Memory-Efficient Fine-Tuning of Transformers via Token Selection

Antoine Simoulin®, Namyong Park”, Xiaoyi Liu, Grey Yang
Meta Al

{antoinesimoulin,namyongp,xiaoyiliu,glyang}@meta.com

Abstract

Fine-tuning provides an effective means to spe-
cialize pre-trained models for various down-
stream tasks. However, fine-tuning often in-
curs high memory overhead, especially for
large transformer-based models, such as LLMs.
While existing methods may reduce certain
parts of the memory required for fine-tuning,
they still require caching all intermediate ac-
tivations computed in the forward pass to up-
date weights during the backward pass. In this
work, we develop TOKENTUNE, a method to
reduce memory usage, specifically the memory
to store intermediate activations, in the fine-
tuning of transformer-based models. During
the backward pass, TOKENTUNE approximates
the gradient computation by backpropagating
through just a subset of input tokens. Thus,
with TOKENTUNE, only a subset of intermedi-
ate activations are cached during the forward
pass. Also, TOKENTUNE can be easily com-
bined with existing methods like LoRA, fur-
ther reducing the memory cost. We evaluate
our approach on pre-trained transformer mod-
els with up to billions of parameters, consider-
ing the performance on multiple downstream
tasks such as text classification and question
answering in a few-shot learning setup. Over-
all, TOKENTUNE achieves performance on par
with full fine-tuning or representative memory-
efficient fine-tuning methods, while greatly re-
ducing the memory footprint, especially when
combined with other methods with comple-
mentary memory reduction mechanisms. We
hope that our approach will facilitate the fine-
tuning of large transformers, in specializing
them for specific domains or co-training them
with other neural components from a larger sys-
tem. Our code is available at https://github.
com/facebookresearch/tokentune.

1 Introduction

Fine-tuning is an effective method for specializ-
ing large pre-trained models, either by using direct

* Equal contribution

%62.77 —63% I V TokenTune
Se22 1% 3% || O LoRA
T u | I LoRA+TokenTune
gor TG quora
R Y I "

ajj61.2 5G| @ QLoRA+TokenTune
< 60.7 i irained Liamars Aceuracy | o Memory for

60.2 : : 1 Full Fine-Tuning

10 30 50 70 90
Memory (GiB) for Fine-Tuning Llama2-7B

Figure 1: TOKENTUNE greatly reduces the GPU mem-
ory usage for fine-tuning the Llama2-7B model (e.g.,
using only 37% of the memory QLoRA (Dettmers et al.,
2023) requires), while achieving similar accuracy to
representative memory-efficient fine-tuning methods.
Accuracy and memory usage numbers are listed in Ta-
ble 2 and Fig. 4. See Sec. 5 for details on experiments.

supervision from the training set of a given task
(Howard and Ruder, 2018; Devlin et al., 2019; Raf-
fel et al., 2020), from curated instruction datasets
(Mishra et al., 2022; Wei et al., 2022; Taori et al.,
2023), or from human feedback via reinforcement
learning (Ouyang et al., 2022; Bai et al., 2022;
Touvron et al., 2023). However, fine-tuning is
not necessarily an efficient method, especially for
transformer-based large language models (LLMs),
since their large number of parameters leads to
large compute and memory requirements. For
instance, fine-tuning GPT-3 175B (Brown et al.,
2020) or LLama 65B (Touvron et al., 2023) typi-
cally requires 1,200 GB and 780 GB of GPU mem-
ory, as reported in Hu et al. (2022) and Dettmers
et al. (2023), respectively.

GPU memory usage during fine-tuning can be
broken down into three parts: storing (1) the model
parameters, (2) the parameter gradients and opti-
mizer states, and (3) the intermediate activations.
Parameter-Efficient Fine-Tuning (PEFT) (Houlsby
et al.,, 2019; Hu et al., 2022) aims at updating
a small number of parameters, e.g., by optimiz-
ing a subset of the backbone model’s parameters

21565

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 21565-21580
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/facebookresearch/tokentune
https://github.com/facebookresearch/tokentune

while freezing others, which reduces the mem-
ory requirements to store the parameters’ gradi-
ents and optimizer states. Alternatively, quanti-
zation techniques (Dettmers et al., 2022, 2023;
Liu et al., 2024) use low precision data types for
model parameters, which reduces the memory cost.
For example, in fine-tuning the Llama2-7B model,
LoRA (Hu et al., 2022) and QLoRA (Dettmers
et al., 2023), which are representative PEFT and
quantization-based methods, reduce the memory
needed for full fine-tuning by 12% and 43%, re-
spectively (Figure 1). However, such existing ap-
proaches still require caching all of the intermediate
activations computed in the forward pass to obtain
the gradients during the backward pass.

In this work, we propose a method for memory-
efficient fine-tuning, named TOKENTUNE, which
aims to significantly reduce the GPU memory dedi-
cated to storing intermediate activations during the
forward pass without sacrificing the model perfor-
mance on various downstream tasks. To this end,
TOKENTUNE selects a subset of the input tokens in
the context, and fine-tunes the model with respect
to those selected tokens. More specifically, during
the backward pass, TOKENTUNE approximates the
gradient computation by backpropagating through
the selected tokens, and thus only a subset of the in-
termediate activations need to be cached during the
forward pass, thereby reducing the memory cost.

We demonstrate the effectiveness of TOKEN-
TUNE using both medium- and large-size language
models, namely, BERT (Devlin et al., 2019) and
Llama (Touvron et al., 2023), which have hundreds
of millions, and billions of parameters, respectively.
Overall, our results show that fine-tuning with To-
KENTUNE leads to downstream task performance
on par with that of full fine-tuning or representative
methods for memory-efficient fine-tuning, while
drastically reducing the memory footprint. Notably,
TOKENTUNE can be effectively combined with ex-
isting methods, achieving a greater reduction in
memory usage. For instance, by combining TO-
KENTUNE with QLoRA (Dettmers et al., 2023), we
can fine-tune Llama2-7B using just about one third
of the memory QLoRA alone requires as Figure 1
shows. To sum, our contributions are as follows.

* Novelty. TOKENTUNE, to the best of our knowl-
edge, is the first method that reduces GPU mem-
ory usage for fine-tuning via token selection'.

'A preliminary version of this work was presented at a
non-archival workshop (Simoulin et al., 2023).

¢ Combinability. TOKENTUNE can be combined
with existing memory-efficient fine-tuning meth-
ods, leading to further memory reduction.

» Effectiveness. We perform extensive experi-
ments, showing that TOKENTUNE achieves sim-
ilar accuracy to representative memory-efficient
methods, while greatly reducing the memory
footprint during fine-tuning, e.g., using only 21%
of what full fine-tuning requires (Figure 1).

2 Related Work

2.1 Parameter-Efficient Fine-Tuning (PEFT)

PEFT methods, which aim to limit the computing
resources for fine-tuning LLMs, can be divided into
four categories (Han et al., 2024; Xu et al., 2023).

Selective PEFT methods update only a subset
of the backbone model parameters using weight
masking strategies, such as learnable binary mask-
ing (Guo et al., 2021) and parameter importance
estimation using Fisher information (Sung et al.,
2021; Das et al., 2023). Other selective PEFT meth-
ods focus on updating specific modules, e.g., the
cross-attention layers (Gheini et al., 2021) and the
bias terms (Zaken et al., 2022; Lawton et al., 2023).

