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Abstract

State-of-the-art trainable machine translation
evaluation metrics like xCOMET achieve high
correlation with human judgment but rely on
large encoders (up to 10.7B parameters), mak-
ing them computationally expensive and inac-
cessible to researchers with limited resources.
To address this issue, we investigate whether
the knowledge stored in these large encoders
can be compressed while maintaining quality.
We employ distillation, quantization, and prun-
ing techniques to create efficient xCOMET al-
ternatives and introduce a novel data collec-
tion pipeline for efficient black-box distillation.
Our experiments show that, using quantiza-
tion, xCOMET can be compressed up to three
times with no quality degradation. Additionally,
through distillation, we create an 278M-sized
xCOMET-lite metric, which has only 2.6% of
xCOMET-XXL parameters, but retains 92.1%
of its quality. Besides, it surpasses strong small-
scale metrics like COMET-22 and BLEURT-20
on the WMT22 metrics challenge dataset by
6.4%, despite using 50% fewer parameters. All
code, dataset, and models are available online.

1 Introduction

Automatic evaluation metrics are crucial for re-
liably measuring the quality of responses from
natural language generation (NLG) systems. Re-
searchers and practitioners working on tasks such
as machine translation (MT), summarization, po-
etry generation, etc., routinely use metrics to as-
sess their systems’ quality. Apart from directly
assessing the systems, evaluation metrics have
many other applications: a) filtering web-scale
datasets (Peter et al., 2023); b) using metrics as
reward functions for Reinforcement Learning (Xu
et al., 2024); c) online re-ranking of outputs of mul-
tiple systems to choose the best response to return
to the user (Fernandes et al., 2022).

With generative models’ growing sizes and com-
plexity, automatic evaluation metrics also evolve

Figure 1: xCOMET can be distilled into a small model,
which will be 6-7 percentage points better than SOTA
models with comparable parameter count.

and become more computationally expensive. In
the last few years, for MT evaluation, researchers
have moved from traditional n-gram and character-
based metrics, such as BLEU (Papineni et al.,
2002) and chrF (Popović, 2015), to embedding-
based metrics, such as BERTScore (Zhang et al.,
2020) and MoverScore (Zhao et al., 2019), to
learned metrics, which provide state-of-the-art cor-
relation with human judgment. According to Fre-
itag et al. (2023), the best-performing metrics for
MT evaluation are xCOMET (Guerreiro et al.,
2023), MetricX (Juraska et al., 2023), and GEMBA-
MQM (Kocmi and Federmann, 2023). All those
metric models have a large number of parameters:
xCOMET and MetricX have 10.7B-13B param-
eters, while GEMBA-MQM relies on the Large
Language Model (LLM) GPT4 (OpenAI, 2023),
for which the number of parameters is unknown
but speculated to be around 1.7T1.

The lack of efficient alternatives to these mod-
els creates a disparity in access among researchers.
Under-resourced labs, students, startups, and hob-
byists without access to top-tier accelerators (with
more than 22GB VRAM) or financial resources
for paid APIs cannot employ those metrics. Those
with access to such resources may also experience
prolonged iteration time due to the computation

1https://twitter.com/soumithchintala/status/
1671267150101721090
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needed for those models. This is especially no-
ticeable in the case of repeated evaluations dur-
ing the hyperparameter optimization or processing
of large-scale datasets. For instance, running the
xCOMET-XXL model to filter a crawled dataset of
107 examples would take 142.2 hours on a capable
consumer-grade GPU, requiring 42.6 kWh of elec-
tricity and emitting around 15.6 kg CO2-eq.2 Thus,
developing alternative efficient metrics is now more
vital than ever.

In this paper, we explore various techniques to
develop an efficient alternative to the state-of-the-
art xCOMET metric for evaluating MT quality. Our
approach focuses on three main methods: knowl-
edge distillation, quantization, and pruning. Knowl-
edge distillation is a method of creating capable
small deep fitted models by training them on the
outputs of the larger model. We apply knowledge
distillation (Hinton et al., 2015), training a smaller
version of the xCOMET model on large amounts of
data, using labels created by the original xCOMET-
XXL model. Quantization reduces the precision
of deep learning model parameters and activations
from 32/16 bits into 8, 4, 3, and 2 bits, occupy-
ing less memory and allowing for faster computa-
tions. Pruning involves the removal of less signifi-
cant parts of the model, either specific parameters,
blocks of parameters, or entire layers. We apply
layer pruning together with subsequent fine-tuning,
which allows for accelerated inference throughput
and helps mitigate potential accuracy loss. By ex-
ploring distillation, quantization, and pruning, as
well as their combinations, we aim to create an
efficient alternative to xCOMET that maintains a
high level of quality while substantially reducing
hardware requirements.

Our main contributions are as follows: a) we con-
duct a comprehensive study of different compres-
sion methods (knowledge distillation, quantization,
and pruning) and their interactions for the state-
of-the-art MT evaluation metric xCOMET. To the
best of our knowledge, this is the first work to sys-
tematically investigate the effectiveness and trade-
offs of these techniques when applied to a large-
scale, complex metric like xCOMET; b) we intro-
duce a novel data collection pipeline for prepar-
ing large-scale, high-quality datasets for black-box
distillation of xCOMET. We collect 14M exam-
ples with translation hypotheses of varying qual-

2Assumptions: GPU power draw of 350W, 0.05s per ex-
ample on average and 0.368 kg CO2-eq/kWh US power grid
carbon intensity taken as reference.

ity paired with high-quality reference translations.
This enables the distilled model to effectively trans-
fer the evaluation capabilities of the teacher model,
xCOMET-XXL; c) through our distillation method,
we develop xCOMET-lite, a lightweight yet highly
effective MT evaluation metric. xCOMET-lite
achieves state-of-the-art quality among metrics
with < 600M parameters, surpassing the previous
best model, COMET-22, while being substantially
smaller; d) we explore the use of quantization for
compressing xCOMET and demonstrate that 3-bit
quantization can effectively reduce hardware re-
quirements for 3B and 11B model versions without
compromising quality; e) we investigate the effec-
tiveness of pruning for compressing xCOMET and
show that while pruning up to 25% of the model
layers can improve inference speed and memory
consumption with only a marginal impact on qual-
ity, removing more layers leads to substantial qual-
ity degradation. f) We conduct a novel study of
the interactions between compression methods, re-
vealing that distillation combines well with quan-
tization but is incompatible with pruning in our
experiments.

