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Abstract

Recently, pre-trained language models (PLMs)
have been increasingly adopted in spoken lan-
guage understanding (SLU). However, auto-
matic speech recognition (ASR) systems fre-
quently produce inaccurate transcriptions, lead-
ing to noisy inputs for SLU models, which can
significantly degrade their performance. To ad-
dress this, our objective is to train SLU models
to withstand ASR errors by exposing them to
noises commonly observed in ASR systems,
referred to as ASR-plausible noises. Speech
noise injection (SNI) methods have pursued
this objective by introducing ASR-plausible
noises, but we argue that these methods are
inherently biased towards specific ASR sys-
tems, or ASR-specific noises. In this work, we
propose a novel and less biased augmentation
method of introducing the noises that are plau-
sible to any ASR system, by cutting off the
non-causal effect of noises. Experimental re-
sults and analyses demonstrate the effective-
ness of our proposed methods in enhancing the
robustness and generalizability of SLU mod-
els against unseen ASR systems by introducing
more diverse and plausible ASR noises in ad-
vance.

1 Introduction

Pre-trained language models (PLMs) have demon-
strated a robust contextual understanding of lan-
guage and the ability to generalize across differ-
ent domains. Thus, PLMs have gained widespread
acceptance and been employed within the realm
of spoken language understanding (SLU), such as
voice assistants (Broscheit et al., 2022; Zhang et al.,
2019). A concrete instance of this application is a
pipeline where an automatic speech recognition
(ASR) system first transcribes audio inputs, and
the transcriptions are then processed by PLMs for
downstream SLU tasks (Feng et al., 2022).

*Corresponding author.

Figure 1: Different ASR systems generate different ASR
errors (ASR1 : blue, ASR2 : red, common, or, ASR∗
: green). Biased toward a specific ASR, ASR1, base-
line SNI generates noises plausible only for ASR1, or
even some noise that are not plausible to any (cue to
sue). Our distinction is 1) removing its bias to a specific
ASR (Read to Lead), and 2) generating ASR∗-plausible
noises (cue to queue).

However, such pipelines encounter challenges
when faced with inaccuracies from ASR systems.
We refer to these inaccuracies as ASR error words,
which are phonetically similar but semantically un-
related (Ruan et al., 2020; Huang and Chen, 2020).
For instance, as shown in Fig. 1, ASR systems
might confuse words like “cereal” and “serial” or
“quarry” and “carry”, resulting in incorrect tran-
scriptions such as “workers eat serial in the carry”.
Despite their phonetic resemblance, these ASR er-
ror words convey unintended meanings, thereby
impeding the semantic understanding of speech in
SLU tasks (Belinkov and Bisk, 2018).

A well-known solution is speech noise injec-
tion (SNI) which generates likely incorrect tran-
scriptions, namely pseudo transcriptions, then ex-
poses PLMs to the generated pseudo transcriptions
while training SLU tasks (Heigold et al., 2018;
Di Gangi et al., 2019). Thus, the injected noises
should be ASR-plausible, being likely to be gen-
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erated by ASR systems from real audio input, for
which the traditional methods attempted to repli-
cate the ASR errors from written text. However,
their ASR-plausibility is conditional on a particular
ASR system, or ASRi, where the error distribu-
tion from the collected transcriptions follows only
the observed error distribution (Wang et al., 2020;
Gopalakrishnan et al., 2020; Cui et al., 2021).

However, different ASR systems have distinct
error distributions (Tam et al., 2022), which hinders
the trained SLU models to be used with other ASR
systems, ASRj . A straightforward solution to this
issue might be to employ multiple ASR systems or
to build multiple SLU models, but this approach
incurs significant overheads and cannot account for
the diversity of real-world ASR errors, e.g., errors
due to environmental sounds. Instead, we investi-
gate a novel but easier solution of introducing better
generalizable noises from a single ASR system.

For this purpose, we first identify the gap be-
tween the ASR transcription in SLU and SNI from
a causality perspective. First, SLU tasks aim to
handle real audio input, where written ground-
truths(GTs) are recorded as audio by humans, such
that ASR errors are causally affected by recorded
audio, as shown in Figure 2a. However, SNI, when
replicating error patterns, may discard the correctly
transcripted texts, biased towards the observed er-
rors. Inspired by causality literature, we introduce
two technical contributions: 1) interventional noise
injection and 2) phoneme-aware generation. Specif-
ically, we adopt do-calculus to intervene the “re-
vised” in SNI to deviate from the observed error
distribution, thereby broadening the error patterns
in the resulting pseudo transcripts. For instance, as
shown in Fig. 1, our SNI model can corrupt the
word ‘Read’ with the phoneme ‘ô’, which was cor-
rupted in ASR2 but not in ASR1, in addition to the
errors introduced by baseline SNI.

Next, we ensure that the debiased noises are
plausible for any ASR system, referred to as ASR∗.
This involves making GT words and ASR noises
phonetically similar based on the common charac-
teristics shared by ASR∗ (Serai et al., 2022). Along
with the textual input, we incorporate information
on how words are pronounced. By being aware of
pronunciation, we can introduce ASR noises that
are plausible regardless of the specific ASR system
used, making them ASR∗-plausible.

Experiments were conducted in an ASR zero-
shot setting, where SNI models were trained on
ASRi and tested on SLU tasks using another ASR

system, ASRj , on the DSTC10 Track2 and ASR
GLUE benchmarks. Results show that our pro-
posed methods effectively generalize across dif-
ferent ASR systems, with performance comparable
to, or even exceeding, the in-domain setting where
ASRj is used to train the SNI model.

