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Abstract

Fine-tuning provides an effective means to spe-
cialize pre-trained models for various down-
stream tasks. However, fine-tuning often in-
curs high memory overhead, especially for
large transformer-based models, such as LLMs.
While existing methods may reduce certain
parts of the memory required for fine-tuning,
they still require caching all intermediate ac-
tivations computed in the forward pass to up-
date weights during the backward pass. In this
work, we develop TOKENTUNE, a method to
reduce memory usage, specifically the memory
to store intermediate activations, in the fine-
tuning of transformer-based models. During
the backward pass, TOKENTUNE approximates
the gradient computation by backpropagating
through just a subset of input tokens. Thus,
with TOKENTUNE, only a subset of intermedi-
ate activations are cached during the forward
pass. Also, TOKENTUNE can be easily com-
bined with existing methods like LoRA, fur-
ther reducing the memory cost. We evaluate
our approach on pre-trained transformer mod-
els with up to billions of parameters, consider-
ing the performance on multiple downstream
tasks such as text classification and question
answering in a few-shot learning setup. Over-
all, TOKENTUNE achieves performance on par
with full fine-tuning or representative memory-
efficient fine-tuning methods, while greatly re-
ducing the memory footprint, especially when
combined with other methods with comple-
mentary memory reduction mechanisms. We
hope that our approach will facilitate the fine-
tuning of large transformers, in specializing
them for specific domains or co-training them
with other neural components from a larger sys-
tem. Our code is available at https://github.
com/facebookresearch/tokentune.

1 Introduction

Fine-tuning is an effective method for specializ-
ing large pre-trained models, either by using direct
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Figure 1: TOKENTUNE greatly reduces the GPU mem-
ory usage for fine-tuning the Llama2-7B model (e.g.,
using only 37% of the memory QLoRA (Dettmers et al.,
2023) requires), while achieving similar accuracy to
representative memory-efficient fine-tuning methods.
Accuracy and memory usage numbers are listed in Ta-
ble 2 and Fig. 4. See Sec. 5 for details on experiments.

supervision from the training set of a given task
(Howard and Ruder, 2018; Devlin et al., 2019; Raf-
fel et al., 2020), from curated instruction datasets
(Mishra et al., 2022; Wei et al., 2022; Taori et al.,
2023), or from human feedback via reinforcement
learning (Ouyang et al., 2022; Bai et al., 2022;
Touvron et al., 2023). However, fine-tuning is
not necessarily an efficient method, especially for
transformer-based large language models (LLMs),
since their large number of parameters leads to
large compute and memory requirements. For
instance, fine-tuning GPT-3 175B (Brown et al.,
2020) or LLama 65B (Touvron et al., 2023) typi-
cally requires 1,200 GB and 780 GB of GPU mem-
ory, as reported in Hu et al. (2022) and Dettmers
et al. (2023), respectively.

GPU memory usage during fine-tuning can be
broken down into three parts: storing (1) the model
parameters, (2) the parameter gradients and opti-
mizer states, and (3) the intermediate activations.
Parameter-Efficient Fine-Tuning (PEFT) (Houlsby
et al.,, 2019; Hu et al., 2022) aims at updating
a small number of parameters, e.g., by optimiz-
ing a subset of the backbone model’s parameters
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while freezing others, which reduces the mem-
ory requirements to store the parameters’ gradi-
ents and optimizer states. Alternatively, quanti-
zation techniques (Dettmers et al., 2022, 2023;
Liu et al., 2024) use low precision data types for
model parameters, which reduces the memory cost.
For example, in fine-tuning the Llama2-7B model,
LoRA (Hu et al., 2022) and QLoRA (Dettmers
et al., 2023), which are representative PEFT and
quantization-based methods, reduce the memory
needed for full fine-tuning by 12% and 43%, re-
spectively (Figure 1). However, such existing ap-
proaches still require caching all of the intermediate
activations computed in the forward pass to obtain
the gradients during the backward pass.

In this work, we propose a method for memory-
efficient fine-tuning, named TOKENTUNE, which
aims to significantly reduce the GPU memory dedi-
cated to storing intermediate activations during the
forward pass without sacrificing the model perfor-
mance on various downstream tasks. To this end,
TOKENTUNE selects a subset of the input tokens in
the context, and fine-tunes the model with respect
to those selected tokens. More specifically, during
the backward pass, TOKENTUNE approximates the
gradient computation by backpropagating through
the selected tokens, and thus only a subset of the in-
termediate activations need to be cached during the
forward pass, thereby reducing the memory cost.

We demonstrate the effectiveness of TOKEN-
TUNE using both medium- and large-size language
models, namely, BERT (Devlin et al., 2019) and
Llama (Touvron et al., 2023), which have hundreds
of millions, and billions of parameters, respectively.
Overall, our results show that fine-tuning with To-
KENTUNE leads to downstream task performance
on par with that of full fine-tuning or representative
methods for memory-efficient fine-tuning, while
drastically reducing the memory footprint. Notably,
TOKENTUNE can be effectively combined with ex-
isting methods, achieving a greater reduction in
memory usage. For instance, by combining TO-
KENTUNE with QLoRA (Dettmers et al., 2023), we
can fine-tune Llama2-7B using just about one third
of the memory QLoRA alone requires as Figure 1
shows. To sum, our contributions are as follows.

* Novelty. TOKENTUNE, to the best of our knowl-
edge, is the first method that reduces GPU mem-
ory usage for fine-tuning via token selection'.

'A preliminary version of this work was presented at a
non-archival workshop (Simoulin et al., 2023).

¢ Combinability. TOKENTUNE can be combined
with existing memory-efficient fine-tuning meth-
ods, leading to further memory reduction.

