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Abstract

Large Language Models (LLMs) offer the po-
tential for automatic time series analysis and
reporting, which is a critical task across many
domains, spanning healthcare, finance, climate,
energy, and many more. In this paper, we
propose a framework for rigorously evaluat-
ing the capabilities of LLMs on time series
understanding, encompassing both univariate
and multivariate forms. We introduce a com-
prehensive taxonomy of time series features, a
critical framework that delineates various char-
acteristics inherent in time series data. Lever-
aging this taxonomy, we have systematically
designed and synthesized a diverse dataset of
time series, embodying the different outlined
features, each accompanied by textual descrip-
tions. This dataset acts as a solid foundation
for assessing the proficiency of LLMs in com-
prehending time series. Our experiments shed
light on the strengths and limitations of state-
of-the-art LLMs in time series understanding,
revealing which features these models readily
comprehend effectively and where they falter.
In addition, we uncover the sensitivity of LLMs
to factors including the formatting of the data,
the position of points queried within a series
and the overall time series length.

1 Introduction

Time series analysis and reporting are crucial in
diverse fields like healthcare, finance, and climate
(Liu et al., 2023). The recent progress in Large
Language Models (LLMs) opens exciting possibil-
ities for automating these processes. While recent
studies have explored adapting LLMs for specific
time series tasks, such as seizure localization in
EEG time series (Chen et al., 2024), cardiovas-
cular disease diagnosis in ECG time series (Qiu
et al., 2023), weather and climate data understand-
ing (Chen et al., 2023), and explainable financial
time series forecasting (Yu et al., 2023), a system-
atic evaluation of general-purpose LLMs’ inherent

capabilities in understanding time series data is
lacking. One notable example of domain-specific
application is the BioSignal Copilot framework pre-
sented by (Liu et al., 2023), which focuses on lever-
aging LLMs for clinical report generation from
biomedical signals.

This paper aims to fill this gap by uncovering
the strengths and weaknesses of general-purpose
LLMs in time series understanding, without any
domain-specific fine-tuning. Our focus is on assess-
ing their potential for a key downstream task: time
series annotation and summarization. By under-
standing the baseline capabilities of LL.Ms, practi-
tioners can identify areas where these models are
readily applicable and areas where targeted fine-
tuning efforts may be necessary to improve perfor-
mance.

To systematically evaluate the performance of
general-purpose LLMs on generic time series un-
derstanding, we propose a taxonomy of time se-
ries features for both univariate and multivariate
time series. This taxonomy serves as a structured
framework for evaluating LLLM performance and
provides a foundation for future research in this
domain. Based on this taxonomy, we have created
a diverse synthetic dataset of time series that cov-
ers a wide range of features, each accompanied by
qualitative and quantitative textual descriptions.

Our evaluations focus on tasks directly relevant
to time series annotation and summarization, such
as feature detection, classification, and data re-
trieval as well as arithmetic reasoning. Addition-
ally, we assess the LLMs’ ability to match tex-
tual descriptions to their corresponding time series,
leveraging the textual descriptions in our dataset.
These findings will be instrumental for develop-
ing LLM-powered tools for automated time series
annotation and summarization, ultimately enhanc-
ing data analysis and reporting workflows across
diverse domains.
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Our contributions are three-fold:

* Taxonomy - we introduce a comprehensive tax-
onomy that provides a systematic categorization
of important time series features, an essential
tool for standardizing the evaluation of LLMs in
time series understanding.

*Diverse Time Series Dataset - we synthesize
a diverse time series dataset with train/valida-
tion/test splits, ensuring a broad representation
of various time series types, encompassing the
spectrum of features identified in our taxonomy,
each with accompanying textual descriptions.

¢ Evaluations of LLMs - our evaluations provide
insights into LLMs’ strengths and weaknesses
in understanding time series. We analyze how
LLMs handle data format, query location, and
time series length, providing a nuanced under-
standing of their capabilities in this domain.

2 Related Work

Large Language Models Large Language Mod-
els (LLMs), such as Llama2 (Touvron et al., 2023),
PalLM (Chowdhery et al., 2023), GPT-3 (Brown
et al., 2020), GPT4 (Achiam et al., 2023), and
Vicuna-13B (Chiang et al., 2023), have demon-
strated remarkable capabilities in various language-
related tasks and have recently been explored for
their potential in time series analysis.

Language Models for Time Series Recent
progress in time series forecasting has capitalized
on the versatile and comprehensive abilities of
LLMs, merging their language expertise with time
series data analysis. This collaboration marks a sig-
nificant methodological change, underscoring the
capacity of LLMs to revolutionize conventional pre-
dictive methods with their advanced information
processing skills. Notably, (Gruver et al., 2023)
have set benchmarks for pre-trained LLMs such
as GPT-3 and Llama?2 by assessing their capabil-
ities for zero-shot forecasting. Similarly, (Xue
and Salim, 2023) introduced Prompcast, adopt-
ing a novel approach by treating forecasting as
a question-answering activity, utilizing strategic
prompts. Further, (Yu et al., 2023) delved into
the potential of LLMs for generating explainable
forecasts in financial time series, tackling inherent
issues like cross-sequence reasoning, integration
of multi-modal data, and interpretation of results,

which pose challenges in conventional methodolo-
gies. Additionally, (Zhou et al., 2023) demon-
strated that leveraging frozen pre-trained language
models, initially trained on vast corpora, for time
series analysis could achieve comparable or even
state-of-the-art performance across various princi-
pal tasks in time series analysis including imputa-
tion, classification and forecasting.

Recent advancements in the application of LLMs
to biomedical time series data have also shown
promise in the automated generation of clinical
reports. (Liu et al., 2023) introduce BioSignal
Copilot, a system that leverages LLLMs for drafting
reports from biomedical signals, such as electro-
cardiograms (ECGs) and electroencephalograms
(EEGs). Their work highlights the importance of
domain-specific feature extraction in facilitating
LLM understanding of time series data, aligning
with our work on developing a comprehensive tax-
onomy of time series features to enhance LLM
interpretability and analysis in various applications.
Notably, their focus on automatic report genera-
tion from the processed signals serves as a specific
downstream task, further emphasizing the need for
a systematic evaluation of LLMs’ ability to under-
stand and extract relevant features from time series
data, such as the one presented in this work.

LLMs for arithmetic tasks Despite their ad-
vanced capabilities, LLMs face challenges with
basic arithmetic tasks, crucial for time series anal-
ysis involving quantitative data (Azerbayev et al.,
2023; Liu and Low, 2023). Research has identified
challenges such as inconsistent tokenization and
token frequency as major barriers (Nogueira et al.,
2021; Kim et al., 2021). Innovative solutions, such
as Llama2’s approach to digit tokenization Yuan
et al. (2023), highlight ongoing efforts to refine
LLMs’ arithmetic abilities, enhancing their appli-
cability in time series analysis.

3 Time Series Data

3.1 Taxonomy of Time Series Features

Our study introduces a comprehensive taxonomy
for evaluating the analytical capabilities of Large
Language Models (LLMs) in the context of time
series data. This taxonomy categorizes the intrinsic
characteristics of time series, providing a structured
basis for assessing the proficiency of LLMs in iden-
tifying and extracting these features. The proposed
taxonomy encompasses critical aspects of time se-
ries data that are frequently analyzed for different
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Table 1: Taxonomy of time series characteristics.

Main Category Description Sub-category
Univariate
Trend Directional movements over time. Up , Down

Seasonality and
Cyclical Patterns

Anomalies

Volatility

Structural Breaks

Stationarity Properties

Patterns that repeat over a fixed or irregular pe-
riod.

Significant deviations from typical patterns.

Degree of dispersion of a series over time.

Fundamental shifts in the series data, such as
regime changes or parameter shifts.

Stationarity versus non-stationarity.

Fixed-period, Shifting period,
Multiple seasonality

Spikes , level shifts,

temporal disruptions

Constant , Trending ,

Clustered , Dynamic

Regime changes, parameter shifts

Stationarity

Distribution Properties Characteristics like fat tails

Fat tails

Multivariate

Correlation

Measure the linear relationship between series.

Positive Negative

Useful for predicting one series from another if

they are correlated.
Cross-Correlation

lag relationships.
Dynamic Conditional

. series change over time.
Correlation g

Measures the relationship between two series at
different time lags, useful for identifying lead or

Assesses situations where correlations between

Positive - direct, Positive - lagged,
Negative - direct, Negative - lagged

Correlated first half
Correlated second half

applications and are commonly used in qualitative
descriptions of time series data. These features
are considered the most relevant for evaluating the
ability of LLMs to generate and understand textual
reports of time series data.

The features are organized in increasing order of
complexity, starting with trend, seasonality, volatil-
ity, anomalies, structural breaks, and distribution
properties. Each main feature is further divided
into sub-categories to provide a more nuanced eval-
uation of LLM capabilities. This hierarchical orga-
nization allows for a detailed assessment of LLM
performance on both simple and complex time se-
ries characteristics. Table 1 presents the selected
features in order of increasing complexity and their
sub-features. While we have strived to define the
features as distinctly as possible, it is important to
note that some overlap may exist between certain
categories.

Justification for the proposed taxonomy Our
selection of features is based on extensive litera-
ture review and expert consultations. Trends and
seasonality are fundamental components widely
recognized in time series analysis across various
domains, such as finance and climate science (Hyn-
dman and Athanasopoulos, 2018; Shumway and
Stoffer, 2000). Volatility and anomalies are crucial
for understanding dynamic behaviors and identi-

fying significant deviations in data (Tsay, 2005;
Chandola et al., 2009). Structural breaks and distri-
bution properties are essential for capturing shifts
in underlying data generation processes and under-
standing the statistical nature of the data (Perron,
2005; Cont, 2001). Table 5 provides definitions
of each sub-category along with domain examples
where these features could be referenced.

