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Abstract

Although large language models (LLMs) ex-
cel in various text classification tasks, regular
prompting strategies (e.g., few-shot prompting)
do not work well with dementia detection via
picture description. The challenge lies in the
language marks for dementia are unclear, and
LLM may struggle with relating its internal
knowledge to dementia detection. In this paper,
we present an accurate and interpretable clas-
sification approach by Adversarial Text Gen-
eration (ATG), a novel decoding strategy that
could relate dementia detection with other tasks.
We further develop a comprehensive set of in-
structions corresponding to various tasks and
use them to guide ATG, achieving the best ac-
curacy of 85%, >10% improvement compared
to the regular prompting strategies. In addi-
tion, we introduce feature context, a human-
understandable text that reveals the underlying
features of LLM used for classifying dementia.
From feature contexts, we found that dementia
detection can be related to tasks such as assess-
ing attention to detail, language, and clarity
with specific features of the environment, char-
acter, and other picture content or language-
related features. Future work includes incorpo-
rating multi-modal LLMs to interpret speech
and picture information.

1 Introduction

Large Language Models (LLMs), such as GPT-4
(Achiam et al., 2023) and Llama3 (Touvron et al.,
2023), have demonstrated powerful general capa-
bilities in traditional NLP tasks like rewriting and
summarization (Pu et al., 2023). They possess two
notable advantages: First, they can easily gener-
alize to unseen tasks and specific domains using
only a few in-context samples without the need for
fine-tuning (Brown et al., 2020). Second, emer-
gent abilities such as chain-of-thought (CoT) (Wei
et al., 2022) enhance LLM capability by learning to
derive the final answer through intermediate steps

from training or in-context examples, and offer bet-
ter interpretability compared to the smaller size of
language models like BERT (Devlin et al., 2018).

Despite its powerful capabilities, LLMs do not
perform well in dementia detection with regular
prompting strategies like few-shot or CoT. Demen-
tia detection via picture description aims to infer
dementia status by analyzing speech recordings
or transcripts (Becker et al., 1994). Typical ac-
curacy of LLM on dementia detection lies in the
range of 55-75% in our experiments and previous
works (Bang et al., 2024), even worse than fine-
tuning BERT-liked models with around 80% accu-
racy (Balagopalan et al., 2020; Zhu et al., 2021b).
The challenge lies in the intermediate steps of de-
mentia detection not being well-defined, and even
human experts do not have a clear understanding
of what kinds of language markers could be used to
detect dementia accurately. Without a clear under-
standing, humans can not write effective demonstra-
tions of intermediate steps, which results in LLMs
struggling to learn how to detect dementia from
training or in-context examples. As such, LLMs
may struggle to relate their internal knowledge with
dementia detection. In addition, regular prompt-
ing strategies are limited by the context window
length and long context understanding capability
of LLMs (Liu et al., 2024b), resulting in LLMs are
not able to fully understand and effectively learn
from the training set.

To bridge this gap, we propose Adversarial
Text Generation (ATG) to relate dementia detec-
tion with other tasks that LLM may be capable
of, with the guidance of the training set. ATG is
a perplexity-based decoding strategy inspired by
previous studies using perplexity for dementia de-
tection (Fritsch et al., 2019; Cohen and Pakhomov,
2020; Li et al., 2022). As shown in Figure 1, given
a training set and an instruction, ATG generates
a human-understandable Feature Context, which
could be used for perplexity-based classification.
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Figure 1: We propose adversarial text generation (ATG) to generate feature context based on a training set and
an instruction using LLMs. Then, the instruction and feature context are concatenated with the transcript for
perplexity-based classification.

The feature context is considered to be matched
with healthy transcripts while unmatched with de-
mentia transcripts, measured by the perplexity. To
find out the best tasks related to dementia detection,
we introduce comprehensive Instruction guiding
strategies, which guide ATG to generate distin-
guishable feature contexts. In experiments, we
show that these improvements ensure the generated
feature contexts are task-specific and distinguish-
able, thus enhancing classification performance.
Additionally, the feature context provides an inter-
pretable background, facilitating further studies of
the explicit features underlying dementia detection.
Our contributions are three-fold:

First, we propose adversarial text generation, a
perplexity-based decoding strategy that could relate
dementia detection with other tasks. ATG gener-
ates a feature context that diversifies the perplexity
of healthy and dementia transcripts, and then the
perplexity can be used for classification.

Second, we introduce five types of instructions
based on the LLM instruction learning and demen-
tia domain knowledge. We observe that effective
feature contexts emphasize the differences between
healthy and dementia transcripts regarding picture
contents, whereas ineffective ones do not.

Third, we introduce a difference-based instruc-
tion generation pipeline, achieving the best accu-
racy of 85.42% and AUC of 88.37% and reveal that
dementia detection can be related to tasks including
assessing attention to detail, language, and clarity,
with features of environment, character, and other
features related to picture contents and languages
that were not included in previous studies.

2 Background

Dementia Detection. Detecting dementia via
Picture Description Task (PDT) speech is a low-
cost and non-invasive method that can be widely
accessible to a large population for early detection
of dementia. It has been studied for more than 30
years (Becker et al., 1994). In the PDT, partici-
pants describe the same picture using spontaneous
speech, and researchers aim to detect whether par-
ticipants have dementia or not by analyzing speech
recordings or transcripts. It is considered to be
challenging since the labels come from separate
cognitive assessments, while even medical profes-
sionals could hardly produce accurate inferences
from speech or transcripts to dementia status.

Perplexity. Perplexity measures the fitness of
text to a language model. Formally, given a to-
kenized text sequence X = [x1, x2, . . . , xn], the
perplexity is defined as follows:

PPLM(X) = exp

{
− 1

n

n∑

i=1

log (M(xi | x<i))

}

where M(xi | x<i) are the output probability of i-
th token of the model M . If the text is less common
to the knowledge of M , the perplexity is larger; if
the text is more common to the knowledge of M ,
the perplexity is smaller. We consider the language
models are trained on texts mostly generated by
humans without dementia or cognitive problems;
the healthy transcripts from the PDT task should
fit the language models better than the dementia
transcripts. Thus, the perplexity score of dementia
transcripts tends to be larger than that of healthy
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transcripts. However, classification using such per-
plexity differences and a threshold produced lim-
ited performance. Additional training is needed
for fully exploring LLMs and perplexity for de-
mentia detection (Fritsch et al., 2019; Cohen and
Pakhomov, 2020; Li et al., 2022).

