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Abstract

Large language models (LLMs) have achieved
remarkable performance on a variety of natural
language understanding tasks. However, exist-
ing benchmarks are inadequate in measuring
the complex logical reasoning capabilities of a
model. We present FOLIO, a human-annotated,
logically complex and diverse dataset for rea-
soning in natural language (NL), equipped with
first-order logic (FOL) annotations. FOLIO
consists of 1,430 examples (unique conclu-
sions), each paired with one of 487 sets of
premises used to deductively reason for the
validity of each conclusion. The logical correct-
ness of the premises and conclusions is ensured
by their FOL annotations, which are automati-
cally verified by an FOL inference engine. In
addition to the main NL reasoning task, NL-
FOL pairs in FOLIO constitute a new NL-FOL
translation dataset. Our experiments on FOLIO
systematically evaluate the FOL reasoning abil-
ity of supervised fine-tuning on medium-sized
language models. For both NL reasoning and
NL-FOL translation, we benchmark multiple
state-of-the-art language models. Our results
show that a subset of FOLIO presents a chal-
lenge for one of the most capable Large Lan-
guage Model (LLM) publicly available, GPT-4.

1 Introduction

Large language models (LLMs) have achieved re-
markable performance on a variety of natural lan-
guage tasks (OpenAI et al., 2023; Touvron et al.,
2023; Srivastava et al., 2023; Wang et al., 2019a).
Logical reasoning is a central component for intel-
ligent systems and should be sufficiently and in-
dependently evaluated (Russell and Norvig, 2010).

However, existing natural language tasks are inad-
equate in measuring the complex logical reason-
ing capability of a model (Srivastava et al., 2023;
Saparov and He, 2023; Tian et al., 2021).

Several datasets related to logical reasoning have
recently been proposed. However, existing bench-
marks often exhibit limited complexity in reason-
ing or lack language naturalness. Some of these
common benchmarks do not specifically evaluate
logical reasoning independently of other forms of
reasoning (Yu et al., 2020; Liu et al., 2021). Those
specifically designed for measuring logical reason-
ing are insufficient in terms of logical reasoning
complexity and natural language variety. As shown
in Table 1, examples in RuleTaker (Clark et al.,
2020) and LogicNLI (Tian et al., 2021) need at
most five depths of reasoning. The entire corpus
of RuleTaker or LogicNLI has fewer than 50 dis-
tinct abstract syntax trees. RuleTaker has only 101
words in its vocabulary and LogicNLI has 1077
words in the vocabulary. Moreover, none of them
are written by humans with information drawn
from real-world knowledge, making them less ap-
plicable to real-world reasoning scenarios. The
logical deduction portion in BigBench (Srivastava
et al., 2023) requires commonsense reasoning be-
sides logical deduction. ProntoQA (Saparov and
He, 2023) only contains logical reasoning questions
that are answerable with repeated applications of
the Modus Ponens inference rule.

We present a natural language reasoning dataset,
FOLIO, with first-order logic reasoning problems
which require the models to decide the correct-
ness of conclusions given a world defined by the
premises. In FOLIO, we aim to ensure high lan-
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Dataset Size Reasoning Text Source Real-World
Resources

Reasoning
Depth Vocab Distinct

AST

CLUTTER (2019) 6k Inductive Synthetic × × - ×
RECLOR (2020) 6k Mixed forms GMAT, LSAT exams ✓ × - ×
LogiQA (2021) 8.6k Mixed forms NCSE exams ✓ × - ×
RuleTaker (2020) 500k Deductive Synthetic × 0 ∼ 5 101 48
ProofWriter (2021) 500k Deductive Synthetic × 0 ∼ 5 101 48
LogicNLI (2021) 20k FOL Synthetic × 1 ∼ 5 1077 30
BigBench (2022) 1300 Mixed forms Human-Written Partially × - -
ProntoQA (2023) 200 Deductive Synthetic ✓ 1, 3, 5 - -

FOLIO (ours) 1,435 FOL Expert-written ✓ 0 ∼ 7 4351 76

Table 1: Comparison of FOLIO with other datasets related to logical reasoning. #Distinct AST stands for the number
of distinct abstract syntax trees, representing the number of distinct sentence-level logic structures in the corpus.
FOLIO is the first expert-written dataset for FOL reasoning equipped with parallel FOL formulas. The examples are
mostly aligned with real-world knowledge and use highly natural wordings. It also has a greater variety than the
previous datasets in terms of reasoning depths with a larger number of distinct logic patterns and a large vocabulary.

A FOLIO example based on the Wild Turkey Wikipedia page: https://en.wikipedia.org/wiki/Wild_turkey

NL premises NL Conclusions -> Labels
1. There are six types of wild turkeys: Eastern wild turkey, Osceola wild turkey, Gould’s wild turkey, A. Tom is an Ocellated wild turkey. -> True
Merriam’s wild turkey, Rio Grande wild turkey, and the Ocellated wild turkey. B. Tom is an Eastern wild turkey. -> False
2. Tom is not an Eastern wild turkey. C. Joey is a wild turkey. -> Unknown
3. Tom is not an Osceola wild turkey.
4. Tom is also not a Gould’s wild turkey.
5. Tom is neither a Merriam’s wild turkey, nor a Rio Grande wild turkey.
6. Tom is a wild turkey.