» Effectiveness. We perform extensive experi-
ments, showing that TOKENTUNE achieves sim-
ilar accuracy to representative memory-efficient
methods, while greatly reducing the memory
footprint during fine-tuning, e.g., using only 21%
of what full fine-tuning requires (Figure 1).

2 Related Work

2.1 Parameter-Efficient Fine-Tuning (PEFT)

PEFT methods, which aim to limit the computing
resources for fine-tuning LLMs, can be divided into
four categories (Han et al., 2024; Xu et al., 2023).

Selective PEFT methods update only a subset
of the backbone model parameters using weight
masking strategies, such as learnable binary mask-
ing (Guo et al., 2021) and parameter importance
estimation using Fisher information (Sung et al.,
2021; Das et al., 2023). Other selective PEFT meth-
ods focus on updating specific modules, e.g., the
cross-attention layers (Gheini et al., 2021) and the
bias terms (Zaken et al., 2022; Lawton et al., 2023).

Additive PEFT methods add a few parameters to
the frozen pre-trained model, and fine-tune only the
added parameters. E.g., adapters inject small layers
within the transformer block, either sequentially
after its sublayers (Houlsby et al., 2019; Pfeiffer
etal.,2021), or as a side network running in parallel
to the sublayers (He et al., 2022a; Zhu et al., 2021).
Alternatively, soft prompt-based approaches (Li
and Liang, 2021; Qin and Eisner, 2021; Liu et al.,
2022) prepend continuous learnable vectors to the
input of a frozen model and tune them for each task.

Reparameterized PEFT methods perform low-
rank transformation, utilizing the low intrinsic
dimension of LLMs (Aghajanyan et al., 2021).
LoRA (Hu et al., 2022) is the most representative
approach, where an update to the model weights is
captured via its low-rank decomposition. Several
studies followed to improve LoRA, e.g., to sup-
port dynamic rank selection (Valipour et al., 2023;
Zhang et al., 2023b), and to address overfitting (Lin
et al., 2024) and overconfidence (Yang et al., 2024).

Hybrid PEFT methods aim to combine different
PEFT approaches, e.g., adapters, prefix-tuning, and
LoRA. The design space of combinations of PEFT
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Figure 2: TOKENTUNE achieves memory-efficient fine-tuning of transformers via token selection. During the
backward pass, we compute the gradient for only a subset of & input tokens, while the others are frozen (in gray in the
figure). During the forward pass, all input positions are used, but only a subset of the activations is cached in memory
(in blue in the figure). TOKENTUNE is applicable to various transformer-based models, as well as different language
modeling tasks, as our experiments with BERT (Devlin et al., 2019) and Llama (Touvron et al., 2023) show.

methods has been explored either manually (He
et al., 2022a; Mao et al., 2022), or automatically,
e.g., by leveraging neural architecture search meth-
ods (Zhang et al., 2022b; Zhou et al., 2024).

While the above PEFT methods effectively improve
parameter efficiency, they may still incur signifi-
cant memory overhead during fine-tuning (Sung
etal., 2022; Jin et al., 2023). The proposed TOKEN-
TUNE can be combined with these PEFT methods,
enabling them to achieve both parameter and mem-
ory efficiency, as Sections 4 and 5 show.

2.2 Memory-Efficient Fine-Tuning

There exist several techniques that can be used
to improve the memory efficiency in fine-tuning
LLMs, which we organize into four groups.

Memory-Efficient PEFT. Some PEFT methods
aim to achieve memory and parameter efficiency
simultaneously. Side tuning methods (Zhang et al.,
2020; Sung et al., 2022) introduce small learnable
side networks separated from the backbone model,
and channel backpropagation only through the side
networks, thereby reducing the memory require-
ments for gradients and intermediate activations.
By utilizing the reversible model, MEFT (Liao
et al., 2023) avoids the need to cache intermediate
activations in the forward pass. LoRA-FA (Zhang
et al., 2023a) improves LoRA by addressing its
high memory usage for input activations via freez-

ing LoRA’s down-projection weights.

Gradient Checkpointing (Chen et al., 2016;
Gruslys et al., 2016) reduces the memory require-
ment for model training by storing only a subset of
intermediate activations in the forward pass, and
recomputing the others during the backward pass.

Quantization is a compression technique that re-
duces the number of bits for storing numerical val-
ues. With quantization, parameters are represented
with lower-precision data types (Dettmers et al.,
2022, 2023; Liu et al., 2024), leading to memory
reduction in both fine-tuning and inference.

Approximate Gradient Methods reduce the mem-
ory usage by avoiding the exact gradient compu-
tation involved with full fine-tuning, and instead
using an approximate estimate of the gradient for
weight updates. To this end, a few methods employ
low-rank factorization, where they reduce mem-
ory cost by utilizing the low-rank structure of the
gradients (Zhao et al., 2024) or the second-order
statistics (Shazeer and Stern, 2018). Alternatively,
MeZO (Malladi et al., 2023) approximates the gra-
dient using only forward passes, building upon the
zeroth-order optimization technique (Spall, 1992).

The proposed TOKENTUNE can be considered an
approximate gradient method, as its token-selective
fine-tuning strategy leads to an approximation of
the full gradient, which is a completely new di-
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rection investigated to improve memory efficiency
in fine-tuning. Also, being complementary to
prior methods, TOKENTUNE can be combined with
them, resulting in further memory reduction.