Regular text generation aims to choose the next
token to minimize the perplexity of the whole text
sequence. Specifically, in the case of greedy search,
the next token xn+1 is chosen based on the min-
imum value of PPLM(X||xn+1), where || is the
concatenate operation. We denote the process of
regular text generation as Z = RTGM(X), where
X and Z are the input and output text sequences.

3 Method

In this section, we introduce the implementation
of ATG for dementia detection. We first introduce
a perplexity-based classifier, which enables the
use of ATG for classification. It classifies a PDT
transcript into dementia or healthy classes based
on the perplexity of an input of a transcript, an
instruction, and a feature context. A high perplex-
ity score implies the transcript is from a dementia
patient, and a low perplexity score implies it is
from a healthy control. Then, we introduce the two
objectives for using ATG for generating feature
context: perplexity polarization and text coherence.
The former ensures that the feature context fits the
healthy transcripts and unfits the dementia tran-
scripts, while the latter ensures the feature context
is meaningful. Lastly, we introduce instruction-
guiding strategies for ATG to enhance the utility
of feature context and help interpret features for
dementia detection.

3.1 Perplexity-based classifier

A perplexity-based classifier CM takes inputs of a
transcript, an instruction I , and a feature context
C and makes an inference on dementia or health.
The derivation of C and I will be discussed in the
later sections of adversarial text generation and in-
struction generation. Denote a training set of the
PDT transcripts as Dtrain = {X1, X2, . . . , Xl},
and denote healthy and dementia transcripts of the
training set as Dh

train and Dd
train, respectively. We

calculate the perplexity scores for all transcripts
PPLM(Dtrain, I, C) = {PPLM(Xi||I||C)|1 ≤
i ≤ l}. Following the previous work (Li et al.,
2022), we choose a perplexity threshold th at the
equal error rate (EER) of the training set using the

training label. The classifier is described below:

CM (X, I, C) =

{
dementia, PPLM(X||I||C) ≥ th

healthy, PPLM(X||I||C) < th

3.2 Objectives for ATG

The ATG generates a feature context C =
ATGM(Dtrain, I) using the training set Dtrain and
an instruction I as inputs. The instruction I will be
discussed in the next section. ATG has two objects:
perplexity polarization and text coherence.

3.2.1 Perplexity polarization
We choose the next token with a maximum
perplexity-based metric (denoted as PPL metric).
Specifically, given an existing context Cn with n
token, for each possible next token cn+1, we cal-
culate a set of perplexity scores for the training set
PPLM(Dtrain, I, Cn||cn+1). Then, we consider
four metrics in two categories: performance-based
metrics (ACC, AUC) and distance-based metrics
(PPL-F, PPL-S). These metrics are used to select
the next token in the text generation process.

ACC value. For each cn+1, we calculate an
ACC value using three steps: 1) set C = Cn||cn+1;
2) develop a perplexity-based classifier and obtain
a threshold th according to §3.1; and 3) calculate
accuracy according to the threshold th, the perplex-
ity scores and labels of the training set.

AUC value. For each cn+1, we calculate the
value of the area under the receiver-operator char-
acteristic curve (AUC) using the perplexity scores
and labels of the training set.

PPL-F value. For each cn+1, we calcu-
late the PPL-F value as the difference of
the mean perplexity score of two classes,
i.e., mean(PPLM(Dd

train, I, Cn||cn+1)) −
mean(PPLM(Dh

train, I, Cn||cn+1)).
PPL-S value. We define the PPL-S as Cohen’s

d (Cohen, 2013) between dementia and healthy
transcripts. Specifically, for each cn+1, we calcu-
late PPL-S value as PPL-F(cn+1)/s, where s is the
pooled standard deviation of the perplexity scores
of the healthy and dementia transcripts.

Comparing different PPL metrics. We first dis-
cuss performance-based metrics. ACC has the ad-
vantage of considering the precision-recall balance
since it is calculated using EER. However, multiple
next tokens could have the same ACC value. In
comparison, the AUC value is more fine-grained
than the ACC, as the next tokens are unlikely to
have the same AUC value. A common problem
with performance-based metrics (ACC and AUC)

21920



Healthy
 Transcript ①

Dementia 
Transcript ①

Pa
ir 
①

Healthy
 Transcript n

Dementia 
Transcript n

Pa
ir 

n

…

RTG

Difference
Finding

RTGDetails ①
Aspects ①

Details n
Aspects n
…

Select
Top 10

LLM

ATG
Generate an instruction 
to identify the speaker’s 
{aspect}. {Example} The 

instructions should 
request the inclusion of 

reasoning …

Meta-instruction

**Speaker's Attention to 
Detail Assessment**
**Specific Details:**
* Environmental details:
+ Wind blowing outside
+ Bushes/plant life outside 
(curtains allow a glimpse of …

Feature Context 

Read the descriptive 
passage carefully and 
analyze the speaker's 

attention to detail. To do 
this, follow these 
steps:1. Identify

Direct Instruction

LLM

ATG
LLM LLM

Difference

Example 
Generation

Training 
set

Training 
set

Figure 2: Instruction guiding strategies. We could 1) use human-defined direct instructions for generating feature
contexts, 2) use human-defined meta-instructions to generate direct instructions, and 3) use LLM-generated
difference-based information to construct meta-instructions (i.e., difference-based instructions).

is that once a sample is correct at a given thresh-
old, it will no longer influence the selection of
the next token. This problem can be overcome
by distance-based metrics. PPL-F is defined using
mean values, which makes it susceptible to the in-
fluence of extreme values. This may result in only
certain samples with extreme PPL-F values being
considered when choosing the next token. As such,
we may potentially have large PPL-F values but
are still underfitting. In comparison, PPL-S consid-
ers both mean and standard deviation so that it is
less susceptible to extreme values and unlikely to
underfit.