2 Related Work

2.1 SNI

Previously proposed methods can be broadly cate-
gorized into three main approaches. The first, a
Text-to-Speech (TTS)-ASR pipeline (Liu et al.,
2021; Chen et al., 2017), uses a TTS engine to con-
vert text into audio, which is then transcribed by an
ASR system into pseudo transcriptions. However,
this method struggles due to different error distri-
butions between human and TTS-generated audio,
making the pseudo transcriptions less representa-
tive of actual ASR errors. The second approach,
textual perturbation, involves replacing words in
text with noise words using a scoring function that
estimates how likely an ASR system is to misrec-
ognize the words, often employing confusion ma-
trices (Jyothi and Fosler-Lussier, 2010; Yu et al.,
2016) or phonetic similarity functions (Li and Spe-
cia, 2019; Tsvetkov et al., 2014). The third method,
auto-regressive generation, utilizes PLMs like GPT-
2 or BART to generate text that mimics the likeli-
hood of ASR errors in a contextually aware man-
ner, producing more plausible ASR-like noise (Cui
et al., 2021).

We consider auto-regressive noise generation as
our main baseline as it has shown superior perfor-
mance over other categories (Feng et al., 2022; Kim
et al., 2021) However, auto-regressive noise gener-
ation is biased to ASRi, limiting the SLU model
used for ASRi. Our distinction is generalizing SNI
so that the SLU tasks can be conducted with ASR∗.
We provide a more detailed explanation of each
category in Appendix 7.1.

2.2 ASR Correction

As an alternative to SNI, ASR correction aims to
denoise (possibly noisy) ASR transcription Ti into
X: Due to its similarity to SNI, similar methods,
such as textual perturbation (Leng et al., 2021) and
auto-regressive generation (Dutta et al., 2022; Chen
et al., 2024), were used. Also, PLMs showed im-
pressive results (Dutta et al., 2022), as the ASR
noise words can be easily detected by PLMs due to
their semantic irrelevance. Using such characteris-
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tics, the constrained decoding method which first
detects ASR errors, then corrects detected ASR er-
rors is proposed (Yang et al., 2022). However, the
innate robustness of PLMs (Heigold et al., 2018)
makes SNI outperforms ASR correction (Feng
et al., 2022). In addition, it introduces additional
latency in the SLU pipeline for ASR correction
before the SLU model to conduct SLU tasks. In
voice assistant systems like Siri, such additional la-
tency is crucial as the SLU pipeline should deliver
responses with minimal delay to ensure real-time
interaction. Therefore, we focus on SNI for its ef-
fectiveness and minimal latency in SLU pipeline.

3 Method

Before introducing ISNI, we first formally define
the problem of SNI and outline its causal diagram.
Following this, we provide an overview of ISNI
and detail the methods used to generate pseudo
transcriptions that enhance the robustness of SLU
tasks against ASR∗.

3.1 Problem Formulation
To robustify PLMs against ASR errors in SLU,
the SNI model mimics the transcriptions of ASRi

which can be defined as a functional mapping Fi :
X → Ti. Given the written GT X = {xk}nk=1 with
n words, the SNI model Fi outputs the pseudo tran-
scription Ti = {tki }nk=1, simulating the transcrip-
tions produced by ASRi. These pseudo transcrip-
tions, Ti, are subsequently used to train SLU mod-
els. For each word xk, zk ∈ Z indicates whether
ASRi makes errors (zk = 1, hence xk ̸= tki ) or
not (zk = 0, hence xk = tki ). However, noises
generated by this model differ from those of the
other ASR system, ASRj , and SLU model trained
with the generated noises struggles with the errors
from ASRj . Therefore, we propose building an SNI
model, F∗, capable of generating “ASR∗-plausible”
pseudo transcripts T∗, which are plausible for any
ASR system, ASR∗.

3.2 Causality in SNI
To achieve this, we compare the underlying causal
relations between the transcription process in SLU
and SNI training data generation, which are de-
picted in Fig. 2a. During ASR transcription, written
GT X is first spoken as audio A, which is then tran-
scribed as transcription T by ASRi. Depending on
the audio A, ASRi may make errors (Z = 1) or not
(Z = 0) in the transcription T . While transcribing,
X influences Z through causal paths where every

(a) Causal graph of
ASR transcription.
X causally influ-
ences to Z through
directed path.

(b) Causal graph
of SNI training
data collection.
X and Z are
non-causally
related through
backdoor path.

(c) Causal graph
of ISNI adopting
do-calculus. Path
between Z and
X are cut-off

Figure 2: The causal graph between ASR transcription
(a), SNI training data generation (b), and ISNI (c)

edge in the path is directed toward Z, where Z acts
as a mediator between X and Z.

In SNI, the X and T transcribed by ASRi are
filtered based on Z since they do not exhibit the
error patterns required for training. However, such
filtering induces a backdoor path and a non-causal
relation in SNI. To further elucidate the causal re-
lations in SNI training data generation depicted in
Fig. 2b, we outline the causal influences as follows:

• X → T : There is a direct causal relationship
where the clean text X influences the tran-
scribed text T .

• Z → T : If zk ∈ Z is 1 (an error occurs), it di-
rectly affects the corresponding transcription
tki , causing it to deviate from the clean text
xk.

• Z → X: In the SNI training data collection
process, Z determines if X is included. This
means that only when the ASR system makes
a mistake, indicated by any value zk ∈ Z
being 1, the corresponding text is included
in the training data. So, errors by the ASR
system decide which clean texts are chosen.

The backdoor path X ← Z → T , while ensuring
that only instances where ASRi made errors are
included, introduces bias in previous SNI models
based on conventional likelihood, defined as:

P (tki |xk) =
∑

zk

P (tki |xk, zk)P (zk|xk). (1)

In contrast to ASR transcription where zk is a con-
sequence of xk and the mediator between xk and
tk, zk conversely influences xk and acts as a con-
founder. Thus, the influence of xk to tk is drawn
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Figure 3: Overview of ISNI. ISNI generates ASR noise
word tk for the clean text xk whose corresponding zk

is 1. The error type of tk is determined by the generated
output.

from zk, not from xk, thereby distorting the causal
effect from X to T . Such distortion skews the prior
probability P (zk|xk) so that texts frequently in-
correctly transcribed by ASRi are also noised by
SNI.