3 TOKENTUNE

Previous studies analyzing the structure of the spar-
sity of activations and gradients (Kurtz et al., 2020;
Liu et al., 2023; Dai et al., 2022) suggest that
some neurons and activations could have a pre-
dominant importance, while some others may have
smaller contributions to the loss and output com-
putation. Inspired by these works, we hypothesize
that for many downstream tasks, not all tokens in
the sequence would need to be involved in the fine-
tuning—more specifically, backpropagation—of
transformer models. Instead, we conjecture that,
when restricted to backpropagating through a sub-
set of tokens, transformers could be further opti-
mized for the downstream task by enabling the
additional learning and adjustments, which need to
happen during the fine-tuning for the given task, to
be done in a more compact way, i.e., by incorporat-
ing the additional knowledge more succinctly with
respect to the selected subset of tokens.

Figure 2 illustrates TOKENTUNE, aiming at re-
ducing the memory needed to store the intermediate
activations used for gradient computation. Given
an input sequence X, a transformer associates each
token from the input sequence to an embedding
and computes a corresponding sequence of hid-
den states h through multiple layer applications.
For each input sequence, we select k£ random po-
sitions.> We organize each layer’s input in two
groups, one with the £ selected input positions, hg,
and the other with the remaining un-selected posi-
tions, hg, such that h = [hg, hg|, with [ ] denot-
ing the concatenation operator and ‘ g ’: k. The
re-ordering does not impact the computation as the
position is directly encoded in the hidden states.
‘With this token selection scheme, the classification
objective L¢Ls and the language modeling objec-
tive L1 v used by TOKENTUNE are as follows.

Classification Task. The goal is to assign the right
class or label y for the given sequence. Given
the hidden states from the transformer layers, we
use the average of the hidden states from the &
selected positions of the last layer as input for an

2We select the positions using a uniform distribution. How-

ever, we always include the [CLS] token—a special symbol
prepended as the beginning of every input sentence.

MLP, which outputs a probability distribution over
the classes of the task, as given by Eq. 1. During
the evaluation, we use the average from all hidden
states of the last layer as input for the MLP.

1
7 = MLP <k Z hi>
i€g
p(y|X) = softmax ()

Lers = —log p(y|X)

6]

Language Modeling Task. The goal is to learn
the probability distribution of a token, given all
preceding tokens. We train the language model by
applying the traditional cross-entropy loss to the set
of k randomly selected positions as given by Eq. 2
below, with W}, denoting the head projecting the
hidden state back into the vocabulary dimension.

p(zi|r<;) = softmax(h;Wipn)

Lim=— Zlog P(zi|z<i) 2)
i€g

The key element of our method is that we disable
the gradient computation for the un-selected to-
kens in G. Thus, only the k selected tokens in G
contribute to the gradient computation during the
backward pass. We detail the method in the case
of dense layers and attention mechanism in Sec-
tion 3.1 and Section 3.2, respectively.

3.1 TOKENTUNE for Dense and
Normalization Layers

We consider a dense layer a = o(z) = o(hW +b)
with weight W, bias b, nonlinear function o, input
h, pre-activation z, and output a. Eq. 3 computes
the gradient with respect to W and b when back-
propagating a loss £ through the layer:

0L 0LOa 0z 0L "

0L 0LOadz 0L

db 9adzob  da’

If we backpropagate the error only through the
selected tokens in G, and disable the gradient com-
putation for the unselected positions in G, we have:

oL oL oL oL
_— = = 4
da L%g’ 8ag} L%g’o] @
Plugging that into Eq. 3, we have:
oc oL _ocL 1oL,
AW [8agghg’0] db [8agg ’0} ©)
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Given Eq. 5, we only need to cache hg for applying
the chain rule, instead of the full activation h.
Regarding implementation, we use Algorithm 1
which explicitly splits the hidden states into two
groups where hg corresponds to the tokens selected
to be fine-tuned and hg corresponds to the un-
selected tokens. As shown in Eq. 6 and Eq. 7,
the forward pass is identical to standard fine-tuning
except that we disable the gradient computation
for the positions for hg in Eq. 7 with the context
"torch.no_grad()" in PyTorch.

hg = hgW +b (6)
hg = th +b @)

where W denotes the weights W7 and W5 for the
feed-forward layers. We apply the same methodol-
ogy for normalization layers.

3.2 TOKENTUNE for Attention Layers

For attention layers, we compute the attention as:

[Qq: Kg, Vgl = hgWig k. v) + bigxv) ()
Qg K5, V5] = hgWio kv +bokv) 9
hg = softmax (Qg [KG:KQ]T/\/E) Vg, Vg] (10)

hg = softmax (Qg’[KévKg]T/\/&) Vg, Vg] (11)

where Wig i v] € R?*3¢ denotes the concatenated
weights for the queries, keys, and values. For the
computation of un-selected positions in Eq. 9 and
Eq. 11, we again disable the gradient computation
in PyTorch. Algorithm 1 illustrates the steps for
the forward pass of a transformer model with the
proposed TOKENTUNE algorithm described in Sec-
tions 3.1 and 3.2.

4 Application to Medium-Size Encoders

Alternative methods such as zero-shot learning
or prompting usually underperform fine-tuning
(Brown et al., 2020). Thus, in many cases, fine-
tuning medium size language models may offer a
better balance in terms of cost and performance,
compared with fine-tuning large language models
(LLMs) or conditioning their outputs with prompt
approaches (Li et al., 2022; Schick and Schiitze,
2021). Medium-size models may also be used as
individual components, co-trained to encode infor-
mation for a larger system (Pfeiffer et al., 2023).
Finally, as detailed in Appendix E, the distribu-
tion of the GPU memory usage may be very differ-
ent given the order of magnitude of the fine-tuned

Algorithm 1: TOKENTUNE (We omit layer
normalization, skip connections, non-linear
functions, and multi-head attention for sim-
plicity)