3.2 Synthetic Time Series Dataset

Leveraging our taxonomy, we construct a diverse
synthetic dataset of time series, covering the fea-
tures outlined in the previous section. We generated
in total 10 datasets, each with a training split (5000
samples), validation split (2000 samples), and test
split (200 samples) to facilitate model development
and evaluation. Within each dataset, the time series
length is randomly chosen between 30 and 150 to
encompass a variety of both short and long time
series data. In order to make the time series more
realistic, we add a time index, using predominantly
daily frequency. Each time series in the dataset is
accompanied by a qualitative description, a textual
summary of the main features present in the time
series (e.g., "This time series exhibits a downward
quadratic trend, commencing with higher figures
and falling gradually."), and a quantitative descrip-
tion, which includes the minimum and maximum
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values, the date range, and a textual description of
the specific features present (e.g., "This daily time
series covers the period from 2024-01-01 to 2024-
05-04. It exhibits multiple seasonal patterns with
monthly seasonality, with 5 peaks and 4 troughs,
and an average amplitude of 24.25."). Fig. 1 show-
cases examples of our generated univariate time
series. Each univariate dataset showcases a unique
single-dimensional pattern, whereas multivariate
data explore series interrelations to reveal under-
lying patterns. See Table 6 and Table 7 in the
appendix for visual examples of each dataset. For
a detailed description of the generation of each
dataset, refer to Appendix. B.

Figure 1: Example synthetically generated time series.

4 Time Series Benchmark Tasks

Our evaluation framework is designed to assess the
LLMSs’ capabilities in analyzing time series across
the dimensions in our taxonomy (Sec. 3.1). The
evaluation includes four primary tasks:

Feature Detection This task evaluates the LLMs’
ability to identify the presence of specific features
within a time series, such as trend, seasonality, or
anomalies. For instance, given a time series dataset
with an upward trend, the LLLM is queried to de-
termine if a trend exists. Queries are structured as
yes/no questions to assess the LLMs’ ability to rec-
ognize the presence of specific time series features,
such as "Is a trend present in the time series?"

Feature Classification Once a feature is de-
tected, this task assesses the LLMs’ ability to clas-
sify the feature accurately. For example, if a trend
is present, the LLM must determine whether it is
upward, downward, or non-linear. This task in-
volves a QA setup where LLMs are provided with
definitions of sub-features within the prompt. Per-
formance is evaluated based on the correct identifi-
cation of sub-features, using the F1 score to balance
precision and recall. This task evaluates the models’

depth of understanding and ability to distinguish
between similar but distinct phenomena.

Information Retrieval Evaluates the LLMs’ ac-
curacy in retrieving specific data points, such as
values on a given date.

Arithmetic Reasoning Focuses on quantitative
analysis tasks, such as identifying minimum or
maximum values. Accuracy and Mean Absolute
Percentage Error (MAPE) are used to measure per-
formance, with MAPE offering a precise evaluation
of the LLMs’ numerical accuracy.

Additionally, to account for nuanced aspects of
time series analysis, we propose in Sec. 5.2 to study
the influence of multiple factors, including time
series formatting, location of query data point in
the time series and time series length.

Time Series Description To evaluate the ability
of LLMs to match time series to their correspond-
ing descriptions, even in the presence of distractors,
we introduce two new tasks: (1) Text Matching
(inter-dataset): the LLM is presented with a time
series and four different descriptions from the same
dataset, one of which is the correct description for
the given time series. The descriptions include both
qualitative commentaries and quantitative informa-
tion about the time series. The LLM is asked to
select the description that is closest to the time se-
ries. This task assesses the LLM’s ability to match
a time series to its corresponding description, even
in the case where the qualitative description is sim-
ilar; (2) Text Matching (cross-dataset): the LLM is
presented with a time series and four different qual-
itative descriptions, each from a different dataset.
This task assesses the LLM’s ability to match a
time series to its corresponding description based
only on qualitative features, without relying on any
quantitative information.

5 Performance Metrics and Factors

5.1 Performance Metrics

We employ the following metrics to report the per-
formance of LLMs on various tasks.

F1 Score Applied to feature detection and classi-
fication, reflecting the balance between precision
and recall.

Accuracy Used for assessing the information re-
trieval and arithmetic reasoning tasks.
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Table 2: Performances across all reasoning tasks (Bold indicates best performance).

METRIC GPT4 GPT3.5 LLAMA2 VICUNA PHI3
ZERO-SHOT COT  ZERO-SHOT COT ZERO-SHOT COT ZERO-SHOT COT ZERO-SHOT CoOT
Univariate time series characteristics
Feature detection
TREND F1SCORE 0.79 0.89 0.45 0.66 0.51 0.56 0.58 0.58 0.72 0.78
SEASONALITY FISCORE 0.94 0.98 0.43 0.55 0.64 0.35 0.49 0.48 0.82 0.83
ANOMALIES F1SCORE 0.84 0.81 0.57 0.47 0.47 0.51 0.49 0.52 0.43 0.71
VOLATILITY F1SCORE 0.68 0.73 0.43 0.43 0.42 0.53 0.45 0.48 0.73 0.69
STRUCT. BREAK F1SCORE 0.59 0.61 0.57 0.48 0.39 0.44 0.48 0.52 0.44 0.67
STATIONARITY F1SCORE 0.33 0.59 0.33 0.40 0.33 0.39 0.44 0.42 0.33 0.46
FAT TAILS F1SCORE 0.39 - 0.44 0.36 0.34 0.39 0.44 0.48 0.47 0.45
Feature classification
TREND F1SCORE 0.98 0.98 0.78 0.95 0.43 0.70 0.53 0.48 0.48 0.95
SEASONALITY F1SCORE 0.17 0.21 0.17 0.16 0.31 0.27 0.23 0.18 0.48 0.24
ANOMALIES F1SCORE 0.87 0.95 0.20 0.40 0.30 0.37 0.37 0.44 0.53 0.48
VOLATILITY F1SCORE 0.18 0.25 0.07 0.16 0.12 0.10 0.15 0.17 0.08 0.15
STRUCT. BREAK F1SCORE 0.42 0.41 0.56 0.57 0.30 0.43 0.41 0.35 0.51 0.47
Multivariate time series characteristics
FIXED CORR. F1SCORE 0.48 - 0.39 0.43 0.38 0.43 0.40 0.46 0.43 0.57
LAGGED CORR. F1SCORE 0.54 - 0.52 0.46 0.45 0.42 0.42 0.45 0.41 0.40
CHANGING CORR.  F1SCORE 0.48 - 0.43 0.44 0.52 0.43 0.50 0.45 0.48 0.65
Information Retrieval
VALUE ON DATE Acc 1.00 1.00 0.99 0.99 0.54 0.49 0.61 0.62 0.93 0.89
VALUE ON DATE MAPE 0.00 0.00 0.03 0.03 1.06 0.73 0.75 0.76 0.19 0.17
Arithmetic Reasoning
MIN VALUE Acc 1.00 0.99 0.99 0.98 0.63 0.55 0.63 0.72 0.94 0.91
MAPE 0.00 0.00 0.01 0.01 3.89 7.42 3.96 4.70 0.10 0.41
MIN DATE Acc 0.98 0.94 0.93 0.93 0.40 0.32 0.42 0.49 0.85 0.82
MAX VALUE Acc 1.00 1.00 0.96 0.94 0.53 0.54 0.47 0.57 0.87 0.78
MAPE 0.00 0.00 3.66 3.96 3.23 1.09 3.12 2.27 0.11 0.26
MAX DATE Acc 0.99 0.93 091 0.90 0.32 0.34 0.29 0.37 0.77 0.70

Mean Absolute Percentage Error (MAPE) Em-
ployed for numerical responses in the information
retrieval and arithmetic reasoning tasks, providing
a measure of precision in quantitative analysis.

5.2 Performance Factors

We identified various factors that could affect the
performance of LLMs on time series understanding,
for each we designed deep-dive experiments to
reveal the impacts.

Time Series Formatting Extracting useful infor-
mation from raw sequential data as in the case of nu-
merical time series is a challenging task for LLMs.
The tokenization directly influences how the pat-
terns are encoded within tokenized sequences (Gru-
ver et al., 2023), and methods such as BPE separate
a single number into tokens that are not aligned. On
the contrary, Llama2 has a consistent tokenization
of numbers, where it splits each digit into an indi-
vidual token, which ensures consistent tokenization
of numbers (Liu and Low, 2023). We study differ-
ent time series formatting approaches to determine
if they influence the LLMs performance to capture
the time series information. In total we propose
9 formats, ranging from simple CSV to enriched

formats with additional information.

Time Series Length We study the impact that
the length of the time series has in the retrieval task.
Transformer-based models use attention mecha-
nisms to weigh the importance of different parts of
the input sequence. Longer sequences can dilute
the attention mechanism’s effectiveness, potentially
making it harder for the model to focus on the most
relevant parts of the text (Vaswani et al., 2017).

Position Bias Given a retrieval question, the po-
sition of where the queried data point occurs in
the time series might impact the retrieval accuracy.
Studies have discovered recency bias (Zhao et al.,
2021) in the task of few-shot classification, where
the LLM tends to repeat the label at the end. Thus,
it is important to investigate whether LLM exhibits
similar bias on positions in the task of time series
understanding.

6 Experiments

6.1 Experimental setup
6.1.1 Models

We evaluate the following LLMs on our proposed
framework using the test split of our dataset: 1)
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GPT4. (Achiam et al., 2023) 2) GPT3.5. 3)
Llama2-13B (Touvron et al., 2023), 4) Vicuna-
13B (Chiang et al., 2023), and 5) Phi3-Medium
(14B)(et al., 2024). We selected three open-source
models, Phi3, Llama2 and Vicuna, the first with
14B parameters and the remaining with 13 billion;
the version of Vicuna is 1.5 and was trained by fine-
tuning Llama2. Additionally we selected GPT4
and GPT3.5 where the number of parameters is
unknown. In the execution of our experiments, we
used an Amazon Web Services (AWS) g5.12xlarge
instance, equipped with four NVIDIA A10G Ten-
sor Core GPUs, each featuring 24 GB of GPU
RAM.