2 Related Work

Recent work has explored improving the trans-
parency and capabilities of MT evaluation met-
rics. Juraska et al. (2023) introduced MetricX. This
learned regression-based metric achieves state-of-
the-art correlations with human judgments through
multi-stage fine-tuning on direct assessment data,
consolidated MQM scores, and small-scale syn-
thetic corpora, which is used to boost robustness.
It is based on the mT5-XXL encoder-decoder
model with 11B parameters. Kocmi and Federmann
(2023) proposed GEMBA-MQM, which leverages
the GPT-4 language model with a few-shot prompt-
ing approach to identify translation error spans and
categories.

This enables detailed error analysis, though
reliance on the computationally expensive pro-
prietary GPT-4 LLM poses challenges for aca-
demic research. Guerreiro et al. (2023) developed
xCOMET, a learned metric based on the XLM-
RoBERTa-XL/XXL encoder that bridges sentence-
level quality prediction with fine-grained error span
detection. By training on direct assessment and
MQM data, xCOMET achieves top quality on
sentence-level, system-level, and error span predic-
tion tasks while providing interpretability through
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its predicted error spans.
Previously, researchers have also explored tech-

niques for creating more efficient MT evaluation
metrics while preserving their correlation with hu-
man judgments. Kamal Eddine et al. (2022) pro-
posed FrugalScore, which learns lightweight ver-
sions of metrics like BERTScore and MoverScore
using knowledge distillation. Their distilled met-
rics perform similarly to the originals while be-
ing much faster and having orders of magnitude
fewer parameters. Rei et al. (2022b) introduced
COMETINHO, a more compact and faster version
of the COMET metric. They optimize the COMET
code using caching and length batching and further
compress the model using pruning and knowledge
distillation on synthetic data. The resulting model
is 80% smaller and over 2 times faster than the
original while maintaining competitive quality.

3 Methods

We explore three compression techniques to de-
velop an efficient alternative to xCOMET for eval-
uating MT quality: quantization, pruning, and dis-
tillation. These methods aim to reduce the com-
putational requirements and improve the inference
speed of xCOMET while maintaining a high level
of quality.

Quantization Quantization is a highly effec-
tive compression method with two main ap-
proaches: quantization-aware training (QAT) and
post-training quantization (PTQ) (Nagel et al.,
2021). QAT offers better prediction quality but
requires costly training, making PTQ more pop-
ular. PTQ is further divided into data-free and
data-aware methods, where the latter relies on cali-
bration to estimate the data distribution parameters
for higher prediction quality. Another distinction
is weight-only quantization and weight & activa-
tion quantization, with the second approach hav-
ing slightly lower prediction quality but potential
for faster computations using efficient 8- or 4-bit
CUDA kernels.

In a nutshell, the quantization process comes
down to finding bias and scale for each floating
point value x ∈ [α, β] to convert it to a n-bit integer
xq ∈ [αq, βq]:

xq =

[
1

σ
x+ x0

]
, σ =

β − α

βq − αq
, x0 =

[
βαq − αβq

β − α

]

Dynamic quantization (Gholami et al., 2021) is a
technique that generates the zero-point x0 and scale
σ parameters in real-time, thereby eliminating the

need for calibration data. Due to the unknown
distribution parameters, activations are maintained
in floating-point format. The process of obtain-
ing quantization parameters (α, β) and quantizing
floating-point tensors to integer tensors is relatively
straightforward, with the necessary statistics being
computed during inference.

Among data-free quantization methods,
LLM.int8() (Dettmers et al., 2022) and
QLoRA (Dettmers et al., 2023) stand out as
the most prominent. (i) LLM.int8() quantizes
model weights to 8-bit precision using the
absmax quantization technique. This method
also dynamically quantizes activations to enable
efficient matrix multiplications primarily in int8,
with certain calculations performed in fp16 for
precision. (ii) QLoRA uses a more advanced
double quantization approach. It utilizes the
nf4 data type for storage, minimizing memory
demands, while computation is conducted in
higher precision types (fp16, bf16), dequantizing
weights on a per-layer basis.

GPTQ (Frantar et al., 2023) is an example
of weight-only quantization methods. It per-
forms layer-by-layer quantization, minimizing the
squared error relative to the full precision layer
output:

argmin
Ŵ

∥WX − ŴX∥2F
Here, W are the full precision weights, X denotes
the layer input corresponding to a small set of m
data points running through the network, Ŵ repre-
sents a matrix of quantized weights, and ∥ · ∥F is
the Frobenius norm.

Pruning Pruning is the removal of the least sig-
nificant parts of the neural network. It can be di-
vided into structured and unstructured. The latter
proves helpful on a CPU but is rarely practical on a
GPU, since GPUs are heavily optimized for dense
matrix multiplication. Structured pruning can take
many forms, from enforcing 2:4 sparsity patterns
(in each contiguous block of four values, two val-
ues must be zero) to pruning channels or entire
blocks of the networks.

Inspired by recent works on layer pruning in
LLMs (Gromov et al., 2024; Men et al., 2024)
which remove 25-50% of layers with moderate
quality drop, we test its applicability for inducing
efficient metrics. Specifically, we adopt a simple
pruning technique, described in Sec. 4.4 of Gromov
et al. (2024): in an L-layer model, we drop layers
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(L− n) to (L− 1). This heuristic is based on the
observations that pruning deeper layers should af-
fect the model less, as fewer layers rely on changes
made by this layer, but also that the ultimate layer
is especially important as it “decodes” the hidden
states for the last fragment of the network, and
cannot be removed. To mitigate the quality drop
incurred by layer removal, we apply parameter-
efficient fine-tuning. Concretely, we fine-tune all
biases in linear layers, LayerNorm affine parame-
ters, layerwise attention weights, and the regression
and tagging heads of xCOMET. This is akin to the
BitFit (Zaken et al., 2022) sparse-fine-tuning ap-
proach, and has the benefit of adding no parameters
and being extremely simple to implement.