Combining metrics. We can take advantage of
different PPL metrics by adding two or more of
them and using the added values to rank tokens.
We chose to use the PPL-S combined with ACC for
our main experiments since the PPL-S works better
with optimization than PPL-F, and ACC considers
the precision-recall balance. We also discuss the
effect of single and more combinations of PPL
metrics in (§5.4).

3.2.2 Coherence

While choosing the next token based on perplexity
polarization, the model may not generate seman-
tically coherent text. The incoherence of the text
will limit the interpretability and make the genera-
tion process suboptimal (discussed in §5.4). Thus,
we introduce a top-p (nucleus) sampling method
to ensure the coherence of the text. Specifically,
for each cn+1, we calculate the average output
logits 1

l

∑
X∈Dh

train
M(cn+1 | X||I||Cn) over the

healthy transcripts of the training set. Then, we
proceed with regular top-p sampling that takes the
softmax for all the possible next tokens and selects
ones with the highest probability until the added
probability is larger than a threshold p. This token
sampling process ensures the coherence of the text.

3.3 Instruction guiding strategies
We explore three instruction generation methods
to guide the ATG in generating effective feature
contexts: direct, meta, and difference-based in-
structions, with the latter building upon the for-
mer, as shown in Figure 2. We first introduce
five types of direct instructions that are defined
by existing knowledge, including LLM instruction
learning and dementia domain knowledge. These
instructions are human-defined and directly apply
to ATG to generate feature context. We further in-
troduce meta-instructions, incorporating the knowl-
edge found by LLMs through ATG. Specifically,
we use meta-instruction to generate a new direct in-
struction via ATG. Lastly, we introduce difference-
based instructions, which further incorporate the
pair-wise difference knowledge found by LLMs
through RTG into meta-instructions.

3.3.1 Direct instructions
Empty instruction. We leave the instruction
empty so that the ATG receives no guidance and
generates text based on the training set only.

Common instructions. We use instructions
from the instruction tuning datasets, including self-
instruct (Wang et al., 2022) and alpaca (Taori et al.,
2023). We consider the most common root verbs
as instructions, including “rewrite,” “summarize,”
“identify,” and “suggest.” We use 31 common in-
structions as shown in Table 5 in Appendix.

Freestyle instructions. The freestyle instruc-
tion allows LLMs to discover anything from the
transcripts they want to talk about. We test two
freestyle instructions: i) “Discuss anything notable
in the above text. Include as much detail as possi-
ble”; ii) “Ask n questions about the above picture
description and answer them.”

Information-unit instruction. Information
units are a set of human-defined subjects, places,
objects, actions, and relations in the cookie theft
picture (Yancheva and Rudzicz, 2016). Previous
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Name Content

Template P1 Text 1: {Text 1} Text 2: {Text 2} Find out the difference between text 1 and text 2. Discuss the differences in a list of aspects.
Template P2 Extract the values of {aspect} mentioned in the above text using one sentence. Start with “For example, the {aspect} could be”
Template P3 Generate an instruction to identify the speaker’s {aspect} . {Example} The instructions should request the inclusion of reasoning

steps, followed by a conclusion drawn from these steps. Output the instruction only.

Table 1: Prompt templates for difference-based instruction generation.

works show that healthy controls mention more in-
formation units than dementia ones. As such, we
define the information unit instruction as “Discuss
the mention of the following subject, places, ob-
jects, action, etc.” This instruction includes a total
of 35 information units (Table 6 in Appendix)

Linguistic-based instruction. 33 linguistic
features are selected from the previous demen-
tia works (TaghiBeyglou and Rudzicz, 2024)
(based on the eval command in the CLAN pack-
age (MacWhinney, 2017)). The instruction ex-
amples are “Extract the following features: Total
number of utterances in the transcript” and “Mean
Length of Utterances.” The complete instruction
includes all features listed in Table 7 in Appendix).

3.3.2 Meta instructions
A meta-instruction Im could be used to generate
new a direct instruction Id = ATGM(Dtrain, Im)
via ATG. Meta instructions could introduce mul-
tiple steps specified in a complicated instruction
according to the training set, while humans may
not easily handle the many details of the content
and features of such instruction. We construct
meta-instructions for information-unit instruction
or linguistic-based instruction because they contain
many details of the content and features of the pic-
ture. We add a “Generate an instruction to” prefix
to the original instructions and use ATG to generate
new ones. We expect the newly generated instruc-
tions to include organized steps using information
units or linguistic-based features.

3.3.3 Difference-based instructions
We introduce three steps of using difference-based
instructions: Difference finding, example genera-
tion, and meta and direct instruction generation.

Difference finding. To find out the main dif-
ference between healthy and dementia transcripts,
we first generate all the pairs of healthy and de-
mentia transcripts (Xh, Xd). Then, following
the prompt template P1 in Table 1, we use the
RTG of an LLM to generate the difference d =
RTGM(P1(X

h, Xd)) for each pair. The output
difference includes a set of aspects a and corre-

sponding details. Aspects are a set of words or
phrases (e.g., “attention to detail”), and the details
are the difference in corresponding aspects (e.g.,
text 1 is superficial while text 2 is nuanced). Given
the differences from all pairs, we count the number
of each unique aspect and then obtain the top 10 as-
pects. We only keep the difference in these aspects
for the next step.

Example generation. Then, for each of the top
10 aspects, we use P2 to extract the examples e
of details using the first 10 of the difference items
e = RTGM(P2(([d1, . . . d10, a))).

Meta and direct instruction generation. Based
on each aspect a and corresponding examples e,
we construct the meta-instruction P3(a, e) using
template P3 and generate an direct instruction
Ia = ATGM(Dtrain, P3(a, e)). The instruction
Ia is expected to include a step-by-step guide of
feature extraction for dementia detection.

