TinyChart: Efficient Chart Understanding with Program-of-Thoughts
Learning and Visual Token Merging

Liang Zhang'*, Anwen Hu?*, Haiyang Xu?, Ming Yan?,
Yichen Xu!, Qin Jin'", Ji Zhang?, Fei Huang?,
1School of Information, Renmin University of China, 2 Alibaba Group
{zhangliang@@,qjin,xu_yichen}@ruc.edu.cn
{huanwen.haw, shuofeng.xhy,ym119608,z3j122146, f.huang}@alibaba-inc.com

Abstract

Charts are important for presenting and ex-
plaining complex data relationships. Recently,
multimodal large language models (MLLMs)
have shown remarkable capabilities in chart un-
derstanding. However, the sheer size of these
models limits their use in resource-constrained
environments. In this paper, we present Tiny-
Chart, an efficient MLLM for chart understand-
ing with only 3B parameters. TinyChart over-
comes two key challenges in efficient chart un-
derstanding: (1) reduce the burden of learn-
ing numerical computations through Program-
of-Thoughts (PoT) learning, which trains the
model to generate Python programs for nu-
merical calculations, and (2) reduce lengthy
vision feature sequences through Vision Token
Merging, which gradually merges most similar
vision tokens. Extensive experiments demon-
strate that our 3B TinyChart achieves SOTA
performance on various chart understanding
benchmarks including ChartQA, Chart-to-Text,
Chart-to-Table, OpenCQA, and ChartX. It out-
performs several chart-understanding MLLMs
with up to 13B parameters, and close-sourced
MLLM GPT-4V on ChartQA, with higher
throughput during inference due to a smaller
model scale and more efficient vision encoding.

1 Introduction

As an important information source, charts can
intuitively visualize data in various visual pre-
sentation forms and have become an indispens-
able part of information dissemination, business
decision-making, and academic research (Huang
et al., 2024a). Automatic chart understanding re-
ceived increasing attention from the research com-
munity (Han et al., 2023; Meng et al., 2024; Masry
et al., 2024; Chen et al., 2024a). Recently, Mul-
timodal Large Language Models (MLLMs) have
shown strong capability in comprehending images

* Equal contribution.
T Corresponding author.

ChartQA
8356
799
Chart-to-Text .5 o 180 ChartX-Redrawing
‘b& 23 66.64
292
094
32 O
/_16
OpenCC)AZu AL | A 6AChar'l)(—Da-:‘scripiion
138
vho
B 033
90 - /
916 ~ws |
9378 N
Chart-to-Table ChartX-Summary | |3ya1.5-138=
30,99 '
3335 Chartlnstruct-78
ChartlLlama-13B
Chaexsan ChartAst-138+
TinyChart-3B

(@)

Chartllama-138 | 194it/s

ChartAst-13B 1.47it/s

TinyChart-3B

| 3.141it/s

(b)

Figure 1: Our TinyChart-3B outperforms several 13B
MLLMs on a variety of chart understanding benchmarks
(a), while achieving larger inference throughput (b).

and following instructions (OpenAl, 2023b; Liu
et al., 2024a; Ye et al., 2024, Liu et al., 2023d; Lin
et al., 2023; Ye et al., 2023c; Zhang et al., 2023b;
Dong et al., 2024a,b). Based on MLLMs, some
recent works (Han et al., 2023; Meng et al., 2024;
Masry et al., 2024; Hu et al., 2024a) further build
chart understanding models by constructing versa-
tile chart comprehension datasets and performing
supervised fine-tuning, They achieve significant
performance increase in chart understanding bench-
marks (Masry et al., 2022; Kantharaj et al., 2022b).

Despite their success, current chart understand-
ing models still face three main limitations: (1)
Considerable amount of parameters makes training
and deployment challenging. For example, ChartL-
lama (Han et al., 2023) has 13 billion parameters,
which is hard to deploy on a single GPU with less
than 26 GB of VRAMs. (2) They are prone to
errors when tackling questions involving numer-
ical calculations (Meng et al., 2024), which are
difficult to answer directly without any reasoning

1882

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1882—1898
November 12-16, 2024 ©2024 Association for Computational Linguistics

steps. (3) They struggle with efficiently encoding
for high-resolution images since the standard vi-
sion transformer would produce lengthy feature
sequences.