6.1.2 Prompts

The design of prompts for interacting with LLMs
is separated into two approaches: retrieval/arith-
metic reasoning and detection/classification ques-
tioning. In addition to zero-shot prompting, we
also use chain-of-thought (CoT) (Wei et al., 2022)
prompting to enhance the reasoning capabilities of
LLMs. We employ regular expressions to parse the
responses for feature detection and classification
tasks in the zero-shot setting. However, for chain-
of-thought prompting, we utilize an LLM to parse
the responses due to their increased complexity and
length.

Time series characteristics To evaluate the
LLM reasoning over time series features, we use
a two-step prompt with an adaptive approach, dy-
namically tailoring the interaction based on the
LLM’s responses. The first step involves detec-
tion, where the model is queried to identify rele-
vant features within the data. If the LLM success-
fully detects a feature, we proceed with a follow-up
prompt, designed to classify the identified feature
between multiple sub-categories. For this purpose,
we enrich the prompts with definitions of each sub-
feature (e.g. up or down trend), ensuring a clearer
understanding and more accurate identification pro-
cess. The full list of prompts can be found in Sec. G
of the supplementary.

Information Retrieval/Arithmetic Reasoning
We test the LLM’s comprehension of numerical
data represented as text by querying it for informa-
tion retrieval and numerical reasoning, as exempli-
fied in Fig. ?? and detailed in the supplementary
Sec. G.

6.2 Benchmark Results

In Table 2, we display the main results for the fea-
ture detection, feature classification, information
retrieval and arithmetic reasoning tasks outlined
in Sec. 4. The results for univariate time series
feature detection and classification tasks illustrate
GPT4’s robustness in trend and seasonality detec-
tion, substantially outperforming Llama2, Vicuna,
and GPT3.5 in zero-shot settings. This perfor-
mance is further enhanced when chain-of-thought
prompting is used. However, the detection of
structural breaks and volatility presents challenges
across all models, with lower accuracy scores, even
with chain-of-thought prompting. GPT4 tends to
always answer no for stationarity and fat tail de-
tection tasks, while in the case of chain-of-thought
prompting it does not answer, clarifying that it is
only an Al model and cannot perform the necessary
statistical tests.

For trend classification, GPT4 excels in zero-
shot and chain-of-thought prompting, demonstrat-
ing superior performance. Phi3 shows strong per-
formance in zero-shot settings for trend classifica-
tion, even surpassing GPT3.5 in zero-shot. In clas-
sifying seasonality, outliers, and structural breaks,
Phi3 also demonstrates competitive performance,
sometimes surpassing Llama2 and Vicuna, and out-
performing GPT3.5 in seasonality classification,
highlighting its distinct strengths. Additional plots
of confusion matrices are provided in Appendix D
to better understand how the models select their
choices, revealing potential biases such as consis-
tently selecting the same label. Figure 2 (a) summa-
rizes the F1 score for the feature detection task for
all models, showing the strong performance on the
four easier features, with Phi3 also being competi-
tive in trend, seasonality and volatility detection.

In multivariate time series feature detection and
classification tasks, all models achieve moderate
accuracy in zero-shot settings, suggesting poten-
tial for enhancement in intricate multivariate data
analysis. Chain-of-thought prompting does not sig-
nificantly improve performance in this context.

For information retrieval tasks, GPT4 outper-
forms GPT3.5 and other models, achieving perfect
accuracy in identifying the value on a given date. It
also maintains a low Mean Absolute Percentage Er-
ror (MAPE), indicative of its precise value predic-
tions. The arithmetic reasoning results echo these
findings, with GPT4 displaying superior accuracy,
especially in determining minimum and maximum
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values within a series. Figure 2 summarizes the
accuracy performance for the information retrieval
and arithmetic reasoning tasks, where there are
two clear groups with similar performance, GPT4,
GPT3.5 and Phi3, and Llama2 and Vicuna.

Volatility \
- Min value
asonality —

S
Outliers g0\
/ 6\
/ b
[ f
|
l
\
\ \y
Struct. Ere{\ /
— GPT4 N __Stationarity

— GPT3.5
—— Vicuna
— Lama2
Phi3 Phi3

FatTails

(a) Feature detection (b) IR and math reasoning

Figure 2: Feature detection and arithmetic reasoning
scores of GPT4, GPT3.5, Vicuna, Llama2 and Phi3.

In the text matching tasks, Table 3a shows results
intra-datasets, where GPT-4 significantly outper-
forms other models, achieving near-perfect accu-
racy across all datasets. This suggests that GPT-4
is capable of understanding the nuances of both
qualitative and quantitative time series descriptions
and effectively relating them to the underlying data.
Table 3b shows the results for the matching cross-
datasets where GPT-4 outperforms other models on
all datasets except two, showcasing its superior ca-
pability in understanding and matching qualitative
descriptions even without explicit quantitative cues.
The performance of GPT-3.5, Llama2, Vicuna, and
Phi-3 is notably lower, indicating a greater reliance
on quantitative information for accurate matching
in these models. This overall decrease in perfor-
mance, is in line with our overall findings that while
numerical performance on simple arithmetic tasks
is quite high, performance is generally lower for
time series feature detection and classification.

6.3 Deep Dive on Performance Factors

Time Series Formatting We present four
formatting approaches in this section, csv,
which is a common comma separated value,
plain where the time series is formatted as
Date:YYYY-MM-DD, Value:num for each pair date-
value. We also use the formatting approach pro-
posed by Gruver et al. (2023) which we denominate
spaces that adds blank spaces between each digit
of the time series, tokenizing each digit individ-
ually, and symbol, an enriched format where we
add a column to the time series with arrows indicat-
ing if the value has moved up, down or remained

Table 3: Accuracy of LLMs in matching time series
to their corresponding textual descriptions, given four
options. (Bold indicates best performance)

GPT-4 GPT-3.,5 Llama2 Vicuna Phi3

Trend 1.00 0.74 0.67 053 0.73
Seasonality 0.93 0.64 0.58 047  0.64
Anomalies 1.00 0.69 0.62 047  0.69
Struct. break  0.99 0.63 0.57 039 0.63

Volatility 0.98 0.72 0.60 0.49  0.65
Stationarity 0.99 0.72 0.64 052  0.69
Fat Tails 0.99 0.69 0.61 043  0.68

(a) Intra-dataset matching

GPT-4 GPT-3.,5 Llama2 Vicuna Phi3

Trend 0.46 0.21 0.32 036 034
Seasonality 0.41 0.50 0.32 035 031
Anomalies 0.46 0.16 0.32 0.36 034

Struct. break  0.28 0.1 0.26 027 024
Volatility 0.10 0.07 0.15 0.12  0.14
Stationarity 0.53 0.53 0.36 042 035
Fat Tails 0.10 0.04 0.10 0.10 0.09

(b) Cross-dataset matching

unchanged. Examples of every approach can be
found in Sec. F in the Appendix.

Table 4 shows the results for the four time series
formatting strategies. For the information retrieval
and arithmetic reasoning tasks, the plain format-
ting yields better results across all models. This
approach provides more structure to the input, and
outperforms other formats in a task where the con-
nection between time and value is important. For
the detection and classification tasks, the plain
formatting does not yield better results. Interest-
ingly the symbol formatting that adds an additional
column to the time series yields better results in
the trend classification task. This indicates that
LLMs can effectively leverage symbolic represen-
tations of time series movements to enhance their
understanding in trend classification.

Time Series Length Figure 3 shows the perfor-
mance of GPT3.5, Phi3, Llama2 and Vicuna on
three datasets, trend, seasonality and outliers
which have time series with different lengths. We
observe that GPT3.5 and Phi3 retrieval perfor-
mance degrades slowly with increasing sequence
length. Llama2 and and Vicuna suffer a more steep
degradation especially from time series of length
30 steps to 60 steps.

Position Bias We carry out a series of experi-
ments to determine how the position of the target
value affects task performance across various types
of time series data. We address progressively more
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Table 4: Top: Time series feature detection and classification performance measured with F1 score. Bottom: Time
series information retrieval and arithmetic reasoning performance measured by accuracy for different time series

formats. (Bold indicates best performance)

GPT3.5 Llama2

csv  plain  spaces symbol | csv  plain spaces symbol | csv  plain spaces symbol
Min value 098 099 0.79 098 | 055 0.58 0.20 0.58 | 0.63 0.17 0.62
Min date 094 095 0.69 093 | 028 0.39 0.09 029 | 0.50 0.13 0.49
Max value 092 092 054 094 | 048 0.56 0.05 052 | 049 046 0.01
Max date 0.88 0.88  0.51 0.89 | 034 046 0.04 0.41 0.38 0.07 0.41
Value on date | 0.94 0.94 0.82 094 | 0.39 038 0.07 034 | 036 0.09 0.41
Trend det 042 041 042 042 | 051 044 034 040 | 0.51 049 0.45
Trend class 0.74 055 053 092 | 041 048 043 0.62 | 049 058 044
Season det 0.61 0.77 0.63 047 | 0.55 024 040 050 | 047 047 053
Seasonclass | 0.27 0.19  0.17 0.18 | 0.11 0.13 0.08 0.10 |0.14 0.14 0.14
Outlier det 0.55 052 052 0.62 | 044 035 041 0.47 | 049 053 0.49
Outlier class | 0.17 0.17  0.17 017 | 0.13 0.14 0.4 0.08 0.14 0.14 0.08

Value on date Value on date Value on date

Accuracy

80 90 100 110 120 00 40
Length of time series

(a) Trend

6 0 100
Length of time series

(b) Seasonality

Accuracy
/

60 80 100
Length of time series

(c) Outliers

Figure 3: Retrieval performance for different time series lengths.

complex objectives: 1) identifying the presence of
a value in a time series without a specified date
(E.1); 2) retrieving a value corresponding to a spe-
cific date (E.2); and 3) identifying the minimum
and maximum values (E.3). We cover a range of
time series data, from monotonic series without
noise to those with noise, sinusoidal patterns, data
featuring outliers (spikes), and Brownian motion
scenarios, each adding a layer of complexity. We
examine how the position of the target value within
the four quadrants — 1st, 2nd, 3rd, and 4th— af-
fects the efficacy of these tasks across the varied
time series landscapes. This approach helps re-
veal the influence of position on different LL.Ms
(GPT3.5, Llama2, and Vicuna) in the task of time
series understanding.

