levels. By learning entailment
relationships at different concept levels, the
model is guided to better understand concepts
so as to improve its abstract inference capa-
bilities. Our method enhances scalability and
efficiency in acquiring common-sense knowl-
edge through leveraging statistical language
distribution instead of manual labeling, Exper-
imental results show that entailment relations
derived from HiCon-EG significantly bolster
abstract detection tasks. Our code is available
at https://github.com/SXUCFN/HiCon-EG

1 Introduction

Cognitive research underscores abstract inference
ability as the cornerstone of human cognition, em-
powering us to extrapolate and interpolate from
past encounters, distill patterns, and adapt to
novel scenarios (Saitta and Zucker, 2013). For in-
stance, when humans comprehend "John presents
his friend a book", they invariably perceive "John"
and "his friend" as Person, "book" as an Entity, and
abstract the event as "PersonX present PersonY En-
tity". This event can be further abstracted as "Per-
sonX give PersonY Entity". In Natural Language

* Contact Authors

Figure 1: After conceptualizing events, models can infer
more information from conceptualized events. How-
ever, different levels of conceptualization may lead to
different entailment relationships. For example, when
pasta is conceptualized as f ood, we can infer that
PersonY Be. f ull.

Processing (NLP), "PersonX present PersonY En-
tity" is defined as the given premise and "PersonX
give PersonY Entity" as the inferred hypothesis,
constituting an textual entailment relationship.

In the evolution of Natural Language Inference
(NLI), numerous studies delve into abstract chal-
lenges across various domains such as common
sense reasoning (He et al., 2024, 2023; Romero
et al., 2019), question answering (Zheng et al.,
2024; Chen et al., 2022b), knowledge base explana-
tion (Mellish and Pan, 2008), argumentation min-
ing (Saadat-Yazdi et al., 2023), machine transla-
tion (Padó et al., 2009), and beyond. In this pa-
per, our goal is to enhance the capability of con-
ceptual knowledge for Pre-trained Language Mod-
els (PLMs) (Pan et al., 2023). Within this land-
scape, a pivotal effort by Wang et al. (2024c) intro-
duced the ABSPYRAMID benchmark, aiming to
comprehensively assess the abstraction prowess of
PLMs through three entailment relationship types:
nouns, verbs, and events. Despite advancements,
evaluations reveal that even state-of-the-art PLMs
struggle with abstraction, trailing behind fine-tuned
smaller models. Hence, there’s a pressing need for
further research to better mine entailment relation-
ships and bolster models’ abstraction capabilities.
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Entailment graphs, first proposed by Berant et al.
(2010), are graphs with verbs as nodes and entail-
ment relations as edges, which can be seen as sub-
property relations (in natural language form) in a
schema of knowledge graphs (Pan et al., 2017b,a).
Entailment graphs aim to globally discover textual
entailment relationships between verbs which is dif-
ferent from logical entailment (Pan and Horrocks,
2002; Pan et al., 2017a), and textual entailment has
a more relaxed definition: "t entails h" (t ⊨ h) if,
typically, a human reading t would infer that h is
most likely true (Dagan et al., 2006). Early work
explored the entailment relationships between biva-
lent verbs based on global transitivity constraints
(Hosseini et al., 2018, 2019, 2021). Subsequently,
McKenna et al. (2021) extended the Distributional
Inclusion Hypothesis (Dagan et al., 1994; Kartsak-
lis and Sadrzadeh, 2016), allowing the discovery
of entailment relationships between verbs of dif-
ferent valences. This evolution has enabled entail-
ment graphs to discover more diverse entailment
relationships (e.g., PersonX give PersonY Entity ⊨
PersonY receive Entity) beyond the entailment re-
lationships between synonyms. In these works, to
disambiguate polysemous verbs, the arguments of
verbs are usually typed (conceptualised) (Lewis
and Steedman, 2013; Chen et al., 2022a), that
is, these arguments are mapped to a limited fi-
nite number of basic types, such as Person, Lo-
cation, Time, etc. Therefore, the nodes in the
entailment graph are essentially events after ab-
straction, and the graph itself can be under-
stood as a representation of abstract relations.
These relationships include the abstract relations
between vocabulary and their abstract concepts
(present |= give) , as well as the conceptual-
ized commonsense reasoning relations between
abstract events (PersonX give PersonY Entity |=
PersonY receive Entity).

Nevertheless, the limited argument types (Ling
and Weld, 2021) used in the conceptualization of ar-
guments often compromises the precision of events,
resulting in inaccurate entailment relationships.

A single instance can be understood through
a spectrum of concepts with varying levels of
granularity (Minsky, 1980). For example, an ap-
ple can be seen as an object, food, fruit, etc.
Different granularity levels reveal distinct entail-
ment relations. In Figure 1, consider the sen-
tence "Mrs. Thompson gives her children some
pasta." If pasta is conceptualized as an entity, the
inference is "PersonY receives Entity." Viewing

pasta as food allows for richer inferences, such
as "PersonX f eeds PersonY Entity .

In this paper, we argue that entailment relation-
ships at different concept levels can supplement
richer verb entailment relationships and these re-
lationships is helpful for the model to better un-
derstand the differences between noun concepts
at different concept levels. Based on the entail-
ment relations across various levels of conceptual
granularity. we create a Hierarchical Conceptual
Entailment Graph (HiCon-EG). In particular, we
introduce a conceptual pyramid (Minsky, 1980) for
hierarchically conceptualizing arguments. This ap-
proach enables us to uncover entailment relations
under various conceptual constraints.

To mitigate the sparsity issue stemming from the
abundance of concepts, we propose a concept se-
lection method grounded in entropy principles (Liu
et al., 2022) to identify the most representative con-
cepts, thereby reducing unnecessary computations.