To overcome such limitations in chart under-
standing, we propose an efficient and powerful
MLLM, namely TinyChart. As shown in Figure 1,
through the efficient visual encoding and Program-
of-Thoughts learning strategy, TinyChart achieves
state-of-the-art performances on various chart un-
derstanding benchmarks with only 3B parameters,
while excelling in faster inference throughput.

For efficient visual encoding, we propose to
merge visual tokens based on the observation that
chart images often contain large areas of color and
white spaces. Inspired by Bolya et al. (2023), we
adopt a parameter-free Visual Token Merging mod-
ule inside each vision transformer layer, which ag-
gregates the most similar visual tokens and grad-
ually reduces the length of the visual feature se-
quence, This enables controllable computation load
when encoding high-resolution images.

To learn chart understanding more efficiently, in-
spired by Chen et al. (2023), we propose Program-
of-Thoughts (PoT) learning that trains the model
to generate Python programs for the computa-
tion problems step by step. The programs are
then passed to a Python interpreter to produce
final answers. To support PoT learning, we fur-
ther construct the ChartQA-PoT dataset based on
ChartQA (Masry et al., 2022). The QA pairs in
ChartQA-PoT are constructed in two ways: (1)
Template-based PoT, which generates questions
and programs by filling in manually written tem-
plates with chart data. (2) GPT-based PoT, which
leverages gpt-3.5-turbo (OpenAl, 2023a) to pro-
duce programs for human-written questions. Exper-
imental results show that PoT learning can signifi-
cantly improve the question-answering, especially
numerical question-answering ability of TinyChart.
The main contributions of this work are as follows:

* We introduce TinyChart, an efficient multimodal
chart understanding model. It outperforms sev-
eral 13B MLLMs and achieves state-of-the-art
performances on various chart understanding
benchmarks, while excelling in inference speed.

* We propose a Program-of-Thoughts (PoT) learn-
ing strategy to enhance the model in learning
numerical calculation and carefully build a PoT
dataset ChartQA-PoT to support PoT learning.

* We adopt Visual Token Merging for efficient vi-
sion encoding, which significantly reduces the
length of vision feature sequences and enables
the model to encode high-resolution chart images
with constrained computing resources.

2 Related Work

Chart Understanding requires the model to com-
prehend chart contents and accomplish related
tasks such as data extraction (Liu et al., 2023a),
QA (Masry et al., 2022; Methani et al., 2020;
Kafle et al.,, 2018), summarization (Kantharaj
et al., 2022b; Obeid and Hoque, 2020), and re-
rendering (Han et al., 2023). It demands robust text
recognition capabilities and computational reason-
ing from the model (Meng et al., 2024). Early ap-
proaches (Singh et al., 2019; Methani et al., 2020;
Liu et al., 2023a; Fu et al., 2022; Zhang et al.,
2023a; Hu et al., 2021) rely on off-the-shelf OCR
tools to transform charts into textual representa-
tions such as data tables, and use language mod-
els to complete specified tasks. These approaches
suffer from error accumulation since can not be
optimized jointly.

Recent studies (Masry et al., 2023; Liu et al.,
2023b; Han et al.,, 2023; Meng et al., 2024;
Masry et al., 2024; Liu et al., 2023c) have shifted
towards end-to-end methods based on MLLMs.
They enhance MLLMs’ (Liu et al., 2024a, 2023d;
Ye et al., 2024, 2023c; Lin et al., 2023) chart
understanding abilities through supervised fine-
tuning (Ouyang et al., 2022) on chart instruction
data (Han et al., 2023; Meng et al., 2024; Masry
et al., 2024). Although these models achieves supe-
rior performance, the extensive model size prevents
them from being easily trained or deployed under
resource-constrained scenarios. In this paper, we
demonstrate that a 3B MLLM is enough to achieve
SOTA performance on chart understanding.

Meanwhile, it is observed that MLLMs are prone
to numerical errors (Masry et al., 2024; Meng et al.,
2024). To resolve this, Meng et al. (2024) construct
template-based executable command lines for nu-
merical calculations. Their usage is constrained by
the specific template and backend. In contrast, we
train the model to generate Python code, which is
more versatile. Also, we include GPT-generated
programs from human-written questions in training
data, which further improves the coverage of our
method to different questions.