Additive PEFT methods add a few parameters to
the frozen pre-trained model, and fine-tune only the
added parameters. E.g., adapters inject small layers
within the transformer block, either sequentially
after its sublayers (Houlsby et al., 2019; Pfeiffer
etal.,2021), or as a side network running in parallel
to the sublayers (He et al., 2022a; Zhu et al., 2021).
Alternatively, soft prompt-based approaches (Li
and Liang, 2021; Qin and Eisner, 2021; Liu et al.,
2022) prepend continuous learnable vectors to the
input of a frozen model and tune them for each task.

Reparameterized PEFT methods perform low-
rank transformation, utilizing the low intrinsic
dimension of LLMs (Aghajanyan et al., 2021).
LoRA (Hu et al., 2022) is the most representative
approach, where an update to the model weights is
captured via its low-rank decomposition. Several
studies followed to improve LoRA, e.g., to sup-
port dynamic rank selection (Valipour et al., 2023;
Zhang et al., 2023b), and to address overfitting (Lin
et al., 2024) and overconfidence (Yang et al., 2024).

Hybrid PEFT methods aim to combine different
PEFT approaches, e.g., adapters, prefix-tuning, and
LoRA. The design space of combinations of PEFT

21566

@ Output probabilities

N s hy
0000

, eooe

1 ADD & NORM

'
TRANSFORMER LAYERS
' FEED-FORWARD

:
¢ EMBEDDINGS LAVER
0000

Group token frozen positions

0000
ADD & NORM

SELF-ATTENTION

e o0 o ° ')

Randomly select krandom
position and freeze others

X —— Forward

TRANSFORMER LAYER

SELF-ATTENTION
0000
MATMUL

T A
} Does not require grad

} Requires grad

MATMUL + SOFTMAX

Q T KTT Vv
000 o000 000
Linear Linear Linear
we WK wVv
t t t

----- » Backward @ Requires grad Does not require grad

Figure 2: TOKENTUNE achieves memory-efficient fine-tuning of transformers via token selection. During the
backward pass, we compute the gradient for only a subset of & input tokens, while the others are frozen (in gray in the
figure). During the forward pass, all input positions are used, but only a subset of the activations is cached in memory
(in blue in the figure). TOKENTUNE is applicable to various transformer-based models, as well as different language
modeling tasks, as our experiments with BERT (Devlin et al., 2019) and Llama (Touvron et al., 2023) show.

methods has been explored either manually (He
et al., 2022a; Mao et al., 2022), or automatically,
e.g., by leveraging neural architecture search meth-
ods (Zhang et al., 2022b; Zhou et al., 2024).

While the above PEFT methods effectively improve
parameter efficiency, they may still incur signifi-
cant memory overhead during fine-tuning (Sung
etal., 2022; Jin et al., 2023). The proposed TOKEN-
TUNE can be combined with these PEFT methods,
enabling them to achieve both parameter and mem-
ory efficiency, as Sections 4 and 5 show.

2.2 Memory-Efficient Fine-Tuning

There exist several techniques that can be used
to improve the memory efficiency in fine-tuning
LLMs, which we organize into four groups.

Memory-Efficient PEFT. Some PEFT methods
aim to achieve memory and parameter efficiency
simultaneously. Side tuning methods (Zhang et al.,
2020; Sung et al., 2022) introduce small learnable
side networks separated from the backbone model,
and channel backpropagation only through the side
networks, thereby reducing the memory require-
ments for gradients and intermediate activations.
By utilizing the reversible model, MEFT (Liao
et al., 2023) avoids the need to cache intermediate
activations in the forward pass. LoRA-FA (Zhang
et al., 2023a) improves LoRA by addressing its
high memory usage for input activations via freez-

ing LoRA’s down-projection weights.

Gradient Checkpointing (Chen et al., 2016;
Gruslys et al., 2016) reduces the memory require-
ment for model training by storing only a subset of
intermediate activations in the forward pass, and
recomputing the others during the backward pass.

Quantization is a compression technique that re-
duces the number of bits for storing numerical val-
ues. With quantization, parameters are represented
with lower-precision data types (Dettmers et al.,
2022, 2023; Liu et al., 2024), leading to memory
reduction in both fine-tuning and inference.

Approximate Gradient Methods reduce the mem-
ory usage by avoiding the exact gradient compu-
tation involved with full fine-tuning, and instead
using an approximate estimate of the gradient for
weight updates. To this end, a few methods employ
low-rank factorization, where they reduce mem-
ory cost by utilizing the low-rank structure of the
gradients (Zhao et al., 2024) or the second-order
statistics (Shazeer and Stern, 2018). Alternatively,
MeZO (Malladi et al., 2023) approximates the gra-
dient using only forward passes, building upon the
zeroth-order optimization technique (Spall, 1992).

The proposed TOKENTUNE can be considered an
approximate gradient method, as its token-selective
fine-tuning strategy leads to an approximation of
the full gradient, which is a completely new di-

21567

rection investigated to improve memory efficiency
in fine-tuning. Also, being complementary to
prior methods, TOKENTUNE can be combined with
them, resulting in further memory reduction.

3 TOKENTUNE

Previous studies analyzing the structure of the spar-
sity of activations and gradients (Kurtz et al., 2020;
Liu et al., 2023; Dai et al., 2022) suggest that
some neurons and activations could have a pre-
dominant importance, while some others may have
smaller contributions to the loss and output com-
putation. Inspired by these works, we hypothesize
that for many downstream tasks, not all tokens in
the sequence would need to be involved in the fine-
tuning—more specifically, backpropagation—of
transformer models. Instead, we conjecture that,
when restricted to backpropagating through a sub-
set of tokens, transformers could be further opti-
mized for the downstream task by enabling the
additional learning and adjustments, which need to
happen during the fine-tuning for the given task, to
be done in a more compact way, i.e., by incorporat-
ing the additional knowledge more succinctly with
respect to the selected subset of tokens.

Figure 2 illustrates TOKENTUNE, aiming at re-
ducing the memory needed to store the intermediate
activations used for gradient computation. Given
an input sequence X, a transformer associates each
token from the input sequence to an embedding
and computes a corresponding sequence of hid-
den states h through multiple layer applications.
For each input sequence, we select k£ random po-
sitions.> We organize each layer’s input in two
groups, one with the £ selected input positions, hg,
and the other with the remaining un-selected posi-
tions, hg, such that h = [hg, hg|, with [] denot-
ing the concatenation operator and ‘ g ’: k. The
re-ordering does not impact the computation as the
position is directly encoded in the hidden states.
‘With this token selection scheme, the classification
objective L¢Ls and the language modeling objec-
tive L1 v used by TOKENTUNE are as follows.

Classification Task. The goal is to assign the right
class or label y for the given sequence. Given
the hidden states from the transformer layers, we
use the average of the hidden states from the &
selected positions of the last layer as input for an

2We select the positions using a uniform distribution. How-

ever, we always include the [CLS] token—a special symbol
prepended as the beginning of every input sentence.

MLP, which outputs a probability distribution over
the classes of the task, as given by Eq. 1. During
the evaluation, we use the average from all hidden
states of the last layer as input for the MLP.