Our contributions can be summarized as follows:
1. We propose a novel Complex-to-Simple open
information extraction method based on large lan-
guage models (LLMs), which facilitates the extrac-
tion of multivalent arguments from lengthy texts.
To mitigate the hallucination problem associated
with LLMs, we further distill stable, smaller mod-
els. This method outperforms existing approaches
on specific datasets, demonstrating superior perfor-
mance. 2. We introduce the "conceptual pyramid"
for the hierarchical conceptualization of arguments,
enabling the mining of entailment relations under
diverse conceptual constraints. To reduce computa-
tional costs, we propose an entropy-based concept
selection method for identifying appropriate con-
cepts for arguments under different predicates. Ex-
perimental results demonstrate performance com-
parable to GPT-4, with lower error rates. 3. We
evaluate the effectiveness of our method on abstrac-
tion detection and conceptualized commonsense
reasoning tasks. Results indicate significant perfor-
mance enhancements on the abstraction detection
task, with a slight edge over the baseline on con-
ceptualized commonsense reasoning datasets.

2 Related Work

Entailment Graph. Berant et al. (2010) intro-
duced a graph-based framework centered on predi-
cates, pioneering the task of constructing a verb
entailment graph (Berant et al., 2011). Subse-
quently, several approaches grounded in global
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transitivity constraints have emerged (Hosseini
et al., 2018, 2019; Chen et al., 2022a). McKenna
et al. (2021) extended the interpretation of DIH
to support the learning of entailment relations be-
tween differently-valenced predicates, transform-
ing the entailment graph into a tool for mining
abstract reasoning relationships. McKenna et al.
(2023) proposed a smoothing theory to optimize
the entailment graph; Wu et al. (2023) leveraged
pre-trained language model to generate scalable
entailment graphs. However, the 49 basic types
(Ling and Weld, 2021) used in the argument typing
process lead to the loss of original semantics.

Recently, Wang et al. (2024c) introduced the
ABSPYRAMID benchmark (including an abstract
detection task) to evaluate models’ abstraction ca-
pabilities, revealing that abstraction remains a chal-
lenge for LLMs. Wang et al. (2024b) proposed
AbsInstruct, built instructions with in-depth expla-
nations to assist LLMs in capturing the underlying
rationale of abstraction. Zhou et al. (2024) intro-
duced the product recovery benchmark, for entail-
ment graphs in the E-commerce setting.

Conceptualized Commonsense Reasoning. The
abstracted events exhibit certain cognitive infer-
ence relations, which can be mined to enhance the
reasoning capabilities of models. In the domain
of common-sense knowledge, He et al. (2024) in-
troduced the AbstractATOMIC abstract common
sense reasoning dataset based on ATOMIC (Sap
et al., 2019). Subsequently, Wang et al. (2023,
2024a) proposed various frameworks based on con-
ceptualization and instantiation to enhance the com-
mon sense reasoning capabilities of LLMs. How-
ever, constrained by ATOMIC, such work is spe-
cific to social common sense domains.

3 Our Proposed Approach

The construction of the hierarchical entailment
graph commences with the extraction of multiva-
lent arguments for predicates from the multi-source
NewsSpike corpus (Zhang and Weld, 2013) using
our proposed C2S-OIE method. Subsequently, we
engage in a multilevel conceptualization of the ex-
tracted predicate arguments, selecting the most ap-
propriate concept for each argument governed by
different predicates. Finally, we compute the rele-
vance score between pairs of predicates to construct
the entailment graph (McKenna et al., 2021).

3.1 C2S Open Information Extraction (Step 1)

Previous research predominantly employed heuris-
tic methods like the Combinatory Categorial Gram-
mar semantic parser and Dependency parsers
(Steedman, 2001) for open information extraction.
However, these approaches struggle with Coref-
erence Resolution (Yu et al., 2021) when faced
with complex nested sentence structures commonly
found in news corpora. For instance, in the sen-
tence "Bob is the last student who left the labora-
tory", most methods incorrectly parse "who" in-
stead of "Bob" as the subject of "left," leading to
suboptimal results.

To tackle this issue, we propose a Complex-
to-Simple open information extraction (C2S-OIE)
method to effectively handle the challenges posed
by complex nested sentences. As illustrated in Fig-
ure 2-Step1, this approach involves two key steps:

Complex-to-Simple: We prompt the large lan-
guage model to generate simple expressions of
complex sentences. Specifically, we employ
LLaMa2-7B to decompose complex sentences into
multiple simple sentences using in-context learning
(Brown et al., 2020), ensuring that the arguments
in each simple sentence are as complete as possible.
The prompt we provide is as follows:

<INSTRUCTION>
<EX1-I><EX1

1-O>· · ·<EXk
1-O>

· · ·
<EXn-I><EX1

n-O>· · ·<EXk
n-O>

<Q-I>
Where <INSTRUCTION> outlines the task of

sentence simplification, <EXi-I> and <EXi-O> rep-
resent the input examples of complex sentences
and their corresponding simplified outputs, respec-
tively, and <Q-I> is the input query containing the
complex sentences. Detailed prompts are provided
in Appendix A.1. Given the substantial data vol-
ume, utilizing LLMs would significantly increase
our costs. Moreover, since the C2S task requires
LLM to generate text rather than simple discrimi-
nation, it is more susceptible to hallucinations (Ji
et al., 2023; Huang et al., 2023) (as shown in figure
3). So we distill the sentence simplification capa-
bility into a BERT model by selecting high-quality
results. The fine-tuned BERT model achieves 95%
accuracy and demonstrates greater stability than
LLaMa, making it an effective and cost-efficient
substitute for this task. The detailed process is
documented in Appendix A.2.

Semantic Role Labeling: For the extracted sim-
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Figure 2: The summary of constructing the hierarchical concept entailment graph. The figure illustrates how a
complex news corpus is processed through open information extraction to obtain arguments, conceptualised at
different granularities, and finally learn entailment relations under different granularities of concepts.

plified sentences, we further analyze their seman-
tic roles, emploing a semantic role labeling model
(Zhang et al., 2022b) to annotate the argument roles
for each verb. The argument roles in Semantic
Role Labeling are more rich and detailed (Prad-
han et al., 2012), allowing us to filter out unnec-
essary arguments such as time and location. Due
to the enhanced performance of the semantic role
labeling model with simplified sentences, our pro-
posed C2S-OIE method produces superior results
compared to Open Information Extraction methods
directly using long sentences (see Section 4.4).