FOL Premises FOL conclusions -> Labels
1. ∀x(WildTurkey(x) → (EasternWildTurkey(x) ∨ OsceolaWildTurkey(x) ∨ GouldsWildTurkey(x) A. OcellatedWildTurkey(tom) -> True
∨ MerriamsWildTurkey(x) ∨ RiograndeWildTurkey(x) ∨ OcellatedWildTurkey(x))) B. EasternWildTurkey(tom) -> False
2. ¬EasternWildTurkey(tom) C. WildTurkey(joey) -> Unknown
3. ¬OsceolaWildTurkey(tom))
4. ¬GouldsWildTurkey(tom)
5. ¬MerriamsWildTurkey(tom) ∧ ¬RiograndeWildTurkey(tom)
6. WildTurkey(tom)

Table 2: An example story in FOLIO based on the knowledge from the Wikipedia page on wild turkeys. The
story consists of five premises and three conclusions with their corresponding FOL formulas and labels for the
conclusions. All five premises are needed to infer the conclusions. The model needs to reason under logic patterns
with universal quantification (∀), negation (¬), conjunction (∧), and disjunction (∨).

guage naturalness and complexity, an abundant vo-
cabulary, and factuality while also maintaining high
reasoning complexity. FOLIO is a high-quality
and manually curated dataset, written by CS un-
dergraduate and graduate students and researchers
in academia and industry. To ensure the conclu-
sions of our examples follow the premises logi-
cally, we annotated all reasoning examples with
first-order logic (FOL) formulas. An example of
FOLIO is shown in Table 2. Based on our annota-
tions, we propose a new NL-FOL translation task
where an NL reasoning example is translated into
its FOL counterpart. Finally, we benchmark the
performance of strong LMs in both fully supervised
and few-shot settings to understand their capabil-
ities in logical reasoning (i.e., deriving the truth
value of a logical conclusion from NL premises).

Under the few-shot setting, the most capable pub-
licly available LLM so far achieves only 53.1% on
the stories written in a hybrid manner, which is
slightly better than random.

To sum up, the contributions of this paper are
threefold. 1) We release a natural language reason-
ing dataset written by expert annotators, FOLIO,
with first-order logical reasoning problems. 2) We
use formal logic, i.e., FOL to ensure the logical
validity of the examples written in NL and propose
a new NL-FOL translation task. 3) We benchmark
the performance of LMs by fine-tuning models and
prompting LLMs with few-shot examples, on the
FOLIO reasoning task. We hope that FOLIO, as a
challenging logical reasoning dataset, will be used
to facilitate measuring progress in the logical rea-
soning capabilities of language models.

22018

https://en.wikipedia.org/wiki/Wild_turkey


2 Related Work

2.1 Datasets for reasoning from text

Developing models that can reason in texts has
been a core goal in NLP since the field’s early
days (Cooper et al., 1996). Since then, there has
been massive progress in reasoning over text. Var-
ious benchmarks that focus on different aspects
of reasoning over textual inputs are proposed, in-
cluding natural language inference (NLI) (Bowman
et al., 2015; Wang et al., 2019b), reasoning for com-
monsense knowledge (Talmor et al., 2019; He et al.,
2021) and multi-hop reasoning (Yang et al., 2018;
Chen et al., 2020). Among these reasoning abilities,
logical reasoning has recently attracted an increas-
ing amount of study. ReClor (Yu et al., 2020) and
LogiQA (Liu et al., 2021) both collected multiple-
choice questions from standardized graduate ad-
mission examinations, answering which requires
various types of logical reasoning. However, these
datasets cover mixed forms of reasoning and are
not intended to test logical reasoning in isolation.

Meanwhile, testing logical reasoning in iso-
lation without involving other forms of reason-
ing has also attracted researchers in recent years.
CLUTRR (Sinha et al., 2019) covers inductive rea-
soning, which is beyond the scope of first-order
logic. Synthetic corpuses of deductive reasoning
are proposed to evaluate the deductive reasoning
ability of pretrained LMs (Clark et al., 2021; Saeed
et al., 2021; Tian et al., 2021). However, these
datasets do not contain highly natural sentences
and often cover limited forms of logic while FOL
is much more expressive. Kazemi et al. (2023) cre-
ated a dataset for reasoning with contradictory in-
formation. Kawabata and Sugawara (2023) crowd-
sourced rationales for over 3000 examples based
on ReClor (Yu et al., 2020). ProntoQA (Saparov
and He, 2023) is comprised solely of logical reason-
ing queries that can be resolved through applying
the Modus Ponens inference rule while FOLIO
questions require applications of multiple types of
inference rules. As shown in Table 1, FOLIO is the
first large-scale first-order logic (FOL) reasoning
dataset with formal logic annotations in FOL. FO-
LIO is logically diverse and complex with complex
natural language sentences and a rich vocabulary.

2.2 Reasoning using large language models

Reasoning has been demonstrated as one of the
emergent abilities of LLMs of sufficient scale re-
cently (Talmor et al., 2020; Wei et al., 2022a;

Chowdhery et al., 2022). One such emergent be-
havior, Chain-of-Thought prompting (Wei et al.,
2022b), consists of a series of intermediate reason-
ing steps output by an LLM. This improves the per-
formance on arithmetic, commonsense, and sym-
bolic reasoning benchmarks significantly. There
has been a line of research continuing on from
Chain-of-Thought (Kojima et al., 2022; Li et al.,
2022; Yao et al., 2023) to elicit reasoning behav-
ior from LLMs. Building on Chain-of-Thought
prompting, many techniques used on top of LLMs
to improve downstream performance have been for-
malized into control flows and programs. These
are called language model cascades (Dohan et al.,
2022), subsuming techniques such as Chain-of-
Thought prompting, STaR (Zelikman et al., 2022),
and Selection-Inference (Creswell et al., 2022) for
reasoning. Dasgupta et al. (2022) studied the
reasoning ability of LLMs but only used a small
set of 48 syllogisms with only two premises each.
Saparov and He (2023) created a synthetic dataset
that and showed that LLMs are capable of making
correct individual deduction steps.

With FOLIO, we aim to set a high standard, en-
suring that achieving high performance through
superficial strategies and shallow heuristics is pre-
vented, allowing a robust evaluation of the first-
order logic reasoning capabilities of LLMs. We
show that many LLMs fall short on complex first-
order logic reasoning, and that significant room for
improvement in this area remains.