1
7 = MLP <k Z hi>
i€g
p(y|X) = softmax ()

Lers = —log p(y|X)

6]

Language Modeling Task. The goal is to learn
the probability distribution of a token, given all
preceding tokens. We train the language model by
applying the traditional cross-entropy loss to the set
of k randomly selected positions as given by Eq. 2
below, with W}, denoting the head projecting the
hidden state back into the vocabulary dimension.

p(zi|r<;) = softmax(h;Wipn)

Lim=— Zlog P(zi|z<i) 2)
i€g

The key element of our method is that we disable
the gradient computation for the un-selected to-
kens in G. Thus, only the k selected tokens in G
contribute to the gradient computation during the
backward pass. We detail the method in the case
of dense layers and attention mechanism in Sec-
tion 3.1 and Section 3.2, respectively.

3.1 TOKENTUNE for Dense and
Normalization Layers

We consider a dense layer a = o(z) = o(hW +b)
with weight W, bias b, nonlinear function o, input
h, pre-activation z, and output a. Eq. 3 computes
the gradient with respect to W and b when back-
propagating a loss £ through the layer:

0L 0LOa 0z 0L "

0L 0LOadz 0L

db 9adzob da’

If we backpropagate the error only through the
selected tokens in G, and disable the gradient com-
putation for the unselected positions in G, we have:

oL oL oL oL
_— = = 4
da L%g’ 8ag} L%g’o] @
Plugging that into Eq. 3, we have:
oc oL _ocL 1oL,
AW [8agghg’0] db [8agg ’0} ©)

21568

Given Eq. 5, we only need to cache hg for applying
the chain rule, instead of the full activation h.
Regarding implementation, we use Algorithm 1
which explicitly splits the hidden states into two
groups where hg corresponds to the tokens selected
to be fine-tuned and hg corresponds to the un-
selected tokens. As shown in Eq. 6 and Eq. 7,
the forward pass is identical to standard fine-tuning
except that we disable the gradient computation
for the positions for hg in Eq. 7 with the context
"torch.no_grad()" in PyTorch.

hg = hgW +b (6)
hg = th +b @)

where W denotes the weights W7 and W5 for the
feed-forward layers. We apply the same methodol-
ogy for normalization layers.

3.2 TOKENTUNE for Attention Layers

For attention layers, we compute the attention as:

[Qq: Kg, Vgl = hgWig k. v) + bigxv) ()
Qg K5, V5] = hgWio kv +bokv) 9
hg = softmax (Qg [KG:KQ]T/\/E) Vg, Vg] (10)

hg = softmax (Qg’[KévKg]T/\/&) Vg, Vg] (11)

where Wig i v] € R?*3¢ denotes the concatenated
weights for the queries, keys, and values. For the
computation of un-selected positions in Eq. 9 and
Eq. 11, we again disable the gradient computation
in PyTorch. Algorithm 1 illustrates the steps for
the forward pass of a transformer model with the
proposed TOKENTUNE algorithm described in Sec-
tions 3.1 and 3.2.

4 Application to Medium-Size Encoders

Alternative methods such as zero-shot learning
or prompting usually underperform fine-tuning
(Brown et al., 2020). Thus, in many cases, fine-
tuning medium size language models may offer a
better balance in terms of cost and performance,
compared with fine-tuning large language models
(LLMs) or conditioning their outputs with prompt
approaches (Li et al., 2022; Schick and Schiitze,
2021). Medium-size models may also be used as
individual components, co-trained to encode infor-
mation for a larger system (Pfeiffer et al., 2023).
Finally, as detailed in Appendix E, the distribu-
tion of the GPU memory usage may be very differ-
ent given the order of magnitude of the fine-tuned

Algorithm 1: TOKENTUNE (We omit layer
normalization, skip connections, non-linear
functions, and multi-head attention for sim-
plicity)

Input: input sequence X

Output: hg, hg

1 Compute input token embeddings h
2 Re-organize input tokens into two groups (hg and hg)

3 for layer in transformers’ layers do
// Compute the attention layer

4 Qg, Kg,Vg] = heWig,k,v1 + bg,k,v]
_ T
5 hg = softmax <M) Vg, Vgl

Vd
6 with torch.no_grad():
7 [Qg, Kg, Vgl = hgWiq.k,vi + big.x v
_ _ T
8 hg = softmax (%) Vg, Vgl

// Compute the feed-forward layer
9 hg = hgW1 + b1

10 hg = hgWa + b

1 with torch.no_grad():

12 hg = thI + by

13 L hg = thz + bo

14 Re-organize input tokens into the original order

model’s number of parameters. For large-size mod-
els, the majority of the memory is often dedicated
to storing parameters and optimizer states, thus
maximizing the relevance of PEFT approaches.
For medium-size language models, fine-tuned with
large batch sizes, the majority of the memory may
be dedicated to storing the intermediate activation,
thus maximizing the impact of TOKENTUNE.

4.1 Downstream Task Performance

We first validate the relevance of our method on
the GLUE benchmark (Wang et al., 2018). We
use a similar hyper-parameter search space as in
(Zaken et al., 2022), by performing a cross val-
idation on the dev set using a learning rate in
[5e7°,3e75,2¢7°,1e7°]. We set the batch size
to 16 and perform 3 epochs on large datasets and
20 epochs on small ones (MRPC, STS-B, CoLA).
We use BERT-large (Devlin et al., 2019) and either
fine-tune the model fully, or use TOKENTUNE and
propagate the gradient through 16 input positions.
We then evaluate our model on the test set and
report the results in Table 1.

As shown in the second part of Table 1, the av-
erage GLUE score of TOKENTUNE is comparable
to that of full fine-tuning, thus empirically validat-

21569

Table 1: Results from BERT-large (Devlin et al., 2019) on GLUE test tasks scored using the benchmark server. We
report the Matthew’s Correlation for CoLA, the Spearman correlation for STS-B, F1 score for MRPC and QQP. We
report the accuracy on the MNLI matched test split and the accuracy for every other tasks. The “Param.” column
indicates the ratio of the number of updated parameters for each task by the number of parameters in the backbone
model. We indicate in bold the best result for each task. ' indicates models we trained. We report adapter results
from (Houlsby et al., 2019), BitFit from (Zaken et al., 2022) and Diff Pruning from (Guo et al., 2021). For LoRA
(Hu et al., 2022) and Ladder Side Tuning (LST) (Sung et al., 2022), we select the best learning rate in the dev set
between the values proposed in the original papers, [5e~%, 4e~%,3e™4 2e74] and [3e =%, 1e~3, 3e 2], respectively.
We do not use the initialization setup proposed in LoRA or LST nor do we drop any layers for the LST method.