4 Data and implementation details

We used three speech datasets collected via the
PDT task and the cookie theft picture, which
has been publicly available for dementia research.
ADReSS-2020 (Luz et al., 2021b) include 108
samples for training and 48 samples for testing.
Human transcripts are provided in this dataset. We
present our main results using this dataset, con-
sidering it is the only dataset with standard train
test split, human transcription, and balanced num-
bers of samples for each class, age, and gender.
ADReSSo-2021 (Luz et al., 2021a) include 166
samples for training and 71 for testing. It also
has a standard train test split and balanced num-
bers of samples for each class, age, and gender.
However, it doesn’t have human transcription. We
transcribe the speech samples using Whisper ASR
(large-v3) (Radford et al., 2023). Pitt (Becker
et al., 1994) dataset includes 548 samples, includ-
ing 243 healthy and 305 dementia transcripts. It
provides human transcriptions but does not have
a standard train/test split and balanced numbers
of samples for each class, age, and gender, and
each participant may have multiple samples. We
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Instruction Training Testing
P-S ACC AUC P-S ACC AUC

Baselines (Regular prompting, no ATG used)
0-shot - - - - 64.58 -
1-shot - - - - 66.66 -
5-shot - - - - 54.17 -
0-shot-CoT - - - - 72.92 -

Empty instructions
Empty 1.35 75.93 83.64 1.27 79.17 83.33

Common instructions (Top-5 Train PPL-S)
Detect 1.73 83.33 89.64 1.46 77.08 85.76
Describe 1.54 83.33 87.62 1.34 77.08 83.33
Evaluate 1.54 77.77 86.83 1.27 81.25 83.33
Rewrite 1.53 79.63 87.14 1.32 79.17 82.81
Explain 1.51 78.70 86.80 1.31 70.83 82.64

Information units instructions
Direct 0.84 60.19 70.10 1.00 70.83 75.87
Meta 1.85 85.19 91.05 1.60 83.33 88.19

Linguistic-based instructions
Direct 0.43 51.85 57.37 0.30 54.17 57.12
Meta 0.51 50.92 59.60 0.35 54.17 58.51

Free-style instructions
Discuss anything notable 2.02 88.88 92.46 1.51 83.33 87.85
Ask 5 questions 1.47 75.93 86.56 1.28 75.00 83.16

Difference-based instructions (Top-5 Train PPL-S)
Attention to detail 2.06 87.04 93.66 1.58 81.25 87.50
Language 2.06 84.26 93.42 1.67 77.08 88.37
Focus 1.86 87.96 90.84 1.66 79.17 88.71
Description of the scene 1.82 85.19 91.87 1.64 81.25 87.67
Clarity 1.70 86.11 89.71 1.64 85.42 86.63

Table 2: Main results of ADReSS-2020 dataset. We
report the PPL-S (P-S), ACC(%), and AUC(%) for both
training and testing.

used 5-fold cross-validation for this dataset without
participant overlap.

We used Llama 3 8B Instruct1 as the LLM for
both ATG and perplexity calculation. We analyzed
all parameters of the PPL metrics and used PPL-S
+ ACC as the main PPL metric. In the ATG, we
stop the text generation at the “eos” token and then
truncate the sequence at the peak PPL metrics. All
experiments were done with a single A100 of 40
GB memory using less than 3 hours per instruction.

We consider the following regular prompting
strategies as baselines: 0-shot, 1-shot, 5-shot, and
0-shot-CoT. For 1-shot and 5-shot, we used the
first one/five samples in the training set as demon-
stration examples. We do not consider few-shot-
CoT since we cannot come up with accurate CoT
demonstrations. The detailed promoting templates
are shown in Table 4 in the Appendix.

5 Results

5.1 Analysis of direct and meta-instructions

We present the baselines, five types of direct and
meta-instructions in Table 2 with the following

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

observations.
Baseline results. For few-shot prompting, the

best result is 0-shot with 64.58% accuracy, and
the worst is 5-shot with 54.17% accuracy. More
examples may not lead to better results, which indi-
cates the LLM may not effectively learn dementia-
related features from in-context examples. The
best regular prompting result is 0-shot-CoT with
72.92% accuracy. In comparison, with ATG, even
the empty instructions outperform the best regular
prompting. The best ATG result of 85.42% shows
a 12.5% improvement compared to the best regular
prompting results.

Low overfitting of ATG. We first compare the
performance difference between training and test-
ing. We found that for all of the instructions, the
performance difference between training and test-
ing is less than 6% for AUC and less than 8% for
ACC, demonstrating the low overfitting of ATG.
This is significantly different from the previous
fine-tuning-based method, where the training accu-
racy is easily reached 100% due to the small size
of the training set.

Low-performance instructions. For the in-
structions with testing < 80% AUC, including all
linguistic-based instructions and direct informa-
tion unit instructions, we found these instructions
failed to improve the PPL metrics after 100-200
newly generated tokens. The corresponding fea-
ture contexts show limited meaningful information
requested by the instruction. Specifically, the fea-
ture context of direct information unit instruction
only repeats the subjects, and the feature context of
the linguistic-based instructions either includes a
lot of “not applicable” descriptions or clarification
questions to those features.

High-performance instructions. For the in-
structions with > 80% AUC, including the empty
instruction, top-5 common instructions, meta infor-
mation unit instruction, and freestyle instructions,
we found they successfully improved the PPL met-
rics with 200-700 newly generated tokens. The
corresponding feature contexts mainly discuss the
picture contents. Specifically, the empty instruc-
tion generates a feature context that summarizes
the scene into points (e.g., the stool falling over)
and asks follow-up questions at the end. The “de-
tect” instruction from common instructions con-
siders detecting a crime scene (cookie theft) with
features of suspects, motives, opportunities, obsta-
cles, and challenges. The meta information unit
instruction generated 6 questions to discuss, includ-
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ing family dynamics, kitchen chaos, window scene,
cookies and secrecy, maternal oversight, objects,
and consequences. The “ask 5 questions” instruc-
tion produces questions related to the picture (e.g.,
why stool falling). The “discuss anything notable”
instruction considers the picture-relevant features,
including kitchen mayhem, sink overflowing, the
wind outside, kids’ actions, mother’s neglect, and
summer puddled insight. By using feature contexts
related to picture contents, healthy transcripts fit
these contexts, while dementia transcripts would
not fit. We consider such contexts to emphasize
the difference between healthy and dementia tran-
scripts in terms of picture contents. Among these
instructions, the meta information unit instruction
and “discuss anything notable” instruction achieved
the best performance, with both ACC of 83.33%
and AUC of 88.19% and 88.37%, respectively. We
consider the meta information unit instruction to
guide the LLM in extracting the features with do-
main knowledge, while the “discuss anything no-
table” instruction gives the LLM freedom to extract
the features.