We also evaluate magnitude pruning and Wanda
pruning (Sun et al., 2024). In magnitude pruning,
the importance of each weight Sij is directly es-
timated by its magnitude |Wij |. Wanda pruning
refines this approach by weighting each |Wij | by
the average L2 norm of its corresponding input
features, 1

N

∑N
j=1 ∥xj∥2, aiming to provide a more

informed measure of importance. In both methods,
the weights with the lowest importance scores are
pruned according to the specified sparsity pattern
(unstructured, 2:4 or 4:8).

Distillation In distillation, we distinguish be-
tween white-box and black-box methods. White-
box distillation, detailed in Li and Jin (2022) and
Gu et al. (2023), necessitates access to the teacher
model internal states, including logits and, possi-
bly, attention maps. This method requires substan-
tial memory and computational resources, as both
teacher and student models must be loaded simul-
taneously, which can be impractical for very large
teacher models.

Conversely, black-box distillation, as explored
in Jiang et al. (2023); Wu et al. (2024); Fu et al.
(2023), only requires the teacher model outputs,
making it more scalable and feasible for large mod-
els or restricted access scenarios. Despite using
less information from the teacher, black-box dis-
tillation effectively produces high-quality models
with reduced computational demands.

For our study, we chose black-box distillation us-
ing xCOMET-XXL. This choice allows us to use a
very large teacher model, xCOMET-XXL, without
encountering the hardware limitations that would
arise from white-box distillation. The approach in-
volves using the teacher model to generate pseudo-
labels for a large dataset of text triplets. Specifi-

cally, the teacher model assigns segment-level qual-
ity scores, q ∈ [0, 1], and token-level error span an-
notations, kj ∈ {critical,major,minor, no-error},
for each token in the machine translations, based on
MQM annotation guidelines (Freitag et al., 2021a).
We simplify the training approach proposed in
the original xCOMET paper, adopting a single-
phase training method that efficiently trains the
student model using these pseudo-labels with both
segment-level and word-level supervision.

Our approach resembles the recently proposed
Distilling step-by-step method (Hsieh et al., 2023).
Both methods utilize black-box distillation without
access to the teacher model’s internal states. Fur-
thermore, both approaches train the student model
on an additional supervision signal beyond the sin-
gle task-specific label/score. In the case of Dis-
tilling step-by-step, it is LLM-produced rationales,
while in our case, it is error span annotations pro-
duced by xCOMET-XXL.

4 Experiments

We compare quantization, pruning, and distillation
for compressing xCOMET. We compare it to both
released versions, -XL and -XXL. As we focus on
computational efficiency, we measure the model
(i) inference speed, (ii) resource requirements (in
terms of GPU memory, vRAM), and (iii) metric
prediction quality, expressed in Kendall-τ correla-
tion with human judgment.

4.1 Evaluation

WMT MQM Human Evaluation dataset. This
dataset contains all MQM human annotations
from previous WMT Metrics shared tasks (Fre-
itag et al., 2022, 2021b) and from Freitag et al.
(2021a). It contains over 150k examples for three
translation directions (Chinese-English, English-
German, English-Russian), five domains (news,
TED talks, conversational, social, e-commerce),
and three years (2020, 2021, 2022). Following
xCOMET (Guerreiro et al., 2023), we use the news
2022 subset (over 16k samples) for evaluation and
the rest of the data for training.

Eval4NLP. We additionally use MT data from
the Eval4NLP shared task (Leiter et al., 2023).
There are three translation directions: English-
Spanish, English-German, and English-Chinese,
over 4400 examples in total. No reference transla-
tion is provided, which allows to test xCOMET in
a reference-free regime.
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Metric quality evaluation. We use the Kendall
correlation to evaluate the quality of the compared
metrics. See Appendix B for a definition. Each ex-
periment that involves model training is conducted
3 times with different random seeds to account
for any fluctuations. We report correlation values
obtained by averaging across 3 runs.

Efficiency evaluation. To evaluate the computa-
tional efficiency of compressed models, we mea-
sure inference speed in samples per second (sam-
ples/s). For a given language pair, we divide the
amount of examples by the total time needed to
inference the model on the set. Due to the GPU
execution and memory models, some operations,
such as matrix multiplication, take the same time
to execute regardless of the amount of data sup-
plied. Thus, using the largest possible batch size
that fits into the accelerator memory is most effi-
cient. To select the optimal batch size, we start with
batch size 1 and increase it by a factor of 2 until
we reach the memory limit on the given GPU. We
test model throughput on RTX 3090 and A100 to
explore performance on consumer- and production-
level GPUs. Additionally, we provide peak vRAM
usage for each model on a fixed batch size of 8.

4.2 Setup
Quantization. We use the GPTQ (Frantar
et al., 2023) quantization algorithm and quantize
xCOMET to 8, 4, 3, and 2 bits per parameter. We
keep default hyperparameters, except using a small
subsample of the WikiText2 (Merity et al., 2017)
dataset for calibration. In addition to that, we
experiment with data-free quantization methods:
LLM.int8() – 8 bit and QLoRA – 4 bit. We use
the implementation from the bitsandbytes python
library. Initial experiments indicated that models
worked faster with their 4-bit quantization imple-
mentation if weights were converted to mixed preci-
sion beforehand.This observation was also true for
8-bit quantization, but in this case the quality drop
became substantial. Thus, we report LLM.int8()
without any uncompressed model transformations,
and QLoRA with half-precision model weight con-
version.