3.2 Hierarchical Concept Building (Step 2)

Next, we perform hierarchical conceptualization on
the verb arguments in each simplified sentence. As
shown in Figure 2-Step2, ‘toast’ can be conceptual-
ized into two groups like [bread, f ood,entity, . . .]
and [ceremony,activity, . . .] from fine-grained to
coarse-grained levels. This process is formalized
as follows: given an argument core word w, hier-
archical conceptualization constructs hierarchical
concepts Ci = [ci1,ci2, . . . ,cim] and the set of all
meanings ρ = {C1,C2, . . . ,Cn} of w, where ci j rep-
resents the j-th level concept of meaning Ci. This
is denoted as ρ = HC(w), where HC is the hier-
archical conceptualization function and ρ i j is the

Figure 3: An example of the results of LLM simplifying
complex sentences. We find hallucinations of LLM
decomposing sentences into words or phrases leads to
incorrect simplification results.

j-th level concept of i-th meaning of argument w.
Pilot Study: Existing knowledge bases like

WordNet (Miller, 1995), Probase (Wu et al.,
2012) and ConceptNet (Liu and Singh, 2004) con-
tain extensive knowledge of lexical conceptualiza-
tion, covering the meanings of general vocabu-
lary. However, our pilot study reveals their lim-
itations: Probase, constructed using data-driven
methods, suffers from cyclic errors, with approx-
imately 97% of erroneous relationships forming
cycles (Liu et al., 2022) (e.g., the correct relation
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isA(Paris, existing city) versus the incorrect rela-
tion isA(existing city, Paris) forming a cycle). In
contrast, the hierarchical relationships in WordNet
are manually constructed by language experts, en-
suring higher quality. Nonetheless, WordNet’s lim-
ited scale results in lower noun coverage (Wang
et al., 2024c), particularly affecting: 1. Noun
phrases, such as "fresh apple" and "lots of apples";
2. Proper nouns, such as "COVID-19".

Core-word based Conceptualization:
Given the limited coverage of nouns in WordNet,

which hinders effective querying for hierarchical
conceptualization, we propose the following strate-
gies to address this issue:

1. For certain personal pronouns (e.g., you, I,
he), we assign them to the special type "Person".

2. To address the issue of phrases that cannot
be directly conceptualized, as depicted in Figure
2-Step2, we retrieve the core words of the phrase
using syntactic dependency (Manning et al., 2014)
and treat them as the entire phrase (e.g. house from
at his grandmother’s house). Please refer to the
appendix in Section A.3 for more details.

3. During conceptualization process, we con-
sider all possible concepts for polysemous words
in arguments. For instance, "toast" may represent
concepts such as bread, food, or the act of toasting.

4. For core words not found in WordNet, we
conceptualize them at the first level using Wikidata,
offering extensive noun coverage. Subsequently,
we obtain hierarchical concepts using WordNet.

3.3 Entropy-based Concept Selection (Step 3)
After hierarchical conceptualization, we generate
many abstract concepts for each argument. Some
may be incorrect, such as (eat, toast) → activity,
while others may be too broad or too specific, like
(eat, toast) → entity or (eat, toast) → bread. This
increases computational load and can lead to incor-
rect entailments. Thus, as shown in Figure 2-Step3,
selecting a semantically accurate concept with ap-
propriate granularity for each verb is crucial.

We define this task as follows: Given the set of
all conceptualizations Q = {ρ1,ρ2, . . . ,ρl} of the
core word set W = {w1,w2, . . . ,wl} for the role
r of the verb v, our objective is to select the most
suitable concept for each w. In other words, we aim
to obtain a sequence of concepts ϑ = {t1, t2, . . . , tl},
where ti ∈ ρi represents the selected concept for the
core word wi. However, attaining the appropriate
concept presents challenges that must be addressed:

1. How to discern the various semantic meanings

of a polysemous verb based on the distinctions
among argument concepts.

2. How to choose the correct semantic mean-
ing for the arguments of a polysemous core word.
For instance, "apple" can denote both a fruit and
a company, but when paired with the verb "eat,"
consuming a company is clearly absurd.

3. How to ensure the selected concept can gener-
alize across many core words in a series of similar
instances, thereby enhancing generalization ability.

4. In practice, some argument concepts, such
as "things" and "food" (as shown in 2-Step3), are
already sufficiently abstract and may not require
further conceptualization.

In addressing Challenge 1, Zhang et al. (2022a)
suggests that, backed by extensive data, the
frequency of correct and cognitively consistent
(verb,concept) pairs is significantly higher than
that of incorrect combinations. Following this
insight, when selecting concepts, we prioritize
higher-frequency concepts to ensure consistency
across selected concepts. Thus, when encounter-
ing pairs like (eat,apple), we can confidently infer
that the type of apple should be categorized as
"food" rather than a "company," given that pairs
like (eat,banana) and (eat,bread) are more preva-
lent in the corpus compared to (eat,company).

Hence, entropy serves as a measure of uniformity
for evaluating concept selection outcomes (Cover,
1999). Here, we define the objective function as:

L(ϑ) = H(χ|v,W ) =− ∑
τi∈S

P(τi) logP(τi)

Here, χ represents a discrete random variable con-
forming to the distribution of elements in the se-
quence ϑ . S denotes the value space of the se-
quence ϑ , and p(τi) = n(τi)/n, where τi ∈ S, is the
probability of the type τi in the sequence ϑ .

Meanwhile, we ensure the generalizability of
the selected concept by optimizing our goal to
cover as many instances as possible. However,
this can result in overly abstract concepts, as ex-
tremely coarse-grained concepts like "entity" can
encompass most argument words.

To address this issue, as depicted in Figure 2-
Step3, we introduce a Hierarchical-Depth regular-
ization term to constrain the model’s selection. We
define the hierarchical depth of ti as follows:

ds(ti) =
idx(ti,C)

len(C)
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Algorithm 1 GA for ECS
Input: Verb v , semantic types set Ti for each
argument words wi ∈W specific to role a, the pop-
ulation size S, the number of iterations Gmax

Output: The optimal type sequence ϑo.
1: while current population size pcur < S do
2: for each wi ∈W do
3: randomly select ti from Ti;
4: end for
5: set the initial solutions as ϑ = {t1, . . . , tn}
6: end while
7: while current generation G < Gmax do
8: Calculate fitness L(ϑ) of each individual;
9: Retain several individual with higher fitness;

10: Reproduce to generate new individuals;
11: Integrate the population to S;
12: G = G+1;
13: end while
14: Set ϑo as the individual with the highest fitness

level;
15: return ϑo

where idx(ti,C) represents the depth of ti in its
concept hierarchy C (i.e., the index of ti in C), and
len(C) denotes the length of concept hierarchy C.