3.3 do-calculus for ISNI
To mitigate biases in SNI toward the ASRi, we
propose interventional SNI (ISNI) where the non-
causal relations are cut off by adopting do-calculus.
Adopting do-calculus for conventional likelihood
in Eq. 1, ISNI can be formulated as follows:

P (tk|do(xk)) =
∑

zk

P (tk|xk, zk) · P (zk). (2)

Compared to Eq.1, the prior probability P (zk|xk)
is replaced with P (zk). This difference implies
that the non-causal path Z → X is cut off, as
the influence of xk on tk is not drawn from zk

in Eq. 2 as prior probability P (zk) is estimated
independently from the non-causal path Z → X .
Thus, the influence of xk to tk is induced solely
from xk. We provide more detailed proof of Eq. 2
in Appendix 7.2.

3.4 Overview of Our Proposed Approach
In this section, we briefly overview how ISNI is
implemented to generate ASR∗-plausible noises
of different error types, as illustrated in Fig. 3. To
achieve this, ISNI implements two distinct terms
in Eq. 2: P (zk) and P (tk|xk, zk).

For debiased noise generation P (zk), it is essen-
tial to cut off the influence of xk on zk so that zk

becomes independent of xk. ISNI explicitly con-
trols zk and removes the dependence on xk by im-
plementing SNI with constrained decoding, follow-
ing Yang et al. (2022). Specifically, by utilizing
do-calculus? to determine z, ISNI introduces cor-
ruption in tokens that ASRi transcribes correctly
but ASRj may mistranscribe, thereby adding these
as noise in the pseudo transcripts. For example, the

token x with z = 1, such as ‘cue’ in Fig. 3, is fed to
the constrained decoder. The constrained decoder
then generates the noise word t to replace x.

The noise word t can be categorized as three con-
ventional ASR error types: substitution, insertion,
and deletion (Jurafsky and Martin, 2019), which
is determined by the generation output of ISNI.
Substitution errors occur when the generated out-
put is a new token that replaces x. Insertion errors
occur when the constrained decoder outputs mul-
tiple tokens for x. For example, in Fig. 3, the con-
strained decoder outputs two ‘the’ words for x2,
which means the insertion of the newly generated
‘the’ beside the given word ‘the’. Deletion errors
occur when the constrained decoder outputs only
the eos token, representing the end of generation.
If the generation ends without any tokens, as in t5,
the empty string replaces x5. ISNI generates these
error types synthetically, as demonstrated in the
quantitative study in Appendix 7.6 and the gener-
ated examples in Appendix 7.7.

For ASR∗-plausible generation P (tk|xk, z), we
provide the phonetic information of x, such as
‘kju’ in Fig. 3, to ISNI to understand how x is
pronounced. The constrained decoder evaluates
the generation probability based on phonetic sim-
ilarity, recognizing that ‘c’ is pronounced as the
phoneme ‘k’. Consequently, ISNI generates the
ASR∗-plausible noise word ‘queue’ which is pho-
netically similar to ‘cue’.

3.5 Interventional SNI for Debiasing
To mitigate bias from dependence on ASRi, we
propose an intervention on the non-causal effect
X ← Z. This approach diversifies the noise words
in the pseudo transcripts, including those rarely
corrupted by ASRi. By applying do-calculus as
shown in Eq. 2, we derive a following equation for
SNI:

P (tk|do(xk)) =
∑

z

P (tk|xk, z) · P (z). (3)

This intervention ensures that the corruption of
words xk in the pseudo transcripts does not depend
on any particular ASR system. Consequently, it
allows for the corruption of words that are typically
less susceptible to errors under ASRi.

For each word xk, the prior probability P (z) in
Eq. 3 represents the probability that any given word
xk will be corrupted. To simulate P (z), we assume
that the average error rates of any ASR system,
ASR∗ would be equal for all words and sample a

20645



random variable ak for each word xk from a con-
tinuous uniform distribution over the interval [0, 1].
If ak ≤ P (z), we set z to 1, indicating an incorrect
transcription of xk and generating its noise word
tk. Otherwise, z is set to 0, and tk remains identical
to xk, mimicking an accurate transcription. We set
the prior probability P (z) as a constant hyperpa-
rameter for pseudo transcript generation.

To generate a noise word tk whose corruption
variable zk is determined independently of any
biases, we adopt a constrained generation tech-
nique that outputs tk to input xk (Yang et al.,
2022). To implement constrained generation, we
use BERT (Devlin et al., 2019) for encoding the
written GT X into the vector representation E as
follows:

Eencoder = BERT(Mword(X) +Mpos(X)), (4)

where ekencoder ∈ Eencoder is the encoder represen-
tation of the token xk ∈ X and Mword and Mpos

denote word and position embeddings.
The transformer decoder (Vaswani et al., 2017)

generates tk constrained on xk. To encompass all
ASR error types, the transformer decoder gener-
ates multiple tokens (see Section 3.4), denoted as
m tokens, {t̃kl }ml=1. These tokens replace xk in the
pseudo transcripts. The error type of tk is contin-
gent on m:

• m = 1 corresponds to deletion, generating
only eos is generated; xk is substituted by the
empty string.

• If m = 2, one token in addition to eos is
generated; this token substitutes xk.

• When m > 2, additional token will be in-
serted to xk, to simulate insertion errors.

To generate t̃kl , the input of the decoder com-
prises the encoder representation of the written
word ekencoder and the special embedding vector
bos (beginning of sequence) and the tokens gener-
ated so far, {t̃k0, ..., t̃kl−1} as follows:

Ek
decoder = Hdecoder · [ekencoder; bos, t̃k0, ..., t̃kl−1],

(5)
where Hdecoder is the weight matrix of the hidden
layer in the decoder. The transformer decoder then
computes the hidden representation dk by process-
ing the input through its layers as follows:

dk = TransformerDecoder(Q,K, V ), (6)

Q = Ek
decoder,K, V = Eencoder, (7)

where Ek
decoder serves as query Q, and Eencoder is

used for both key K and value V in the transformer
decoder. Finally, the probability of generating each
token t̃kl is calculated using a softmax function ap-
plied to the product of the word embedding matrix
Mword and the hidden representation dk added to
the trained bias bn:

Pn(t̃
k
l |xk, t̃k0 , ..., t̃

k
l−1) = softmax(Mword ·dk + bn), (8)

where bn are trained parameters. Here, we note that
ISNI generates different error types depending on
the output as we explained in Sec. 3.4.