3 FOLIO Corpus Construction

We collected FOLIO through a carefully designed
manual annotation process to achieve high-quality
examples that necessitate complex logical reason-
ing. Writing natural language reasoning stories
with FOL requires sufficient knowledge in both
semantic parsing and first-order logic, as well as
strong analytical skills. Given the complexities of
such annotations, we selected annotators based on
a few important criteria to ensures that our dataset
is annotated with the highest level of precision and
expertise, reflecting the complexity and nuance re-
quired for first-order logical reasoning. 1). Our
annotators are either college or graduate students
who are native English speakers or possess near-
native proficiency in English.4 2). They possess
formal education in first-order logic, having ei-
ther completed relevant coursework or undertaken
self-directed studies in first-order logic or seman-

22019



tic parsing. At the NL quality check stage, only
annotators who are experts in natural language pro-
cessing or computational linguistics are involved.
For the FOL quality check, only annotators who
are experts in first-order logic are involved. We
also give the annotators several training sessions
on how to write a story, by providing them with
detailed annotation guidelines. All stories and FOL
annotations in FOLIO are written and reviewed by
expert annotators, including CS undergraduate and
graduate students, and senior researchers, who met
the aforementioned criteria.

We develop our dataset in six stages: WikiLogic
collection, HybLogic collection, NL quality con-
trol, FOL quality control, NL-FOL alignment and
FOL verification, spending 980 man-hours in total.

3.1 Example collection

We collected our dataset using two different meth-
ods in order to obtain examples that are both log-
ically diverse and complex and have abundant ab-
stract syntax tree (AST) variations. The annotators
are free to write stories based on any topic they
want while writing the stories.

WikiLogic: annotation from scratch using
Wikipedia articles as seeds. At this annotation
stage, the annotators are asked to select random
Wikipedia pages by repeatedly using the Wikipedia
Special Random link.1 The Wikipedia articles are
used to develop ideas for topics to write new sto-
ries. We ask the annotators to create new stories
from scratch without using templates based on real-
world knowledge, which should be plausible in
general. Each of the stories is composed of several
premises and conclusions with truth values of True,
False, or Unknown (see Table 2 for an example).
We also ask the annotators to write parallel FOL
sentences for both the premises and conclusions.
This results in a wide range of topics, abundant
AST variations, and a wide vocabulary for FOLIO.
Table 1 shows a comparison of FOLIO with other
reasoning datasets that purely evaluate first-order
logic or deductive reasoning.

HybLogic: hybrid annotation The task of gen-
erating logically sound stories from scratch for a
set of facts is very time-consuming for human writ-
ers, where the main challenge is to create complex
and varied logical patterns to arrive at a conclusion.
To address the problems of solely using manual

1https://en.wikipedia.org/wiki/Special:Random

annotation, we also consider a hybrid approach to
facilitate the process. Our hybrid method is based
on a common form of logical stories: syllogisms.
A syllogism consists of two premises and a single
conclusion, and the conclusion states some facts
about the entities and categories in the premises.

In this approach, we first generate logically valid
stories, which are templates containing abstract
categories and entities, by combining multiple syl-
logisms into a single story template: the conclusion
of one syllogism is used as a premise for the next
syllogism. There are 256 logically distinct types
of syllogisms and 24 of them are valid (Lehman,
1973). We use various combinations of 24 valid
syllogisms. We also add in conjunction, disjunc-
tion, and implication. We show an example of
the resulting templates in Appendix B. We then
ask human annotators to assign nouns, phrases, or
clauses to the abstract entities or categories that re-
flect real-life scenarios to each template and write
logically-valid stories in natural language. The us-
age of the template is to ensure that we have a set
of varied and complex logical stories with multiple
conclusions. There are many ways of expressing
the same logic template in natural language, and so
the generated templates augment, rather than limit,
the creativity of humans.

3.2 Quality control for NL sentences
To ensure the highest quality of the dataset, we ded-
icated considerable attention to the following key
aspects of the natural language sentences during
the quality control process.

Factuality and bias Our dataset prioritizes real-
ism and factual accuracy, steering clear of biases
and stereotypes linked to identity markers like race,
ethnicity, gender, sexuality, nationality, class, and
religion. Toward these objectives, we manually
screened all stories and found that 39.2% of the
stories suffer from at least one of these issues. We
implemented a detailed protocol to rewrite these
stories. The protocol is in Appendix C.

Language quality Apart from grammar, we
make sure the sentences in our dataset are highly
natural. All the sentences are first checked with a
grammar checking tool, Grammarly. Our annota-
tors who have graduated from or are senior students
studying English Literature conducted a thorough
round of review for grammatical correctness and
language naturalness. We also eliminate natural
language ambiguity when it is possible. We include
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rules on eliminating ambiguity in Appendix D. Em-
ploying these rules effectively reduces the ambigu-
ity of natural language in this reasoning dataset, but
incurs the tradeoff of limiting variations in some us-
age of language. However, we note that there is still
sufficient variation in terms of sentence structures
and logical structures as shown in Table 1.

3.3 Quality control for FOL formulas

We adopt the FOL definitions and syntax most
widely used in the AI community (Russell and
Norvig, 2010). We include more details on the
definition of FOL we consider and the FOL mod-
elling convention in Appendix E In preliminary
investigations, we found that the human-written
FOL formulas suffer from FOL consistency issues,
which necessitates an additional round of quality
control for FOL formulas.

FOL consistency One NL sentence can be trans-
lated into FOL through multiple non-equivalent
ways. For example, sometimes additional informa-
tion inferred from a sentence can be represented in
FOL, leading to multiple representations. We there-
fore design an annotation protocol for FOL transla-
tion in order to ensure that our FOL translations are
as consistent as possible across all examples in our
dataset. We highlight a few important strategies
used in the annotation protocol in Appendix F.

3.4 NL-FOL alignment review

Apart from checking whether NL and FOL ex-
press equivalent meanings, we also add necessary
commonsense knowledge in both the NL and FOL
premises. Sometimes humans do not write certain
commonsense knowledge in the premises that is
required in the FOL reasoning process, which is
based solely on the premises given. We add such
knowledge as additional premises at this stage. In
particular, intrinsic properties of some predicates
are required in the FOL reasoning process. For
example, "LocatedIn(x,y)" should be transitive
and "BeFamily(x,y)" should be symmetric.