Method Param. (%)| CoLA SST-2 MRPC QQP QNLI MNLI STS-B|Avg. t
Avg. # Tokens — | 113 133 532 306 494 398 278 | 322
Full Fine-Tuning' 100.0 | 607 946 883 720 924 858 858 | 8238
Adapters 3.6 595 940 895 718 907 849 869 | 825
BitFit 0.1 597 942 889 705 920 845 850 | 821
Diff Pruning 0.5 611 941 897 711 933 864 86.0 | 83.1
Ladder Side Tuning’ 2.4 564 934 880 669 891 829 866 | 805
LoRAT 0.3 585 940 892 711 9Ll 847 846 | 819
TOKENTUNE T 100.0 | 596 939 880 708 910 854 860 | 82.1

ing the effectiveness of our approach.Table 1 also
shows that TOKENTUNE either outperforms or per-
forms similarly to existing SOTA approaches. Pre-
cisely speaking, the performance of these memory-
efficient fine-tuning methods, including TOKEN-
TUNE, is often slightly worse than that of full fine-
tuning. In comparison to full fine-tuning, some
amount of performance loss with these methods
is expected as they approximate or simplify the
optimization process of full fine-tuning to reduce
memory footprint. We hypothesize that some tasks,
such as QQP and QNLI, are more difficult, or sensi-
tive to overfitting than others, given that updating a
small proportion of model parameters or using only
a subset of input tokens for gradient computation
achieves suboptimal performances on those tasks
in most cases. The former case would require the
development of sophisticated techniques to more
effectively select a subset of parameters or input to-
kens to optimize, while the latter case may benefit
from the use of regularization techniques for neural
networks, including Gouk et al. (2021); Foret et al.
(2021); Li and Zhang (2021), the investigation of
which we leave for future studies.

4.2 Ratio of Tuned Input Positions

Given our token-selective fine-tuning approach, we
then evaluate the impact of the number of frozen
input positions on the performance. We use our
selective procedure to fine-tune BERT-base on two
tasks from the GLUE benchmark: MRPC and STS-

B. We set the hyper-parameters as follows: 5¢~°
for the learning rate, 32 for the batch size and 4
epochs. We use different values for & (i.e., the num-
ber of trained input positions), ranging between 4
and 64. We report in Figure 3 (right), the average
performance on the dev set of the tasks.’

As seen in Figure 3, the performance increases
from 84.8 to 88.8 as the number of trained posi-
tions increases from 4 to 64. However, by only
tuning 32 positions, we already reach an average
performance of 88.4, close to the 88.8 obtained by
training 64 input positions. Our method surpasses
the performance of freezing some bottom layers,
as shown in (Lee et al., 2019), where only tuning
the four bottom layers resulted in a 10% decrease
in performance on the GLUE benchmark.

4.3 GPU Memory Impact

Finally, we analyze the GPU memory required to
fine-tune models using various approaches. We
train our BERT-base model for 100 steps on the
CoLA task using various batch sizes and report the
peak GPU memory used. We compare with two
other PEFT fine-tuning approaches close to ours:
Ladder Side Tuning (Sung et al., 2022) and LoRA
(Hu et al., 2022). LoRA freezes most of the model

3 We provide some descriptive statistics in Appendix F to
better understand how the absolute number of frozen input
positions relates with the relative number of frozen input posi-
tions. The statistics include distribution of the sentence length
for the two subtasks (MRPC and STS-B) used to produce
Figure 3 (right).

21570

24,576 MiB _ TokenTune (Ours)

—— TokenTune (Ours) + LoRA e
-==Full Fine-Tuning s
-+ LoRA e
16,384 MiB
=
g
>
o
[G]
8,192 MiB
4,096 MiB
2,048 MiB— &
32 64 128 256 512

Batch Size

0.89

0.88

0.87

0.86

Avg. GLUE dev score

0.85

0.84
10 20 30 40 50 60

Number of trained token positions.

Figure 3: (left) We plot the GPU memory required to train BERT-base on the CoLA task given varying batch sizes.
We compare our approach with two PEFT approaches: Ladder Side Tuning (LST) and LoRA. (right) We plot the
mean and standard deviation performance on the dev set of five runs when training BERT-base on two tasks from the
GLUE benchmark: MRPC and STS-B. We use our memory efficient fine-tuning approach with a different number

of selected input tokens for the gradient computation.

parameters, while only training additional low-rank
matrices, whose weights are added to the backbone
network. Ladder Side Tuning (LST) freezes the
model parameters but trains a side-network with
smaller dimensions, taking as input intermediate
activations from the backbone model.

Figure 3 shows the evolution of the required
GPU memory with respect to the batch size. GPU
memory increases with the batch size for every
approach. TOKENTUNE is more memory efficient
by a large margin. When using a batch size of 512,
it requires two times less memory than full fine-
tuning: 23, 196 MiB needed for full fine-tuning is
reduced to 9, 952 MiB with our method.

All methods minimize GPU memory usage.
LoRA and LST reduce the memory required to
store optimizer states and parameter gradients,
while our method reduces the memory for storing
intermediate activations. Interestingly enough, it
is possible to use these approaches in conjunction
to reduce the memory for all three contributions.
Fig. 3 shows that we can further reduce the mem-
ory by combining TOKENTUNE with LoRA, thus
requiring only 7,682 MiB with a batch size of 512,
a third of the memory used for full fine-tuning.

5 Application to Large-Size Decoders

We also seek to evaluate our method on larger size
pre-trained language models (LLMs).

5.1 Instruction Tuning and Few-Shot
Evaluation

LLMs are typically further fine-tuned on curated
datasets to tailor them to specific domains and en-
hance their capacity to follow instructions (Wang
et al., 2023; Taori et al., 2023; Mukherjee et al.,
2023). In this section, we employ instruction tun-
ing on these datasets to fine-tune the LLMs and
then assess the performance of the resulting mod-
els using few-shot benchmarks.

Instruction Tuning. We fine-tune the Llama2-7B
model (Touvron et al., 2023) via instruction tuning
with the Open-Platypus* (Lee et al., 2023) dataset.
Note that, while Open-Platypus consists of 11 open-
source datasets, we exclude two of them® that in-
clude outputs from GPT (OpenAl, 2023), and in-
stead use the other nine datasets for fine-tuning.

Hyper-Parameter Settings. We conduct all exper-
iments in this section on Nvidia H100 GPU. Fol-
lowing Lee et al. (2023), we fine-tune the model
for one epoch, and use a learning rate of 4e~* for
LoRA (Hu et al., 2022) and QLoRA (Dettmers
et al., 2023), and 4e~° otherwise. We use a batch
size of 1 with 32 gradient accumulation steps. We
apply the adapters on the feed-forward modules
from each layer, following the method described in
He et al. (2022b). We prompt the model without

*https://huggingface.co/datasets/garage-bAInd/
Open-Platypus

5leetcode—solutions—python—testgen—gpt4 and
airoboros-gpt4-1.4.1

21571

https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://huggingface.co/datasets/garage-bAInd/Open-Platypus

Table 2: Few-shot evaluation on question-answering benchmarks including: AI2 Reasoning Challenge (25-shot)
(Clark et al., 2018), MMLU (5-shot) (Hendrycks et al., 2021), HellaSwag (10-shot) (Zellers et al., 2019), Truthful QA
(0-shot) (Lin et al., 2022), and WinoGrande (0-shot) (Sakaguchi et al., 2020). We use the evaluation scripts and
prompt formatting from the "Language Model Evaluation Harness" (Gao et al., 2021). We report the average
accuracy on five MMLU ethics tasks and WinoGrande, the normed accuracy on ARC and HellaSwag, and the
MC?2 score on TruthfulQA. We indicate in bold the best result for each task.We report the results with the raw
Llama2-7B model (Touvron et al., 2023) and the Llama2-7B fine-tuned on the Platypus curated instruction dataset
(Lee et al., 2023) using LoRA (Hu et al., 2022), QLoRA (Dettmers et al., 2023) and the proposed TOKENTUNE.
When fine-tuning with TOKENTUNE, we select 30% of the tokens for the gradient computation.