5.2 Analysis of difference-based instructions

We show the top 5 difference-based instructions
in Table 2. We found that the feature context of
these instructions has common features related to
picture contents, including actions, events, settings,
characters, etc. Such features could be considered
as the main difference between healthy and de-
mentia transcripts, ensuring the good performance
of difference-based instructions (all have AUC >
86%) that outperform the direct and meta instruc-
tions. In addition to picture contents, some of the in-
structions also focus on features related to language.
For example, the “language” instruction also dis-
cusses vocabulary, sentence structure, and tone as
features. The “clarity” instruction also identifies
some problematic sentences or phrases and their im-
pact on clarity. We consider features related to lan-
guage to also contribute to the performance that the
“language” instruction achieves the best AUC of
88.37% while the “clarity” instruction achieves the
best ACC of 85.42%. Also, compared to the previ-
ous works that only use text modality (Balagopalan
et al., 2020; Li et al., 2022), our work achieves sim-
ilar or better performance. Overall, we conclude
that difference-based instructions have successfully
identified the difference between healthy and de-
mentia transcripts and achieved better performance
than the direct and meta-instructions.

ADReSSo-2021 PittInstruction ACC AUC ACC AUC

Baselines (Regular prompting, no ATG used)
0-shot 74.65 - 60.4(4.83) -
1-shot 69.01 - 59.49(4.79) -
5-shot 56.34 - 48.36(5.01) -
0-shot-CoT 60.56 - 57.12(6.65) -

ATG instructions
Empty 69.01 72.22 70.09(5.81) 76.57(4.65)
Discuss anything notable 64.79 72.46 70.99(4.87) 78.1(4.86)
Attention to detail 73.24 79.92 71.9(4.02) 80.2(3.56)
Language 61.97 70.56 69.35(4.35) 77.39(4.31)
Focus 64.79 75.87 70.62(2.98) 77.89(1.98)
Description of scene 67.61 76.51 69.35(5.09) 79.5(5.26)
Clarity 64.79 74.44 72.27(5.57) 78.37(5.17)

Table 3: Results of ADReSSo-2021 (testing) and Pitt
(5-fold cross-validation, mean, standard deviation).

5.3 Results on other datasets

We provide the results on larger (Pitt) and speech-
based (ADReSSo-2021) datasets in Table 3. We
consider the “empty”, “discuss anything notable”
and all top 5 difference-based instructions. We
found overall, the “attention to detail” generalized
well in the larger and speech-based dataset, with
ACC of 73.24% and 71.9%, and AUC of 79.92%
and 80.2%, respectively. We consider “attention
to detail” as the main shared difference between
healthy and dementia transcripts across different
datasets, which mainly focus on the features related
to picture content. Other instructions have some
level of performance drop with larger or speech
datasets. By checking the corresponding feature
context, we found there are variations in the de-
scriptions of language-related features. For exam-
ple, considering the “language” instruction with the
first feature of “vocabulary,” there are variations in
the descriptions of the “vocabulary,” in the feature
contexts of different datasets: “common everyday
word” (fold 1 Pitt), “complex vocabulary” (fold 2
Pitt), “everyday” (ADReSS-2020), “neither overly
formal nor simplistic” (ADReSSo-2021). Such
variations indicate bias across different datasets,
which means a feature that works well in a dataset
may not generalize to others. Larger-scale data are
needed to find robust features that could be consis-
tent in different data distributions. Also, compared
to baseline results, ATG outperform the text-based
dataset (Pitt) while not outperforming the best base-
line of the speech-based dataset. We consider ATG
use perplexity as measurement may be sensitive
to ASR errors, which may be addressed by future
available speech large language models. To con-
clude, we found features related to picture content
to be generalized better than features related to
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language across different datasets.

5.4 Parameter analysis

To understand the effect of different parameters,
we compare the different PPL metrics and top-ps
in Figure 3. For comparing different PPL metrics,
we set the top-p to 0.9. To compare different p,
we use PPL-S + ACC. We use the AUC as the
performance metric (i.e., the y-axis in Figure 3).

PPL metrics. As shown in the left two sub-
figures of Figure 3, we found PPL-S + ACC
achieves the best train and test performance, as
expected. Some metrics, including PPL-S, AUC,
PPL-S + ACC + AUC, and PPL-S + AUC, also
achieve comparable performance. For generated
feature context, we found mentions of similar fea-
tures, including characters, actions, and other obser-
vations like window and weather conditions, etc.,
despite being in a different order and organization.
Other metrics, including PPL-F, ACC, PPL-F +
AUC, and PPL-F + ACC, do not produce good
performance. By checking the generated feature
context, we found these PPL metrics did not gen-
erate coherent content. For ones with PPL-F, they
start to generate misspelled words at around 200
tokens, and then the performance starts to decrease
at that point. For ACC, we found it starts gener-
ating random symbols at around 100 tokens, with
only a little performance increase after that. We
conclude that well-performed metrics could gen-
erate relevant and coherent feature context, while
bad-performed metrics can not.

Top-ps. As shown in the right two sub-figures of
Figure 3, we found the 0.9 top-p achieves the best
training and testing performance of 0.92 and 0.87,
respectively. 1.0 (no top-p sampling) achieves a lit-
tle worse performance than 0.9, while the other top-
p values achieve limited performance. By check-
ing the generated feature context, we found 0.9
top-p generated the coherent contents with no mis-
spelling error. 1.0 top-p has some incoherent con-
tent, such as little misspelling errors, indent errors
(e.g., misplaced tabs), and mess up with languages
(generated some tokens in languages other than
English), indicating the necessity of coherence ob-
jective. Other low top-p values tend to generate
short sentences with limited details, which results
in limited performance. Overall, we conclude that
top-p sampling is necessary for coherence and per-
formance, while lower top-p values may result in
limited details and low performance.