Pruning. Following the approach described in
the §3, we apply layer pruning to the underlying
encoder model of xCOMET. We remove the under-
lying layers from L− n to L− 1, with n being 4,
8, 12, 16 or 20 layers. We also patch the layerwise
attention component of the xCOMET model to re-

flect changes in the model structure. Subsequently,
after pruning, we perform parameter-efficient fine-
tuning on the training part of the WMT22 MQM
dataset. Fine-tuning is performed for 1 epoch, us-
ing AdamW (Loshchilov and Hutter, 2019) opti-
mizer with a learning rate of 1e−4, effective batch
size of 128, and cosine learning rate warmup for
10% of the duration of training.

With Wanda pruning we try 2:4 and 4:8 patterns,
to explore setups which can realistically provide
speedups on GPU. We use 256 calibration sam-
ples from WikiText23, and do not finetune pruned
model, as the original method does not require it.
We also run simple magnitude pruning with 2:4
and 4:8 sparsity patterns.

Constructing dataset for distillation. To create
a dataset for model compression through distilla-
tion, we collected a large number of examples for
evaluating MT systems. The collection process
involved three main stages.

First, we sampled 500k examples of high-quality
parallel texts (source texts and their translations)
from the NLLB dataset (Costa-jussà et al., 2022)
for each of the following language pairs: Russian-
English, German-English, and Chinese-English.
As the NLLB dataset is automatically collected
at scale using a bi-text mining model, some transla-
tions may be of subpar quality. To address this
issue, we applied the xCOMET-XXL model in
reference-free mode to filter out examples with low
quality scores, which are more likely to be incor-
rect translations. The filtering threshold was set to
the 95th percentile of scores for each language pair,
resulting in a threshold of 1.0 (on a 0 to 1 scale) for
Russian-English and German-English, and 0.85 for
Chinese-English.

In the second stage, we generated translation
hypotheses for the filtered examples using various
MT models with different sizes, architectures, and
release dates to ensure high variability in transla-
tion quality, following the approach of Rei et al.
(2022b). Additionally, we applied synthetic corrup-
tion algorithms to generate hypotheses by corrupt-
ing reference translations, as suggested by Moosa
et al. (2024). The complete list of models and algo-
rithms used can be found in Appendix A.

Finally, in the third stage, we used the xCOMET-
XXL model in reference-based mode to generate

3In (Sun et al., 2024) authors use 128 calibration sam-
ples from C4, but we couldn’t reproduce the code related to
sampling examples from C4.
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labels for the collected dataset, including sentence-
level scores and error spans. After deduplication
and inverting language pairs, our final dataset con-
sists of 14M examples, each containing a source
text, reference translation, hypotheses, segment-
level quality score and annotated error spans.

Distillation. We use mDeBERTa v3 (He et al.,
2023) as a student. It has 278 M parame-
ters — 13 times fewer than xCOMET-XL, 39
times fewer than xCOMET-XXL, and 2 times fewer
than COMET-22 — one of the top performers in
WMT22 Metrics Shared Task. This model was
chosen as it shows superior quality on multilingual
language understanding tasks such as XNLI (Con-
neau et al., 2018), compared to alternatives of sim-
ilar size: InfoXLM (Chi et al., 2021) and XLM-
RoBERTa (Conneau et al., 2020). We trained for 1
epoch, with learning rate of 2e−5 for scoring head
and 1e − 5 for encoder. We set the batch size to
64. Scoring head was configured with two hidden
fully connected layers with sizes 3072 and 1024.
We compare the prediction quality of the distilled
model with original models xCOMET-XL/XXL,
as well as with best-performing models of similar
size: BLEURT-20 (Sellam et al., 2020) with 579
M parameters and COMET-22 (Rei et al., 2022a)
with 581 M parameters.

4.3 Results
We present the results of our experiments on quan-
tization, pruning, and distillation. Tables 1 and 3
show the effects of these techniques on xCOMET-
XL and xCOMET-XXL models. Table 1 focuses
on the trade-offs between model quality and mem-
ory consumption for pruning and quantization, and
Table 3 presents the relationship between model
quality and throughput for the same techniques.
Separately, we present prediction quality for our
distilled model in Table 2 and compare it to several
baseline metrics of similar size.

Quantization. Quantization proves highly effec-
tive in reducing memory consumption while main-
taining quality. For xCOMET-XL, GPTQ 8-bit
achieves nearly identical quality to the baseline,
with an average Kendall correlation of 0.420, while
reducing peak memory usage by 33%. GPTQ 3-bit
provides the largest memory reduction of 54% at
the cost of a 0.013 decrease in correlation. No-
tably, xCOMET-XXL sees no quality degradation
with GPTQ 8-bit and 3-bit, despite memory reduc-
tions of 38% and 64%, respectively. LLM.int8()

and QLoRa are suboptimal in terms of quality /
peak memory consumption tradeoff, dominated by
GPTQ 8-bit and GPTQ 3-bit respectvely.

However, as we see in Table 3, GPTQ slows
models down, most likely due to usage of non-
optimized CUDA kernels, while QLoRa maintains
the thoughput on par with non-compressed model.

Pruning. Layer pruning substantially improves
throughput, particularly for xCOMET-XL. As we
can see in Table 3, pruning 16 layers provides 67%
speedup compared to the uncompressed model on
an RTX 3090. However, the quality drop is larger
compared to quantization methods.

Interestingly, magnitude pruning slightly outper-
forms Wanda pruning, though the latter uses more
involved weight importance estimation. Moreover,
magnitude pruning performs on par with remov-
ing 8 layers, despite keeping only 50% of non-
zero weights. Due to some inefficiencies in official
implementation, Wanda pruning and magnitude
pruning get OOM error on RTX 3090 on some of
the datasets; however, we expect they would show
speedups similar to ones on A100.

Distillation. Distilling xCOMET-XXL into the
much smaller xCOMET-lite model is a highly ef-
fective compression strategy. As we demonstrate
in Table 2, despite having only 2.6% of the parame-
ters (278M vs. 10.7B), the distilled model achieves
an average Kendall correlation of 0.388, surpass-
ing BLEURT-20 & COMET-22. On English-
Russian translation, it even surpasses xCOMET-
XL. The effectiveness of using our large-scale dis-
tillation dataset is further highlighted by the 10-
point lower correlation achieved by a model trained
on a smaller human-annotated dataset.