Next, the hierarchical depth score as a regulariza-
tion term is integrated into the objective function:

L(ϑ) = H(χ|v,W )+∥ds(t)∥2

This regularization term effectively constrains
the model, encouraging the selection of finer-
grained concepts. Finer-grained concepts are
more adept at distinguishing arguments with var-
ied meanings, particularly when the target verb is
polysemous. Moreover, these refined concepts en-
hance the accuracy of our search for entailment
relationships. However, as the number of argu-
ments n increases, the regularization term grows
exponentially (the proof process is documented in
the appendix, see Section A.4), leading to an im-
balance among the terms of L. To address this, we
add a coefficient to the regularization term and in-
troduce a hyperparameter λ between the two terms.
This allows us to balance the two objectives and
control the granularity of concept selection.

Finally, we employ the genetic algorithm (Algo-
rithm 1) as a heuristic to find the optimal solution.

L(ϑ) = λH(χ|v,W )+(1−λ )
1√
n
∥ds(t)∥2

3.4 Learning Entailment Graphs (Step 4)

For an event in the corpus, we denote it as
Eu = (v,Au), where v represents the predicate in
the event, and Au = {(r1,w1), ...,(rn,wn)} repre-
sents all the arguments of event Eu, with wi be-
ing the argument word with the role ri in Eu.
Additionally, we define: 1. Eh = (v,Ah),Ah =
{(r1,ρ1), ...,(rn,ρn)}, where ρ1 = HC(wi) denotes
the hierarchical conceptualization result of the core
word wi. 2. Ec = (v,Ac),Ac = {(r1, t1), ...,(rn, tn)},
where ti represents the type determined after hierar-
chical concept selection for the core word wi. We
limit each verb to a maximum of three arguments.

Given a set of conceptualized argument con-
straints Ac, we filter the event set E from the corpus,
where Eu ∈ E must meet the following criteria:

1. The number of roles in the event Eu should
be less than or equal to the number of roles in the
constraint Ac.

2. For each role ri and its argument wi of the
event Eu, we require that ti ∈ ρi, where ti repre-
sents the type of the role corresponding to the given
constraint Ac, and ρi denotes the hierarchical con-
ceptualization result of the argument wi.

Subsequently, we adopt (McKenna et al., 2021;
Hosseini et al., 2018) to construct an entailment
graph, with typed predicates A as nodes and en-
tailment relationships as edges based on the multi-
valued distribution containment hypothesis. To
maintain data integrity, we only mark the edges
with a BInc score (Weeds and Weir, 2003) exceed-
ing 0.9 as entailment relationships.

Moreover, according to criteria 2, due to the
existence of hierarchical conceptualization, an
event Eu in the corpus may simultaneously sat-
isfy the conditions of multiple argument type con-
straints. As shown in Figure 2-Step4, in the event
GrandmothergiveLeotoast., the term toast has en-
tailment relationships across different hierarchical
conceptualizations. We connect these relationships
to construct noun entailment connections. (Wang
et al., 2024c).

4 Experiment

Due to lack of Entailment graph datasets pertinent
to problem, we construct data that conforms to
hierarchical concept entailment based on existing
datasets (Section 4.1) and verify the effectiveness
of our method in Section 4.3. Furthermore, to as-
sess the efficacy of our open information extrac-
tion and hierarchical concept selection, we conduct
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Methods Backbone
Noun Verb ABS-HC

Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

NLI + Zero

BART-large-mnli 71.24 68.13 75.67 56.25 47.17 62.33 65.68 72.17 72.52
RoBERTa-large-mnli 68.66 63.18 75.42 55.73 45.54 61.27 64.62 72.30 72.68
DeBERTa-base-mnli 68.77 65.81 72.79 56.42 48.08 61.55 64.96 71.00 69.98
DeBERTa-large-mnli 73.18 71.08 78.12 56.93 49.28 63.16 68.38 73.42 73.09

NLI + FT

BART-large-mnli 85.75 85.12 90.80 64.96 64.96 68.60 79.52 80.52 87.15
RoBERTa-large-mnli 86.15 85.34 90.87 64.61 64.26 69.46 79.13 80.46 86.96
DeBERTa-base-mnli 85.59 84.61 90.43 65.50 65.47 69.87 77.10 78.89 85.73
DeBERTa-large-mnli 86.62 85.83 91.00 66.04 65.96 70.51 79.83 80.80 87.51

PLM + FT

RoBERTa-base 84.23 83.25 89.58 63.55 63.53 68.12 79.13 80.19 86.69
RoBERTa-large 85.27 84.44 90.59 64.98 64.98 69.23 79.65 80.82 87.34
DeBERTa-base 84.09 83.03 89.74 63.50 63.45 68.03 78.85 79.95 86.78
DeBERTa-large 86.89 86.11 90.98 65.54 65.52 69.11 80.32 81.17 87.76

LLM+LoRA

Falcon (7B) 87.06 86.36 91.42 63.92 63.79 68.06 77.50 79.04 85.94
Falcon-Ins (7B) 86.04 85.43 91.10 64.00 63.96 68.53 76.64 78.41 85.27
Llama2 (7B) 87.56 86.82 91.52 65.07 64.79 69.27 79.20 80.52 87.28
Llama2-Chat (7B) 86.71 86.17 91.79 64.96 64.54 68.95 79.41 80.78 87.51
Llama3-Ins (8B) 87.34 89.91 91.47 64.51 64.61 69.11 78.23 79.81 86.82

LLM API

ChatGPT 74.00 72.27 - 56.30 55.71 - 68.13 68.32 -
ChatGPT (CoT) 62.90 62.88 - 56.20 53.89 - 60.11 61.29 -
ChatGPT (10-shot ICL) 76.10 74.60 - 58.60 58.51 - 70.46 70.39 -
GPT-4 80.50 78.70 - 56.30 53.84 - 65.30 70.21 -
GPT-4o 78.10 83.32 - 58.00 66.56 - 66.40 72.94 -

HiCon-EG

DeBERTa-large-mnli 87.46 89.55 91.37 66.73 67.22 70.90 81.52 82.87 89.35
DeBERTa-base 87.30 89.77 91.56 65.36 67.90 69.40 81.60 82.70 89.62
DeBERTa-large 87.60 89.98 91.60 65.77 66.76 70.13 81.88 82.79 89.59

Table 1: Main results on ABSPYRAMID dataset. We evaluate the model performance across noun, verb, and HC
datasets of ABSPYRAMID using Acc, Ma-F1, and AUC. Bold highlights the best performance, while underlining
indicates the second-best.