We used the ASR transcription T to train ISNI
model. ISNI is supervised to maximize the log-
likelihood of the l-th token t̂kl from the ASR tran-
scription as follows:

Ln = −
∑

log(Pn(t̂
k
l |xk, t̂k0, ..., t̂kl−1)). (9)

3.6 Phoneme-aware Generation for
Generalizability

The next step is to ensure the noise word generation
P (tk|xk, z) ASR∗-plausible. We adjust the gener-
ation probability Pn with the phoneme-based gen-
eration probability Pph so that the ASR∗-plausible
noise words can be generated as followed:

Pgen(t̃
k
l |xk, t̃k0, ..., t̃kl−1) = Pn(t̃

k
l |xk, t̃k0, ..., t̃kl−1)

· Pph(t̃
k
l |xk, t̃k0, ..., t̃kl−1). (10)

Our first proposal for Pph is to provide the pho-
netic characteristics of each token via phoneme em-
bedding Mph. Mph assigns identical embeddings to
tokens sharing phonetic codes, thereby delivering
how each word is pronounced. Phoneme embed-
ding Mph is incorporated into the input alongside
word and position embeddings as follows:

Eencoder = BERT (λw ·Mword(X)

+ (1− λw) ·Mph(X) +Mpos(X)), (11)

where λw is a hyperparameter that balances the
influence of word embeddings and phoneme em-
beddings. The input for the decoder is formulated
similarly to Eq. 5.

Fed both the word and phoneme embedding, the
decoder then can understand the phonetic informa-
tion of both the encoder and decoder input. Aggre-
gating such information, the decoder would yield
the hidden representation dk as in Eq. 7. Then, we
feed the hidden representation dk to classification
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head to evaluate the phoneme based generation
probability Pph as follows:

Pph(t̃
k
l |xk, t̃k0, ..., t̃kl−1) = softmax(Mph·dk+bph),

(12)
where classification head has the phoneme embed-
ding matrix same as in Eq. 11 and bias bph. Using
the phoneme embedding Mph instead of the word
embedding Mword in Eq. 8, Pph(t̂

k|xk) can be eval-
uated based on the phonetic information.

Our second proposal for Pph is phonetic similar-
ity loss Lph supervising the phonetic information
using phonetic similarity. This approach aims to
generate ASR∗-plausible noise words by assess-
ing the phonetic resemblance of each token to xk.
Pph should evaluate how phonetically similar each
token is to the xk. Phonetic similarity is advanta-
geous as it quantifies the differences in phonetic
codes, thereby allowing for objective supervision of
Pph(t̂

k|xk). We utilize the phoneme edit distance
D, as outlined in Ahmed et al. (2022), to calcu-
late phonetic similarity. The phoneme edit distance
D(wp, wq) measures the minimum edit distance be-
tween the phonetic codes of two words, reflecting
how closely one word is pronounced to another. No-
tably, D(wp, wq) leverages articulatory features to
compute similarity, which incrementally increases
as the phonetic resemblance between the word pair
enhances.

Phonetic similarity, S, is defined as follows:

S(wp, wq) = max(|Cp| − D(wp, wq), 0), (13)

where |Cp| is the length of the phonetic code of the
word wp. This formulation ensures that S(wp, wq)
attains higher values when wp and wq are phoneti-
cally similar, and approaches zero when there is no
phonetic resemblance.

To supervise Pph, phonetic similarity should be
formulated as a probability distribution. For such
purpose, we normalize phonetic similarity and com-
pute the supervision R(t̂k) as follows:

R(t̂k) =
S(tk, w)∑

w′∈W S(tk, w′)
. (14)

Then, Pph is supervised by loss defined as follows:

Lph = KL(Pph(t̃
k
l |xk, t̃k0, ..., t̃kl−1)|R(t̂k)), (15)

where KL is the KL divergence loss. Finally, ISNI
is optimized to jointly minimize the total loss Ltot
which is defined as follows:

Ltot = Ln + λph · Lph, (16)

where λph is the weight of Lph. Supervised to
evaluate the generation probability based on the
phoneme information, the phoneme generation
probability Pph ensures the ASR∗-plausible noise
words and Mph contains phonetic information.

4 Experiments

In this section, we delineate our experimental setup,
datasets, and baseline, for SNI and SLU. Our ex-
periments, conducted in an ASR zero-shot setting,
train SNI models on one ASR system (ASRi) and
test SLU models on another (ASRj), to evaluate
generalizability across different ASR systems.

4.1 Dataset

SNI Training For SNI training, we selected
datasets consistent with our primary baseline,
Noisy-Gen (Cui et al., 2021), utilizing three pop-
ular corpora: Common Voice, Tatoeba audio, and
LJSpeech-1.1, with the MSLT corpus serving as
the validation set. Audio recordings from these
sources were processed using DeepSpeech to col-
lect transcriptions that exhibit ASR errors. This
approach yielded approximately 930,000 pairs of
ground-truth and ASR-noised transcriptions.

SLU Training To demonstrate ASR generaliz-
ability across diverse SLU tasks, we utilize two
benchmarks: ASR GLUE and DSTC10 Track 2.
ASR GLUE, an adaptation of the widely recog-
nized NLU benchmark GLUE, includes two natu-
ral language inference tasks, QNLI and RTE, and
one sentiment classification task, SST2. To sim-
ulate real-world background noises, ASR GLUE
benchmark randomly injected background noise
audios into speech. Noises are injected in 4 lev-
els, high, medium, low, and clean. Randomly
injected noises introduce ASR errors across a
broader range of phonemes. DSTC10 Track 2, tai-
lored for spoken language dialogue systems, com-
prises three subtasks: Knowledge-seeking Turn De-
tection (KTD), Knowledge Selection (KS), and
Knowledge-grounded Response Generation (RG).
Details of the datasets for SNI training and SLU
testing are available in Appendix 7.4.