6 Discussion

Improving speech task design of dementia detec-
tion. Our findings may contribute to the design of
better speech tasks for dementia detection in the fu-
ture. As shown in Figure 4, 5 and, 6, most parts of
our feature contexts are related to the picture infor-
mation. This indicates the most effective features
for dementia detection are task-dependent. In con-
trast, other task-independent features may be less
effective. This finding highlights the importance
of task design for effective dementia detection. It
also suggests that future speech task design im-
provement may need to prioritize the search under
highly controlled settings (e.g., ask all participants
to talk about the same picture, topic, etc.) to effec-
tively elicit the difference in speech and language
between dementia and healthy participants.

7 Related work

Speech analysis is a non-invasive and low-cost
method for dementia classification (Vigo et al.,
2022). Various speech tasks are studied by
researchers such as telephone interview (Kona-
gaya et al., 2007), linguistic features (Rentoumi
et al., 2017), picture descriptions (Hernández-
Domínguez et al., 2018; Guo et al., 2021), speech
and writing (Gkoumas et al., 2021) and voice assis-
tants (Liang et al., 2022). Recent studies explore
automatic ways (Yang et al., 2022) to analyze spo-
ken language to achieve fast, accurate, and eco-
economical tools for dementia detection. There
is sufficient evidence showing that machine learn-
ing has the ability to distinguish between demen-
tia patients and healthy controls via speech perfor-
mance (Warnita et al., 2018; Vázquez-Romero and
Gallardo-Antolín, 2020; Roshanzamir et al., 2021).

Pre-trained and large language models, such
as BERT (Devlin et al., 2018), GPT-3 (Floridi
and Chiriatti, 2020), and LLaMA (Touvron et al.,
2023), have achieved state-of-the-art performance
on a wide range of NLP tasks. Recently, re-
searchers have used these models in dementia de-
tection. (Balagopalan et al., 2020) observed that
fine-tuned BERT models outperform feature-based
approaches on the dementia detection task. (Li
et al., 2022) proposed a new method, GPT-D, us-
ing pre-trained GPT-2 paired with an artificially
degraded version of itself to compute the ratio of
the perplexities in language from dementia and
healthy participants. It showed perplexity could be
used for dementia detection by introducing impair-
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Figure 3: Parameter analysis using “discuss anything notable” instruction. The left two figures compare the different
perplexity-based metrics, while the right two figures compare the different top-p values.

ment to the LLMs. (Agbavor and Liang, 2022)’s
work suggested that GPT-3 based text embedding
is a viable approach for dementia detection from
speech transcripts and has the potential to improve
early diagnosis of dementia. In-context learning
allows language models to learn tasks given only a
few examples in the form of demonstration (Dong
et al., 2022). It can improve the ability of the
model (Wang et al., 2023) to predict the proba-
bility distribution of the next word in a sequence
based on the context of the previous words. Re-
searchers have used in-context learning to improve
the performance of text classification LLMs by
helping the model to identify context-specific pat-
terns and features that are relevant to the classi-
fication task (Brown et al., 2020). Our work in
this paper is the first one applying in-context learn-
ing and LLMs to enhance both performance and
interpretability in dementia detection.

8 Conclusion

In this paper, we propose adversarial text genera-
tion, which relates dementia detection with existing
well-defined tasks. We first introduce a perplexity-
based classifier, which classifies a text sequence
using perplexity, enabling the ATG for classifica-
tion. Then, we introduce the objectives for ATG,
including perplexity polarization and coherence.
We further incorporate a variety of instructions to
guide the ATG in generating effective feature con-
text. We found high-performance instructions suc-
cessfully reveal the difference between healthy and
dementia transcripts, while low-performance ones
fail to do so. The main features that contribute to
the high performance are related to the picture con-
tents, including the environment, characters, etc,
while the language-related features may provide
additional performance gain. ATG could be fur-
ther enhanced with multi-modal LLMs and could
probably applied to other classification tasks with
limited explicit features.

Limitations

The current version of ATG only considers the
information from the transcripts and doesn’t con-
sider the information from speech. Despite the fact
that text modality generally outperformed speech
modality for PDT, incorporating speech informa-
tion also helps improve performance (Cummins
et al., 2020; Koo et al., 2020; Zhu et al., 2021a).
This can be addressed using speech LLMs (Hu
et al., 2024; Zhang et al., 2023). Similarly, ATG
could benefit from incorporating picture informa-
tion (Zhu et al., 2023) using vision LLMs (Liu
et al., 2024a). Also, ATG may benefit from future
open-sourced LLMs with stronger reasoning capa-
bility, producing more discriminative differences
and more reasonable features. Moreover, the cur-
rent ATG only considers single-turn conversations
with LLMs, which could possibly extend to multi-
turn for further enhancement. At last, we also note
that ATG could possibly be a general framework
that applies to many tasks without a clear definition
of intermediate steps to gain both performance and
interpretability.

Ethics Statement

We note that ATG could possibly be a pre-screen
for dementia instead of a formal diagnosis. Users
should proceed cautiously when using the result in
the real world. In addition, the feature ATG finds
only reflects the distribution of the training data, so
we need to be cautious when considering this as
medical findings.
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Name Content

n-shot Classify the following text into "healthy" or "dementia". Do not output other things.
Text: {Example}
Label: healthy
Text: {Example}
Label: dementia
(Repeat for n examples)
Text: {Example to inference}
Label:

0-shot-CoT Classify the following text into "healthy" or "dementia". You need to think step by step, and then make the conclusion.
Text: {Example to inference}
Label:

Table 4: Template of regular prompting strategies.

Common instructions

Calculate, Classify, Complete, Construct, Convert, Correct, Create,
Describe, Design, Detect, Edit, Evaluate, Explain, Find, Generate,
Give, Have, Identify, Make, Name, Output, Paraphrase, Predict,
Provide, Rewrite, Simplify, Suggest, Summarize, Tell, Verify,
Write

Table 5: Common instructions.