Type # Total # Train # Valid # Test
Noun 100783 81,034 9,874 9,875
Verb 61542 49,669 5,939 5,934
ABS-HC 157948 94,753 31,584 31,611

Table 2: Some statistical results of the ABSPYRAMID,
where Noun entailment and Verb entailment are consis-
tent with the original dataset, and ABS-HC dataset is
the dataset we re-divided.

verification experiments in Sections 4.4 and 4.5,
respectively.

4.1 Dataset Construction

First, we develop a dataset to validate HiCon-EG.
ABSPYRAMID (Wang et al., 2024c) consolidates
a comprehensive entailment graph dataset compris-
ing fundamental events from ASER (Zhang et al.,
2022a) and abstract concepts curated with guid-

ance from WordNet (Miller, 1995) and ChatGPT.
We extract verb and noun entailment data from
this dataset, filtering out entries with inconsistent
entailment relationships across different concep-
tualization levels (Appendix B.1). Subsequently,
we partition the ABSPYRAMID dataset, denoting
the resulting subsets as ABSPYRAMID-HC (ABS-
HC). Table 2 illustrates the statistical breakdown
of this partition.

4.2 Baselines

We fine-tunes some models with HiCon-EG and
then compare the results with the following base-
lines: 1.NLI model + Zero Shot, 2.NLI model + FT,
3.PLM + FT, 4.LLM + LoRA, 5.LLM API. Consid-
ering these methods are fine-tuned on the complete
ABSPYRAMID dataset, we do not compare the
sampling instruction-tuning method of AbsInstruct
as a baseline.
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Overall, we follow the experimental details in
ABSPYRAMID, hyperparameters in fine-tuning
and LoRA, prompts in LLMs. to ensure consis-
tency with our Baseline.

4.3 Abstraction Detection task
We establish an Abstraction Detection task, where
the model discerns whether an Abstraction relation-
ship exists between given premise A1 and hypoth-
esis A2. Model performance is assessed based on
three evaluation metrics: accuracy, F1 score, and
AUC value.

Main Results: We conduct experiments on
the three entailment relationship datasets of AB-
SPYRAMID (Noun, Verb, ABS-HC), with results
presented in Table 1.

We observed that HiCon-EG enhances the PLMs’
overall abstraction capabilities to a certain extent.
This is attributable to the following two aspects:
HiCon-EG ,on one hand, can effectively mine
richer verb entailment relationships with different
abstract levels of noun concepts, thereby improv-
ing the model’s verb abstraction capabilities; on
the other hand, the rich entailment relationships
between verbs can be conducive to the model fully
mining hierarchical noun concepts, thus upgrad-
ing the model’s noun abstraction capabilities. The
mutual promotion of the two types of relationships
in HiCon-EG is well illustrated by the model’s
notably improved performance on the ABS-HC
dataset.

Even on the ABSPYRAMID-Noun dataset,
where existing models have shown strong perfor-
mance, HiCon-EG still demonstrates notable im-
provements, particularly in F1 scores. We attribute
this enhancement to our dataset’s ability to effec-
tively address sample imbalances and aid the model
in identifying incorrect entailment relationships.

NLI models Ability:Moreover, NLI demon-
strates a certain zero-shot capability on the ABS-
HC dataset, with DeBERTa-large-mnli achieving
an F1 score of 73.42 (He et al., 2021). This sug-
gests that NLI, due to its pre-training task similar-
ity, has acquired knowledge, particularly regarding
noun entailment, pertinent to our task. However,
we also note that fine-tuning the NLI model on our
dataset yields performance comparable to PLM+FT.
This indicates the distinctiveness and necessity of
our task relative to NLI.

LLM models Ability: We fine-tuned LLMs
with LoRA (Hu et al., 2022) to assess their perfor-
mance on the ABS-HC dataset, including LLaMA

Models LSOIE-wiki LSOIE-sci
BERT 47.5 57
BERT+Dep-GCN 48.7 58.1
SMiLe-OIE 51.7 60.5
Chunk-OIE 52.8 61.5
CRF 52.57 58.49
+C2S 53.92 59.86

Table 3: The performance of our C2S method on the
LSOIE-wiki and LSOIE-sci datasets. We evaluate the
performance of all models using the F1 value. Our
method outperforms current state-of-the-art (SOTA)
models on the LSOIE-wiki dataset, particularly notable
for its longer average sentence length.

(a) The proportion of differ-
ent granularity concepts in
the concept selection results

(b) The proportion of mod-
erate granularity concepts in
the concept selection results
as the parameter λ changes

Figure 4: the human evaluation results of hierarchical
concept selection

(Touvron et al., 2023), Falcon (Penedo et al., 2023),
etc. While LLMs generally exhibit strong perfor-
mance, they do not surpass the HiCon-EG method.
This might stem from the fact that LLMs does not
specifically learn diverse entailment relationships
under different hierarchical concepts during the
pre-training phase. Similarly, we supplemented the
performance of ChatGPT on the ABS-HC dataset
and obtained similar conclusions.

4.4 Open Information Extraction (OIE)

To validate the efficacy of the OIE method pro-
posed in this paper, we conducted experiments on
the LSOIE datasets (Solawetz and Larson, 2021),
with results presented in Table 3. Compared to
existing methods (Dong et al., 2023, 2022), our
approach yielded superior performance in the open
information extraction task. Particularly on the
LSOIE-wiki dataset, characterized by longer aver-
age sentence length, our method outperforms cur-
rent SOTA models. Simultaneously, we performed
ablation studies on the C2S process, revealing its
significant contribution to the OIE task.
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senses depth total
original (WordNet) 9.14 5.56 23.4
selected(HiCon-EG) 1.72 1.98 3.56

Table 4: Comparison of the average values before and
after concept selection. Sense represents the number
of senses of polysemous nouns, depth indicates the
average depth of concepts of all senses, and total shows
the average number of concepts.