3.5 FOL verification

Recognizing that the FOL formula annotations can
be error-prone, we verify the syntactic validity and
label consistency of FOL formula annotations with
an FOL inference engine. We include the details of
the FOL inference engine in Appendix G.
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Figure 1: Distribution of reasoning depths

3.6 Dataset statistics

We show basic statistics of FOLIO and demonstrate
the abundant vocabulary and logical complexity of
FOLIO: Tables 1, 3 and Figure 1.

Basic statistics Table 3 shows that examples
based on Wikipedia make up the largest portion
of FOLIO, with 304 stories, 1,353 NL and FOL
premise pairs, and 753 NL and FOL conclusion
pairs. Hybrid annotations consist of 183 stories
with 1,054 NL and FOL premise pairs, and 682 NL
and FOL conclusion pairs in total.

Natural language complexity We use the Dale-
Chall Readability Formula (Dale and Chall, 1948,
1995) to show the text complexity of FOLIO fol-
lowing (Singh et al., 2023; Arps et al., 2022; Wei
et al., 2021). We show the distribution of readabil-
ity in Appendix H.

Logical complexity and diversity statistics As
shown in Figure 1, the mode of reasoning depths is
four in FOLIO. 28.7% of the examples need five or
more depths of reasoning to infer the conclusions,
while the previous datasets needed at most five rea-
soning depths as shown in Table 1. This illustrates
the logical complexity of FOLIO. Table 1 shows
that FOLIO also has a much larger number of dis-
tinct ASTs than the previous datasets, indicating
that FOLIO is much more logically diverse. Fig-
ure 1 demonstrates the distribution of the number
of examples in the WikiLogic and HybLogic sets
versus the number of premises needed to arrive at
a conclusion, showing that most of the conclusions
from WikiLogic require one to five premises while
those from HybLogic require five to eight premises.

Vocabulary and topics Table 3 shows that our
dataset has a vocabulary of 4,351 words, and the
examples based on Wikipedia account for 74% of
the total vocabulary even though the WikiLogic
stories take up only 63% of the total number of sto-
ries. The vocabulary of FOLIO is also significantly
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Source #Stories #Premises #Conclusions NL Logic

Vocab #Words Complexity Depth AST

WikiLogic 304 1353 753 3250 8.50 0 - 14 grade 1 - 5 51
HybLogic 183 1054 682 1902 11.52 0 - 14 grade 5 - 8 25

Total 487 2407 1435 4351 9.86 0 - 14 grade 76 5-8

Table 3: Statistics based on different data collection methods of FOLIO. #Words is the average number of words per
NL sentence.

larger than the previous synthetically constructed
datasets for logical reasoning.

4 Task Definition

We define two new tasks based on FOLIO, natural
language reasoning with first-order logic and NL-
FOL translation.

4.1 Natural language reasoning with
first-order logic

Each natural language (NL) story S in FOLIO con-
sists of n premises: P = {p1, p2, ..., pn} and m
conclusions: H = {h1, h2, ..., hm}. All NL sto-
ries are annotated with parallel FOL stories SF ,
which are sets of FOL formulas consisting of n
premises PF = {pf1, pf2, ..., pfn} and m conclu-
sions HF = {hf1, hf2, ..., hfm}. pfi and hfi are
logically and semantically similar to pi and hi, re-
spectively. Given P and H , the goal is to determine
the truth values of the conclusions: "True", "False"
or "Unknown", based on FOL reasoning.

4.2 NL-FOL translation

We propose a new natural language to first-order
logic translation (NL-FOL translation) task along-
side our reasoning dataset. The goal of this task
is to translate an NL story S to an FOL story FS.
In particular, each of the NL sentence pi or hi and
the parallel FOL formula pfi or hfi should be logi-
cally and semantically equivalent. Moreover, the
truth values for the conclusions should be the same
based on the NL story S and the parallel FOL story
FS. In our dataset, the premises and conclusions
are set up in such a way to ensure that the infer-
ence engine always returns an answer given enough
resources such as time and memory. Unlike pre-
vious work (Singh et al., 2020) which translates
problems with a single premise and a single hy-
pothesis, our task is on translating examples of
various lengths with a focus on stories with multi-
ple premises. Thus, it also requires the models to

consider discourse-level consistencies as opposed
to translation at the sentence level.

NL-FOL evaluation metrics Two metrics are
adopted to evaluate NL-FOL translation to cap-
ture different aspects of the generation results: 1).
Syntactic validity (SynV). The Syntactic Validity
score measures whether the FOL formulas are syn-
tactically valid. The score will be 1 if all FOL for-
mulas of an example can pass the syntactic check
and 0 otherwise 2). Inference Engine execution
accuracy (ExcAcc). The group of translated FOL
for premises and conclusions in one story is fed
into our inference engine to output the truth value
for each conclusion. We define the accuracy of the
output labels as the execution accuracy. We leave
for future work the design of a more reliable metric
of NL-FOL translation.

5 Experiments

In this section, we describe our experiments and
main results.

5.1 Experimental setup
Tasks We conduct experiments on the two tasks
in §4: NL reasoning with first-order logic (logical
reasoning) and NL-FOL translation (NL-FOL).

Dataset split We split FOLIO by 70%/15%/15%
split for the train/validation/test sets with
1,001/203/226 examples respectively. We split
by story so that models are evaluated on unseen
stories.

Evaluation metrics We use accuracy for evalu-
ating logical reasoning performance. For NL-FOL
translation, we use the metrics in Section 4.2.