4.2 Baselines

In our study, we utilized diverse SNI models,
including the GPT2-based auto-regressive SNI
model, NoisyGen, as our primary baseline, given
its proven efficacy in various spoken language
tasks (Cui et al., 2021; Feng et al., 2022). For the

20647



ASR GLUE benchmark, we also included Noisy-
Gen (In Domain) (Feng et al., 2022), another GPT2-
based SNI model that, unlike our standard ap-
proach, uses the same ASR system for both training
and testing, thereby not adhering to the ASR zero-
shot setting. Also, PLMs trained only with written
GT are used to show the necessity of exposure to
ASR noises. Demonstrating that SNI models can
match or surpass NoisyGen (In Domain) will con-
firm their ASR generalizability.

Additionally, for the DSTC10 Track 2, we incor-
porated the state-of-the-art TOD-DA (Tian et al.,
2021) as a baseline, selected for its inclusion of
both TTS-ASR pipeline and textual perturbation
techniques, which are absent in NoisyGen. We se-
lected TOD-DA because it covers two distinct cat-
egories of SNI which were not covered by Noisy-
Gen: TTS-ASR pipeline and textual perturbation.

4.3 ASR system for SNI training and SLU
testing

We provide the ASR systems used for SNI training
and SLU testing in Table 1.

SNI Training We chose the open-source Mozilla
DeepSpeech ASR system (Hannun et al., 2014)
primarily because it aligns with the use of com-
mercial ASR systems in previous SLU studies, in-
cluding our main baseline, NoisyGen1. We specif-
ically selected DeepSpeech because, as an open-
source system, it provides transparency and flexi-
bility while demonstrating a word error rate com-
parable to other closed commercial ASR systems.
Moreover, our decision to use DeepSpeech reflects
a practical scenario where SNI models trained on
one ASR system need to demonstrate robustness
and adaptability when applied to newer or different
ASR systems, such as LF-MMI TDNN for Noisy-
Gen (In Domain) (Feng et al., 2022) and Wave2Vec
for TOD-DA (Yuan et al., 2017).

ASR DeepSpeech LF-MMI TDNN Wave2vec Unknown

SNI
ISNI, NoisyGen TOD-DA -

NoisyGen (In Domain)

SLU - ASR GLUE -
DSTC10
Track2

Table 1: ASR systems for SNI training and SLU testing.

SLU Testing To evaluate the generalizability of
SNI across various ASR systems, we employed
distinct ASR systems for SLU testing in the ASR

1For a detailed comparison of commercial ASR systems,
see Appendix 7.3.

GLUE and DSTC10 Track 2 benchmarks. As de-
tailed in Table 1, the ASR GLUE test set was tran-
scribed using an LF-MMI TDNN-based ASR sys-
tem, while an unknown ASR system was used for
the DSTC10 Track 2 validation and test sets.

4.4 Experimental Settings
SNI Training For ISNI implementation, we uti-
lized BERT-base (Devlin et al., 2019) as an encoder
and a single Transformer decoder layer (Vaswani
et al., 2017), aligning with established methodolo-
gies (Yang et al., 2022). The balance between word
and phoneme embeddings was set with λw at 0.5
in Eq. 11, and the phoneme generation loss weight
λph was also adjusted to 0.5 (Eq. 16). We provide
further details in Appendix 7.5.

SLU Training Utilizing the trained ISNI, we con-
vert the written GTs into pseudo transcripts. Dur-
ing the generation of pseudo transcripts, we set
the prior probability P (z) for ASR GLUE at 0.15
and for DSTC10 Track2, at 0.21, based on vali-
dation set result of downstream SLU tasks2. To
ensure a fair comparison, we set phonetic similar-
ity thresholds in our baseline, NoisyGen, for filter-
ing out dissimilar pseudo transcripts, based on the
validation set result of downstream SLU tasks. In
terms of downstream task models, we implemented
BERT-base for ASR GLUE and GPT2-small for
DSTC10 Track 2, consistent with baseline configu-
rations (Kim et al., 2021; Feng et al., 2022).

5 Results

We now present our experimental results, address-
ing the following research questions:
RQ1: Is the ASR zero-shot setting valid and how
effective are ISNI in the ASR zero-shot setting?
RQ2: Can ISNI robustify the various SLU tasks in
the ASR zero-shot setting?
RQ3: Does each of methods contribute to robusti-
fication?

5.1 RQ1: Validity of ASR Zero-shot Setting
and Effectiveness of ISNI.

To demonstrate the ASR generalizability of SNI
models, we compare them with NoisyGen (In Do-
main) on ASR GLUE in Table 2. Unlike Noisy-Gen
and our models tested in an ASR zero-shot setting,

2Directly matching P (z) to the word error rate (WER) of
the ASR system is not feasible in an ASR zero-shot setting
where WER for unknown ASR systems is not available. Addi-
tionally, training with arbitrary word error rates might bias the
SLU model towards certain ASR systems.
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Task QNLI RTE SST2
Noise Level High Medium Low Clean High Medium Low Clean High Medium Low Clean
Written GT 70.22 73.00 81.45 90.00 45.84 48.82 60.71 78.57 79.11 80.19 81.41 93.51
NoisyGen 71.00 73.34 79.73 86.00 46.43 50.00 58.33 60.71 80.85 87.34 81.84 92.86
ISNI (Ours) 76.89 77.89 82.56 86.00 56.55 58.93 60.12 60.71 82.36 88.12 85.17 91.56
Noisy-Gen (In Domain) 74.00 77.39 83.44 88.67 53.57 58.93 59.52 60.71 83.98 88.75 84.20 92.86

Table 2: Accuracy on QNLI and RTE, SST2 of ASR GLUE benchmark.