We consider the presence of position bias when
the maximum performance gap between quadrants
exceeds 10%. Given this criterion, our analysis
provides the following key takeaways on position
bias impacting LLM performance across the de-
fined tasks: (1) Pronounced position bias is ob-
served across all tasks and LLMs: GPT models
show significant bias exclusively in complex tasks
that involve arithmetic reasoning. Both Llama2

and Vicuna demonstrate position biases across all
tasks, from the simplest to the most complex ones.
(2) The degree of complexity in the time series
data tends to increase the extent of position bias
observed within each task. See Appendix E, where
we offer a detailed analysis of position bias across
each task to further substantiate these conclusions.

7 Conclusion

In conclusion, we provide a critical examina-
tion of general-purpose Large Language Models
(LLMs) in the context of time series understand-
ing. Through the development of a comprehensive
taxonomy of time series features and the synthesis
of a diverse dataset that encapsulates these fea-
tures, including qualitative and quantitative textual
descriptions for each time series, we have laid a
solid foundation for evaluating the capabilities of
LLMs in understanding and interpreting time se-
ries data. Our systematic evaluation sheds light
on the inherent strengths and limitations of these
models, offering valuable insights for practition-
ers aiming to leverage LLMs in time series under-
standing. Recognizing the areas of weakness and
strength in general-purpose LLMs’ current capa-
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bilities allows for targeted enhancements, ensuring
that these powerful models can be more effectively
adapted to specific domains.

In the future, we plan to study the performance
of LLMs on real-world time series datasets to as-
sess the generalizability of the proposed frame-
work. This will involve testing LL.LMs on diverse
datasets from various domains, such as finance,
healthcare, and climate science. Additionally, fu-
ture work should expand the analysis challenges
LLMs face with multivariate time series data, in-
cluding the ability to identify and interpret rela-
tionships between multiple series, such as corre-
lation, cross-correlation, and dynamic conditional
correlation. Understanding these challenges will
be crucial for developing more effective LLMs for
complex time series analysis. Finally, evaluating
LLMs in few-shot settings is an important area for
future work, as it can reveal the models’ ability to
learn and generalize from limited time series data.
This can be particularly valuable in domains where
labeled data is scarce or expensive to obtain.

8 Limitations

In this section, we detail the key limitations of our
study and suggest pathways for future research.

Time series data frequently intersects with data
from other domains. In the financial industry, for
instance, analysis often combines time series data
like stock prices and transaction volumes with sup-
plementary data types such as news articles (text),
economic indicators (tabular), and market senti-
ment analysis (textual and possibly visual). Our
future work aims to delve into how LLMs can fa-
cilitate the integration of multimodal data, ensure
cohesive data modality alignment within the em-
bedding space, and accurately interpret the com-
bined data insights.

Currently, our application of LLMs in time se-
ries analysis is primarily focused on comprehend-
ing time series features. However, the lack of in-
terpretability mechanisms within our framework
stands out as a significant shortcoming. Moving
forward, we plan to focus on developing and in-
tegrating interpretability methodologies for LLMs
specifically tailored to time series data analysis
contexts.
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A Additional details of Taxonomy

| Feature | Description | Example Use Cases
Trend The general direction of a time series, either | Finance: Stock price trends, inflation rates. Climate:
increasing (upward) or decreasing (down- | Global temperature trends. Energy: Long-term en-
ward) over a long period. ergy consumption trends.
Seasonality A repeating pattern in a time series that oc- | Energy: Seasonal variations in electricity demand.

curs at regular intervals, such as daily, weekly,
monthly, or yearly.

Retail: Seasonal sales patterns (e.g., holiday shop-
ping). Tourism: Seasonal fluctuations in visitor num-
bers.

Fixed-Period

Seasonality with a constant, unchanging pe-
riod (e.g., monthly seasonality).

Energy: Monthly variations in electricity usage. Fi-
nance: Quarterly earnings reports.

Shifting Period

Seasonal patterns where the length of the pe-
riod shifts over time.

Climate: Shifting seasonal temperature patterns due
to climate change. Retail: Shifting sales patterns
due to changing consumer behavior.

Multiple Seasonality

Presence of multiple overlapping seasonal
patterns (e.g., both weekly and monthly sea-
sonality).

Finance: Weekly and monthly trading cycles.
Health: Weekly and annual cycles in flu cases.

Volatility

The degree of variation of a time series over
time, often measured by the standard devia-
tion or variance.

Finance: Stock market volatility, exchange rate fluc-
tuations. Energy: Price volatility in commodity mar-
kets. Weather: Day-to-day fluctuations in tempera-
ture or precipitation.

Constant Volatility

The degree of variation in the time series
remains consistent and predictable over time.

Finance: Stable bond markets. Energy: Consistent
electricity prices.

Trending Volatility

The level of variation in the time series shows
a clear increasing or decreasing trend over
time.

Finance: Increasing volatility in emerging markets.
Climate: Increasing variability in weather patterns.

Clustered Volatility

The time series exhibits periods where volatil-
ity is significantly higher or lower, with these
periods tending to cluster together.

Finance: Volatility clustering in financial markets
during crises. Economics: Clustered periods of high
inflation.

Dynamic Volatility

The volatility of the time series changes over
time in response to external factors (e.g.,
leverage effect where the volatility of the time
series tends to increase when the series expe-
riences negative returns).

Finance: Changing volatility due to market inter-
ventions. Climate: Volatility changes in response to
natural disasters.

pattern of the data.

Anomalies Data points that deviate significantly from the | Quality Control: Detecting defective products in a
expected pattern of a time series. manufacturing process. Network Security: Identify-
ing unusual traffic patterns that may indicate cyberat-
tacks. Finance: Detecting fraudulent transactions.
Spike A sudden and brief deviation from the overall | Finance: Sudden stock price jumps. Weather: Tem-

perature spikes during heatwaves.

Level Shift

A sudden and lasting change in the average
value of a time series.

Economics: Changes in consumer confidence or
business sentiment. Energy: Shifts in energy con-
sumption patterns due to technological advance-
ments or policy changes. Environmental Science:
Changes in water levels or pollutant concentrations
due to natural or human-induced factors.

Temporal Disruption

An interval where data is missing or not
recorded.

Network Security: Periods of data loss in network
traffic. Health: Missing data in patient records.

Structural Breaks

Abrupt changes in the underlying structure of
a time series, often caused by external events
or policy changes.

Economics: Changes in economic policy or regula-
tions. Finance: Market crashes or financial crises.
Epidemiology: Changes in disease transmission pat-
terns due to interventions.

events are more likely than expected under a
normal distribution.

Stationarity A time series is stationary if its statistical | Econometrics: Assumption for many time series
properties, such as mean and variance, do not | models. Finance: Assessing the stability of financial
change over time. markets.

Fat Tails A distribution of a time series where extreme | Finance: Modeling extreme price movements in fi-

nancial markets. Insurance: Pricing insurance poli-
cies for catastrophic events.

Table 5: Definitions and examples of time series analysis features and sub-categories.

21608




B Synthetic Time Series Dataset

B.1 Univariate Time Series

The primary characteristics considered in our univariate dataset include:

1.

Trend We generated time series data to analyze the impact of trends on financial market behavior.
This dataset encompasses linear and quadratic trends. For linear trends, each series follows a simple
linear equation a * t + b, where a (the slope) varies between 0.1 and 1, multiplied by the direction of
the trend, and b (the intercept) is randomly chosen between 100 and 110. This simulates scenarios of
steadily increasing or decreasing trends. For quadratic trends, the series is defined by a x> +bxt +c,
with a varying between 0.01 and 0.05 (again adjusted for trend direction), b between 0 and 1, and
¢ between 0 and 10, or adjusted to ensure non-negative values. The quadratic trend allows us to
simulate scenarios where trends accelerate over time, either upwards or downwards, depending on
the direction of the trend. This approach enables the exploration of different types of trend behaviors
in financial time series, from gradual to more dynamic changes, providing a comprehensive view of
trend impacts in market data.

Seasonality In our study, we meticulously crafted a synthetic dataset to explore and analyze the
dynamics of various types of seasonality within time series data, aiming to closely mimic the
complexity found in real-world scenarios. This dataset is designed to include four distinct types of
seasonal patterns, offering a broad spectrum for analysis: (1) Fixed Seasonal Patterns, showcasing
regular and predictable occurrences at set intervals such as daily, weekly, or monthly, providing a
baseline for traditional seasonality; (2) Varying Amplitude, where the strength or magnitude of the
seasonal effect fluctuates over time, reflecting phenomena where seasonal influence intensifies or
diminishes; (3) Shifting Seasonal Pattern, characterized by the drift of seasonal peaks and troughs
over the timeline, simulating scenarios where the timing of seasonal effects evolves; and (4) Multiple
Seasonal Patterns, which presents a combination of different seasonal cycles within the same series,
such as overlapping daily and weekly patterns, to capture the complexity of real-world data where
multiple seasonalities interact. This diverse dataset serves as a foundation for testing the sensitivity
and adaptability of analytical models to detect and quantify seasonality under varying and challenging
conditions.

Anomalies and outliers refer to observations that significantly deviate from the typical pattern
or trend observed in the dataset. The types of outliers included in our generated dataset are: 1)
single sudden spike for isolated sharp increases, 2) double and triple sudden spikes for sequences
of consecutive anomalies, 3) step spike and level shift for persistent changes, and 4) temporal
disruption for sudden interruptions in the pattern. We also include a no outlier category as a control
for comparative analysis. Parameters such as the location and magnitude of spikes, the duration
and start of step spikes, the placement and size of level shifts, and the initiation and conclusion of
temporal disruptions are randomly assigned to enhance the dataset’s diversity and relevance.