Hella

Truthful

Wino

Method MMLU ARC Swag 0A Grande Avg. T
Llama 7B 6444 5239 7897 38.97 68.90 60.73
Llama 7B w/ LoRA 6589 5538 7876 42.64 68.35 62.20
Llama 7B w/ LORA+TOKENTUNE (Ours) 6542 54.01 78.82 43.78 68.35 62.08
Llama 7B w/ QLoRA 65.08 56.06 78.60 43.64 69.38 62.55
Llama 7B w/ QLoORA+TOKENTUNE (Ours) 65.78 53.92 78.74 4191 69.38 61.95
Llama 7B w/ TOKENTUNE (Ours) 63.06 53.07 7790 42.18 69.93 61.23

step-wise reasoning using the Alpaca (Taori et al.,
2023) prompt template detailed in Appendix A.

Few-Shot Evaluation. Then, we evaluate our
method against other memory-efficient fine-tuning
approaches by assessing its performance on several
few-shot benchmarks, such as MMLU (Hendrycks
etal., 2021), ARC easy and challenge (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), Truth-
ful QA (Lin et al., 2022), and WinoGrande (Sak-
aguchi et al., 2020). We utilize the evaluation
scripts provided by the "Language Model Eval-
uation Harness" (Gao et al., 2021). During the
evaluation process, the model outputs the probabil-
ity associated with closed-form problems defined
by the context, question, and multiple potential an-
swers. We select the answer choice with the text
associated with the highest probability.

Table 2 reports the accuracy of the model out-
put against the ground truth answer. Our method
achieves competitive performance gains that are
comparable to the performance improvements ob-
tained by other memory efficient fine-tuning ap-
proaches. We are able to improve the evaluation
accuracy upon the base LLama2-7B model, in-
creasing the average accuracy from 60.7 to 61.2.
We observe the most significant improvements for
Truthful QA (+3.2) and WinoGrande (+1.0) tasks.
We also combine TOKENTUNE with LoRA and
QLoRA, further improving the evaluation accuracy
compared to the use of TOKENTUNE alone.

5.2 Ratio of Tuned Input Positions

As done for medium-size encoders in Section 4.2,
we then evaluate the impact of the ratio of tuned
input positions on the few-shot accuracy. We mea-
sure the few-shot accuracy of Llama2-7B models
fine-tuned using TOKENTUNE with varying ratio
of tuned input positions. Table 3 shows few-shot
evaluation accuracy of Llama2-7B when the ratio
of fine-tuned positions ranges from 10% to 50% .
Contrary to what we observed in Section 4.2, we
do not necessarily observe a strong correlation be-
tween the few-shot accuracy and the ratio of tuned
positions. In fact, we obtain the best performances
most often when 20%-30% of input positions are
fine-tuned. It is important to observe that the av-
erage sequence length in these experiments far ex-
ceeds the one from the experiments on the GLUE
benchmark. This suggests that tuning a relatively
small number of positions may be sufficient to suc-
cessfully fine-tune the model on specific datasets.

5.3 GPU Memory Impact

As in Section 4.3, we analyze the impact of our
method on the GPU memory required to fine-tune
large language models. Figure 4 and Table 3 report
the GPU memory usage for fine-tuning Llama2-
7B as the number of trained input tokens changes.
Given an input sequence of length 2,048, Figure 4
shows that our model reduces the memory usage by
up to 28%, from 89 GiB to 64 GiB when reducing
the number of trained positions from 2,046 to 256.

21572

Table 3: Few-shot evaluation results and peak mem-
ory usage (GiB) as Llama2-7B is fine-tuned on instruc-
tion datasets with (a) TOKENTUNE, (b) TOKENTUNE
+ LoRA and (c) TOKENTUNE + QLoRA, varying the
selection ratio of input tokens. Best results in bold.

(a) TOKENTUNE

Selection | Peak Hella Truthful Wino Avg.
Ratio | Mem. MMLU ARC Swag QA Grande Perf.
10% | 64.40 | 61.56 51.71 7835 41.88 70.01 60.70
20% | 65.08 | 65.01 52.65 7837 42.02 69.46 61.50
30% | 6594 | 63.06 53.07 7790 4218 69.93 61.23
40% | 68.42| 63.78 5290 77.90 41.45 70.32 61.27
50% | 7432 | 6298 52.73 7832 42.11 69.38 61.10

(b) TOKENTUNE + LoRA

Selection | Peak Hella Truthful Wino Avg.
Ratio | Mem. MMLU ARC Swag QA Grande Perf.
10% |4547 | 64.17 54.44 78.68 38.77 69.61 61.13
20% | 4821 | 6541 5435 79.01 4221 69.38 62.07
30% | 5277 | 6542 54.01 78.82 43.78 6835 62.08
40% | 5631 | 6435 52.65 78.69 41.05 68.90 61.13
50% | 64.34| 65.87 54.01 78.68 4246 69.38 62.08

(c) TOKENTUNE + QLoRA

Selection | Peak Hella Truthful Wino Avg.
Ratio | Mem. MMLU ARC Swag QA Grande Perf.
10% | 11.47 | 63.54 54.18 78.58 39.79 68.98 61.02
20% 15.68 | 64.05 53.92 78.81 40.33 69.85 61.39
30% 19.71 | 65.78 53.92 78.74 4191 69.38 61.95
40% | 24.11| 6485 54.35 7870 4198 69.14 61.80
50% | 31.06 | 6529 53.75 78.70 40.63 69.06 61.49

The advantage of the proposed method is that it
can be combined with other memory saving meth-
ods. We measure the peak memory required to fine-
tune LLama2-7B when combining TOKENTUNE
with LoRA or QLoRA. Since these approaches
target different parts of the memory footprint, we
observe cumulative savings when they are used to-
gether. When combining LoRA with TOKENTUNE,
the peak memory ranges between 78 GiB to 45 GiB
depending on the number of tuned positions. Simi-
larly, when combining QLoRA with TOKENTUNE,
the peak memory decreases from 49 GiB to 12 GiB
as a smaller selection ratio is used.

Overall, Figure 4 and Table 3 show that the per-
formance of TokenTune is not very sensitive to the
choice of token selection ratio, while the memory
cost is significantly reduced with a smaller token
selection ratio. Based on these results, our recom-
mendation is to use 20%—-30% as the default token
selection ratio, and test if further improvements in
performance and memory usage can be obtained
for the given task, with a smaller selection ratio.