The distilled xCOMET-lite model offers unpar-
alleled speed and memory efficiency, processing
up to 153.8 samples/s on an RTX 3090, 15.2 times
faster than the original model (7.8-10.1), as we
demonstrate in Table 3. The distilled model has a
peak memory consumption of just 1.79 GB, 12.5
times smaller than the original model (22.39 GB).

Additional experiments on reference-free evalua-
tion (Appendix F) demonstrate that our distilled
model remains competitive with the xCOMET
models, achieving an average Kendall correlation
of 0.363, just slightly lower than xCOMET-XXL
(0.385) and xCOMET-XL (0.378).

Extended Results. In Appendix E, Figure 2,
we present detailed results covering all evaluated
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Model Compression method Average Kendall correlation
Peak memory consumption (GB)

mean (max)

XL None 0.421 7.76 (8.17)
XL GPTQ 8 bit 0.420 5.20 (5.60)
XL GPTQ 3 bit 0.408 3.54 (3.84)
XL LLM.int8() 0.416 7.50 (8.32)
XL QLoRA 4 bit 0.405 3.75 (4.16)
XL Prune 8 layers 0.389 6.34 (6.66)
XL Prune 16 layers 0.365 4.90 (5.14)
XL Magnitude pruning 4:8 0.390 *7.77 (8.18)
XL Wanda pruning 4:8 0.389 *8.09 (8.25)

XXL None 0.433 22.27 (22.39)
XXL GPTQ 8 bit 0.433 13.81 (14.66)
XXL GPTQ 3 bit 0.435 7.99 (8.85)
XXL LLM.int8() 0.428 17.86 (19.59)
XXL QLoRA 4 bit 0.429 9.09 (9.94)
XXL Prune 8 layers 0.417 19.39 (20.09)
XXL Prune 16 layers 0.398 15.91 (16.48)
XXL Magnitude pruning 4:8 0.418 *22.82 (23.65)
XXL Wanda pruning 4:8 0.408 *22.88 (23.65)

XXL Distilled (xCOMET-lite) 0.388 1.59 (1.79)

Table 1: An overview table with quality / peak memory consumption tradeoff for various representative compression
methods in setting with reference translations. Average Kendall correlation and mean/max memory consumption is
computed over three language pairs. Underlined values indicate compression methods with best prediction quality.
XL stands for xCOMET-XL, XXL stands for xCOMET-XXL. For Wanda pruning, VRAM consumption is reported
using the official method implementation, which stores pruned weights as zeros in original precision. However,
potentially 4:8 pruning could deliver almost x2 memory usage reduction.

Metric zh-en en-ru en-de Avg. # parameters

xCOMET-XL 0.399 0.414 0.448 0.420 3.5 B
xCOMET-XXL 0.390 0.435 0.470 0.432 10.7 B

BLEURT-20 0.336 0.380 0.379 0.365 579 M
COMET-22 0.335 0.369 0.391 0.361 581 M
COMETINHO 0.262 0.330 0.342 0.311 117 M
xCOMET-lite (WMT22 data only) 0.280 0.320 0.295 0.298 278 M
xCOMET-lite 0.360 0.422 0.384 0.388 278 M

Table 2: Distillation results on WMT MQM News 2022
subset. The numbers are Kendall correlation with hu-
man judgement. We compare against BLEURT-20 and
COMET-22, which were strong contenders in WMT22
Metrics Shared Task. Additionally, we compare against
a baseline of our model trained on smaller human-
annotated dataset WMT22. For reference, there are
also scores for large xCOMET models.

configurations of pruning and quantization. No-
tably, 3-bit GPTQ compression maintains predic-
tion quality, contrary to observations in Dettmers
and Zettlemoyer (2023), where 4 bits are Pareto-
optimal. This suggests that encoder models may be
less susceptible to the “outlier features” mentioned
in Dettmers et al. (2022). Layer pruning shows
promising results for xCOMET-XXL on 4 out of
6 translation directions, with up to 25% of layers
pruned with minimal impact on quality, especially
in the reference-free setting.

4.4 Interaction Analysis

To further understand the limits of compression
of learned metrics for MT evaluation, we explore
interactions between compression methods.

We can apply pruning to our distilled model
xCOMET-lite to further shrink its size. Given that
the encoder now only has 12 layers instead of 48,
we evaluate 3 configurations, pruning 2, 4, or 6 lay-
ers from the model. In those experiments, we use
the same hyperparameters as in §4.2. We notice a
fatal drop in correlation with human judgment by
at least 30% across configurations, to an average
score of 0.2645. Please see Table 4 in Appendix C
for the full results.

We can also apply quantization to the distilled
model. Unfortunately, due to architectural de-
tails, GPTQ quantization is incompatible with
the mDeBERTa architecture. Instead, we apply
LLM.int8() and QLoRA quantization (8-bit and 4-
bit, respectively). When comparing the 8-bit quan-
tized xCOMET-lite model to the non-quantized
one, we observe only a marginal drop in correlation
with human judgment. The 8-bit model achieves
an average score of 0.369 across language pairs
with references, compared to original xCOMET-
lite 0.388. For pairs without references, the 8-bit
model scores 0.354, while xCOMET-lite achieves
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Model Compression method
Average

Kendall correlation
Samples per second RTX 3090

(min / median / max)
Samples per second A100

(min / median / max)

XL None 0.421 23.1 / 30.5 / 30.9 46.3 / 59.5 / 61.8
XL GPTQ 8 bit 0.420 10.8 / 13.7 / 13.9 29.8 / 38.5 / 40.6
XL GPTQ 3 bit 0.408 9.9 / 12.4 / 12.6 29.6 / 39.4 / 40.7
XL LLM.int8() 0.416 20.9 / 28.1 / 28.5 29.8 / 38.5 / 40.6
XL QLoRA 4 bit 0.405 22.1 / 28.8 / 29.4 44.8 / 62.9 / 63.4
XL Prune 8 layers 0.389 29.3 / 38.3 / 39.1 59.8 / 72.7 / 78.5
XL Prune 16 layers 0.365 38.6 / 50.3 / 51.6 72.0 / 91.6 / 96.6
XL Wanda 4:8 0.389 25.2 / 32.8 / 34.2 56.0 / 72.1 / 75.5
XL Magnitude pruning 4:8 0.390 25.4 / 33.4 / 33.8 53.3 / 71.7 / 72.1