5.2 Models
We test the logical reasoning capabilities of LMs
using fully supervised fine-tuning and few-shot
prompting. We also test NL-FOL translation with
few-shot prompting.
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Fully supervised fine-tuning As fine-tuning
baselines, we experiment with BERT (Devlin et al.,
2019), and RoBERTa (Liu et al., 2020). We fine-
tune the base and large versions of both BERT and
RoBERTa, with an additional two-layer classifica-
tion layer to predict the truth values. For the second
task, i.e., NL-FOL translation, we only report few-
shot prompting methods.

Few-shot prompting We conduct zero-shot and
few-shot prompting experiments on larger LMs
with few-shot capabilities. For open-source models,
we test LLaMA-13B and LLaMA-70B (Touvron
et al., 2023), GPT-NeoX-20B (Black et al., 2022);
for proprietary models we test GPT-3 (Brown et al.,
2020), GPT-3.5-Turbo and GPT-4 (OpenAI et al.,
2023) using prompts with 8 examples.2

Prompting strategies We experiment with incor-
porating recent prompting strategies into GPT-4
as they have shown improvements in the general
reasoning performance of LLMs. The prompting
strategies include chain-of-thought (CoT) prompt-
ing (Wei et al., 2022b), chain-of-thought prompting
with self-consistency (Wang et al., 2023) and tree-
of-thought prompting (Yao et al., 2023).

Logical reasoning methods We also test recent
methods specifically designed for logical reasoning:
Logic-LM (2023), LINC (Olausson et al., 2023)
and DetermLR(Sun et al., 2023), using GPT-4 as
the base model. For the second task (NL-FOL
translation), we use the same examples as in the
Few-Shot NL experiments except that all the con-
clusions are included in each example.

We run experiments on five randomly sampled
sets of examples from the training set and report
the average accuracy.

5.3 Main results

Logical reasoning The majority baseline of our
dataset is 38.5% since in our test set, there are 87,
78 and 61 examples with labels of true, false and
unknown respectively. As shown in Table 4, BERT-
base and RoBERTa-base have similar performance
on FOLIO with 56.83% accuracy. BERT-large has
a 2.2% improvement over BERT-base. RoBERTa-
large improves 3.1% over BERT-large. Flan-T5-
Large achieves the highest performance in the fine-
tuning setting and the accuracy is 65.7%.

2In experimenting with different prompts, we found 8 shot
examples to perform slightly better. It is also the maximum
number of examples that fits in the text-davinci-002 context.

Model Size Acc (%)

majority baseline - 38.5%
random probability - 33.3 %

Fully supervised fine-tune

BERT-base 110M 56.8
BERT-large 340M 59.0
RoBERTa-base 110M 56.8
RoBERTa-large 340M 62.1
Flan-T5-Large 783M 65.9

0-shot NL Prompt

GPT-3.5-Turbo - 53.1
GPT-4 - 61.3

8-shot NL Prompt

LLama-13B 13B 33.6

LLama-70B 70B 44.0
LLama-70B - CoT 70B 47.8
LLama-70B - ToT 70B 48.4

text-davinci-002 - 49.5
GPT-3.5-Turbo - 58.3
GPT-4 - 64.2
GPT-4 - CoT (2022b) - 68.9
GPT-4 - CoT with SC (2023) - 69.5
GPT-4 ToT (2023) - 70.0

LR-specific Methods

Logic-LM (2023) - 78.1
LINC (2023) - 73.1
DetermLR (2023) - 77.5

Table 4: Logical reasoning results of fully supervised
fine-tuning and few-shot prompting on FOLIO test set.
The model sizes of text-davinci-002, GPT-3.5-Turbo
and GPT-4 are hidden from public3. CoT stands for
chain-of-thought prompting (Wei et al., 2022b). SC
stands for self-consistency (Wang et al., 2023). ToT
stands for tree-of-thought prompting (Yao et al., 2023).

We show that zero-shot prompting GPT-3.5
achieves better results than few-shot prompting
text-davinci-002. Under few-shot NL prompting
setting, LLama-13B achieves 33.63%, which is
only slightly better than chance (33%). LLama-
70B achieves 43.97%, around 10% better than
LLaMA-13B and obtains improvements of around
4% with Chain-of-thought prompting and Tree of
Thought prompting. Text-davinci-002 achieves
49.53% and GPT-3.5 achieves 58.34%. GPT-4
achieves the best results among GPT series mod-
els.

Incorporating recent prompting strategies in-
creases the performance of vanilla few-shot prompt-
ing. Chain-of-thought prompting achieves more
than a 4% increase over GPT-4. Self-consistency
(SC) improves chain-of-thought prompting by

3Hereafter, "GPT-3.5" refers to GPT-3.5-Turbo.
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Model Zero-Shot Few-Shot

Synv ExcAcc Sync ExcAcc

GPT-3.5-Turbo 68.4 50.4 93.3 56.0
GPT-4 86.1 51.7 93.9 63.8

Table 5: NL-FOL translation results on FOLIO. SynV
measures syntactic validity and ExcAcc measures the
inference engine execution accuracy.

0.6% percent. Tree-of-thought prompting achieves
slightly better result than self-consistency with
chain-of-thought prompting. For the results of
recent methods developed for logical reasoning,
LINC (Olausson et al., 2023) achieves around a
9% increase over few-shot prompting GPT-4. Both
Logic-LM (GPT-4)(2023) and DetermLR (2023)
achieves more than a 13% increase over few-shot
prompting GPT-4, showing the superiority of the
methods on logical reasoning.

NL-FOL translation Table 5 shows the results
of NL-FOL translation. The syntactic validity
scores are around 93% with both GPT-3.5-Turbo
and GPT-4. This indicates that language models
with sufficient scales are good at picking up the pat-
terns for FOL formulas and generating syntactically
valid FOL formulas. However, GPT-3.5-Turbo and
GPT-4 are not yet good at translating an NL story
to a logically or semantically similar FOL coun-
terpart, as indicated by the low inference engine
execution accuracy score.

6 Error Analysis

Below we provide analysis of our results and
key findings, providing additional insights into
our dataset FOLIO and the current capabilities of
LLMs in logical reasoning.