Task KTD KS RG
Metric P R F1 MRR@5 R@1 R@5 B@1 B@2 B@3 B@4 M RG@1 RG@2 RGL
TOD-DA 88.58 89.75 89.16 67.29 60.51 76.75 8.31 4.74 2.33 0.92 13.02 16.45 6.49 15.13
NoisyGen 89.42 90.34 89.88 65.80 57.10 76.62 9.88 5.42 2.47 0.97 13.62 17.19 6.42 15.77
ISNI (Ours) 88.19 92.97 90.52 72.61 66.43 81.11 15.32 9.79 5.10 2.36 20.18 24.42 10.65 22.64
- phoneme-aware generation 88.29 90.48 89.37 71.12 64.49 79.68 14.61 9.22 4.59 2.36 18.84 22.55 9.66 21.33

-intervention 88.62 91.22 89.90 69.82 63.2 78.79 13.77 8.66 4.17 1.99 18.66 22.23 9.36 20.89

Table 3: Results of DSTC10 Track2. Precision (P) and Recall (R), F1 is used to evaluate KTD. Mean Reciprocal
Rank at 5 (MRR@5) and Recall at 1, 5 (R@1,5) are used to evaluate KS. To evaluate RG, Bleu at 1,2,3,4 (B@1,2,3,4)
and Meteor (M) and Rouge at 1,2,L (RG@1,2,L) are used.

NoisyGen (In Domain) was trained and tested using
the identical ASR system, which is incompatible
with the ASR zero-shot setting.

Our findings indicate that auto-regressive SNI
lacks generalizability for diverse ASR systems. If
different ASR systems have similar error distri-
butions, existing auto-regressive generation SNIs
would generalize in an ASR zero-shot setting. How-
ever, NoisyGen is consistently outperformed by
NoisyGen (In Domain) in every task. This result
validates the ASR zero-shot setting where exist-
ing auto-regressive generation-based SNI models
struggle to generalize in the other ASR systems.

Results of ISNI suggest that ISNI can robustify
SLU model in the ASR zero-shot setting. ISNI sur-
passed NoisyGen in every task in every noise level
even NoisyGen (In Domain) in high and medium
noise levels for QNLI and in low noise levels for
SST2. Such results might be attributed to the diver-
sified ASR errors in the ASR GLUE benchmark,
which ISNI is specifically designed to target.

ISNI demonstrated robust performance across
varying noise levels compared to baselines, main-
taining its efficacy as noise levels escalated. This re-
sult highlights that ISNI can better robustify against
phoneme confusions, which increase under noisy
conditions (Wu et al., 2022; Petkov et al., 2013).

5.2 RQ2: Robustification of ISNI on Various
SLU Tasks.

We demonstrate that ISNI significantly enhances
robustness across various SLU tasks in an ASR
zero-shot setting, particularly in KS, where lexi-
cal perturbation heavily influences retrieval (Penha
et al., 2022; Chen et al., 2022).

Results from the DSTC10 Track 2 dataset, in Ta-
ble 3, reveal that while baseline models struggle in
the ASR zero-shot setting, showing R@1 score be-
low 60, ISNI consistently outperforms these mod-
els across all metrics. This superior performance,
especially notable in KS, validates ISNI’s effective-
ness against errors from unknown ASR systems,
unlike previous models that require identical ASR
systems for both training and testing (Feng et al.,
2022; Cui et al., 2021).

Additionally, the robustification of ISNI extends
beyond KS. ISNI excels across all evaluated tasks,
markedly improving the BLEU score by 2-3 times
for Response Generation (RG). These findings af-
firm ISNI’s capacity to substantially mitigate the
impact of ASR errors across diverse SLU tasks.

5.3 RQ3: Importance of Each Proposed
Method to the Robustification.

Noise Level High Medium Low Clean
NoisyGen 46.43 50.00 58.33 60.71
NoisyGen (In Domain) 53.57 58.93 59.52 60.71
ISNI (Ours) 56.55 58.93 60.12 60.71
- phoneme aware generation 53.57 55.35 60.12 61.31

- intervention 52.38 54.17 60.12 60.43
-phoneme similarity loss 51.19 51.78 58.93 60.72

Table 4: Ablation study on RTE of ASR GLUE bench-
mark.

To evaluate the contribution of each component
in ISNI, we performed ablation studies on both the
DSTC10 Track2 dataset in Table 3 and the RTE
task of the ASR GLUE benchmark in Table 4.

The results without the phoneme-aware gener-
ation are presented in the fourth row of Table 3
and Table 4. Removing the phoneme-aware gen-
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eration led to a drop in performance across all
tasks in DSTC10 Track2, as well as at high and
medium noise levels in the RTE task of the ASR
GLUE benchmark. This result demonstrates how
phoneme-aware generation improves the robust-
ness of SLU models in noisy environments. By ac-
counting for word pronunciation, it ensures pseudo
transcripts are ASR-plausible.

We also conducted an ablation study on the in-
tervention by removing the do-calculus-based ran-
dom corruption. For such goal, we trained a con-
strained decoding-based SNI model without do-
calculus-based random corruption as in Eq. 3. For
the constrained decoding method in ASR correc-
tion (Yang et al., 2022), the corruption module,
which determines whether the word xk will be
corrupted, is jointly learned with the generation
decoder. Such module can be considered as imple-
menting P (z|xk) in Eq. 1.

The results, shown in the fifth row of Table 3
and Table 4, indicate a performance decrease, par-
ticularly in the KS subtask of DSTC10 Track2 and
in the RTE task, which are largely influenced by
lexical perturbations due to ASR errors. A similar
decline is observed in the RG subtask, further em-
phasizing the importance of the intervention in gen-
erating diverse and generalized ASR errors. How-
ever, we noticed a slight performance increase in
the KTD task. We hypothesize that this improve-
ment may be attributed to the nature of text clas-
sification tasks, where robustness against minor
lexical changes may not be as critical. Despite this,
previous research suggests that abundant noise in
the training set can degrade text classification per-
formance over time (Agarwal et al., 2007), which
ISNI is designed to mitigate.