Input: input sequence X

Output: hg, hg

1 Compute input token embeddings h
2 Re-organize input tokens into two groups (hg and hg)

3 for layer in transformers’ layers do
// Compute the attention layer

4 Qg, Kg,Vg] = heWig,k,v1 + bg,k,v]
_ T
5 hg = softmax <M) Vg, Vgl

Vd
6 with torch.no_grad():
7 [Qg, Kg, Vgl = hgWiq.k,vi + big.x v
_ _ T
8 hg = softmax (%) Vg, Vgl

// Compute the feed-forward layer
9 hg = hgW1 + b1

10 hg = hgWa + b

1 with torch.no_grad():

12 hg = thI + by

13 L hg = thz + bo

14 Re-organize input tokens into the original order

model’s number of parameters. For large-size mod-
els, the majority of the memory is often dedicated
to storing parameters and optimizer states, thus
maximizing the relevance of PEFT approaches.
For medium-size language models, fine-tuned with
large batch sizes, the majority of the memory may
be dedicated to storing the intermediate activation,
thus maximizing the impact of TOKENTUNE.

4.1 Downstream Task Performance

We first validate the relevance of our method on
the GLUE benchmark (Wang et al., 2018). We
use a similar hyper-parameter search space as in
(Zaken et al., 2022), by performing a cross val-
idation on the dev set using a learning rate in
[5e7°,3e75,2¢7°,1e7°]. We set the batch size
to 16 and perform 3 epochs on large datasets and
20 epochs on small ones (MRPC, STS-B, CoLA).
We use BERT-large (Devlin et al., 2019) and either
fine-tune the model fully, or use TOKENTUNE and
propagate the gradient through 16 input positions.
We then evaluate our model on the test set and
report the results in Table 1.

As shown in the second part of Table 1, the av-
erage GLUE score of TOKENTUNE is comparable
to that of full fine-tuning, thus empirically validat-
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Table 1: Results from BERT-large (Devlin et al., 2019) on GLUE test tasks scored using the benchmark server. We
report the Matthew’s Correlation for CoLA, the Spearman correlation for STS-B, F1 score for MRPC and QQP. We
report the accuracy on the MNLI matched test split and the accuracy for every other tasks. The “Param.” column
indicates the ratio of the number of updated parameters for each task by the number of parameters in the backbone
model. We indicate in bold the best result for each task. ' indicates models we trained. We report adapter results
from (Houlsby et al., 2019), BitFit from (Zaken et al., 2022) and Diff Pruning from (Guo et al., 2021). For LoRA
(Hu et al., 2022) and Ladder Side Tuning (LST) (Sung et al., 2022), we select the best learning rate in the dev set
between the values proposed in the original papers, [5e~%, 4e~%,3e™4 2e74] and [3e =%, 1e~3, 3e 2], respectively.
We do not use the initialization setup proposed in LoRA or LST nor do we drop any layers for the LST method.

Method Param. (%)| CoLA SST-2 MRPC QQP QNLI MNLI STS-B|Avg. t
Avg. # Tokens — | 113 133 532 306 494 398 278 | 322
Full Fine-Tuning' 100.0 | 607 946 883 720 924 858 858 | 8238
Adapters 3.6 595 940 895 718 907 849 869 | 825
BitFit 0.1 597 942 889 705 920 845 850 | 821
Diff Pruning 0.5 611 941 897 711 933 864 86.0 | 83.1
Ladder Side Tuning’ 2.4 564 934 880 669 891 829 866 | 805
LoRAT 0.3 585 940 892 711 9Ll 847 846 | 819
TOKENTUNE T 100.0 | 596 939 880 708 910 854 860 | 82.1

ing the effectiveness of our approach.Table 1 also
shows that TOKENTUNE either outperforms or per-
forms similarly to existing SOTA approaches. Pre-
cisely speaking, the performance of these memory-
efficient fine-tuning methods, including TOKEN-
TUNE, is often slightly worse than that of full fine-
tuning. In comparison to full fine-tuning, some
amount of performance loss with these methods
is expected as they approximate or simplify the
optimization process of full fine-tuning to reduce
memory footprint. We hypothesize that some tasks,
such as QQP and QNLI, are more difficult, or sensi-
tive to overfitting than others, given that updating a
small proportion of model parameters or using only
a subset of input tokens for gradient computation
achieves suboptimal performances on those tasks
in most cases. The former case would require the
development of sophisticated techniques to more
effectively select a subset of parameters or input to-
kens to optimize, while the latter case may benefit
from the use of regularization techniques for neural
networks, including Gouk et al. (2021); Foret et al.
(2021); Li and Zhang (2021), the investigation of
which we leave for future studies.

4.2 Ratio of Tuned Input Positions

Given our token-selective fine-tuning approach, we
then evaluate the impact of the number of frozen
input positions on the performance. We use our
selective procedure to fine-tune BERT-base on two
tasks from the GLUE benchmark: MRPC and STS-

B. We set the hyper-parameters as follows: 5¢~°
for the learning rate, 32 for the batch size and 4
epochs. We use different values for & (i.e., the num-
ber of trained input positions), ranging between 4
and 64. We report in Figure 3 (right), the average
performance on the dev set of the tasks.’

As seen in Figure 3, the performance increases
from 84.8 to 88.8 as the number of trained posi-
tions increases from 4 to 64. However, by only
tuning 32 positions, we already reach an average
performance of 88.4, close to the 88.8 obtained by
training 64 input positions. Our method surpasses
the performance of freezing some bottom layers,
as shown in (Lee et al., 2019), where only tuning
the four bottom layers resulted in a 10% decrease
in performance on the GLUE benchmark.