==+ Full Fine-Tuning WM TokenTune (Ours)

—--— LORA w TokenTune (Ours) + LoRA
Il TokenTune (Ours) + QLoRA
100+

80 1

(=2
o

GPU RAM (GiB)
Ey
o

204

256 512 768
Number of trained token positions

1024 1280 1536 1792 2046

Figure 4: GPU memory required to fine-tune Llama2-
7B (Touvron et al., 2023). We measure the memory by
fine-tuning the model on artificially generated data with
a given sequence length and batch size. We set the batch
size to 1 and the sequence length to 2,048. We show
the memory usage when combining TOKENTUNE with
LoRA and QLoRA and plot the evolution of the memory
required to fine-tune the model on a H100 GPU with a
number of trained positions ranging between 256 and
2,046 (we leave at least 2 positions not tuned). Since
we could not perform full fine-tuning on our hardware,
we estimate the full fine-tuning memory based on the
memory reported for TOKENTUNE and LoRA. Specific
memory usage values can be found in Table 4.

6 Conclusion

In this paper, we propose TOKENTUNE, a method
for reducing the GPU memory required to fine-tune
transformer-based models, such as large language
models. Our contributions are as follows.

* Novelty. TOKENTUNE is the first approach
that reduces the GPU memory footprint for fine-
tuning via token selection, which selects a subset
of the input positions through which the gradient
is propagated, while keeping the others frozen.

* Combinability. The proposed token selection
strategy can be combined with other memory-
and parameter-efficient fine-tuning approaches,
achieving a greater memory reduction together.

 Effectiveness. We empirically benchmark To-
KENTUNE using large language models with up
to billions of parameters. As Figure 1 and Ta-
ble 1 show, TOKENTUNE achieves similar pre-
diction accuracy to representative memory- and
parameter-efficient methods, such as LoRA and
QLoRA, while significantly reducing the mem-
ory usage for fine-tuning (e.g., a joint applica-
tion of TOKENTUNE and QLoRA uses 79% less
memory than full fine-tuning).

21573

7 Limitations

While TOKENTUNE effectively reduces the mem-
ory required for storing intermediate activations, it
does not affect the other parts of GPU memory us-
age, such as the one for parameter gradients. How-
ever, as we showed in experiments, TOKENTUNE
can be combined with memory-efficient methods
that reduce those other parts of memory footprint.
Also, the evaluation of TOKENTUNE in this work
focused on one domain, namely, language models.
Given the applicability of TOKENTUNE to other
domains, such as vision (Dosovitskiy et al., 2021),
we hope to investigate its effectiveness in broader
settings in the future.

Potential Risks. Since this paper presents a
method for memory-efficient fine-tuning of
transformer-based models, such as LLMs, and is
not tied to particular applications, we do not see
potential risks of the proposed method.

References

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 7319-
7328. Association for Computational Linguistics.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom B.
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Benjamin Mann, and Jared Kaplan. 2022. Train-
ing a helpful and harmless assistant with rein-
forcement learning from human feedback. CoRR,
abs/2204.05862.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 8493—
8502. Association for Computational Linguistics.

Sarkar Snigdha Sarathi Das, Haoran Zhang, Peng Shi,
Wenpeng Yin, and Rui Zhang. 2023. Unified low-
resource sequence labeling by sample-aware dynamic
sparse finetuning. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 6998-7010. Association for Compu-
tational Linguistics.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul-
tiplication for transformers at scale. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient fine-
tuning of quantized llms. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference

21574

https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.433
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.433
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.433
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and

Behnam Neyshabur. 2021. Sharpness-aware mini-
mization for efficiently improving generalization. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,

Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. 2021.
Cross-attention is all you need: Adapting pretrained
transformers for machine translation. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 1754—1765. Association for
Computational Linguistics.

Judy Wawira Gichoya, Kaesha Thomas, Leo Anthony
Celi, Nabile Safdar, Imon Banerjee, John D Banja,
Laleh Seyyed-Kalantari, Hari Trivedi, and Saptarshi
Purkayastha. 2023. Al pitfalls and what not to do:
mitigating bias in Al. The British Journal of Radiol-
0gy, 96(1150):20230023.

Henry Gouk, Timothy M. Hospedales, and Massimil-
iano Pontil. 2021. Distance-based regularisation of
deep networks for fine-tuning. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc
Lanctot, and Alex Graves. 2016. Memory-efficient
backpropagation through time. In Advances in Neu-
ral Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages
4125-4133.

Demi Guo, Alexander M. Rush, and Yoon Kim. 2021.

Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
4884-4896. Association for Computational Linguis-
tics.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
CoRR, abs/2403.14608.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022a. Towards a
unified view of parameter-efficient transfer learning.

In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022b. Towards a
unified view of parameter-efficient transfer learning.
In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 328-339. Association for Com-
putational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Feihu Jin, Jiajun Zhang, and Chengqing Zong. 2023.
Parameter-efficient tuning for large language model
without calculating its gradients. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 321-330. Association
for Computational Linguistics.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-
der Matveev, John Carr, Michael Goin, William M.
Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh.
2020. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 5533-5543. PMLR.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram
Galstyan, and Greg Ver Steeg. 2023. Neural archi-
tecture search for parameter-efficient fine-tuning of
large pre-trained language models. In Findings of

21575

https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.132
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.132
https://openreview.net/forum?id=IFqrg1p5Bc
https://openreview.net/forum?id=IFqrg1p5Bc
https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html
https://doi.org/10.18653/V1/2021.ACL-LONG.378
https://doi.org/10.18653/V1/2021.ACL-LONG.378
https://doi.org/10.48550/ARXIV.2403.14608
https://doi.org/10.48550/ARXIV.2403.14608
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.22
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.22
http://proceedings.mlr.press/v119/kurtz20a.html
http://proceedings.mlr.press/v119/kurtz20a.html
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.539
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.539
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.539

the Association for Computational Linguistics: ACL
2023, Toronto, Canada, July 9-14, 2023, pages 8506—
8515. Association for Computational Linguistics.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement
of llms. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. CoRR, abs/1911.03090.

Dongyue Li and Hongyang R. Zhang. 2021. Improved
regularization and robustness for fine-tuning in neural
networks. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurlPS 2021,
December 6-14, 2021, virtual, pages 27249-27262.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582—
4597. Association for Computational Linguistics.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2022. Large language models can be
strong differentially private learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Baohao Liao, Shaomu Tan, and Christof Monz. 2023.
Make pre-trained model reversible: From parame-
ter to memory efficient fine-tuning. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3214-3252. Association for
Computational Linguistics.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang,
Yasha Wang, and Hong Mei. 2024. LoRA dropout as
a sparsity regularizer for overfitting control. CoRR,
abs/2404.09610.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra.
2024. LLM-QAT: data-free quantization aware train-
ing for large language models. In Findings of the As-
sociation for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-
16, 2024, pages 467-484. Association for Computa-
tional Linguistics.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Ré, and Beidi Chen.
2023. Deja vu: Contextual sparsity for efficient 1lms
at inference time. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 22137-22176.
PMLR.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D. Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for
parameter-efficient language model tuning. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 6253-6264. Association for Computa-
tional Linguistics.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A sur-
vey on bias and fairness in machine learning. ACM
computing surveys (CSUR), 54(6):1-35.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 3470-3487. Association for Com-
putational Linguistics.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed Has-
san Awadallah. 2023. Orca: Progressive learning
from complex explanation traces of GPT-4. CoRR,
abs/2306.02707.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