Models have higher accuracy on examples
with fewer reasoning depths than on those with
higher number of reasoing depths We show the
accuracy categorized by reasoning depths in Fig-
ure 2. With few-shot prompting, GPT-3.5 and GPT-
4 both perform much better on examples with a
0 ∼ 3 reasoning depth, indicating that examples
with a 4 ∼ 7 reasoning depth pose a challenge to
the SoTA LMs. With fine-tuning, RoBERTa has
slightly higher performance on test examples with
0 ∼ 3 reasoning depth than on those with 4 ∼ 7
reasoning depth, but the difference is much smaller.
This indicates that fine-tuning on longer and more
difficult reasoning chains in the training set can
improve model performance on equally-long test

RoBERTa GPT-3.5 GPT-4
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Figure 2: Accuracies of different models categorized
into examples with different reasoning depths.

Method Model Wiki Hyb

Fine-tuning RoBERTa-large 60.71 63.48

NL Prompting GPT-3.5-Turbo 68.88 47.70
GPT-4 75.43 53.10

NL-FOL ExcAcc GPT-3.5-Turbo 45.17 61.82
GPT-4 59.12 67.93

Table 6: Performance differences on the WikiLogic
and HybLogic subset of FOLIO. WikiLogic has more
diverse logical structures while HybLogic stories have
higher reasoning depths.

example chains. We note that the presence and
prevalence of these difficult examples are unique to
FOLIO. FOLIO’s unique complexity reveals that
current LMs are limited in their ability to extrapo-
late to longer and more complex reasoning chains,
and suggests an avenue for further study.

Models have higher accuracy on WikiLogic
than on HybLogic As shown in Table 6, in logical
reasoning, GPT-3.5 and GPT-4 achieve substan-
tially lower results on HybLogic than on WikiLo-
gic and the result is slightly higher than chance.
We hypothesize that this is because HybLogic has
high logical complexity that the SoTA LLMs like
GPT-4 cannot solve yet while WikiLogic examples
require shorter reasoning chains which the model
is already capable of solving. Moreover, since the
examples in WikiLogic are created from scratch by
humans, it is possible that LLMs have seen simi-
lar texts with similar logical patterns in the train-
ing data. However, fine-tuning RoBERTa-large
achieves higher performance on HybLogic than
on WikiLogic. This is likely because HybLogic
is created from templates and some of the logical
patterns can be learned during fine-tuning.

In NL-FOL translation, performs 10 points bet-
ter on HybLogic than WikiLogic. This could be
because WikiLogic has more distinct and diverse
sentence-level logical and language patterns and
FOL annotations. WikiLogic has 53 ASTs while
HybLogic has 33. Despite being more logically
complex on a story level, FOL translations for Hy-
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bLogic stories have simpler logical structures on
a statement level. We include case study for one
WikiLogic example and one HybLogic example in
Appendix I and further analysis on model perfor-
mance in Appendix J.

Faulty path 65%

Wrong derivation 25%

Wrong syntactic comprehension 5%

Spurious shortcut 5%

Table 7: Human evaluation on GPT-4 model outputs
with incorrect truth value predictions

Example
Premises 1. All children are human. 2. If someone is
underage, then they are a child. 3. People are either underage
or of age. 4. If someone is of age, then they can vote. 5. If
someone is of age, they can legally get married. 6. If Jack
is a child and a human, then Jack is neither able to vote nor
able to get married. Conclusion -> Label: Jack is able to
vote and get married. -> True.

GPT-4 Output
We know that all children are human (premise 1) and if
someone is underage, they are a child (premise 2). People
are either underage or of age (premise 3). If someone is of
age, they can vote (premise 4) and get married (premise 5). If
Jack is a child and a human, then Jack is neither able to vote
nor get married (premise 6). We don’t have any information
about Jack’s age, so we cannot determine if he is a child or
of age. Therefore, we cannot determine if Jack is able to
vote and get married.

Table 8: Case study for the scenario where a model is
unable to form the correct reasoning chain.

Human evaluation on model outputs We con-
duct human evaluation on the GPT-4 model outputs
with wrong truth value predictions. As shown in
Table 7, approximately 65% of the time, the model
struggles to construct accurate reasoning chains for
complex problems with intricate steps, leading to
faulty reasoning paths and indicating a limited abil-
ity to solve problems with long reasoning chains.
In 25% of cases, erroneous derivations occur within
certain reasoning steps, highlighting potential in-
accuracies and flaws in logical deductions. 5%
of conclusions in FOLIO have a complex syntac-
tic structure, posing comprehension challenges for
GPT-4. 5% of outputs show that GPT-4 leverage
commonsense reasoning to employ spurious short-
cuts that lead to the wrong truth value for the con-
clusion. We provide a case study for the "Faulty
path" scenario in Table 8. In this instance, the
model can perform simple derivations from the

premises, like "If someone is of age, they can vote
and get married." However, because of the prob-
lem’s complexity, the model struggles to identify
the essential intermediate steps and cannot ascer-
tain the truth value of conclusions, such as "Jack is
not a child."

6.1 Human performance

We collected truth value annotations of logical rea-
soning for FOLIO test set from expert and non-
expert annotators. Our expert annotators are com-
puter science college students familiar with FOL.
Non-expert annotators are community college or
high school students who have not taken the SAT.
Both expert and non-expert annotators are native
English speakers. Expert annotations achieve an
accuracy of 95.98% while non-expert annotations
achieves 61.82%, with a gap of 34.16%. This
shows that sufficient domain knowledge of FOL is
necessary for good performance on FOLIO. The
expert and GPT-4 gap is 31.82%, suggesting sig-
nificant room for model improvement.

7 Conclusion

We introduced FOLIO, an expert-written dataset
for logical reasoning equipped with FOL formu-
las. The examples in FOLIO are created based on
real-world knowledge with natural language. It ex-
hibits a large number of distinct logic patterns and
a large vocabulary. Experiments show that FOLIO
presents a challenge for one of the most capable
Large Language Model publicly available.