XXL None 0.433 7.8 / 10.0 / 10.1 17.5 / 22.5 / 23.3
XXL GPTQ 8 bit 0.433 2.6 / 3.0 / 3.0 9.3 / 11.7 / 11.9
XXL GPTQ 3 bit 0.435 2.7 / 3.2 / 3.2 9.0 / 11.2 / 11.4
XXL LLM.int8() 0.428 9.7 / 12.4 / 12.4 13.3 / 19.0 / 19.8
XXL QLoRA 4 bit 0.429 7.3 / 9.4 / 9.5 17.2 / 22.3 / 23.3
XXL Prune 8 layers 0.417 9.4 / 12.2 / 12.3 21.3 / 26.8 / 27.6
XXL Prune 16 layers 0.398 15.2 / 15.3 / 15.5 26.2 / 33.3 / 34.3
XXL Wanda pruning 4:8 0.408 OOM 23.5 / 29.5 / 30.5
XXL Magnitude pruning 4:8 0.418 OOM 23.0 / 29.4 / 29.6

XXL Distilled (xCOMET-lite) 0.388 121.4 / 146.1 / 153.8 150.5 / 180.2 / 190.0

Table 3: Speed results for various methods in settings with reference. Importantly, here the memory consumption
is higher than in Table 1, as we aim for maximal throughput on a given GPU. Average Kendall correlation is
computed over three language pairs. Samples per second are reported for both 3090 and A100 GPUs. XL stands for
xCOMET-XL, XXL stands for xCOMET-XXL. OOM means Out Of Memory error.

0.363. Notably, the model quantized into 4-bit
mode yields a slightly higher correlation for pairs
with references, namely 0.379. Furthermore, quan-
tization substantially reduces memory usage. The
8-bit quantization decreases the peak memory con-
sumption of the distilled model by 17% from 1.8
GB to 1.5 GB, while the 4-bit quantization further
reduces it to 1.4 GB. These results demonstrate that
quantization is a viable option for further compress-
ing the distilled model without substantial quality
degradation. See Table 5 in Appendix D for full
results.

5 Discussion

The compression methods applied to xCOMET-
XL and xCOMET-XXL models demonstrate the
potential for reducing memory consumption and in-
creasing processing speed while maintaining com-
petitive prediction quality. Quantization methods,
particularly GPTQ 8-bit and 3-bit, achieve sub-
stantial memory savings without compromising the
models quality. Quantization can also be combined
with distillation with little-to-no quality reduction.

Pruning methods, while capable of reducing
memory consumption and increasing throughput,
result in a more noticeable decrease in correlation
compared to quantization. Our results align with
the findings in Rei et al. (2022b), which conclude
that up to 5 out of 24 layers of encoder model can
be removed without noticeable quality degradation
of the metric. At the same time, the layer pruning

works slightly worse than in other tasks (Gromov
et al., 2024; Men et al., 2024), where up to 50% of
layers could be removed for large models. Pruning
appears incompatible with our distilled model, due
to a substantial drop in metric quality. Magnitude
pruning with 4:8 sparsity pattern shows promising
results with respect to quality / speedup trade-off.
Moreover, it potentially offers almost 50% reduc-
tion in peak memory consumption (and e.g. torch
library will likely support structured spasity for-
mats quite soon).

The distillation of xCOMET-XXL into the
smaller mDeBERTa-based model, xCOMET-lite, is
a highly effective approach for improving compu-
tational efficiency while maintaining competitive
metric quality. Our distillation method, based on
collecting large-scale diverse dataset, proves suc-
cessful for distilling the xCOMET metric and is
easily scalable to additional translation directions.

When considering speed, the distilled xCOMET-
lite outperforms other compression methods, pro-
cessing a substantially higher number of samples
per second on both consumer-grade RTX 3090 and
HPC-grade A100 GPUs. Pruning is the next best
performer, allowing for up to 1.3-1.5 times speedup
while maintaining competitive metric quality.

6 Conclusion

In the rapidly evolving field of MT evaluation, the
current top-performing metrics, such as MetricX,
xCOMET, and GEMBA-MQM, are all based on
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extremely large underlying models. These mod-
els, including mT5 with 13B parameters, XLM-
RoBERTa-XXL with 11B parameters, and the
closed-source GPT-4 with an estimated 1.7T pa-
rameters, pushed the boundaries of performance
but come with substantial computational costs and
hardware requirements.

Our research aims to address these challenges
by comparing three commonly used compression
methods — quantization, pruning, and knowledge
distillation — in compressing the xCOMET model.
We have demonstrated that these methods can effec-
tively reduce memory consumption and increase
processing speed while maintaining competitive
performance, making them viable options for de-
ploying large state-of-the-art learned metric for
MT evaluation in a resource-constrained environ-
ments. In particular, our distilled model xCOMET-
lite achieves competitive prediction quality with a
substantially smaller model size, offering a solution
for researchers and practitioners with no access to
top-tier hardware.

Based on our findings, we recommend the fol-
lowing: for the highest quality with a reduced
VRAM requirements, opt for 8-bit or 3-bit quan-
tization with GPTQ. For improved speed without
substantial quality penalty, test 4-bit quantization
with QLoRA, try structured magnitude pruning
(2:4, 4:8) or prune up to 25% of the model lay-
ers.For massive speedup and low hardware require-
ments, consider the distilled model xCOMET-lite
or its quantized version, accepting a slight compro-
mise on quality. The choice of compression method
ultimately depends on the hardware, amount of
data, and acceptable quality loss.
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7 Limitations

While our research provides valuable insights into
the compression of large language models for ma-
chine translation evaluation, it is important to ac-
knowledge the limitations of our work.