Structural breaks in time series data signify substantial changes in the model generating the data,
leading to shifts in parameters like mean, variance, or correlation. These are broadly classified
into two types: parameter shifts and regime shifts, with a third category for series without breaks.
Parameter shifts involve changes in specific parameters such as mean or variance, including sub-types
like mean shifts, variance shifts, combined mean-variance shifts, seasonality amplitude shifts, and
autocorrelation shifts. Regime shifts represent deeper changes that affect the model’s structure,
including: distribution changes (e.g., normal to exponential), stationarity changes (stationary to
non-stationary), linearity changes (linear to non-linear models), frequency changes, noise trend
changes, error correlation changes, and variance type changes. The occurrence of these shifts is
randomly determined within the time series.

. Volatility We generated synthetic time series data to simulate various volatility patterns, specifically

targeting clustered volatility, leverage effects, constant volatility, and increasing volatility, to mimic
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characteristics observed in financial markets.

For clustered volatility, we utilized a GARCH(1,1) model with parameters w = 0.1, a = 0.2, and
B = 0.7, ensuring the sum of « and [ remained below 1 for stationarity, thus capturing high volatility
persistence. The GARCH(1,1) model is defined by the equations:

ol =w+arl |+ Bo?

Tt = Ot€t
where crt2 is the conditional variance, 7; is the return at time ¢, and ¢; is white noise.

To simulate the leverage effect, our model increased volatility in response to negative returns,
reflecting typical market dynamics. The leverage effect model was designed with a base volatility of
0.1 and a leverage strength of 0.3, ensuring that volatility would significantly increase after negative
returns while gradually reverting to the base level after positive returns. The model is defined by:

Tt = 0t—1€¢

o¢—1(1 + leverage_strength) ifr, <0
o+ =
' max (o1 (1 — leverage_strength), 0.01) if r; >0

Additionally, we created time series with constant volatility by adding normally distributed random
noise (standard deviation of 1) to a cumulative sum of random values. This produced a time series
with a consistent level of volatility throughout the period. Mathematically, this is represented as:

t

thzerl-??t

i=1
where ¢; is white noise and 7; ~ N (0, 1).

For increasing volatility, we scaled the noise in proportion to the increasing range of the series, with
a scaling factor up to 5 towards the end of the series. This was achieved by multiplying the standard
deviation of the random noise by a linearly increasing factor, resulting in a volatility profile that
progressively intensified. This can be described by:

t
at:ao<1+'5>
n

Tt = €t - 0O¢
where o is the initial standard deviation and n is the total number of points.

To ensure non-negative volatility values across all simulations, we took the absolute values of the
generated noise. These methodologies enabled us to comprehensively represent different volatility
behaviors in financial time series, including constant, increasing, clustered, and leverage-induced
volatilities. By using these varied approaches, we enriched our analysis with diverse market con-
ditions, providing a robust dataset for evaluating the performance of models designed to handle
different volatility patterns.

. Statistical properties Next, we constructed a dataset to delve into significant features of time
series data, centering on fat tails and stationarity. The dataset sorts series into four categories:
those exhibiting fat tails, characterized by a higher likelihood of extreme values than in a normal
distribution; non-fat-tailed, where extreme values are less probable; stationary, with unchanging
mean, variance, and autocorrelation; and non-stationary series. Non-stationary series are further
divided based on: 1) changing mean: series with a mean that evolves over time, typically due to
underlying trends. 2) changing variance: series where the variance, or data spread, alters over time,
suggesting data volatility. 3) seasonality: series with consistent, cyclical patterns occurring at set
intervals, like seasonal effects. 4) trend and seasonality: series blending both trend dynamics and
seasonal fluctuations.
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B.2 Multivariate Time Series

For our analysis, we confined each multivariate series sample to include just 2 time series. The main
features of our generated multivariate dataset encompass:

1. Correlation involves analyzing the linear relationships between series, which is crucial for fore-
casting one time series from another when a correlation exists. The randomly selected correlation
coefficient quantifies the strength and direction of relationships as positive (direct relationship),
negative (inverse relationship), or neutral (no linear relationship) between series.

2. Cross-correlation evaluates the relationship between two time series while considering various time
lags, making it valuable for pinpointing leading or lagging relationships between series. For our data
generation, the time lag and correlation coefficient are randomly chosen.

3. Dynamic conditional correlation focuses on scenarios where correlations between series vary over
time. The points in the time series at which correlation shifts take place are selected randomly.
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B.3 Data Examples

Trend
(a) Positive trend (b) Negative trend (c) Positive trend (d) No clear trend
Seasonality

AVAVARL

(a) Fixed seasonality (b) Fixed seasonality (c) Shifting patterns (d) Mult%p‘ le
Seasonalities
Volatility
(a) Constant volatility  (b) Increasing volatility (c) Clustered volatility (d) No volatility

Anomalies and Outliers

B I I L

(a) Double sudden spikes (b) Step spike (c) Level shift (d) Temporal Disruption
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Structural breaks

=W __/

(b) Parameter shift
(change in seasonality
amplitude)

(c) Regime shift (d) Regime shift
(noise trend change) (stationarity change)

(a) Parameter shift
(change in variance)

Fat Tails and Stationarity

L

(c) Non-stationary
(changing variance over
time)

(b) Non-stationary
(trend)

(a) Fat tailed (d) Non-stationary
(seasonality)

Table 6: Examples of the generated univariate time series. The x- and y-axis are intentionally omitted to focus
exclusively on the shape and characteristics of the time series.

Correlation
(a) Positive correlation (b) Negative correlation (¢) No correlation

Cross-correlation

L

(a) Lagged positive correlation (b) Lagged negative correlation
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Dynamic conditional correlation

(a) Positive correlation (b) Negative correlation (d) Negative correlation
(first half) (first half) (second half)

Table 7: Examples of the generated multivariate time series. The x- and y-axis are intentionally omitted to focus
exclusively on the shape and characteristics of the time series.

C Additional datasets

Brownian Data: We generate a synthetic time series dataset exhibiting brownian motion. The data
consists of 400 samples where each time series has a length of 175. We control for the quadrant in the
which the maximum and minimum values appear using rejection sampling i.e. there are 50 samples
for which the maximum value in the time series occurs in the first quadrant, 50 samples for which the
maximum value appears in the second quadrant, and so on, upto the fourth quadrant. In a similar manner
we control for presence of the minimum value in each quadrant.

Outlier Data: We generate a synthetic time series dataset where each time series contains a single outlier
which is the either the minimum or maximum values in the time series. The data consists of 400 samples
where each time series has a length of 175. We control for the quadrant in the which the maximum
and minimum (outlier) values appear using rejection sampling i.e. there are 50 samples for which the
maximum value in the time series occurs in the first quadrant, 50 samples for which the maximum value
appears in the second quadrant, and so on, upto the fourth quadrant. In a similar manner we control for
presence of the minimum value in each quadrant.

Monotone Data: We generate a synthetic time series dataset where each time series is monotonically
increasing or decreasing. The data consists of 400 samples (200 each for increasing/decreasing) where
each time series has a length of 175.

Monotone (with Noise) Data: We generate a synthetic time series dataset where each time series is
increasing or decreasing. The data consists of 400 samples (200 each for increasing/decreasing) where
each time series has a length of 175. Note that dataset is different from the Monotone data as the time
series samples are not strictly increasing/decreasing.
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D Additional results
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Figure 4: Trend detection
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Figure 5: Trend classification
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Figure 7: Anomaly detection
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Outliers Classification - Gpt4
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D.4 Volatility

Volatility Detection - Gptd

True Label

No Yes
Predicted Label

Volatility Classification - Gpt4

K] 0.00 0.23 o

58 0.03 0.00

2 as

s

¥ Loa

& 000 000 .
0.00 0.02 01

Yes
Predicted Label

True Label
Yes

True Label

True Label

Outliers Classification - Gpt3.5 o

g 000 0.00
0.00 0.00
0.00 0.00 o

Yes
Predicted Label

Figure 8: Anomaly
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Figure 9: Volatility detection
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Figure 10: Volatility classification
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E Position Bias

E.1 Does the position of the target value affect the performance of identifying its presence in
various types of time series data?

Refer to Figure 8, which includes a confusion matrix (with ‘1: yes’ indicating presence of the number in
the series and ‘0: no’ indicating its absence) and bar plot showing the accuracy in each quadrant for each
LLM and type of time series data.

GPT achieves nearly perfect performance across all quadrants and time series types, indicating an
absence of position bias in detecting the presence of a number within the time series. Llama2 does not
exhibit position bias in monotonic series without noise but begins to show position bias as the complexity
of the time series increases, such as in monotonic series with noise and sinusoidal series. We believe this
bias is also present in Brownian series; however, due to the higher complexity of the dataset, Llama2’s
performance is poor across all quadrants, making the impact of the bias less discernible. Vicuna displays
superior performance compared to Llama2 across all datasets but continues to exhibit position bias.
Notably, this bias appears in most datasets, such as monotonic series without noise, sinusoidal series, and
Brownian motion series.

GPT 3.5

Does a value exist in a time series? [gpt3.5] Does a value exist in a time series? [gpt3.5] Does a value exist in a time series? [gpt3.5]

Does a value exist in a time series? [gpt3.5]

Grouna trutn
Ground truth
Ground truth

o o Ye o
Predicted Predicted Predicted Predicted
100, 0.97 100 1.00 100 1.00, 100 1.00
-.0.75 -.0.75
%] %]
© ©
5 0.50 50.50
3 3
<0.25 <0.25
0.00 1 2 3 4 0.00 1 2 3 2 3 1 2 3 4
Quadrant Quadrant Quadrant Quadrant
(a) Monotonic (no noise) (b) Monotonic with noise (c¢) Sinusoidal (d) Brownian motion
Llama2
Does a value exist in a time series? [llama] Does a value exist in a time series? [llama] Does a value exist in a time series? [llama] Does a value exist in a time series? [llama]
0.8
K] 0 0.04 2 1 0 0.02
£ £ £ 5 0.6
2 H H g
9 0.37 0.15 k4 0.76 0.24 $ 0.04
0.2
N les No Yes No Yes No les
Predicted Predicted Predicted Predicted
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0.07

0.04 0.02 0.02

1 2 3 4 : 1 2 3 4 ’ 1 2 3 4 : 1 2 3 4
Quadrant Quadrant Quadrant Quadrant
(a) Monotonic (no noise) (b) Monotonic with noise (c) Sinusoidal (d) Brownian motion
Vicuna

Does a value exist in a time series? [old] Does a value exist in a time series? [old] Does a value exist in a time series? [old] Does a value exist in a time series? [old]

Grouna trutn
Ground truth
Ground truth

Predicted Predicted Predicted Predicted

1 2 3 4 ! 2 3 ! 2 3 : 2 3
Quadrant Quadrant Quadrant Quadrant
(a) Monotonic (no noise) (b) Monotonic with noise (c) Sinusoidal (d) Brownian motion

Table 8: Confusion matrix and accuracy by quadrant for the search task

E.2 Does the position impact the retrieval performance for a specific date’s value from time series
data?