Finally, we performed an ablation study on the
phonetic similarity loss by training ISNI without
phonetic similarity loss, relying solely on phoneme
embeddings. The results, presented in the last row
of Table 4, show a further reduction in performance
across most noise levels. By supervising the pho-
netic information, phonetic similarity loss ensures
that the generated noise words remain phonetically
realistic, which is essential for improving model
robustness in noisy conditions.

6 Conclusion

In this paper, we address the challenge of ASR gen-
eralizability within the context of SNI. We focus on
enhancing the robustness of SLU models against

ASR errors from diverse ASR systems. Our con-
tributions are two-fold: Firstly, ISNI significantly
broadens the spectrum of plausible ASR errors,
thereby reducing biases. Second, not to lose the
generality to any ASR, we generate noises that are
universally plausible, or ASR∗-plausible, which
is empirically validated through extensive experi-
ments across multiple ASR systems.

Limitations. One limitation of ISNI is reducing
the chance of making substitution errors for en-
tire sequences of 2-3 words. As in previous works
in SNI, ISNI consumes one token at a time when
producing outputs. While such consumption does
not restrict to make substitution errors for entire
sequences, it may reduce the chance of making sub-
stitution errors for such long sequences, as ISNI
decides to corrupt one token at a time. Secondly,
as ISNI is trained with speech corpora collected
for academic purposes, they may face challenges
when adopted for real-world applications, includ-
ing diverse spoken language variations such as di-
alects and accents. These variations can introduce
noises that are not phonetically similar, which are
different from the speech data used during ISNI
training. This discrepancy may cause ISNI to fail
in robustifying SLU models as ISNI is not prepared
to handle ASR errors from those speech variations.
Addressing this limitation may require enlarging
the training dataset for ISNI to cover the diverse
noises from spoken language variations.
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7 Appendix

7.1 Related Works

Previously proposed methods can be categorized
into three categories. First, TTS (Text-to-Speech)-
ASR pipeline (Liu et al., 2021; Chen et al., 2017)
adopts the TTS engine, the reverse of ASR, to
convert written text into audio. The ASRi tran-
scribes it into pseudo transcription. However, the
human recording and TTS-generated audio differ
in their error distributions, which makes the re-
sulting pseudo transcriptions different from ASR
transcriptions (Feng et al., 2022).

Second is textual perturbation, replacing the
words xk ∈ X to the noise word tki as follows:

tki = argmaxw∈W Si(w|xk), (17)

where Si(w|xk) evaluates the score that ASRi

would corrupt the written word xk into each word
w ∈ W in the vocabulary set W . A widely
adopted type of Si(w|xk) is a confusion matrix
built from the paired written and ASR transcribed
corpora (Jyothi and Fosler-Lussier, 2010; Yu et al.,
2016) or phonetic similarity function (Li and Spe-
cia, 2019; Tsvetkov et al., 2014).

A representative of the above two categories is
TOD-DA which embodies both categories.

Third is the auto-regressive generation, where
auto-regressive PLMs such as GPT-2 or BART are
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supervised to maximize the likelihood of the ASR
transcription Ti given its written text X . Adopting
PLMs, the auto-regressive generation can consider
contextual information and generate more ASRi-
plausible noise words (Cui et al., 2021).

Auto-regressive generation is biased to ASRi,
limiting the SLU model used for ASRi.

Our distinction is generalizing SNI so that the
SLU tasks can be conducted with ASR∗.

7.2 Proof of Eq. 2

Using the do operator to the conventional likeli-
hood, P (Y |do(X)) is transformed as follows:

P (Y |do(X)) =
∑

z

P (Y, z|do(X)) (18)

=
∑

z

P (Y |do(X), z) · P (z|do(X))

(19)

=
∑

z

P (Y |X, z) · P (z|do(X))

(20)

Then, further transition is conducted by applying
Rule 3 of do-calculus. Rule 3 states that we can
remove the do-operator if X and Z are independent
in GX̄ , a modified version of the causal graph of
SNI where all arrows incoming to X are removed.
In GX̄ , where there are two paths, X → Y and
Z → Y , X , and Z are independent, X ⊥ Z, as
there is no valid path between X and Z. Removing
the do-operator, Eq. 20 is evaluated as follows:

P (Y |do(X)) =
∑

z

P (Y |X, z) · P (z). (21)

7.3 ASR systems for SNI and Downstream
Tasks.

For training the SNI model, we used the open-
source commercial ASR system, Mozilla Deep-
Speech. Mozilla DeepSpeech, which we adopted
for SNI model training, is an RNN-based end-
to-end ASR system trained on a 1700-hour au-
dio dataset. DeepSpeech shows similar word er-
ror rates to famous commercial ASR systems
such as Google Translate’s speech-to-text API and
IBM Watson Speech-to-text, in various benchmark
datasets such as Librispeech clean test and Com-
monvoice as the table below shows. This similarity
in performance makes it a relevant and practical
choice for our study, providing a realistic and chal-
lenging testbed for our methods.

ASR DeepSpeech Google Translate IBM Watson
Librispeech Clean 0.07 0.11 0.11
CommonVoice 0.32 0.32 0.39

Table 5: WER of commercial ASR systems.

Specifically, for the DSTC Track2 dataset, an
unknown ASR system is used to generate tran-
scriptions (Kim et al., 2021). For the ASR GLUE
benchmark, the LF-MMI TDNN ASR system is
adopted to generate transcriptions (Feng et al.,
2022). ASR GLUE benchmark adopts an LF-MMI
time-delayed neural network-based ASR syetem
trained on a 6000-hour dataset.