21576

https://doi.org/10.48550/arXiv.2308.07317
https://doi.org/10.48550/arXiv.2308.07317
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://proceedings.neurips.cc/paper/2021/hash/e4a93f0332b2519177ed55741ea4e5e7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e4a93f0332b2519177ed55741ea4e5e7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e4a93f0332b2519177ed55741ea4e5e7-Abstract.html
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://openreview.net/forum?id=bVuP3ltATMz
https://openreview.net/forum?id=bVuP3ltATMz
http://papers.nips.cc/paper_files/paper/2023/hash/3151e460c41ba67dc55412861184ef35-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3151e460c41ba67dc55412861184ef35-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.48550/ARXIV.2404.09610
https://doi.org/10.48550/ARXIV.2404.09610
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://aclanthology.org/2024.findings-acl.26
https://aclanthology.org/2024.findings-acl.26
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
http://papers.nips.cc/paper_files/paper/2023/hash/a627810151be4d13f907ac898ff7e948-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a627810151be4d13f907ac898ff7e948-Abstract-Conference.html
https://doi.org/10.18653/V1/2022.ACL-LONG.433
https://doi.org/10.18653/V1/2022.ACL-LONG.433
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/ARXIV.2303.08774

John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 487-503.
Association for Computational Linguistics.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, and
Edoardo M. Ponti. 2023. Modular deep learning.
Trans. Mach. Learn. Res., 2023.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying Ims with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
5203-5212. Association for Computational Linguis-
tics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732—
8740. AAAI Press.

Timo Schick and Hinrich Schiitze. 2021. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 2339-2352. Association for Computa-
tional Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmdis-
san, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages
4603-4611. PMLR.

Antoine Simoulin, Namyong Park, Xiaoyi Liu, and Grey
Yang. 2023. Memory-efficient selective fine-tuning.
In Workshop on Efficient Systems for Foundation
Models @ ICML2023.

James C. Spall. 1992. Multivariate stochastic approx-
imation using a simultaneous perturbation gradient
approximation. [EEE Transactions on Automatic
Control, 37:332-341.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
LST: Ladder side-tuning for parameter and memory
efficient transfer learning. In NeurIPS.

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing neural networks with fixed sparse masks. In Ad-
vances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Process-
ing Systems 2021, NeurlPS 2021, December 6-14,
2021, virtual, pages 24193-24205.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:
Parameter-efficient tuning of pre-trained models us-
ing dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, EACL 2023, Dubrovnik, Croatia, May 2-6,
2023, pages 3266-3279. Association for Computa-
tional Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

21577

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://openreview.net/forum?id=z9EkXfvxta
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://openreview.net/forum?id=zaNbLceVwm
https://api.semanticscholar.org/CorpusID:122365276
https://api.semanticscholar.org/CorpusID:122365276
https://api.semanticscholar.org/CorpusID:122365276
https://openreview.net/forum?id=isPnnaTZaP5
https://openreview.net/forum?id=isPnnaTZaP5
https://proceedings.neurips.cc/paper/2021/hash/cb2653f548f8709598e8b5156738cc51-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cb2653f548f8709598e8b5156738cc51-Abstract.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/V1/2023.EACL-MAIN.239
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484—13508. Association for Computational
Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language mod-
els: A critical review and assessment. CoRR,
abs/2312.12148.

Adam X. Yang, Maxime Robeyns, Xi Wang, and Lau-
rence Aitchison. 2024. Bayesian low-rank adaptation
for large language models. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), ACL 2022, Dublin, Ireland, May 22-
27, 2022, pages 1-9. Association for Computational
Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791-4800. Association for Computational Linguis-
tics.

Jeffrey O. Zhang, Alexander Sax, Amir Zamir,
Leonidas J. Guibas, and Jitendra Malik. 2020. Side-
tuning: A baseline for network adaptation via addi-
tive side networks. In Computer Vision - ECCV 2020
- 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part III, volume 12348 of
Lecture Notes in Computer Science, pages 698-714.
Springer.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023a. LoRA-FA: Memory-efficient
low-rank adaptation for large language models fine-
tuning. CoRR, abs/2308.03303.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and

Tuo Zhao. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022a.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. 2022b.
Neural prompt search. CoRR, abs/2206.04673.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient LLM training by
gradient low-rank projection. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024.

Han Zhou, Xingchen Wan, Ivan Vulic, and Anna Ko-
rhonen. 2024. AutoPEFT: Automatic configuration
search for parameter-efficient fine-tuning. Trans. As-
soc. Comput. Linguistics, 12:525-542.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingx-
uan Wang, and Lei Li. 2021. Counter-interference
adapter for multilingual machine translation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 16-20 November, 2021, pages 2812—
2823. Association for Computational Linguistics.

21578

https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.48550/ARXIV.2312.12148
https://doi.org/10.48550/ARXIV.2312.12148
https://doi.org/10.48550/ARXIV.2312.12148
https://openreview.net/forum?id=FJiUyzOF1m
https://openreview.net/forum?id=FJiUyzOF1m
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.1007/978-3-030-58580-8_41
https://doi.org/10.1007/978-3-030-58580-8_41
https://doi.org/10.1007/978-3-030-58580-8_41
https://doi.org/10.48550/ARXIV.2308.03303
https://doi.org/10.48550/ARXIV.2308.03303
https://doi.org/10.48550/ARXIV.2308.03303
https://openreview.net/pdf?id=lq62uWRJjiY
https://openreview.net/pdf?id=lq62uWRJjiY
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/ARXIV.2206.04673
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7
https://doi.org/10.1162/TACL_A_00662
https://doi.org/10.1162/TACL_A_00662
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.240
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.240

A Instruction Template

Regarding the instruction tuning of large LLMs, we
prompt the model without step-wise reasoning us-
ing the Alpaca (Taori et al., 2023) prompt template
presented below.

“Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

Instruction: {instruction}

Input: {input}

Response:

”

B Software

Here we provide the details of the software used
for the implementation of TOKENTUNE as well
as the fine-tuning and evaluation of TOKENTUNE
and baselines. Our implementation of TOKEN-
TUNE builds upon the HuggingFace Transformers
library® (v4.33.1). For LoRA (Hu et al., 2022),
we used the HuggingFace PEFT library’ (v.0.5.0).
Datasets used for fine-tuning were obtained from
the HuggingFace Datasets library® (v2.18.0). We
used Open-Platypus® for fine-tuning. For the evalu-
ation with the Llama2 model in Section 5, we used
the Im-evaluation-harness framework!? (v.0.4.2).
We used the PyTorch framework!! (v.2.0.1). Re-
sults from Table 1 are scored by the evaluation
server.!? As in Devlin et al. (2019), we discard
results for the WNLI task.'?

C License

The majority of TOKENTUNE is licensed under
CC-BY-NC, however portions of the project are
available under separate license terms: Transform-
ers is licensed under the Apache 2.0 license. The
license of other libraries used for this paper is as
follows. The PEFT and Datasets libraries from
HuggingFace are under the Apache-2.0 license.
The Im-evaluation-harness framework is under the
MIT license. PyTorch is under the modified BSD-3

®https://github.com/huggingface/transformers

7https://github.com/huggingface/peft

8https://github.com/huggingface/datasets

’https://huggingface.co/datasets/garage-bAInd/
Open-Platypus

Ohttps://github.com/EleutherAl/
Im-evaluation-harness

llhttps://github.com/pytorch/pytorch

12https://gluebenchmark.com/leaderboard

BSee (12) from https://gluebenchmark. com/faq

license. Open-Platypus used for fine-tuning con-
sists of multiple datasets; their license informa-
tion can be found at https://huggingface.co/
datasets/garage-bAInd/Open-Platypus.