Information units instruction

Discuss the mention of the following subjects, places, objects,
actions and relations:
Subjects: boy, girl, woman, mother
Places: kitchen, exterior
Objects: cookie, jar, stool, sink, plate, dishcloth, water, cupboard,
window, cabinet, dishes, curtains, faucet, floor, counter, apron
Actions: boy stealing cookies, boy/stool falling over, woman wash-
ing dishes, woman drying dishes, water overflowing in sink, girl’s
actions towards boy, girl asking for a cookie, woman daydreaming,
unaware or unconcerned about overflow, dishes already washed
sitting on worktop, woman being indifferent to the children
Relations: brother, sister, son, daughter

Table 6: Information units instruction.
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Linguistic-based instruction

Extract the following features:
Total number of utterances in the transcript.
Mean Length of Utterances, which is the average number of words
per utterance.
Mean Length of Words, which is the average number of mor-
phemes per word.
Mean Length of Morphemes, which is the average number of
morphemes per utterance.
Number of unique word types in the transcript.
Number of total word tokens in the transcript.
Type-Token Ratio, which is the ratio of unique word types to the
total number of word tokens.
Percentage of verbs in each utterance.
Percentage of word errors in the transcript.
Number of errors per utterance in the transcript.
Syntactic density, which is a measure of the ratio of the number of
content words to the total number of words.
Percentage of nouns in the transcript.
Percentage of plural nouns in the transcript.
Percentage of verbs in the transcript.
Percentage of auxiliary verbs in the transcript.
Percentage of modal verbs in the transcript.
Percentage of third-person singular verbs in the transcript.
Percentage of first and third-person singular verbs in the transcript.
Percentage of past tense verbs in the transcript.
Percentage of past participle verbs in the transcript.
Percentage of present participle verbs in the transcript.
Percentage of prepositions in the transcript.
Percentage of adjectives in the transcript.
Percentage of adverbs in the transcript.
Percentage of conjunctions in the transcript.
Percentage of determiners in the transcript.
Percentage of pronouns in the transcript.
Ratio of nouns to verbs in the transcript.
Ratio of open-class words (nouns, verbs, adjectives, adverbs) to
closed-class words prepositions, conjunctions, determiners, pro-
nouns) in the transcript.
Number of open-class words in the transcript.
Number of closed-class words in the transcript.
Frequency of retracing (repeating part of an utterance).
Frequency of repetition (repeating entire utterances or parts of
utterances).

Table 7: Linguistic-based instruction
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Discuss anything notable in the above text. Include as much detail as 
possible.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

What a chaotic scene you've described! Here are some notable points to discuss:

**Kitchen Mayhem**

* The stool is falling over, which suggests that it's either old, unstable, or has been poorly maintained. This adds to the sense of chaos 
in the kitchen.
* The cookies being taken out of the cookie jar by the boy and being asked by the little girl to be handed to her quietly implies that 
snacking is a common activity in this household.
* The fact that the stool is falling while the cookies are being handled increases the risk of mess and potential accidents.

**Sink Overflowing**

* The sink is overflowing, which means the mother is either taking a long time to wash dishes or isn't paying attention to the water level. 
This could be a source of stress or annoyance for her, but for now, she's choosing to dry dishes (on the assumption that it's less 
pressing).
* This detail also creates a sense of water-themed tension, with water running "into" and possibly outside, but no indication of what 
happens to it.

**Wind Outside**

* The curtains are drawn back to allow a gentle breeze into the house, and the scene appears to be on a relatively mild day, as you 
mentioned. The fact that you explicitly state there's nothing to note about the outside action (beyond the path, window, and building 
envelope) suggests that the wind is likely a gentle, harmless blow.

**Kids' Actions**

* The girl's finger to the mouth could be seen as a clever play on innocence, hiding mischief behind a cookie-stealing facade. Her reach 
for a cookie and the brother's slippage from the stool create a sense of partnership in their naughtiness.
* Both kids seem comfortable snacking in the kitchen, almost like it's a normalized behavior.

**Mother's Neglect (Daycare... er, laundry of attention?)**

* You cleverly contrast the overflowing sink with the mother's drying of dishes, implying a degree of obliviousness or prioritization on 
her part. Her feet getting soaked or compromised hygiene aren't necessarily consequences of her actions, but it does add to the 
impression of a household where multiple tasks are happening simultaneously.

**Summer Puddled Insight**

* Your aside about not knowing whether you meant for it to be action-worthy mentions several extraneous details, but effectively 
highlights the fact that the outside scene doesn't quite gel with the chaotic interior. You raise an interesting question about the 
importance of showing consequences or actions related to the stool tipping, overflowing water, or blowing curtains.
* The comment about shortsightedly standing in the mother's attention ("um the mother or don't see much. um mother wiping dishes ") 
serves as a wry commentary on the scene's pandemonium.

Overall, this vivid scene showcases a busy, potentially messy household where multiple dynamics are at play. The juxtaposition of 
controlled chaos (curtains flowing, kids snacking) with underlying mayhem (stool tipping, overflowing sink) creates a engaging 
contrast. The outside weather serves as a brief interlude, acknowledging that not everything has to be resolved or escalating inside

Discuss anything notable

Figure 4: Discuss anything notable instruction and feature context.
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**Assessment Task: Speaker's Attention to Detail**

Read the descriptive passage carefully and analyze the speaker's attention to detail. To do this, follow these steps:

1. Identify the specific details mentioned in the passage, focusing on the minor elements such as object positions, character actions, 
and surroundings.
2. Categorize the types of details mentioned, such as:
 * Environmental details (e.g., wind, curtains, water overflowing)
 * Character actions (e.g., cookie-stealing, stool overturning, mother drying dishes)
 * Object positions and arrangements (e.g., stool falling, cookies in the jar)
 * Character requests (e.g., little girl asking boy to be quiet)
3. Consider the level of precision used to describe each detail. For example, the passage notes specific aspects such as the sink 
overflowing, but does not describe the temperature or humidity of the environment.
4. Evaluate how the speaker's attention to detail impacts the overall picture painted by the passage. For example, the detailed 
descriptions of character actions and surroundings create a vivid scene, but the mother's inattention to the overflow suggests that her 
priorities are elsewhere.
5. Based on these findings, conclude how the speaker's attention to detail affects the passage's overall effect. Is the level of detail 
meticulous and thorough, or does it prioritize some elements over others? What is the likely effect of the speaker's focus on detail on 
the reader?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