Refer to Figure 9 for bar plots that illustrate the accuracy across each quadrant.

Once again, GPT achieves nearly perfect performance across all quadrants and time series types,
suggesting no position bias in the retrieval task either. Similar to the findings in E.1, Vicuna outperforms
Llama2. Moreover, both Vicuna and Llama2 exhibit position bias in most datasets, including monotonic
series both with and without noise, and sinusoidal series.

GPT 3.5
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Quadrant Quadrant Quadrant Quadrant

(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

21618



0.00 1 2 3 4 0.00 1 2 3 4 ! 1 2 3 4 0.00 1 2 3 4
Quadrant Quadrant Quadrant Quadrant
(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion
Vicuna
1.00
5.0.75
g
é 0.50
< 0.25
0.00 1 2 3 4 0.00 1 2 3 4 0.00 1 2 3 4 0.00 1 2 3 4
Quadrant Quadrant Quadrant Quadrant
(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Table 9: Confusion matrix and accuracy by quadrant for the retrieval task

E.3 Does the position impact the efficiency of identifying minimum and maximum values in
different types of time series data?

Refer to Figure 10 for bar charts illustrating the accuracy distribution across quadrants.

For the first time, GPT models show position bias in the spikes dataset, attributed to the increased
complexity of the task, which involves arithmetic reasoning. Llama?2 exhibits position bias in most datasets,
notably in monotonic series with noise, spikes, and Brownian motion series. Vicuna also demonstrates
position bias in most datasets, including monotonic series both with and without noise, as well as spikes
series.

GPT 3.5
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1.007 & 1.00; 0.95

5.0.75 5.0.75
§ 0.50 E 0.50
3 034 3
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0.00 1 2 3 4 0.00 1 2 ! 2 ! 1 2 3 4
Quadrant Quadrant Quadrant Quadrant
(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Table 10: Confusion matrix and accuracy by quadrant for the min-max extraction task. Note that monotonic series
can have maximum or minimum values only in the first or fourth quadrant.

F Time Series formatting

Custom
"Date|Value\n2020-01-01|100\n2020-01-02|105\n2020-01-03 | 103\n2020-01-04|103\n"

Date|Value

2020-01-01|100
2020-01-02|105
2020-01-03|103
2020-01-04|103

TSV
"Date\tValue\n2020-01-01\t100\n2020-01-02\t105\n2020-01-03\t103\n2020-01-04\t103\n"

Date Value
2020-01-01 100
2020-01-02 105
2020-01-03 103
2020-01-04 103

Plain

"Date: 2020-01-01, Value: 100\nDate: 2020-01-02, Value: 105\nDate:
2020-01-03, Value: 103\nDate: 2020-01-04, Value: 103"

Date: 2020-01-01, Value: 100
Date: 2020-01-02, Value: 105
Date: 2020-01-03, Value: 103
Date: 2020-01-04, Value: 103

JSON

{"Date”:"2020-01-01","Value”:100}\n{"Date"”:"2020-01-02","Value”:105}\
n{"Date”:"2020-01-03","Value”:103}\n{"Date”:"2020-01-04" ,"Value
":103}\n

{"Date”:"2020-01-01","Value"”:100}
{"Date”:"2020-01-02","Value":105}
{"Date”:"2020-01-03","Value"”:103}
{"Date”:"2020-01-04","Value"”:103}

Markdown

"|Date|Value|\n|---]---]\n|2020-01-01[100|\n|2020-01-02]105]|\n
|2020-01-03[103|\n|2020-01-04]103|\n"
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|Date|Value|
=== ] ==~
[2020-01-01|100|
[ 2020-01-02|105]|
[2020-01-03|103 |
| 2020-01-04|103|

Spaces

"Date,Value\n2020-01-01,1 @ 0\n2020-01-02,1 @ 5\n2020-01-03,1 @ 3\
n2020-01-04,1 @ 3\n"

Date,Value

2020-01-01,1
2020-01-02,1
2020-01-03,1
2020-01-04,1

Context

"Date,Value\n2020-01-01,[100]1\n2020-01-02,[105]\n2020-01-03,[103]\
n2020-01-04,[103]\n"

Date,Value

2020-01-01,[100]
2020-01-02,[105]
2020-01-03,[103]
2020-01-04,[103]

Symbol

"Date,Value,DirectionIndicator\n2020-01-01,100,—\n2020-01-02,105,1T\
n2020-01-03,103,]\n2020-01-04,103,—>\n"

Date,Value,DirectionIndicator
2020-01-01,100, —
2020-01-02,105,1
2020-01-03,103,
2020-01-04,103, —

Base/csv

"Date,Value\n2020-01-01,100\n2020-01-02,105\n2020-01-03,103\n2020
-01-04,103\n"

Date,Value

2020-01-01,100
2020-01-02,105
2020-01-03,103
2020-01-04,103

21621



F.1 Additional results of time series formatting

(a) GPT3.5
csv  plain  tsv  custom contextual json markdown spaces symbol
Trend det 042 041 041 043 0.44 0.41 0.41 0.42 0.42
Trendclass  0.74 055 0.72  0.61 0.85 0.50 0.56 0.53 0.92
Seasondet  0.61 0.77 0.69 0.60 0.58 0.87 0.44 0.63 0.47
Season class  0.27 0.19 021  0.16 0.23 0.22 0.09 0.17 0.18
Outlierdet  0.55 0.52 050 049 0.46 0.49 0.48 0.52 0.62
Outlier class  0.17 0.17 0.17  0.16 0.17 0.17 0.17 0.17 0.17
AvgRank 333 575 400 6.08 4.50 5.25 7.25 4.83 4.00
(b) Llama2
csv  plain  tsv  custom contextual json markdown spaces symbol
Trend det 051 044 0.63 0.56 0.46 0.50 0.56 0.34 0.40
Trend class 0.41 048 040 043 0.45 0.42 0.36 0.43 0.62
Seasondet  0.55 0.24 048 046 0.59 0.38 0.45 0.40 0.50
Seasonclass 0.11 0.13 0.09 0.10 0.09 0.10 0.11 0.08 0.10
Outlierdet 044 035 047 044 0.45 0.48 0.51 0.41 0.47
Outlier class  0.13  0.14 0.10 0.14 0.17 0.18 0.21 0.14 0.08
AvgRank 483 550 533 433 4.33 4.83 3.83 7.17 4.83
(c) Vicuna

csv  plain tsv  custom contextual json markdown spaces symbol

Trend det 0.51 049 047 047 0.55 0.44 0.51 0.54 0.45
Trend class 049 058 0.54  0.53 0.56 0.50 0.56 0.44 0.64
Season det 047 047 054 047 0.48 0.49 0.51 0.53 0.54
Seasonclass 0.14 0.14 0.20 0.20 0.20 0.19 0.17 0.14 0.15
Outlier det 049 053 054 052 0.47 0.50 0.52 0.54 0.49
Outlier class 0.19 0.14 0.19 0.16 0.22 0.16 0.13 0.14 0.08
AvgRank 6.33 533 3.00 533 3.83 5.83 4.83 5.17 5.33

Table 11: Performance on Time Series Reasoning for different time series formatting.
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(a) GPT3.5

csv  plain tsv custom contextual json markdown spaces symbol

Min value 098 0.99 0.98 0.98 0.98 0.98 0.98 0.79 0.98

Min date 094 095 094 0.95 0.94 0.94 0.93 0.69 0.93

Max value 092 092 0091 0.92 0.92 091 0.91 0.54 0.94

Max date 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.51 0.89

Valueondate 094 094 0.94 0.94 0.95 0.94 0.94 0.82 0.94

AvgRank 480 2.70 440 3.10 3.20 6.60 7.30 9.00 3.90
(b) Llama2

csv  plain tsv  custom contextual json markdown spaces symbol

Min value 055 0.58 0.54 0.54 0.56 0.58 0.55 0.20 0.58

Min date 0.28 039 0.30 0.28 0.29 0.36 0.34 0.09 0.29

Max value 048 0.56 0.49 0.48 0.50 0.55 0.54 0.05 0.52

Max date 034 046 040 0.38 0.37 0.45 0.44 0.04 0.41

Value on date 0.39 0.38 0.47 0.40 0.35 0.45 0.44 0.07 0.34

AvgRank 6.80 230 460 6.50 5.60 2.10 3.50 9.00 4.60
(¢) Vicuna

csv  plain tsv  custom contextual json markdown spaces symbol

Min value 0.63 0.67 056 0.61 0.60 0.64 0.59 0.17 0.62
Min date 0.50 055 047 049 0.53 0.52 0.51 0.13 0.49
Max value 049 046 045 044 0.48 0.47 0.50 0.01 0.50
Max date 038 042 041 039 0.46 0.40 0.42 0.07 0.41
Value on date 0.36 048 039  0.39 0.42 0.40 0.37 0.09 0.41
AvgRank 540 240 650 6.60 3.00 4.00 4.30 9.00 3.80

Table 12: Accuracy for information retrieval and arithmetic reasoning tasks for different time series formatting.