• Our study focuses solely on machine transla-
tion evaluation and does not consider other
tasks, such as summarization evaluation. To
the best of our knowledge, all currently ex-
isting summarization evaluation metrics are
regression-only and do not offer error span
prediction. Therefore, it is unclear if the re-
sults would be different for this task. Future re-
search could explore the applicability of these
compression methods to a broader range of
natural language processing tasks.

• Our measure of a metric quality, Kendall-τ
correlation with human judgments, is known
to incorrectly reward metrics for predicting
ties (Deutsch et al., 2023).

• Although our research has potential implica-
tions for low-resource machine translation, we
did not conduct experiments on low-resource
language pairs. We plan to address this limita-
tion when releasing the subsequent versions
of our models to the public.

• Our distillation approach still requires the
availability of the original teacher model.
Training such a model is expensive in terms
of both computational resources and the cost
of human annotation for the training data.
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A Models and Algorithms used for Data
Collection

• OPUS-MT (Tiedemann and Thottingal, 2020)
monodirectional models: en-ru, ru-en, en-zh,
zh-en, en-de, de-en.

• OPUS-MT models for multiple languages:
mul-en and en-mul.

• NLLB models (Costa-jussà et al., 2022), ver-
sions: Distilled 600M and 1.3B, Non-Distilled
1.3B and 3.3B.

• Word Drop: it was used to create translation
hypotheses by randomly dropping 15% of the
words from reference translation.

• Word Replacement with MLM: similarly we
applied XLM-RoBERTa-Large for masked
language modelling task to replace 15% of
the words.

• Backtranslation: we applied NLLB-1.3B
model to translate references into a proxy lan-
guage and back. As a proxy languages we
used French and Japanese.

• Backtranslation + MLM: consists of applying
MLM to the results of backtranslation.

B Kendall Correlation

Kendall-τ correlation is defined as follows: let
(x1, y1), . . . , (xn, yn) be observations of random
variables X and Y such that all values of xi and
yi are unique. A pair of observations (xi, yi) and
(xj , yj) is said to be concordant if either xi <
xj ; yi < yj or xi > xj ; yi > yj , otherwise this
pair is discordant. The Kendall correlation coeffi-
cient τ is

τ =
nc − nd

C2
n

=
C2
n − nd − nd

C2
n

= 1− 2nd

C2
n

= 1− 4 · nd

n(n− 1)
where n is the total amount of observations, nc

is the amount of concordant pairs, and nd is the
amount of discordant pairs. Kendall correlation
coefficient is more robust to outliers than Pearson
correlation and better captures non-linear depen-
dencies. In our case, X is the ground truth MQM
score, and Y is the score estimated by the neural
metric.

21945

https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2024.eacl-long.57
https://aclanthology.org/2024.eacl-long.57
https://aclanthology.org/2024.eacl-long.57
https://doi.org/10.48550/ARXIV.2401.08417
https://doi.org/10.48550/ARXIV.2401.08417
https://doi.org/10.48550/ARXIV.2401.08417
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://doi.org/10.18653/V1/2022.ACL-SHORT.1
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053


C Interaction Analysis of Distillation and
Pruning

# pruned layers
Avg. correlation

with ref.
Avg. correlation

without ref.

2 0.240 0.209
4 0.264 0.202
6 0.201 0.181

Table 4: Results of evaluation of xCOMET-lite distilled
from xCOMET-XXL with applied pruning. Avg. corre-
lation represents Kendall correlation averaged across 3
language pairs.

D Interaction Analysis of Distillation and
Quantization

Method # bits
Avg. correlation

with ref.
Avg. correlation

without ref.
Peak Mem. Cons. (GB)

LLM.int8() 8 0.369 0.355 1.2 (1.5)
QLoRA 4 0.379 0.345 1.1 (1.4)

Table 5: Results of evaluation of xCOMET-lite dis-
tilled from xCOMET-XXL with applied quantization.
Avg. correlation represents Kendall correlation aver-
aged across 3 language pairs.

E Detailed results on compression and
quantization

See Figure 2.

F Results on Eval4NLP dataset

In addition to WMT Shared Metric dataset, we
perform evaluations on Eval4NLP dataset, in set-

ting without reference translation. The results are
shown on Figure 3 and Tables 6, 7. All conclusions
are stable with respect to another dataset.

G Varying seed for layer pruning

To check the robustness of finetuning procedure in
layer pruning technique, we run the same pipeline
with three seeds. The standard deviations are pre-
sented in Table 8.

H Additional Details

In this section we discuss some additional details
concerning our research.

H.1 Risks

While our work demonstrates the potential of dis-
tillation, quantization, and pruning techniques in
creating an efficient alternative to xCOMET, there
are some risks to consider:

• The use of distilled models like xCOMET-lite,
as well as over-pruned models, in high-stakes
applications, such as filtering datasets or evalu-
ating machine translation systems in sensitive
domains (e.g., healthcare, legal), may lead
to suboptimal decisions due to the slightly
lower accuracy compared to the full xCOMET
model. One must exercise discretion when
considering acceptable loss of quality.

• Our work primarily focuses on high-resource
languages, and the performance of the com-
pressed models on low-resource languages
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Figure 2: Results on WMT MQM Human Evaluation dataset. In this setting xCOMET has access to reference
translation.
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Figure 3: Results on Eval4NLP dataset. This is reference-free setting, also known as Quality Estimation (QE).