**Speaker's Attention to Detail Assessment**

**Specific Details:**

* Environmental details:
 + Wind blowing outside
 + Bushes/plant life outside (curtains allow a glimpse of the outdoor view)
 + Open window/ curtains
 + Overflowing sink
 + Weather appears to be light enough to cause the stool to overturn (suggesting not too intense or turbulent)
* Character actions:
 + Girl reaching for cookies from the boy
 + Boy slipping/stalling with cookie ( cookie out of the jar, stool tipping over)
 + Mother drying dishes while oblivious to the overflowing sink
 + Daughter with finger to her mouth (talking quiet, be quiet request to brother)
* Object positions and arrangements:
 + Cookies in the jar, being transferred between boy and sister
 + Stool close enough for it to fall
 + Plates/cups (dry/ not being washed/dried on the counter
* Other details:
 + Summer (water drying her feet not suggesting soaking-wet surface)

**Categorization of details:**

The speaker pays attention to both macro-level elements (water running out of the sink, wind, cookie-snatching kids) and micro-level 
details (apron-wearing mom, short-handed kids, slips on socks). There's an evident effort to note all manner of movement within the 
space: the stools falls, girl reaching, brother giving/losing cookies, the curtains in motion ( tied and back slightly away from the breeze)

**Precision of description:**

Most of the descriptions in this passage show remarkable detail and specific location:
The overflowing sink overflowing into the top or splashing onto the mother's wet shoes wouldn't that  um let alone uh plate um wiping 
dish sink um except    outside nothing action there fine okay that's fine". Contrastingly, the outside situation lacks similar specificity ("I 
did say...I guess action alright.")

**Impact on the passage:**

The passage effectively conveys a chaotic and potentially disordered scene within the kitchen, while implying that the mother might 
not be attending to all aspects of the space (stool slippers into chaos while wiping the dish, breeze seemingly ignored). Some actions 
stand out as problematic (stealing, stool overturning), while others might seem relatively innocuous (curtains billowing).

**Speaker's attention to detail:**

Overall, the speaker demonstrates meticulous attention to the movements and postures within the kitchen, whereas surrounding 
areas (particularly outside) receive more vague or observational comments. While there are few weak links (ums, laughs, trailing 
thoughts), the writer skillfully captures multiple simultaneous actions, object arrangements, and sensations (action-packed vs 
daydreaming daughter).

The likely effect of the speaker's focus on detail is a visceral, snapshot impression of kitchen mayhem, tempered by some interpretive 
uncertainty (summer outside unclear, outside calm hard to describe). The careful reader will anticipate trouble erupting soon (crack 
on the head?), highlighting the daughter's reach into cookies amidst potential

Attention to detail

Figure 5: Attention to detail instruction and feature context.

21932



**Task: Analyze the Speaker's Clarity**

**Objective:** Evaluate the clarity of the speaker's description by assessing the ease of understanding the scene.

**Steps:**

1. Break down the description into individual elements (actions, events, settings, characters).
2. Identify any sentences or phrases that are:
    * Concise and specific (Text-like)
    * Vague or open-ended (Script-like)
    * Overly descriptive (novelistic)
    * Redundant or unnecessary
3. Consider how these elements contribute to the overall clarity of the scene:
    * Do the individual elements cohere and flow smoothly, or are there jarring transitions or abrupt shifts in focus?
    * Are important details (e.g. the overflowing sink, the curtains blowing) given adequate attention, or do some elements feel 
secondary or minor?
    * Is the description easy to visualize and imagine, or are some elements confusing or unclear?
4. Use your observations from steps 1-3 to conclude whether the speaker's clarity is more akin to Text or Script. Be sure to support your 
reasoning with specific examples from the description.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

**Breakdown of the description into individual elements:**

1. Actions:
    * Mother drying dishes
    * Boy stealing cookies
    * Girl asking boy to be quiet (or reaching out for cookie?)
    * Stool about to fall
    * Curtains open and outside looking unobstructed
2. Events:
    * Sink overflowing
3. Settings:
    * Inside the kitchen (mother drying dishes, cookie jar, sink, counter, window)
    * Outside the window (path, etc.)
4. Characters:
    * Mother (daydreaming/distracted)
    * Boy (on stool)
    * Girl (stealing cookie with finger to lip)
5. Descriptive details:
    * Physical settings: water running out of sink, plate, cups on counter, dress/appearance of family
    * Weather conditions: summer season implied, shrubbery possibly suggesting lush outdoor conditions
6. Style: um/xxx indicate filler words, slightly detract from the smoothness of the narrative

**Identifying problematic sentences or phrases:**

* Some phrases feel novelistic or overly descriptive: e.g. "um the wind... those might slow down the pacing or feel gratuitous.
* A few transitions could be tightened: for example, connecting sentences are separated with comma-drops ("the girl was saying be 
quiet...", "...the mother wiping dishes") or umbrellaed lists of descriptive phrases ("I guess that's it...")
* Small redundancies: stating that "I did say action or right" feels extraneous

**Impact on clarity:**

* Despite these minor issues, the description overall coheres well and presents a cohesive image of a scene in progress.
* Major events (stool tipping, boy/girl misbehaving, overflowing sink) receive due attention and draw the reader's attention to critical 
areas of the scene.
* Settings (inside and outside) feel accurately evoked, if occasionally lavishly detailed (leaving aside brevity, multiple wind/Cookie-
swapping-centric closeups ensue... Ahmargo.wordpress).
* Weather/outside action (# uh do I don't ) jars ever barely blowing explicitly disrupting agency winds clarity—to blowingwater-
runningoveisse.

**Conclusion:**

While the description leans slightly towards script-like excess (um-filled asides, parenthetical remarks), the writer primarily presents a 
detailed, action-rich scene that prioritizes concrete, specific details. Important events unfold rapidly, and individual elements interact 
in a plausible, chaotic sequence. Compared to typical scriptwriting standards, this scene might err on the side of showing too much 
("warts and all" household pandemonium!), whereas literary (text-like) clarity often favors selection and subtlety. Therefore, I argue 
that this speaker's clarity trend towards **Script**, aiming to document a frenetic moment in time rather than achieving

Clarity

Figure 6: Clarity instruction and feature context.
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