GPT3.5 Llama2 Vicuna

Min date Min date Min date

Max value _ Max value Max value
P 0

> Min value

Max date / Max date Max date

Value on date Value on date Value on date

—— contextual —— json spaces —— contextual —— json spaces —— contextual — json spaces
csv markdown symbol csv. markdown symbol csv. markdown symbol
—— custom —— plain tsv —— custom —— plain tsv —— custom —— plain tsv

Figure 11: Accuracy for information retrieval and arithmetic reasoning tasks for different time series tokenization.
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(a) GPT3.5

csv  plain  tsv  custom contextual json markdown spaces symbol
Min value 0.04 0.04 005 0.04 0.04 0.06 0.07 0.32 0.04
Max value 0.06 0.07 0.07 0.07 0.07 0.10 0.09 1.01 0.10
Value ondate 0.08 0.10 0.07 0.08 0.03 0.08 0.03 0.38 0.04
(b) Llama2
csv  plain tsv  custom contextual json markdown spaces symbol
Min value 10.15 16.18 10.38 19.57 22.46 11.14 21.15 0.69 21.12
Max value 1.03 095 1.09 1.04 0.91 1.01 1.00 2.58 0.90
Value ondate 0.81 0.65 040 0.73 0.61 0.48 0.44 0.96 0.90
(c) Vicuna
csv. plain  tsv  custom contextual json markdown spaces symbol
Min value 12.79 1224 2945 13.89 12.06 26.62 25.54 0.96 22.50
Max value 085 074 1.01 1.14 0.94 0.67 0.98 2.51 0.59
Valueondate 044 0.78 0.83 0.94 0.31 0.65 0.38 0.95 0.38

Table 13: MAPE for information retrieval and arithmetic reasoning tasks for different time series formatting.
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G Prompts

Information retrieval and arithmetic reasoning prompts — Zero-shot

"Input:<time series>.

Given the input time series, please answer the following questions and format your responses in a dictionary with the
structure shown below:

{’max_value’: {’value’:value, ’date’:date}, ’min_value’: {’value’:value, ’date’:date},
’value_on_date <date>’: {’value’:value}}.

Only provide the numerical value and/or the date as the answer for each question. Format the reply as a dictionary
following the instruction."

Information retrieval and arithmetic reasoning prompts — CoT

"Input:<time series>.

Given the input time series, please provide concise and precise answers to the following questions and format your
responses in a dictionary:

{’max_value’: {’value’:value, ’date’:date}, ’min_value’: {’value’:value, ’date’:date},
’value_on_date <date>’: {’value’:value}}.

To ensure accuracy, let’s follow these steps:

1. Identify the maximum value and its date.

2. Identify the minimum value and its date.

3. Find the value on the specified date <date>.

Note: Only provide the numerical value and/or the date as the answer for each question. Format the reply as a dictionary
following the instruction.

Let’s think step by step.”

Trend Prompts — Zero-shot

"Input:<time series>."
Question 1: Detection

"Question: can you detect a general upward or downward trend in this time series? Answer yes or no only."
Question 2: Classification

"Select one of the following answers: (a) the time series has a positive trend, (b) the time series has a negative trend.
Provide your answer as either (a) or (b)."

Trend Prompts - CoT

"Input:<time series>."

Question 1: Detection

"Question: Question: Can you detect a general upward or downward trend in this time series? Provide your reasoning
and then answer ’Yes’ or 'No’.
Let’s think step by step. First, observe the overall pattern of the data points. Do they generally increase or decrease over
time?
Consider the starting and ending points of the series. If the ending point is significantly higher or lower than the starting
point, this might indicate a trend.
Also, look at the intermediate points: do they show a consistent direction of movement, or are there major fluctuations
that disrupt the trend?
Now, based on these observations, determine if there is a consistent pattern indicating a trend. Finally, provide your

s

answer as ' Yes’ or 'No’.",

Question 2: Classification

""Select one of the following answers:
(a) The time series has a positive trend, (b) The time series has a negative trend. Provide your answer as either (a) or (b).
Let’s think step by step. First, identify the general direction of the data points. Do they appear to be moving upward or
downward overall?
Consider the slope of the line that could be drawn through the data points. A positive slope indicates an upward trend,
while a negative slope indicates a downward trend.
Check for consistency in the movement. Are most of the data points following this direction, or are there significant
deviations?
If the overall pattern is increasing, select (a). If it is decreasing, select (b)."
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Seasonality Prompts — Zero-shot

Prompt 1: Detection

"Input:<time series>.
Question: can you detect any cyclic or periodic patterns in this time series? Only answer ’Yes’ or "No’."

Prompt 2: Classification

"Given the following definitions:

Fixed-period: Regular, predictable seasonal patterns occurring at fixed intervals (e.g., daily, weekly, monthly).
Shifting Period: Seasonal patterns where the length of the period shifts over time.

Multiple seasonality: Presence of multiple overlapping seasonal patterns (e.g., both weekly and monthly seasonality)
Select one of the following answers:

(a) The time series has fixed-period seasonality, (b) The time series has a shift in seasonal pattern, (c) The time series
has multiple seasonal patterns.

Only answer (a), (b) or (c)."

Seasonality Prompts — CoT

Prompt 1: Detection

"Input:<time series>.
Question: Can you detect any cyclic or periodic patterns in this time series? Provide your reasoning and then answer
’Yes’ or 'No’.
Let’s think step by step. First, observe the overall shape of the time series. Look for repeating patterns or cycles.
Identify the peaks (high points) and troughs (low points) in the series. Are these peaks and troughs occurring at regular
intervals?
Measure the distance between these repeating points. If the intervals between them are consistent, it suggests a cyclic
pattern.
Also, consider the amplitude (height) of these peaks and troughs. Is the amplitude consistent or does it vary over time?
Now, based on these observations, determine if there is a consistent cyclic or periodic pattern in the time series. Finally,

provide your answer as *Yes’ or 'No’." Prompt 2: Classification

"Given the following definitions:

Fixed-Period: Seasonality with a constant, unchanging period (e.g., monthly seasonality).

Shifting Period: Seasonality where the length of the period shifts over time (e.g., a seasonal pattern that shifts slightly
each year).

Multiple Seasonality: Presence of multiple overlapping seasonal patterns (e.g., both weekly and monthly seasonality).
Select one of the following answers:

(a) The time series has a fixed-period seasonality, (b) The time series has a shifting-period seasonality, (c) The time
series has multiple seasonality.

Let’s think step by step. First, identify if there is a repeating pattern at fixed intervals, which would indicate a fixed-
period seasonality. If the timing of the pattern shifts, it’s a shifting-period seasonality. Finally, if there are two or more
overlapping seasonal patterns, identify it as multiple seasonality. Compare the intervals and magnitudes of the peaks
and troughs carefully to determine the correct pattern. Now, provide your final answer as either (a), (b), or (c)."

Anomaly Prompts — Zero-shot

"Input:<time series>.
Prompt 1: Detection

s

Question: can you detect any irregularities in this time series? Only answer "Yes’ or ’No
Prompt 2: Classification

"Given the following definitions:

Spike: a sudden and brief deviation from the overall pattern of the data.

Level shift: a sudden and lasting change in the average value of the series.

Temporal disruption: an interval where data is missing or not recorded.

Select one of the following answers that best describes the provided time series:

(a) The time series has one or more spikes, (b) The time series has a level shift, (c) The time series has a temporal
disruption.

Only answer (a), (b), or (c)."
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Anomaly Prompts — CoT

"Input:<time series>.
Prompt 1: Detection

Question: Can you detect any irregularities in this time series? Provide your reasoning and then answer " Yes’ or 'No’.
Let’s think step by step. First, observe the overall pattern of the time series. Identify the general trend or pattern.
Next, look for any points that deviate significantly from this overall pattern. These deviations could be much higher or
lower than the rest of the data points.

Consider the context of these deviations: are they isolated points, or do they occur in a sequence?

Are there sudden jumps or drops that are not consistent with the trend? After examining these factors, determine if there
are any significant irregularities. Finally, provide your answer as ’Yes’ or 'No’."

Prompt 2: Classification

"Given the following definitions:

Spike: a sudden and brief deviation from the overall pattern of the data.

Level shift: a sudden and lasting change in the average value of the series.

Temporal disruption: an interval where data is missing or not recorded.

Select one of the following answers that best describes the provided time series:

(a) The time series has one or more spikes, (b) The time series has a level shift,

(c) The time series has a temporal disruption.

Let’s think step by step. First, identify if there are any points that stand out sharply from the rest of the data, which
would indicate spikes.

If there is a lasting change in the average value of the series, identify it as a level shift.

If there are intervals where data appears to be missing or not recorded, classify it as a temporal disruption.

Based on your observations, determine the type of irregularity present. Now, provide your final answer as either (a), (b),
or (¢)."

Volatility Prompts — Zero-shot

"Input:<time series>.
Prompt 1: Detection
Question: can you detect any volatility in this time series? Only answer ’Yes’ or 'No
Prompt 2: Classification
"Given the following definitions:
Constant Volatility: The degree of variation in the time series remains consistent and predictable over time.
Trending Volatility: The level of variation in the time series shows a clear increasing or decreasing trend over time.
Clustered Volatility: The time series exhibits periods where volatility is significantly higher or lower, with these periods
tending to cluster together.
Dynamic Volatility: The volatility of the time series changes over time in response to external factors (e.g., leverage
effect where the volatility of the time series tends to increase when the series experiences negative returns).
Select one of the following answers:
(a) The time series has constant volatility, (b) The time series has trending volatility, (c) The time series has clustered
volatility, (d) The time series has dynamic volatility.
Only answer (a), (b), (c), or (d)."

s n

Structural Break Prompts — Zero-shot

"Input:<time series>.
Prompt 1: Detection

s

Question: can you detect any regime switches or structural breaks in this time series? Only answer *Yes’ or "No
Prompt 2: Classification

"Given the following definitions:

Regime Change: A shift in the time series data’s statistical properties, such as mean, variance, or auto-correlation, that
persists over time. This change is often gradual and represents a new phase or ‘regime’ in the data.