4.3 GPU Memory Impact

Finally, we analyze the GPU memory required to
fine-tune models using various approaches. We
train our BERT-base model for 100 steps on the
CoLA task using various batch sizes and report the
peak GPU memory used. We compare with two
other PEFT fine-tuning approaches close to ours:
Ladder Side Tuning (Sung et al., 2022) and LoRA
(Hu et al., 2022). LoRA freezes most of the model

3 We provide some descriptive statistics in Appendix F to
better understand how the absolute number of frozen input
positions relates with the relative number of frozen input posi-
tions. The statistics include distribution of the sentence length
for the two subtasks (MRPC and STS-B) used to produce
Figure 3 (right).
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Figure 3: (left) We plot the GPU memory required to train BERT-base on the CoLA task given varying batch sizes.
We compare our approach with two PEFT approaches: Ladder Side Tuning (LST) and LoRA. (right) We plot the
mean and standard deviation performance on the dev set of five runs when training BERT-base on two tasks from the
GLUE benchmark: MRPC and STS-B. We use our memory efficient fine-tuning approach with a different number

of selected input tokens for the gradient computation.

parameters, while only training additional low-rank
matrices, whose weights are added to the backbone
network. Ladder Side Tuning (LST) freezes the
model parameters but trains a side-network with
smaller dimensions, taking as input intermediate
activations from the backbone model.

Figure 3 shows the evolution of the required
GPU memory with respect to the batch size. GPU
memory increases with the batch size for every
approach. TOKENTUNE is more memory efficient
by a large margin. When using a batch size of 512,
it requires two times less memory than full fine-
tuning: 23, 196 MiB needed for full fine-tuning is
reduced to 9, 952 MiB with our method.

All methods minimize GPU memory usage.
LoRA and LST reduce the memory required to
store optimizer states and parameter gradients,
while our method reduces the memory for storing
intermediate activations. Interestingly enough, it
is possible to use these approaches in conjunction
to reduce the memory for all three contributions.
Fig. 3 shows that we can further reduce the mem-
ory by combining TOKENTUNE with LoRA, thus
requiring only 7,682 MiB with a batch size of 512,
a third of the memory used for full fine-tuning.

5 Application to Large-Size Decoders

We also seek to evaluate our method on larger size
pre-trained language models (LLMs).

5.1 Instruction Tuning and Few-Shot
Evaluation

LLMs are typically further fine-tuned on curated
datasets to tailor them to specific domains and en-
hance their capacity to follow instructions (Wang
et al., 2023; Taori et al., 2023; Mukherjee et al.,
2023). In this section, we employ instruction tun-
ing on these datasets to fine-tune the LLMs and
then assess the performance of the resulting mod-
els using few-shot benchmarks.

Instruction Tuning. We fine-tune the Llama2-7B
model (Touvron et al., 2023) via instruction tuning
with the Open-Platypus* (Lee et al., 2023) dataset.
Note that, while Open-Platypus consists of 11 open-
source datasets, we exclude two of them® that in-
clude outputs from GPT (OpenAl, 2023), and in-
stead use the other nine datasets for fine-tuning.

Hyper-Parameter Settings. We conduct all exper-
iments in this section on Nvidia H100 GPU. Fol-
lowing Lee et al. (2023), we fine-tune the model
for one epoch, and use a learning rate of 4e~* for
LoRA (Hu et al., 2022) and QLoRA (Dettmers
et al., 2023), and 4e~° otherwise. We use a batch
size of 1 with 32 gradient accumulation steps. We
apply the adapters on the feed-forward modules
from each layer, following the method described in
He et al. (2022b). We prompt the model without

*https://huggingface.co/datasets/garage-bAInd/
Open-Platypus

5leetcode—solutions—python—testgen—gpt4 and
airoboros-gpt4-1.4.1
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Table 2: Few-shot evaluation on question-answering benchmarks including: AI2 Reasoning Challenge (25-shot)
(Clark et al., 2018), MMLU (5-shot) (Hendrycks et al., 2021), HellaSwag (10-shot) (Zellers et al., 2019), Truthful QA
(0-shot) (Lin et al., 2022), and WinoGrande (0-shot) (Sakaguchi et al., 2020). We use the evaluation scripts and
prompt formatting from the "Language Model Evaluation Harness" (Gao et al., 2021). We report the average
accuracy on five MMLU ethics tasks and WinoGrande, the normed accuracy on ARC and HellaSwag, and the
MC?2 score on TruthfulQA. We indicate in bold the best result for each task.We report the results with the raw
Llama2-7B model (Touvron et al., 2023) and the Llama2-7B fine-tuned on the Platypus curated instruction dataset
(Lee et al., 2023) using LoRA (Hu et al., 2022), QLoRA (Dettmers et al., 2023) and the proposed TOKENTUNE.
When fine-tuning with TOKENTUNE, we select 30% of the tokens for the gradient computation.

Hella

Truthful

Wino

Method MMLU ARC Swag 0A Grande Avg. T
Llama 7B 6444 5239 7897  38.97 68.90  60.73
Llama 7B w/ LoRA 6589 5538 7876  42.64  68.35 62.20
Llama 7B w/ LORA+TOKENTUNE (Ours) 6542  54.01 78.82  43.78  68.35 62.08
Llama 7B w/ QLoRA 65.08 56.06 78.60 43.64 69.38  62.55
Llama 7B w/ QLoORA+TOKENTUNE (Ours) 65.78 53.92 78.74 4191 69.38 61.95
Llama 7B w/ TOKENTUNE (Ours) 63.06 53.07 7790 42.18 69.93 61.23

step-wise reasoning using the Alpaca (Taori et al.,
2023) prompt template detailed in Appendix A.