8 Limitations

We focus on collecting a very high-quality dataset
in evaluating logical reasoning rather than merely a
large dataset. Optimizing for quality required us to
adopt a rigorous annotation process with domain
experts selected based on a few important criteria
as mentioned in Appendix A: Annotator Selection.
Significantly scaling up this process would have
required resources beyond our current means and
we are unable further expand our dataset for in-
vestigating how the size of training data affects
the performance of fine-tuning experiments. We
encourage the community to apply our annotation
protocol to expand this realistic and complex FOL
reasoning story set.
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A Annotator Selection

Given the complexities of our annotations, we se-
lected annotators based on a few important criteria
1). Our annotators are either college or graduate
students who are native English speakers or possess
near-native proficiency in English.4 2). They pos-
sess formal education in first-order logic, having ei-
ther completed relevant coursework or undertaken
self-directed studies in first-order logic or seman-
tic parsing. At the NL quality check stage, only
annotators who are experts in natural language pro-
cessing or computational linguistics are involved.
For the FOL quality check, only annotators who
are experts in first-order logic are involved. We
also give the annotators several training sessions
on how to write a story, by providing them with
detailed annotation guidelines. All stories and FOL
annotations in FOLIO are written and reviewed by

4By “near-native” we mean with English speaking and un-
derstanding ability that closely mirrors that of a native English
speakers.

22028

https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://aclanthology.org/2021.emnlp-main.303
https://aclanthology.org/2021.emnlp-main.303
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2021.naacl-main.352
https://doi.org/10.18653/v1/2021.naacl-main.352
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB
https://doi.org/10.48550/ARXIV.2203.14465
https://doi.org/10.48550/ARXIV.2203.14465


expert annotators, including CS undergraduate and
graduate students, and senior researchers, who met
the aforementioned criteria.

B HybLogic Template Example

An example the resulting template is as follows:
Premises:
All M are P. All S are M.
Either S or A. All A are B.
All D are B. No C are B.
a is either a C or a P.

Conclusions:
[Unknown] a is an S.
[True] If a is either a C or a D,
then a is not either an A or a B.

C Factuality and Bias Elimination
Protocol

We rewrote those that are not reflective of well-
established scientific, historical, or legal facts. We
took out stories that had strongly opinionated lan-
guage and contained gender, racial, and classist
biases. We accept certain classes of “psychologi-
cally fundamental generalizations” (Leslie, 2008),
however, such as “Covid is transmitted through the
air” or “Tigers eat other animals,” that may not be
factually invariant but add logical and semantic nu-
ances to the stories. For stories that pertain to gen-
eralization, such as “All As are Bs,” we have added
specifiers like "all Dan knows" to give a degree of
reasonable factuality. For example, “All science
fiction that Dan knows comes from an imaginative
process” has a more reasonable degree of factuality
than “All science fiction comes from an imaginative
process.”

D Language Quality Control

• We always use “either-or” to express exclusive
disjunction. We use either “A or B” or “A or B, or
both” to express inclusive disjunction. In English
“or” itself can be interpreted as either inclusive dis-
junction or exclusive disjunction. Adding “or both”
cancels the exclusive disjunction distinctly. How-
ever, it is less common in the wild than just using
“or”. we could add “or both” if it is important to
emphasize the inclusive part semantically or con-
textually or for factuality; and do not add “or both”
if it is not. We rely on the language model to figure
out if it should be inclusive or exclusive, therefore
not sacrificing naturalness.

• It is more natural to say "Some A is B" rather

than "there exists an A such that A is B." "All A
are B" can be more natural than "If A then B".

• Writing NL sentences that express negation over
exclusive-or ("either both or neither") can be cum-
bersome but we found one natural ways of express-
ing these situations: "Each morning, John either
works out and stretches, or he does neither".

Other common issues in NL quality include sin-
gular/plural issues, especially in statements that
deal with both categories and individual members
of those categories; as well as ambiguities result-
ing from improper introduction of, or failure to
introduce, proper nouns.

E First-Order Logic

E.1 First-Order Logic VS Natural Language
FOL enables deriving facts from other facts (Rus-
sell and Norvig, 2010). In the context of logical
reasoning in modern NLP, FOL, as a logical form,
is a more explicit logical representation than its NL
counterpart and can be used as input to an FOL
prover in order to obtain the exact truth values for
the conclusions. FOL has no ambiguity while am-
biguity can occur at various levels of NLP. FOL
can thus be a good interface between how LMs are
trained and how logical conclusions are reasoned.

E.2 FOL definition
We include the following operators: negation ¬,
conjunction ∧, disjunction ∨, implication →, uni-
versal quantifier ∀, existential quantifier ∃, equal =.
Following (Russell and Norvig, 2010), we consider
temporal logic and modal logic as special-purpose
logics. Consequently, they are beyond the scope
of the definition of first-order logic used in our
dataset.

E.3 FOL modeling conventions
We use n-place predicates when applicable for
the expressivity of the FOL formulas. However,
we do not use the Davidsonian (Davidson, 2001)
or neo-Davidsonian semantics (Parsons, 1990) be-
cause translating the majority of the FOL formulas
in our dataset only requires one-place and two-
place predicates. Therefore the Davidsonian or
neo-Davidsonian semantics are not necessary for
the expressivity of the FOL formulas.

For example, "Enjoy dressing up in old-
fashioned clothing" is rendered as "Enjoy(x,
dressingUp, oldFashionedClothing)".
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F FOL Annotation Protocol

We therefore design an annotation protocol for
first-order logic translation in order to ensure that
our FOL translations are as consistent as possible
across all examples in our dataset. We highlight
a few important strategies used in the annotation
protocol. a). First-order logic formulas need to pre-
serve as much as possible the semantics of natural
language sentences. b). First-order logic formu-
las should stay as faithful to the structure of the
original NL sentence as possible. c). Semantic
decomposition is not needed unless necessary for
maintaining the NL expressivity. This means that
"John is a bachelor" can be translated into FOL
simply as "Bachelor(John)". d). In terms of ab-
straction, we neglect tense and remove all the plural
forms of verbs.