Structural Break: An abrupt change in the time series data that leads to a new level or trend. This change is typically
sudden and can be linked to specific events or shifts in the underlying process.

Examine the provided time series data and select the correct option:

(a) The time series data exhibits a Regime Change. (b) The time series data exhibits a Structural Break.

Provide your answer as either (a) or (b)."
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Fat tails Prompt — Zero-shot
"Input:<time series>.
Prompt 1: Detection

Question: Considering the data provided, does the time series exhibit fat tails? Fat tails refer to a higher likelihood of
extreme values compared to a normal distribution, indicating a higher probability of observing significant positive or
negative deviations. Only answer ’Yes’ or 'No’."

Stationarity Properties — Zero-shot

"Input:<time series>.
Prompt 1: Detection
Question: Considering the data provided, is the time series stationary? Only answer ’Yes’ or 'No’."
Prompt 2: Classification
"Given the following definitions of non-stationary types in time series data:
(a) Trend Change: The time series exhibits a significant shift in its underlying trend, indicating a change in the mean
over time.
(b) Variance Change: The time series shows a change in its variability or spread.
(c) Seasonality: The time series displays regular and predictable patterns that repeat over a certain period.
(d) Trend and Seasonality: The time series exhibits both a significant underlying trend and seasonal patterns. This type
combines elements of both trend changes and predictable seasonal fluctuations.
Select one of the following answers based on your analysis of the time series:
(a) The time series has a trend change, (b) The time series has a variance change, (c) The time series has seasonality, (d)
The time series has both trend and seasonality.
Only answer (a), (b), (c) or (d)."

Correlation — Zero-shot
"Input:<time series>.
Prompt 1: Detection
Question: Considering the data provided, is there a correlation between the time series? Only answer ’Yes’ or "No’"

Prompt 2: Classification

"Select one of the following answers:
(a) The time series are positively correlated or (b) The time series are negatively correlated.
Provide your answer as either (a) or (b)."

Cross-Correlation — Zero-shot

"Input:<time series>.
Prompt 1: Detection

Question: Considering the data provided, is there a correlation (direct or lagged) between the two time series? Only
answer ’Yes’ or *No’."
Prompt 2: Classification

"Given the following definitions:

Direct Correlation: The two time series show a direct, immediate relationship between their values, where changes in
one series directly influence the other in a straightforward manner.

Direct Lagged Correlation: The two time series demonstrate a delayed relationship, where changes in one series
influence the other after a certain lag period.

Inverse Correlation: The two time series exhibit an inverse or negative relationship between their values, where an
increase in one series typically leads to a decrease in the other, and vice versa.

Inverse Lagged Correlation: The two time series show a relationship where changes in one series negatively influence
the other after a certain lag period, suggesting that past increases in one series lead to future decreases in the other, and
vice versa.

Select one of the following answers that best describes the relationship between the two time series:

(a) The two time series exhibit direct correlation, (b) The two time series exhibit direct lagged correlation, (c) The two
time series exhibit inverse correlation, (d) The two time series exhibit inverse lagged correlation.

Only answer (a), (b), (c), or (d)."
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H Licenses

Table 14 lists the licenses for the assets used in the paper.

Asset License

Llama2 Link
Vicunal.5 Link
Phi3 Link

Table 14: License of assets used.
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I Datasheet

We provide a datasheet for evaluating large language models on time series feature understanding,
following the framework in Gebru et al. (2021).

Table 15: Datasheet for Time Series Feature Understanding

Motivation

For what purpose was
the dataset created?

The dataset was created to evaluate the capabilities of Large Lan-
guage Models (LLMs) in understanding and captioning time series
data, specifically in detecting, classifying, and reasoning about
various time series features.

Who created the dataset | The dataset was created by the authors of this paper for the pur-
and on behalf of which | poses of this research project.

entity?

Who funded the creation | The creation of the dataset was funded by the coauthors employers.
of the dataset?

Any other comment?

The dataset is intended for evaluating the performance of LLMs
on time series annotation and summarization tasks, highlighting
both strengths and limitations.

Composition

What do the instances
that comprise the dataset
represent?

Instances are synthetic time series data points, representing various
time series features such as trends, seasonality, anomalies, and
more.

How many instances are
there in total?

The dataset comprises 10 synthetic datasets with 5000 samples in
the train split, 2000 samples in the validation split and 200 time
series samples in the test set.

Does the dataset contain
all possible instances or
is it a sample (not nec-
essarily random) of in-
stances from a larger
set?

The dataset is a curated sample representing a wide range of time
series features and complexities.

What data does each in-
stance consist of?

Each instance is a time series data point with associated features,
metadata, and annotations for trend, seasonality, anomalies, etc.

Is there a label or target
associated with each in-
stance?

No. The dataset is primarily for evaluation of time series descrip-
tion and understanding tasks performed by LLMs.

Is any information miss-
ing from individual in-
stances?

No.

Are relationships
between individual
instances made explicit?

No. Each instance is considered independently for the purpose of
this benchmark.

Are there recommended
data splits?

Yes, the dataset includes splits for training, validation, and test to
ensure consistent evaluation metrics.

Are there any errors,
sources of noise, or
redundancies in the
dataset?

We make efforts to remove errors and noise, but due to the com-
plex nature of isolating time series features, there may be some
redundancies.
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Is the dataset self-
contained, or does it link
to or otherwise rely on
external resources?

The dataset is self-contained.

Does the dataset contain
data that might be con-
sidered confidential?

No. All data used in the dataset is synthetically generated.

Collection Process

How was the data associ-
ated with each instance
acquired?

The synthetic data was generated using predefined rules for each
feature.

Was the data directly ob-
tained from the individu-
als, or was it provided by
third parties or obtained
from publicly available
sources?

The data was synthesized using algorithmic generation methods.

Were the individuals in
question notified about
the data collection?

Not applicable. The dataset does not contain individual personal
data.

Did the individuals in
question consent to the
collection and use of
their data?

Not applicable. The dataset does not contain individual personal
data.

If consent was obtained,
were the consenting in-
dividuals provided with
any mechanism to re-
voke their consent in
the future or for certain
uses?

Not applicable. The dataset does not contain individual personal
data.

Has an analysis of the
potential impact of the
dataset and its use on
data subjects been con-
ducted?

Not applicable. The dataset does not contain individual personal
data.

Preprocessing/Cleaning/Labeling

What  preprocessing/-
cleaning was done?

Synthetic data was generated with controlled features.

Was the “raw” data
saved in addition to the

preprocessed/cleaned/la-
beled data?

Yes, both raw and preprocessed data are saved for transparency
and reproducibility.

Is the software used
to preprocess/clean/label
the instances available?

Not at the moment, preprocessing scripts and tools might be made
available in a project repository.

Uses

Has the dataset been
used for any tasks al-
ready?

Yes, the dataset has been used for evaluating LLLMs on time series
feature detection, classification, and arithmetic reasoning tasks.

21631




Is there a repository that
links to any or all papers
or systems that use the
dataset?

Not at the moment.

What (other) tasks could
the dataset be used for?

The dataset could be used for further time series analysis, forecast-
ing, anomaly detection, and other machine learning tasks involving
time series data.

Is there anything about
the composition of the
dataset or the way it was
collected and prepro-
cessed/cleaned/labeled
that might impact future
uses?

The synthetic nature of some datasets might limit their applica-
bility to real-world scenarios, but they are useful for controlled
benchmarking.

Are there tasks for which
the dataset should not be
used?

The dataset is not suitable for tasks requiring personal data or
highly sensitive financial predictions without further analysis.

Distribution

Will the dataset be dis-
tributed to third par-
ties outside of the entity
on behalf of which the
dataset was created?

Yes, the dataset will be publicly available for research purposes.

How will the dataset be
distributed?

The dataset will be distributed via an online repository with appro-
priate licensing.

When will the dataset be
distributed?

The dataset will be available for distribution after the publication
of the paper.

Will the dataset be
distributed under a
copyright or other intel-
lectual property license,
and/or under applicable
terms of use?

Yes.

Have any third par-
ties imposed IP-based or
other restrictions on the
data associated with the
instances?

No.

Do any export controls
or other regulatory re-
strictions apply to the
dataset or to individual
instances?

No.

Maintenance

Who is supporting/host-
ing/maintaining the
dataset?

The dataset is maintained by the research team and contributors.

How can the owner/cu-
rator/manager of the
dataset be contacted?

Contact details will be provided in the dataset repository.
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Is there an erratum?

Not yet, but any updates or errors will be documented in the
repository.

Will the dataset be up-
dated?

Yes, future updates will be made to improve and expand the
dataset.

If the dataset relates to
people, are there appli-
cable limits on the reten-
tion of the data associ-
ated with the instances?

Not applicable.

Will older versions of
the dataset continue to
be supported/hosted/-
maintained?

Yes, previous versions will remain available for reference.

If others want to ex-
tend/augment/build on/-
contribute to the dataset,
is there a mechanism for
them to do so?

Yes, contributions are welcomed via the dataset repository, and
code for expanding the dataset will be provided upon request.

Ethical Considerations

Were any ethical review
processes conducted
(e.g., by an institutional
review board)?

No formal ethical review was conducted as the dataset does not
contain sensitive personal information.

Does the dataset contain
data that, if viewed di-
rectly, might be offen-
sive, insulting, threaten-
ing, or might otherwise
cause anxiety?

No. The dataset contains time series data without any sensitive or
potentially offensive content.

Does the dataset relate to
people?

Does the dataset identify
any subpopulations (e.g.,
by age, gender)?

Is it possible to identify
individuals (i.e., one or
more people) from the
dataset?

Does the dataset contain
data that might be con-
sidered sensitive in any
way (e.g., data that re-
veals racial or ethnic ori-
gins, sexual orientations,
religious beliefs, political
opinions or affiliations,
health data)?

No.
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Are there any known | No.
risks to individuals that

are represented in the
dataset?

Does the dataset contain | No.

data that might be sub-
ject to GDPR or other
data protection laws?
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