4.5 Hierarchical Concept Selection
Assessing the effectiveness of the Entropy-based
Concept Selection method is pivotal to our research.
In this section, we define the task of evaluating the
semantic granularity of concepts as follows:

Annotators are tasked with assessing the correct-
ness and semantic granularity of a conceptualiza-
tion result C for a given triple (Verb, argument,
concept), consisting of a verb V , an argument W ,
and C. Evaluation labels encompass: correct, too
abstract, too specific, and moderate.

We enlisted three master’s students as annotators
and randomly sampled 500 conceptualization re-
sults from our dataset. Detailed numerical informa-
tion regarding the evaluation results is documented
in Appendix B.2. To ensure annotation accuracy,
we assessed inter-annotator consistency, yielding a
Fleiss’ Kappa result of 0.80.

The results depicted in Figure 4(b) demonstrate
the efficacy of the parameter λ in regulating se-
mantic granularity. At a value of 0.2, our method
achieves a moderate granularity selection rate com-
parable to GPT-4, while maintaining lower cost and
higher efficiency compared to LLM.

In addition, we evaluated the filtering effect of
the Entropy-based Concept Selection method on
WordNet which has a large number of hierarchi-
cal concepts, considering that concept selection
can effectively reduce the complexity of our sub-
sequent calculations.We compared the number of
synsets, the average depth of hierarchical concepts,
and the average number of concepts before and
after concept selection. As shown in Table 4, the
Entropy-based Concept Selection method greatly
reduce the number of concepts, and this enables
our efficient calculations even with a large number
of concepts.

4.6 Commonsense Reasoning
Since HiCon-EG constructs entailment relation-
ships through Distributional Inclusion Hypoth-
esis, it can not only discover abstract rela-

Models
Validation Testing

AUC ACC AUC ACC
RoBERTa-large 75.3 81.77 76.9 82.69
DeBERTa-large 76.9 82.18 78 82.96
CAT 78.7 82.88 80 83.52
CANDLE - 83.64 - 84.64
VERA-T5+FT - 80.13 - 81.25
LLAMA2+LoRA - 79.89 - 82.15
HiCon-EG 78.95 83.94 80.15 84.53

Table 5: The performance of HiCon-EG on the Abstrac-
tATOMIC dataset: Comparative Analysis with State-of-
the-Art Models. We assessed all models’ performance
using AUC and ACC metrics.

tionships between concepts at different levels,
such as PersonX present PersonY Entity ⊨ Per-
sonX give PersonY Entity, but also explore re-
lations that are akin to commonsense knowl-
edge, such as PersonX give PersonY Entity ⊨
PersonY receive Entity. To evaluate the impact of
HiCon-EG on conceptualized commonsense rea-
soning tasks, we conduct experiments using the Ab-
stractATOMIC dataset (He et al., 2024) and CAT
as baseline (Wang et al., 2023) . Comparisons
with SOTA models using AUC and ACC metrics
show that HiCon-EG slightly outperforms existing
methods, as indicated in Table 5. More details was
shown in appendix B.3

5 Conclusion

In this paper, we propose a method for constructing
a Hierarchical Conceptual Entailment Graph. This
approach aids the model in identifying entailment
relationships across diverse hierarchical concepts,
thereby enhancing the abstract reasoning capabil-
ities of existing models. We validate the value of
our method across Conceptualized Commonsense
Reasoning and abstraction detection tasks, demon-
strating the effectiveness of both the Complex-to-
Simple Open Information Extraction (C2S OIE)
method and the Entropy-based concept selection
method proposed in this paper. The experimental
results show that the entailment relationships under
different levels of concepts in HiCon-EG can effec-
tively help language models improve their under-
standing of concepts, thereby enhancing language
models’ performance on commonsense reasoning
tasks.
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Limitations

The method of this paper is based on open infor-
mation extraction of the corpus, and constructs a
hierarchical concept entailment graph through hi-
erarchical conceptualization and multi-valued dis-
tribution containment hypothesis. However, com-
pared with knowledge bases such as ASER, the
entailment graph we constructed has a single rela-
tion, and more abundant relations can be added in
the future.

Our method has achieved good results in en-
tailment reasoning and abstract commonsense rea-
soning. However, such data are all abstract-level
datasets. In the future, we will try to use this
method to verify on more instance-level datasets to
examine whether abstract reasoning ability can be
extended to factual reasoning tasks, or to enhance
the model’s abstract reasoning ability through fac-
tual reasoning.

In addition, although our method effectively
improves the model’s abstract reasoning ability,
our method is still an unsupervised construction
method based on the corpus, and the entailment re-
lationships generated in this way cannot guarantee
their accuracy. In the future, we hope to introduce
more supervised information and evaluation meth-
ods to ensure the accuracy of the extracted abstract
reasoning relationships.
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A Hierarchical Concept Entailment
Graph Details

A.1 Prompts for C2S
The input of our C2S process is a complex sentence,
and we require the model to decompose it into
multiple simple sentences. In the prompts, the
prompt we give is shown in Table 6.

Task Instruction: Given a long sentence, parse
all events in it and generate corresponding sim-
ple sentences. Here are some examples
Example Input: With time winding down , Avs
defenseman Greg Zanon tried to clear the puck
from behind his net , but it hit a referee ’s stake
in the corner and bounced to Kyle Chipchura .
Example Output: 1. Time was winding down.
2. Greg Zanon tried to clear the puck from be-
hind his net 3. the puck hit a referee’s stake in the
corner. 4. the puck bounced to Kyle Chipchura
More Examples: ...
Query Input: Now, extract the events in the
following sentences according to the format of
the above example: [Sentence]

Table 6: The C2S process prompt. The placeholder
[Sentence] will be replaced with real sentence.