G FOL Inference Engine

Although there are many provers widely used in the
community (McCune, 2005–2010; Sutcliffe, 2017;
Nipkow et al., 2002) , we adopt the inference en-
gine provided in the Stanford CS221 course page5,
which is a compact module designed specifically
for procesing first-order logic statements. The infer-
ence engine does not support input in the FOL syn-
tax adopted by standard education material (Rus-
sell and Norvig, 2010), which is used in our dataset.
We therefore developed a FOL parser in order to
convert the FOL formulas written by humans to
the input format of the inference engine. The con-
verter is a semantic parser tool written in Python.
Although LLMs such as GPT-4 can be utilized to
conduct the conversion, it is hard to ensure the
GPT-4 outputs are always correct.

Proving a story requires three steps. First, the
FOL statements of the premises and conclusions
of a story annotated by humans are converted to
Python code. Then, the code snippets are used as
input to the theorem prover. Finally, the theorem
prover outputs whether the conclusions are True /
False / Unknown, based on the premises.

H Distribution of Readability

We show the distribution of readability in Figure 3.

Figure 3: Dale-Chall Readability Distribution.

NL Premises NL Conclusions
1. A moth is not a butterfly. A. Cerura vinula emerges
2. Butterflies have thin antennae. from cocoons.
3. Moths emerge from cocoons. B. Cerura vinula does not
4. Some moths are pests. have thin antennae.
5. Cerura vinula is a moth. C. Cerura vinula is a pest.

Labels GPT-4 Fine-tune
A. True True Unknown
B. Unknown True True
C. Unknown Unknown True

Table 9: A WikiLogic story and model predictions.

NL Premises
1. Some employees good at time management do not exercise
every week.
2. All employees good at time management are efficient in
dealing with daily work.
3. All employees efficient in dealing with daily work perform
better than others.
4. All employees who perform better than others have more
opportunities to get a promotion.
5. James does not have more opportunities to get a promotion.

NL Conclusions
A. James exercises every week.
B. James exercises every week and is good at time management.
C. If James does not perform better than others, then he
exercises every week and is good at time management.

Labels GPT-4 Fine-tune
A. Unknown Unknown Unknown
B. False Unknown False
C. False True True

Table 10: A HybLogic story and model predictions.

I Case study

Table 9 shows a story from WikiLogic along with
the GPT-4 and RoBERTa-Large predictions. Con-
clusion A is True given premises 5 and 3. From the
premises, it cannot be determined if Cerura vinula
has thin antennae or if it is a pest. Thus conclu-
sions B and C are Unknown. GPT-4 predictions are
correct for conclusions A and C while RoBERTa

5https://stanford-cs221.github.io/spring2022/
assignments/logic/index.html
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Figure 4: Confusion matrices for the results of fine-
tuning RoBERTa-Large and few-shot prompting GPT-4.

predictions are wrong for all conclusions.
Table 10 shows a story from HybLogic with a

more complex FOL reasoning process. Inferred
from premises 4 and 5, James does not perform
better than others. With premises 3, 2 and 1, we
know that James is not good at time management.
Therefore, conclusion B is False. It cannot be deter-
mined if James exercises every week, thus the first
conclusion is Unknown. The truth value of p → q
is the same as ¬p∨ q. It is not true that James does
not perform better than others. It is also false that
James exercises every week and is good at time
management. Thus conclusion C is False. For this
example, GPT-4 predicted the correct truth value
only for conclusion A and RoBERTa made correct
predictions for conclusions A and B.

J Model Performance Analysis

Models have more tendency to predict “True”
compared with “False” or “Unknown” labels
Confusion matrices in Figure 4 for the fine-tuning
and 8-shot NL prompt results both show that LLMs
are significantly better at making the correct pre-
dictions for conclusions with labels of True than
the conclusions with labels of False or Unknown.
The accuracy on examples with False or Unknown
conclusions is 61.9% with fine-tuning and 54.0%
with few-shot prompting. They also tend to make
more predictions of True than the other labels.

Model performance is not affected by the
premise ordering To test if the premise ordering
in FOLIO has spurious correlations with the con-
clusion label which a model can exploit, we shuffle
the input premises to evaluate models. We find that
accuracy increases or decreases by roughly 1% in
most settings compared to our unshuffled premises.
This indicates that the ordering of premises in FO-
LIO examples does not yield significant informa-
tion about the label, and thus models will not be
able to use the premise ordering as a strong heuris-

Model NL NL-FOL FOL NL+FOL

GPT-3.5 58.34 55.96 57.92 57.75
GPT-4 64.16 63.82 64.01 65.21

Table 11: Comparison of the results across different
input formats with few-shot prompting. NL, NL-FOL,
FOL, NL + FOL stands for NL prompting, execution
accuracy of NL-FOL translation, using only FOL in
the prompt and using concatenated NL and FOL in the
prompt respectively.

tic or statistical feature for its predictions.

Using both NL sentences and FOL formulas in
the prompt performs better FOL formulas have
a clearer and more straightforward logical structure
than NL sentences. Therefore, we test GPT-3.5
and GPT-4 with another two settings for truth value
prediction using few-shot prompting: 1) using only
FOL formulas in the prompt; 2) using both NL sen-
tences and FOL formulas by concatenating each
NL sentence and its annotated FOL statement. As
shown in Table 11, the performance slightly in-
creases in the NL+FOL setting for GPT-4 while
GPT-3.5 performs worse in both the NL+FOL and
the FOL-only settings. In other words, FOL always
serves as additional useful information for GPT-4,
but not for GPT-3.5 regardless of whether FOL is
concatenated with NL. This observation resonates
with the finding that GPT-4 performs much bet-
ter than GPT-3.5 on code-related tasks (Ni et al.,
2023).
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