Model Compression method Average Kendall correlation Peak memory consumption (Gb)

XL None 0.378 7.51 (7.54)
XL GPTQ 8 bit 0.379 4.94 (4.97)
XL GPTQ 3 bit 0.372 3.39 (3.39)
XL LLM.int8() 0.384 6.98 (7.06)
XL QLoRA 4 bit 0.373 3.50 (3.53)
XL Prune 8 layers 0.373 6.13 (6.16)
XL Prune 16 layers 0.359 4.75 (4.77)
XL Magnitude pruning 4:8 0.362 7.51 (7.55)
XL Wanda pruning 4:8 0.342 8.01 (8.01)

XXL None 0.385 22.24 (22.30)
XXL GPTQ 8 bit 0.385 13.25 (13.32)
XXL GPTQ 3 bit 0.378 7.44 (7.51)
XXL LLM.int8() 0.383 16.78 (16.94)
XXL QLoRA 4 bit 0.373 9.09 (9.94)
XXL Prune 8 layers 0.381 18.91 (18.97)
XXL Prune 16 layers 0.360 15.53 (15.57)
XXL Magnitude pruning 4:8 0.340 22.25 (22.31)
XXL Wanda pruning 4:8 0.340 22.50 (22.50)

XXL Distilled (xCOMET-lite) 0.363 1.4 (1.4)

Table 6: An overview table with some representative results for various compression methods in setting without
reference translations. Average is computed over three language pairs for Kendall correlation. For peak memory the
mean and maximum values are computed, and the maximum is reported in parentheses. XL stands for xCOMET-XL,
XXL – xCOMET-XXL.
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Model Compression method
Average

Kendall correlation
Samples per second RTX 3090

(min / median / max)
Samples per second A100

(min / median / max)

XL None 0.378 55.1 / 67.0 / 70.5 76.2 / 98.9 / 111.8
XL GPTQ 8 bit 0.379 30.8 / 35.1 / 35.9 53.0 / 69.0 / 72.9
XL GPTQ 3 bit 0.372 28.7 / 33.3 / 33.7 57.3 / 71.3 / 74.0
XL LLM.int8() 0.384 50.9 / 59.7 / 63.8 64.1 / 87.2 / 88.1
XL QLoRA 4 bit 0.373 55.0 / 66.2 / 68.7 93.0 / 123.2 / 135.5
XL Prune 8 layers 0.373 70.5 / 85.6 / 87.7 94.5 / 119.5 / 131.2
XL Prune 16 layers 0.359 82.9 / 108.6 / 110.2 110.4 / 128.3 / 149.2

XXL None 0.385 22.1 / 24.2 / 25.2 35.4 / 48.3 / 48.6
XXL GPTQ 8 bit 0.385 8.1 / 8.5 / 8.5 23.7 / 28.9 / 29.6
XXL GPTQ 3 bit 0.378 8.6 / 9.2 / 9.3 20.9 / 23.9 / 29.1
XXL LLM.int8() 0.383 27.8 / 30.8 / 32.1 38.3 / 48.2 / 48.9
XXL QLoRA 4 bit 0.373 21.8 / 25.2 / 25.5 42.6 / 51.9 / 57.4
XXL Prune 8 layers 0.381 25.4 / 28.4 / 29.8 42.6 / 56.7 / 60.2
XXL Prune 16 layers 0.360 30.0 / 34.8 / 36.3 50.8 / 64.4 / 68.1
XXL Distilled (xCOMET-lite) 0.363 312.1 / 352.0 / 358.0 229.0 / 232.2 / 241.9

Table 7: Speed results for different methods in setting without reference. Importantly, here the memory consumption
is higher than in Table 6, as we aim for maximal throughput on a given GPU. Average and std are computed over
three language pairs for Kendall correlation. Samples per second are reported for both 3090 and A100 GPUs. XL
stands for xCOMET-XL, XXL – xCOMET-XXL.

Model Compression method Chinese - English English - Russian English - German Peak memory consumption (GB)

XL None 0.399 0.448 0.415 7.76 (8.17)
XL Prune 8 layers 0.387± 0.005 0.414± 0.006 0.381± 0.004 6.34 (6.66)
XL Prune 16 layers 0.362± 0.002 0.369± 0.006 0.359± 0.009 4.90 (5.14)

XXL None 0.390 0.470 0.435 22.27 (22.39)
XXL Prune 8 layers 0.398± 0.000 0.435± 0.000 0.385± 0.000 19.39 (20.09)
XXL Prune 16 layers 0.372± 0.001 0.445± 0.004 0.352± 0.006 15.91 (16.48)

Table 8: Robustness of layer pruning approach to random seed, setting with reference translations. For peak memory
consumption, the mean and maximum values are computed, and the maximum is reported in parentheses. XL stands
for xCOMET-XL, XXL – xCOMET-XXL.
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remains unexplored. The lack of training
data and the potential differences in linguistic
characteristics may lead to suboptimal perfor-
mance when applying these models to eval-
uate translations in low-resource language
pairs. This could result in inaccurate quality
assessments and hinder the development of
reliable machine translation systems for these
languages.

• The availability of highly efficient evaluation
metrics like xCOMET-lite may prompt re-
searchers and practitioners to conduct large-
scale experiments, such as web-scale dataset
filtration or extensive hyperparameter opti-
mization. While these experiments can lead
to valuable insights and improvements in ma-
chine translation systems, they may also con-
sume substantial amounts of computational
resources and power. This increased energy
consumption could contribute to environmen-
tal concerns and raise questions about the sus-
tainability of such practices.

H.2 Artifacts
The main artifact that we use in our research is
a set of two pre-trained metrics for MT evalua-
tion: xCOMET-XL and xCOMET-XXL, released
by (Guerreiro et al., 2023). Those models are re-
leased under cc-by-nc-sa-4.0 license. Our use of
these models complies with the license and is con-
sistent with usage permissions.

We plan to release two of our own artifacts: the
distilled model xCOMET-lite and the dataset that
was used to train it. Both of those artifacts will
also be released under cc-by-nc-sa-4.0 according
to the “share-alike” requirement of this license, as
derivatives of the original xCOMET models.

H.3 PII in the dataset
According to the dataset card of the NLLB dataset 4,
the data may contain personally identifiable infor-
mation (PII). Identifying and anonymizng such in-
formation is outside of the scope of this work. We
plan to address it in future, before releasing dataset
to the public.

H.4 Used packages
In our experiments we use the following key soft-
ware libraries:

• PyTorch: v2.0.1
4https://huggingface.co/datasets/allenai/nllb

• Transformers: v4.41.2

• BitsAndBytes: v0.41.1

• AutoGPTQ: v0.7.0

• Optimum: v1.11.0

• SciPy: v1.11.1

• Unbabel COMET: v2.0.2
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