Few-Shot Evaluation. Then, we evaluate our
method against other memory-efficient fine-tuning
approaches by assessing its performance on several
few-shot benchmarks, such as MMLU (Hendrycks
etal., 2021), ARC easy and challenge (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), Truth-
ful QA (Lin et al., 2022), and WinoGrande (Sak-
aguchi et al., 2020). We utilize the evaluation
scripts provided by the "Language Model Eval-
uation Harness" (Gao et al., 2021). During the
evaluation process, the model outputs the probabil-
ity associated with closed-form problems defined
by the context, question, and multiple potential an-
swers. We select the answer choice with the text
associated with the highest probability.

Table 2 reports the accuracy of the model out-
put against the ground truth answer. Our method
achieves competitive performance gains that are
comparable to the performance improvements ob-
tained by other memory efficient fine-tuning ap-
proaches. We are able to improve the evaluation
accuracy upon the base LLama2-7B model, in-
creasing the average accuracy from 60.7 to 61.2.
We observe the most significant improvements for
Truthful QA (+3.2) and WinoGrande (+1.0) tasks.
We also combine TOKENTUNE with LoRA and
QLoRA, further improving the evaluation accuracy
compared to the use of TOKENTUNE alone.

5.2 Ratio of Tuned Input Positions

As done for medium-size encoders in Section 4.2,
we then evaluate the impact of the ratio of tuned
input positions on the few-shot accuracy. We mea-
sure the few-shot accuracy of Llama2-7B models
fine-tuned using TOKENTUNE with varying ratio
of tuned input positions. Table 3 shows few-shot
evaluation accuracy of Llama2-7B when the ratio
of fine-tuned positions ranges from 10% to 50% .
Contrary to what we observed in Section 4.2, we
do not necessarily observe a strong correlation be-
tween the few-shot accuracy and the ratio of tuned
positions. In fact, we obtain the best performances
most often when 20%-30% of input positions are
fine-tuned. It is important to observe that the av-
erage sequence length in these experiments far ex-
ceeds the one from the experiments on the GLUE
benchmark. This suggests that tuning a relatively
small number of positions may be sufficient to suc-
cessfully fine-tune the model on specific datasets.

5.3 GPU Memory Impact

As in Section 4.3, we analyze the impact of our
method on the GPU memory required to fine-tune
large language models. Figure 4 and Table 3 report
the GPU memory usage for fine-tuning Llama2-
7B as the number of trained input tokens changes.
Given an input sequence of length 2,048, Figure 4
shows that our model reduces the memory usage by
up to 28%, from 89 GiB to 64 GiB when reducing
the number of trained positions from 2,046 to 256.

21572



Table 3: Few-shot evaluation results and peak mem-
ory usage (GiB) as Llama2-7B is fine-tuned on instruc-
tion datasets with (a) TOKENTUNE, (b) TOKENTUNE
+ LoRA and (c) TOKENTUNE + QLoRA, varying the
selection ratio of input tokens. Best results in bold.

(a) TOKENTUNE

Selection | Peak Hella Truthful Wino Avg.
Ratio | Mem. MMLU ARC Swag QA  Grande Perf.
10% | 64.40 | 61.56 51.71 7835 41.88 70.01 60.70
20% | 65.08 | 65.01 52.65 7837 42.02 69.46  61.50
30% | 6594 | 63.06 53.07 7790 4218 69.93 61.23
40% | 68.42| 63.78 5290 77.90 41.45 70.32 61.27
50% | 7432 | 6298 52.73 7832 42.11 69.38 61.10

(b) TOKENTUNE + LoRA

Selection | Peak Hella Truthful Wino Avg.
Ratio | Mem. MMLU ARC Swag QA  Grande Perf.
10% |4547 | 64.17 54.44 78.68 38.77 69.61 61.13
20% | 4821 | 6541 5435 79.01 4221 69.38  62.07
30% | 5277 | 6542 54.01 78.82 43.78 6835 62.08
40% | 5631 | 6435 52.65 78.69 41.05 68.90 61.13
50% | 64.34| 65.87 54.01 78.68 4246  69.38 62.08

(c) TOKENTUNE + QLoRA

Selection | Peak Hella Truthful Wino Avg.
Ratio | Mem. MMLU ARC Swag QA  Grande Perf.
10% | 11.47 | 63.54 54.18 78.58 39.79 68.98 61.02
20% 15.68 | 64.05 53.92 78.81 40.33 69.85 61.39
30% 19.71 | 65.78 53.92 78.74 4191 69.38  61.95
40% | 24.11| 6485 54.35 7870 4198  69.14 61.80
50% | 31.06 | 6529 53.75 78.70 40.63 69.06 61.49

The advantage of the proposed method is that it
can be combined with other memory saving meth-
ods. We measure the peak memory required to fine-
tune LLama2-7B when combining TOKENTUNE
with LoRA or QLoRA. Since these approaches
target different parts of the memory footprint, we
observe cumulative savings when they are used to-
gether. When combining LoRA with TOKENTUNE,
the peak memory ranges between 78 GiB to 45 GiB
depending on the number of tuned positions. Simi-
larly, when combining QLoRA with TOKENTUNE,
the peak memory decreases from 49 GiB to 12 GiB
as a smaller selection ratio is used.

Overall, Figure 4 and Table 3 show that the per-
formance of TokenTune is not very sensitive to the
choice of token selection ratio, while the memory
cost is significantly reduced with a smaller token
selection ratio. Based on these results, our recom-
mendation is to use 20%—-30% as the default token
selection ratio, and test if further improvements in
performance and memory usage can be obtained
for the given task, with a smaller selection ratio.