A.2 Distillation process
In order to reduce the computational cost and ob-
tain more stable results, we distilled the ability of
generate simple sentences from Llama2 into Bert.
First, we filtered the data generated by it according
to the following strategy:

1. The length of the generated clause must be
greater than 5, so that short phrases generated by
large models can be effectively filtered out.

2. The generated sentence must contain a verb.
3. Each word in the generated sentence must

appear in the original sentence.
4. In the generated sentence, the verb must have

at least one argument.
After filtering out higher-quality clauses, we de-

note the clause as Sc and the original sentence as
So, and we construct the dataset according to the
following steps:

1. We follow the method of A.3 to retrieve the
core verb in the clause, denoted as v.

2. For each word in the clause, we retrieve its
position in the original sentence and mark it as 1.
If a word appears multiple times, we choose the
one closest to the verb v in the original sentence.

Figure 5: An example of the sentence simplification
dataset we constructed, where the model is required to
mark the arguments related to the verb in the sentence
as 1 and other words as 0.

Figure 6: Some examples of the ABSPYRAMID
dataset, where the model is required to determine
whether the given Premise can infer the Hypothesis.

3. For other words in the original sentence, we
mark them as 0.

We then designed a Sequence Labeling task (Fig-
ure 5). For a given sentence So and the verb v in
the sentence, the model needs to mark each argu-
ment related to the verb as 1 and other words as 0.
Specifically, we used the BERT model to complete
this task. In the final application, we first obtained
the verb in the original sentence So through part-
of-speech tagging, and then simplified the sentence
through the trained model.

A.3 Core words retrieved process
In this section, we introduce how to obtain linguis-
tic fragments in the sentence, as shown in Step 2
of Figure 2. We obtain the dependency relation-
ship in the argument through syntactic dependency
analysis. Then, for each word wi in an argument
a = {w1, · · · ,wn}, we query its parent node wp and
find wt that satisfies wp /∈ a. At this time, if wt is
not a preposition, we denote wt as the core word.
Otherwise, we query the child node wc of wt and
mark it as the core word.

A.4 The proof process of the exponential
growth of the regularization term

In this section, we prove the exponential growth
property of the regularization term in our hierarchi-
cal concept selection.

Remark 1. The regularization term ∥⃗a∥2 =
O(

√
n), where n is the number of concepts. a⃗ is
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Model Type PLM/Method
Validation Testing

AUC ACC AUC ACC

Pre-trained
Langauge
Models

RoBERTa-large 340M 75.30 81.77 76.90 82.69
DeBERTa-v3-large 435M 76.90 82.18 78.00 82.96
GPT2-XL 1.5B 62.20 47.65 61.50 47.21
PseudoReasoner (BERT-base) 73.00 79.69 74.10 80.27
PseudoReasoner(RoBERTa-large) 76.30 79.89 77.20 80.07
CAT (RoBERTa-large)340M 78.20 82.27 79.40 83.02
CAT (DeBERTa-v3-large) 435M 78.70 82.88 80.00 83.52
CANDLE Distilled (RoBERTa-large) - 83.11 - 84.50
CANDLE Distilled (DeBERTa-v3-large) - 83.64 - 84.64

Large
Langauge
Models

ChatGPT (openai/gpt-3.5-turbo) - 70.27 - 72.08
LLAMA2 7B - 74.67 - 76.80
LLAMA2 13B - 80.67 - 82.08
Mistral-v0.1 7B - 65.09 - 69.80
LLAMA2 (LoRA Fine-tuned) 7B - 79.89 - 82.15
Mistral-v0.1 (LoRA Fine-tuned) 7B - 79.59 - 80.35
VERA-T5 5B - 72.60 - 76.85
VERA-T5 (Fine-tuned) 5B - 80.13 - 81.25

Our HiCon-EG
RoBERTa-large 340M 78.32 82.96 79.11 83.79
DeBERTa-v3-large 435M 78.95 83.94 80.15 84.53

Table 7: The performance of our HiCon-EG on the AbstractATOMIC dataset. We compared it with existing methods
and mainstream LLMS. We evaluated the performance of all models using AUC and ACC. Our method achieved
the best results on most indicators.

the vector of the concept hierarchical depth score
vector and ai ∈ (0,1].

Proof. Set ε ∈ (0,1] as the minimum value of ai,
then we have:

∥⃗a∥2 =

√
n

∑
i=1

a2
i ⩾

√
n

∑
i=1

ε2 =
√

nε2 = ε
√

n=O(
√

n)

(1)
similarly, we have:

∥⃗a∥2 =

√
n

∑
i=1

a2
i ⩽

√
n

∑
i=1

12 =
√

n = O(
√

n) (2)

Therefore, by the squeeze theorem, the regulariza-
tion term ∥⃗a∥2 = O(

√
n).

B Experiment Details

B.1 Dataset Construction

We selected data with different entailment relation-
ships under different hierarchical concepts. The
specific screening rules are as follows:

We first selected event pairs (e1,e2) with dif-
ferent hierarchical concepts from the noun entail-
ment dataset. Then, we queried the verb entailment

Coarse-G Medium-G Fine-G Error

GPT-4 0.03 0.71 0.10 0.15
LLaMA 0.08 0.66 0.07 0.19
λ=0.3 0.83 0.04 0.02 0.11
λ=0.25 0.30 0.53 0.04 0.13
λ=0.2 0.10 0.70 0.06 0.14
λ=0.15 0.08 0.48 0.31 0.14
λ=0.1 0.02 0.40 0.41 0.17

Table 8: The proportion of concepts of different
granularity in the model annotation results under
different models/parameters, where Coarse-G repre-
sents coarse-grained concepts, Medium-G represents
medium-grained concepts, Fine-G represents fine-
grained concepts, and Error represents the proportion of
incorrect annotations.

relationship sets E1 and E2 of e1 and e2 respec-
tively. We selected the difference set of the two sets
R = (A\B)∩ (B\A) = {x | x ∈ A and x /∈ B∨ x ∈
B and x /∈ A}. Finally, we divided the selected data
into the ABSPYRAMID-HC test set. The examples
of the data are shown in Figure 6.
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B.2 Hierarchical Concept Selection

To verify the effectiveness of our hierarchical con-
cept selection method, we hired three master’s stu-
dents as annotators. We asked them to evaluate the
correctness and semantic granularity of each con-
ceptualized result. Specifically, the annotators need
to determine whether each conceptualized result
is (Coarse-grained, Medium-grained, Fine-grained,
error). We calculated the proportion of each label,
and the results are shown in Table 8.