7.4 Dataset Details

SNI Training For training SNI, we used the same
datasets with our main baseline, Noisy-Gen (Cui
et al., 2021), which used popular speech corpora,
Common Voice, tatoeba audio, and LJSpeech-1.1
and MSLT, to collect ASR error transcriptions.
Specifically, the audio recordings of the above cor-
pora are fed to the DeepSpeech and get ASR tran-
scriptions. Then, we compare ASR transcription
with ground-truth transcription, ignoring punctua-
tion and casing errors, so that only erroneous tran-
scriptions would remain. Finally, we obtain about
930k pairs of ground-truth transcription and the
ASR-noised transcription pair. Among the resulting
pairs, those from Common Voice, Tatoeba audio,
and LJSpeech-1.1 are used for the training set and
the others from MSLT are used for the validation
set.

SLU Testing To show the ASR generalizability
of the SNI models, we adopt two distinct SLU
benchmarks, ASR GLUE and DSTC10 Track 2.
DSTC10 Track2 dataset models task-oriented di-
alogue systems with unstructured knowledge ac-
cess in a spoken language. We adopt the DSTC10
Track2 dataset as it covers various tasks in NLP
in the dialogue domain where SLU is required fre-
quently. Specifically, it consists of three successive
subtasks covering various SLU tasks: Knowledge-
seeking Turn Detection (KTD), Knowledge Se-
lection (KS), and Knowledge-grounded Response
Generation (RG). First, KTD aims to determine
whether the dialogue turn requires external knowl-
edge access or not as a classification. Once deter-
mined to require external knowledge, the second
step is KS, which aims to retrieve the appropriate
knowledge snippet by estimating the relevance be-
tween the given dialogue context and each knowl-
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edge snippet in the knowledge base. Finally, the
response is generated in RG, based on the dialogue
context and the selected knowledge snippet.

In the DSTC10 Track2 dataset, human responses
are transcribed by an unknown ASR system.

Another benchmark, ASR GLUE is an SLU
version of the widely adopted NLU benchmark,
GLUE. It provides the written GTs for the training
set and the transcriptions of 3 noise levels spoken
by 5 human speakers for the development set and
test set. As the ground-truth label for the test set
is unavailable, we report the results on the devel-
opment set and sample the validation set from the
pseudo transcripts generated from the training set.
Among various subtasks, we provide the results of
two NLI tasks, QNLI and RTE, and 1 sentiment
classification task, SST, which the DSTC10 Track2
dataset does not contain.

7.5 Details of ISNI model
We used Transformer decoder (Vaswani et al.,
2017) with 1 layer which has 12 attention heads
and 768 hidden layer dimensions. We trained ISNI
for 20 epochs with Adam optimizer with a learning
rate of 0.00005. Also, we set λw and λphoneme as
0.5 to balance the semantic and phonetic informa-
tion.

7.6 Quantitative study on the generated
pseudo-transcripts.

In this section, we quantitatively study the char-
acteristics of the pseudo-transcripts generated by
our ISNI. For this study, We generated pseudo tran-
scripts in MSLT, our development set for SNI train-
ing. We set P (z) = 0.45 for pseudo transcripts
generation, which is similar to the word error rate
of ASR transcription as we will show in Table 7.
We analyze the following characteristics:
i) How phonetically similar are our generated
pseudo transcripts?
ii) The word error rate.
iii) Which error types composes the noise in the
generated pseudo transcripts?

First, we show that PLMs are insufficient to
generate the ASR∗-plausible pseudo transcriptions.
The noise words would be ASR∗-plausible if it is
phonetically similar to its written form as an ASR
system would incorrectly transcribe into phoneti-
cally similar noise words. Therefore, we compared
the phoneme edit distance D(wp, wq) between the
written GT and the pseudo transcriptions. For a fair
comparison, we set all tokens to have identical z

for the noise word generation to ensure that the
identical words are corrupted.

Model PD (↓)
Ours 62.02
- phoneme-aware generation 72.52

Table 6: Phoneme edit distance between generated
pseudo transcriptions and written GTs (Lower is better).

Table 6 shows that the pseudo transcriptions
without phoneme-aware generation show 17%
larger phonetic distance. This result shows that
PLMs are not enough to generate the ASR∗-
plausible pseudo transcriptions and ignorance of
phonetic information is the obstacle to generating
ASR∗-plausible pseudo transcriptions.

Then, we study the word error rate of the gener-
ated pseudo transcripts. The results in Table 7 show

Model WER
DeepSpeech 0.46
Ours 0.66
Noisy-Gen 0.76

Table 7: Word error rate of the DeepSpeech transcrip-
tions and the pseudo transcriptions generated by ours
and Noisy-Gen.

that pseudo transcripts generated by our ISNI con-
tain more errors than P(z). However, compared to
the baselines, the word error rate generated by our
methods is more controlled, as we control whether
to corrupt the word by P(z).

Then, we break down word error rate results by
error types of insertion/deletion/substitutions. Ta-

error type insertion deletion substituion
DeepSpeech 0.20 0.29 0.51
Ours 0.25 0.16 0.59

Table 8: Error type of the DeepSpeech transcriptions
and pseudo transcripts generated by our ISNI.

ble 8 shows that three error types take up similarly
in DeepSpeech transcription and pseudo transcrip-
tions by our ISNI. This result shows that our ISNI
can well handle three error types.

7.7 Generated Pseudo Transcripts Examples

We provide the examples of the generated pseudo
transcripts in Table 9 and 10. Among the tokenized
input, z of ##ial was set to 1, thus the constrained
decoder generates its noise word. The constrained
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input as bestial
tokenized input as best ##ial
z 0 0 1
generated output - - at ##ial <eos>
pseudo transcript as best atial

Table 9: Examples of pseudo transcripts generated by
our ISNI.

decoder made 1 substitution error (bestial→ best)
and 1 insertion error (atail).

input only labored the gags
tokenized input only larbor ##ed the gag ##s
z 0 0 1 1 0 1
generated output - - ##ed labor <eos> the ##s <eos> - <eos>
pseudo transcript only labored labor thes gag

Table 10: More examples of pseudo transcripts gener-
ated by our ISNI.

7.8 Use of AI Assistants
We used ChatGPT for grammatical corrections.
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