==+ Full Fine-Tuning WM TokenTune (Ours)

—--— LORA w TokenTune (Ours) + LoRA
Il TokenTune (Ours) + QLoRA
100+

80 1

(=2
o

GPU RAM (GiB)
Ey
o

204

256 512 768
Number of trained token positions

1024 1280 1536 1792 2046

Figure 4: GPU memory required to fine-tune Llama2-
7B (Touvron et al., 2023). We measure the memory by
fine-tuning the model on artificially generated data with
a given sequence length and batch size. We set the batch
size to 1 and the sequence length to 2,048. We show
the memory usage when combining TOKENTUNE with
LoRA and QLoRA and plot the evolution of the memory
required to fine-tune the model on a H100 GPU with a
number of trained positions ranging between 256 and
2,046 (we leave at least 2 positions not tuned). Since
we could not perform full fine-tuning on our hardware,
we estimate the full fine-tuning memory based on the
memory reported for TOKENTUNE and LoRA. Specific
memory usage values can be found in Table 4.

6 Conclusion

In this paper, we propose TOKENTUNE, a method
for reducing the GPU memory required to fine-tune
transformer-based models, such as large language
models. Our contributions are as follows.

* Novelty. TOKENTUNE is the first approach
that reduces the GPU memory footprint for fine-
tuning via token selection, which selects a subset
of the input positions through which the gradient
is propagated, while keeping the others frozen.

* Combinability. The proposed token selection
strategy can be combined with other memory-
and parameter-efficient fine-tuning approaches,
achieving a greater memory reduction together.

 Effectiveness. We empirically benchmark To-
KENTUNE using large language models with up
to billions of parameters. As Figure 1 and Ta-
ble 1 show, TOKENTUNE achieves similar pre-
diction accuracy to representative memory- and
parameter-efficient methods, such as LoRA and
QLoRA, while significantly reducing the mem-
ory usage for fine-tuning (e.g., a joint applica-
tion of TOKENTUNE and QLoRA uses 79% less
memory than full fine-tuning).
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7 Limitations

While TOKENTUNE effectively reduces the mem-
ory required for storing intermediate activations, it
does not affect the other parts of GPU memory us-
age, such as the one for parameter gradients. How-
ever, as we showed in experiments, TOKENTUNE
can be combined with memory-efficient methods
that reduce those other parts of memory footprint.
Also, the evaluation of TOKENTUNE in this work
focused on one domain, namely, language models.
Given the applicability of TOKENTUNE to other
domains, such as vision (Dosovitskiy et al., 2021),
we hope to investigate its effectiveness in broader
settings in the future.

Potential Risks. Since this paper presents a
method for memory-efficient fine-tuning of
transformer-based models, such as LLMs, and is
not tied to particular applications, we do not see
potential risks of the proposed method.
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A Instruction Template

Regarding the instruction tuning of large LLMs, we
prompt the model without step-wise reasoning us-
ing the Alpaca (Taori et al., 2023) prompt template
presented below.

“Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

### Instruction: {instruction}

### Input: {input}

### Response:

”

B Software

Here we provide the details of the software used
for the implementation of TOKENTUNE as well
as the fine-tuning and evaluation of TOKENTUNE
and baselines. Our implementation of TOKEN-
TUNE builds upon the HuggingFace Transformers
library® (v4.33.1). For LoRA (Hu et al., 2022),
we used the HuggingFace PEFT library’ (v.0.5.0).
Datasets used for fine-tuning were obtained from
the HuggingFace Datasets library® (v2.18.0). We
used Open-Platypus® for fine-tuning. For the evalu-
ation with the Llama2 model in Section 5, we used
the Im-evaluation-harness framework!? (v.0.4.2).
We used the PyTorch framework!! (v.2.0.1). Re-
sults from Table 1 are scored by the evaluation
server.!? As in Devlin et al. (2019), we discard
results for the WNLI task.'?

C License

The majority of TOKENTUNE is licensed under
CC-BY-NC, however portions of the project are
available under separate license terms: Transform-
ers is licensed under the Apache 2.0 license. The
license of other libraries used for this paper is as
follows. The PEFT and Datasets libraries from
HuggingFace are under the Apache-2.0 license.
The Im-evaluation-harness framework is under the
MIT license. PyTorch is under the modified BSD-3

®https://github.com/huggingface/transformers

7https://github.com/huggingface/peft

8https://github.com/huggingface/datasets

’https://huggingface.co/datasets/garage-bAInd/
Open-Platypus

Ohttps://github.com/EleutherAl/
Im-evaluation-harness

llhttps://github.com/pytorch/pytorch

12https://gluebenchmark.com/leaderboard

BSee (12) from https://gluebenchmark. com/faq

license. Open-Platypus used for fine-tuning con-
sists of multiple datasets; their license informa-
tion can be found at https://huggingface.co/
datasets/garage-bAInd/Open-Platypus.

D Training and Evaluation Data

BERT model has been pre-trained on 3,300M
words. Regarding the instruction tuning experi-
ments, we tuned the Llama2-7B on 21,221 samples
from the Open-Platypus (Lee et al., 2023) dataset.
Note that, while Open-Platypus consists of 11 open-
source datasets, we exclude two of them!* that
include outputs from GPT (OpenAl, 2023), and
instead use the other nine datasets for fine-tuning.
Llama2-7B has been pre-trained on 2T tokens and
fine-tuned on 100,000 samples.'>

E Memory Breakdown

Parameter-Efficient Fine-Tuning (PEFT) ap-
proaches aim at reducing the compute and storage
requirements to fine-tune LLMs by only updating
a small subset of the model parameters. As a result,
we do not need to store any corresponding gradi-
ents and optimizer states for the frozen parameters.
When parameters, gradients, and optimizer states
represent the majority of the GPU memory usage,
these PEFT methods can effectively reduce the
memory cost. However, when most GPU memory
is used to store intermediate activations, which
are required for gradient computation during
the backward pass, these PEFT methods cannot
effectively cut down the memory cost.