Through the results, we observed that as the pa-
rameter λ increases, the proportion of fine-grained
concepts gradually decreases, and the proportion of
coarse-grained concepts gradually increases. When
λ = 0.8, the proportion of moderate granularity
concepts is the largest, which indicates that our
method is effective in controlling the semantic gran-
ularity.

We also tested the effect of LLMs on the concept
selection task. Specifically, we selected LLAMA2
7B and GPT-4 for comparison. The results show
that GPT-4 achieved better results in selecting mod-
erate granularity concepts, but the error rate of
LLMs is relatively high.

B.3 Commonsense Reasoning

In this task, we use the AbstractATOMIC (He et al.,
2024) dataset which is a conceptualized common-
sense reasoning dataset built on ATOMIC. We se-
lected the conceptualized data of abstract knowl-
edge triplets in the dataset (as shown in Table 10).
In this data, each head event [Head] is obtained
through instance recognition and conceptualization
of the original event [Sent] in ATOMIC, and the
manual annotation process ensures the reliability
of the data.

We conducted experiments on the Abstrac-
tATOMIC dataset and compared it with existing
work. Since HiCon-EG is a graph of reasoning
relationships between events, we only conducted
experiments on the "Triple Conceptualization" part
of the AbstractATOMIC dataset. The results are
shown in Table 5. HiCon-EG achieved better re-
sults on all indicators, slightly surpassing the exist-
ing methods overall.

We believe that this reflects that HiCon-EG also
contains information about commonsense reason-
ing in the construction process, rather than simply
the relationship between the granularity of syn-
onyms.

Accuracy AUC Macro F1
bert-base-cased 85.68 87.91 66.15
bert-large-cased 86.68 88.92 70.11
roberta-base 84.09 87.08 60.63
roberta-large 87.43 89.94 71.05
deberta-v3-base 85.72 89.95 67.43
deberta-v3-large 89.30 93.14 75.03

Table 9: The results of HiCon-EG on the Levy/Holt
dataset. We compared different pre-trained models. We
evaluated the performance of all models using Accuracy,
AUC, and Macro F1.

Sent PersonX wins [the costume contest]
Head PersonX wins [event]

relation tail Label
oReact upset 1
oWant congratulate them 0
xEffect personx takes home the prize 1
xIntent to impress others 1

Table 10: An example in the AbstractATOMIC dataset,
where we show the original sentence [Sent] in ATOMIC,
its conceptualization result as the head node [Head], the
relationship [Relation], the tail node [Tail], and the
label [Label].

B.4 Entailment discrimination task
To verify the effectiveness of our method in the tra-
ditional entailment graph construction task, we fol-
lowed the method of Wang et al. (2024c) and fine-
tuned the model using the enhanced data of HiCon-
EG. We conducted experiments on the Levy/Holt
dataset (Gururangan et al., 2018; Holt, 2019) to
verify the results. The results are shown in Table 9.
Our method achieved good results on the Levy/Holt
dataset.
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Methods Backbone
Noun Verb Merged DataSet

Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

NLI + Zero

BART-large-mnli 71.24 68.13 75.67 56.25 47.17 62.33 65.68 72.17 72.52
RoBERTa-large-mnli 68.66 63.18 75.42 55.73 45.54 61.27 64.62 72.30 72.68
DeBERTa-base-mnli 68.77 65.81 72.79 56.42 48.08 61.55 64.96 71.00 69.98
DeBERTa-large-mnli 73.18 71.08 78.12 56.93 49.28 63.16 68.38 73.42 73.09

NLI + FT

BART-large-mnli 85.75 85.12 90.80 64.96 64.96 68.60 79.52 80.52 87.15
+HiCon-EG 87.04 89.47 91.27 65.99 68.33 69.75 80.43 80.91 88.76
RoBERTa-large-mnli 86.15 85.34 90.87 64.61 64.26 69.46 79.13 80.46 86.96
+HiCon-EG 87.14 89.66 91.14 65.52 67.13 69.80 80.81 81.67 88.83
DeBERTa-base-mnli 85.59 84.61 90.43 65.50 65.47 69.87 77.10 78.89 85.73
+HiCon-EG 85.45 88.32 90.41 66.15 67.07 70.06 80.61 81.39 88.56
DeBERTa-large-mnli 86.62 85.83 91.00 66.04 65.96 70.51 79.83 80.8 87.51
+HiCon-EG 87.46 89.55 91.37 66.73 67.22 70.90 81.52 82.87 89.35

PLM + FT

BERT-base 85.09 84.14 89.94 64.26 64.20 68.06 76.73 78.58 85.39
+HiCon-EG 85.78 87.72 90.02 64.13 62.83 68.53 79.52 80.66 87.81
BERT-large 85.94 85.12 90.37 63.58 63.58 68.03 77.28 79.29 86.06
+HiCon-EG 86.77 88.42 90.73 64.89 66.54 69.73 80.67 81.56 88.67
RoBERTa-base 84.23 83.25 89.58 63.55 63.53 68.12 79.13 80.19 86.69
+HiCon-EG 84.07 86.97 89.54 64.09 65.83 68.34 80.96 81.71 88.90
RoBERTa-large 85.27 84.44 90.59 64.98 64.98 69.23 79.65 80.82 87.34
+HiCon-EG 86.52 89.06 90.82 65.17 65.62 69.53 81.36 82.46 89.19
DeBERTa-base 84.09 83.03 89.74 63.50 63.45 68.03 78.85 79.95 86.78
+HiCon-EG 87.30 89.77 91.56 65.36 67.90 69.40 81.60 82.70 89.62
DeBERTa-large 86.89 86.11 90.98 65.54 65.52 69.11 80.32 81.17 87.76
+HiCon-EG 87.60 89.98 91.60 65.77 66.76 70.13 81.88 82.79 89.59

Table 11: The complete experimental results of HiCon-EG on the ABSPYRAMID dataset.
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