D Training and Evaluation Data

BERT model has been pre-trained on 3,300M
words. Regarding the instruction tuning experi-
ments, we tuned the Llama2-7B on 21,221 samples
from the Open-Platypus (Lee et al., 2023) dataset.
Note that, while Open-Platypus consists of 11 open-
source datasets, we exclude two of them!* that
include outputs from GPT (OpenAl, 2023), and
instead use the other nine datasets for fine-tuning.
Llama2-7B has been pre-trained on 2T tokens and
fine-tuned on 100,000 samples.'>

E Memory Breakdown

Parameter-Efficient Fine-Tuning (PEFT) ap-
proaches aim at reducing the compute and storage
requirements to fine-tune LLMs by only updating
a small subset of the model parameters. As a result,
we do not need to store any corresponding gradi-
ents and optimizer states for the frozen parameters.
When parameters, gradients, and optimizer states
represent the majority of the GPU memory usage,
these PEFT methods can effectively reduce the
memory cost. However, when most GPU memory
is used to store intermediate activations, which
are required for gradient computation during
the backward pass, these PEFT methods cannot
effectively cut down the memory cost.

Table 5 presents the GPU memory required to
perform one training step with BERT-base (Devlin
et al., 2019) and OPT (Zhang et al., 2022a) on a
consumer hardware GPU. We calibrate the exam-
ple such that the memory requirement is roughly
the same for both models. In this configuration we
can only fit a single example for OPT, while we can
use a batch size of 256 for BERT. We observe that
the memory breakdown is very different between
the two configurations. The required memory dras-
tically increases during the forward pass for BERT
and during the backward pass for OPT. When com-
paring the execution of forward pass with and with-
out enabling gradient computation in PyTorch, we
estimate that the memory cost to store intermedi-
ate activations represents around 22 Gb for BERT

14leetcode—solutions—python—testgen—gpt4 and
airoboros-gpt4-1.4.1
Bhttps://1lama.meta.com/1lama2/

21579

https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://github.com/huggingface/datasets
https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/pytorch/pytorch
https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/faq
https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://huggingface.co/datasets/garage-bAInd/Open-Platypus
https://llama.meta.com/llama2/

Table 4: GPU memory required to fine-tune Llama2-7B (Touvron et al., 2023) using TOKENTUNE with a varying
selection ratio, as well as QLoRA and LoRA. Since we could not perform full fine-tuning on our hardware, we
estimate the full fine-tuning memory based on the memory reported for TOKENTUNE, TOKENTUNE + LoRA, and
LoRA. See Section 5.3 and Figure 4 for details of the experiment.

Selection Ratio TOKENTUNE QLoRA TOKENTUNE LoRA TOKENTUNE Full Fine-Tuning
(Ours) + QLoRA (Ours) + LoRA (Ours)
12.5% 11.7 GiB 51.9 GiB 44.6 GiB 80.4 GiB 64.0 GiB 91.4 GiB
25.0% 17.2 GiB 51.9 GiB 48.5 GiB 80.4 GiB 65.0 GiB 91.4 GiB
37.5% 22.0 GiB 51.9 GiB 53.7 GiB 80.4 GiB 66.3 GiB 91.4 GiB
50.0% 27.4 GiB 51.9 GiB 58.3 GiB 80.4 GiB 70.2 GiB 91.4 GiB
62.5% 32.7 GiB 51.9 GiB 63.0 GiB 80.4 GiB 74.6 GiB 91.4 GiB
75.0% 38.8 GiB 51.9GiB 68.1 GiB 80.4 GiB 79.5 GiB 91.4 GiB
87.5% 43.7 GiB 51.9 GiB 73.4 GiB 80.4 GiB 83.8 GiB 91.4 GiB
99.9% 49.0 GiB 51.9 GiB 77.7 GiB 80.4 GiB 88.7 GiB 91.4 GiB

Table 5: Using two models requiring roughly the same
GPU memory, we observe that the memory breakdown
and the impact of PEFT methods application are very
different. For each model, we show the evolution of the
GPU memory (x 103 MiB) required for performing one
training step for OPT-1B3 (Zhang et al., 2022a) with a
batch size of 1 and a sequence length of 128 and BERT-
base (Devlin et al., 2019) with a batch size of 256, a
sequence length of 128. Fwd (w/o grad) corresponds
to the execution of the forward pass, while disabling
gradient computation.

w/ LoRA
BERT OPT | BERT OPT

Cuda Context 0.8 0.8 0.8 0.8
+ Model weights 1.3 5.8 1.3 5.8
+ Fwd (w/o grad) 2.9 6.1 2.9 6.1

+ Fwd (w/ grad) 24.8 6.3 206 6.3
+ Bwd 252 113 | 21.0 63
+ Optimizer step 252 214 | 21.0 6.3

and less than 1 Gb for OPT. On the contrary, we
estimate that computing and storing the parame-
ter gradients increase the memory requirement by
less than 1 Gb for BERT and around 5 Gb for OPT.
When applying LoRA (Hu et al., 2022), a PEFT
method, we observe that the memory drastically
decreases for OPT, while having a less significant
impact on BERT. These examples demonstrate that
an effective memory reduction across different us-
age scenarios can be achieved by combining a suite
of memory-efficient fine-tuning methods that can
complement each other by reducing different parts
of the memory footprint simultaneously.

F MRPC and STS-B Descriptive Statistics

Table 6 describes the relation between the absolute
and relative number of frozen input positions. The

Table 6: Distribution of the sentence length for the two
GLUE subtasks (MRPC and STS-B).

Task 25thper- Avg. 75thper- Max #
centile tokens centile tokens Training
(P25%) per (P75%) per Sen-
sentence sentence tences
STS-B 19.0 27.8 31.0 125 5,749
MRPC 44.0 532 62.0 103 3,668

Table 7: Relative proportion of fine-tuned tokens aver-
aged over MRPC and STS-B tasks with respect to the
number of fine-tuned tokens, along with the correspond-
ing average performance (reported in Figure 3 (right)).

Fine-Tuned Average Relative Average Perf.
Tokens Proportion of
Fine-Tuned Tokens
4 13.6% 84.9
8 27.2% 86.4
16 53.9% 87.6
32 81.4% 88.4
64 99.0% 88.8

statistics include distribution of the sentence length
for the two subtasks (MRPC and STS-B) used to
produce Figure 3 (right). We also report in Table 7
the relative proportion of fine-tuned tokens aver-
aged over MRPC and STS-B tasks, as the absolute
number of fine-tuned tokens changes, along with
the corresponding average performance, which is
reported in Figure 3 (right).

G GPU Memory Usage

Table 4 shows the GPU memory usage required to
fine-tune Llama2-7B (Touvron et al., 2023) using
the proposed TOKENTUNE with a varying selection
ratio, as well as QLoRA and LoRA. Figure 4 also
visualizes the same results. See Section 5.3 and
Figure 4 for further details of the experiment.

21580