Table 5 presents the GPU memory required to
perform one training step with BERT-base (Devlin
et al., 2019) and OPT (Zhang et al., 2022a) on a
consumer hardware GPU. We calibrate the exam-
ple such that the memory requirement is roughly
the same for both models. In this configuration we
can only fit a single example for OPT, while we can
use a batch size of 256 for BERT. We observe that
the memory breakdown is very different between
the two configurations. The required memory dras-
tically increases during the forward pass for BERT
and during the backward pass for OPT. When com-
paring the execution of forward pass with and with-
out enabling gradient computation in PyTorch, we
estimate that the memory cost to store intermedi-
ate activations represents around 22 Gb for BERT

14leetcode—solutions—python—testgen—gpt4 and
airoboros-gpt4-1.4.1
Bhttps://1lama.meta.com/1lama2/
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Table 4: GPU memory required to fine-tune Llama2-7B (Touvron et al., 2023) using TOKENTUNE with a varying
selection ratio, as well as QLoRA and LoRA. Since we could not perform full fine-tuning on our hardware, we
estimate the full fine-tuning memory based on the memory reported for TOKENTUNE, TOKENTUNE + LoRA, and
LoRA. See Section 5.3 and Figure 4 for details of the experiment.

Selection Ratio TOKENTUNE QLoRA TOKENTUNE LoRA TOKENTUNE Full Fine-Tuning
(Ours) + QLoRA (Ours) + LoRA (Ours)
12.5% 11.7 GiB 51.9 GiB 44.6 GiB 80.4 GiB 64.0 GiB 91.4 GiB
25.0% 17.2 GiB 51.9 GiB 48.5 GiB 80.4 GiB 65.0 GiB 91.4 GiB
37.5% 22.0 GiB 51.9 GiB 53.7 GiB 80.4 GiB 66.3 GiB 91.4 GiB
50.0% 27.4 GiB 51.9 GiB 58.3 GiB 80.4 GiB 70.2 GiB 91.4 GiB
62.5% 32.7 GiB 51.9 GiB 63.0 GiB 80.4 GiB 74.6 GiB 91.4 GiB
75.0% 38.8 GiB 51.9GiB 68.1 GiB 80.4 GiB 79.5 GiB 91.4 GiB
87.5% 43.7 GiB 51.9 GiB 73.4 GiB 80.4 GiB 83.8 GiB 91.4 GiB
99.9% 49.0 GiB 51.9 GiB 77.7 GiB 80.4 GiB 88.7 GiB 91.4 GiB

Table 5: Using two models requiring roughly the same
GPU memory, we observe that the memory breakdown
and the impact of PEFT methods application are very
different. For each model, we show the evolution of the
GPU memory (x 103 MiB) required for performing one
training step for OPT-1B3 (Zhang et al., 2022a) with a
batch size of 1 and a sequence length of 128 and BERT-
base (Devlin et al., 2019) with a batch size of 256, a
sequence length of 128. Fwd (w/o grad) corresponds
to the execution of the forward pass, while disabling
gradient computation.

w/ LoRA
BERT OPT | BERT OPT

Cuda Context 0.8 0.8 0.8 0.8
+ Model weights 1.3 5.8 1.3 5.8
+ Fwd (w/o grad) 2.9 6.1 2.9 6.1

+ Fwd (w/ grad) 24.8 6.3 206 6.3
+ Bwd 252 113 | 21.0 63
+ Optimizer step 252 214 | 21.0 6.3

and less than 1 Gb for OPT. On the contrary, we
estimate that computing and storing the parame-
ter gradients increase the memory requirement by
less than 1 Gb for BERT and around 5 Gb for OPT.
When applying LoRA (Hu et al., 2022), a PEFT
method, we observe that the memory drastically
decreases for OPT, while having a less significant
impact on BERT. These examples demonstrate that
an effective memory reduction across different us-
age scenarios can be achieved by combining a suite
of memory-efficient fine-tuning methods that can
complement each other by reducing different parts
of the memory footprint simultaneously.

F MRPC and STS-B Descriptive Statistics

Table 6 describes the relation between the absolute
and relative number of frozen input positions. The

Table 6: Distribution of the sentence length for the two
GLUE subtasks (MRPC and STS-B).

Task  25thper- Avg. 75thper- Max #
centile tokens centile tokens Training
(P25%) per (P75%) per Sen-
sentence sentence tences
STS-B 19.0 27.8 31.0 125 5,749
MRPC  44.0 532 62.0 103 3,668

Table 7: Relative proportion of fine-tuned tokens aver-
aged over MRPC and STS-B tasks with respect to the
number of fine-tuned tokens, along with the correspond-
ing average performance (reported in Figure 3 (right)).

# Fine-Tuned Average Relative Average Perf.
Tokens Proportion of
Fine-Tuned Tokens
4 13.6% 84.9
8 27.2% 86.4
16 53.9% 87.6
32 81.4% 88.4
64 99.0% 88.8

statistics include distribution of the sentence length
for the two subtasks (MRPC and STS-B) used to
produce Figure 3 (right). We also report in Table 7
the relative proportion of fine-tuned tokens aver-
aged over MRPC and STS-B tasks, as the absolute
number of fine-tuned tokens changes, along with
the corresponding average performance, which is
reported in Figure 3 (right).

G GPU Memory Usage

Table 4 shows the GPU memory usage required to
fine-tune Llama2-7B (Touvron et al., 2023) using
the proposed TOKENTUNE with a varying selection
ratio, as well as QLoRA and LoRA. Figure 4 also
visualizes the same results. See Section 5.3 and
Figure 4 for further details of the experiment.
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