1883

Multimodal Large Language Models (MLLMs)
exhibit strong capabilities in visual understanding
and instruction following (OpenAl, 2023b; Team
et al., 2023). These models are generally trained on
extensive general image-text data for cross-modal
alignment and instruction fine-tuning (Liu et al.,
2024a, 2023d; Li et al., 2024; Zhou et al., 2024;
Zhang et al., 2023b; Dong et al., 2024a; Ye et al.,
2023b; Chen et al., 2024b). Some studies (Liu
et al., 2024b; Zhang et al., 2020) demonstrate a
degree of OCR capability in these MLLMs, their
performance on document and chart understand-
ing benchmarks remains sub-optimal due to their
low input resolution (Ye et al., 2023a; Dong et al.,
2024b). Efforts in the general document domain
have attempted to improve the fine-grained under-
standing capabilities of MLLMs by increasing res-
olution (Bai et al., 2023), segmenting images (Ye
et al., 2023a; Hu et al., 2024b; Dong et al., 2024b),
utilizing frequency domain signals (Feng et al.,
2023), and introducing additional high-resolution
encoders (Hong et al., 2023). However, these mod-
els often suffer from low efficiency, primarily due
to the excessive length of the high-resolution vi-
sual sequences. The visual token merging method
adopted in this paper can effectively reduce the
length of visual sequences and reduce the compu-
tational cost of processing high-resolution input.

3 TinyChart
3.1 Model Architecture

Figure 2 shows the overview of TinyChart. It
consists of a vision transformer encoder, a vision-
language connector, and a large language model.
To encode high-resolution visual input effectively,
we insert the visual token merging module inside
each vision transformer layer.

Vision Transformer Encoder process chart im-
ages into vision features. A standard vision trans-
former (Dosovitskiy et al., 2020) first resizes the
input image [into a fixed resolution and crops the
image into patches. Then the patches are treated
as vision tokens and processed with transformer
encoder layers (Vaswani et al., 2017). Suppose the
input image V¥ is in resolution N x N, and
the patch size is P x P, the length of vision fea-
ture would be | ¥ | ’ In practice, when N is large,
the vision feature sequence can be very long and
inefficient for the language model to handle.
Visual Token Merging. Since key information

(such as OCR words) in a chart can be unrecog-
nizable in low-resolution images (Hu et al., 2024b),
high-resolution input is essential for chart under-
standing. However, charts typically contain a large
number of color blocks and blank spaces, where
patches are visually similar. To achieve efficient
chart understanding, we apply Visual Token Merg-
ing (Bolya et al., 2023) in each transformer layer.
The process of Visual Token Merging is shown in
Figure 3. By merging the r most similar token
pairs, it reduces the length of the vision feature by
r in each layer. We measure the similarity between
two tokens using the cosine distance between Keys
from self-attention following (Bolya et al., 2023).
As shown in the lower part of Figure 3, the merging
process finds the top-r similar token pairs through
bipartite graph matching. It first divides the vision
tokens into two disjoint sets. Then, for each to-
ken in one set, it finds the most similar tokens in
the other set and draws an edge between the two
tokens. After that, it only keeps the top-r most
similar edges and merges the features of the two
endpoints through average pooling. Note that non-
adjacent tokens can also be merged if they belong
to different subsets.

Proportional Attention. The visual token merging
operation aggregates tokens with a similar feature
into one. Therefore, it will reduce the proportion of
this visual feature in the attention calculation in the
following transformer layer, since the number of
this feature has decreased. To address this, we let
the attention operation consider the actual number
of patches s represented by each token as follows:

T

Attention = softmax (QK
Vd
Where), K, V denotes the query, key, and value
of self-attention which are linear projected from
the hidden states (Vaswani et al., 2017). By adding
log s inside softmax, the token that merged from
s patches are duplicated by s times in the attention
calculation (Bolya et al., 2023).
Vision Language Connector projects the vision
features into the embedding space of the large lan-
guage model. Following (Liu et al., 2023d; Zhou
et al., 2024), we implement the vision-language
connector as a MLP with one hidden layer and
GeLU (Hendrycks and Gimpel, 2016) activation.
Large Language Model comprehend both visual
features and language instructions, and then gen-
erate responses to accomplish chart understand-
ing tasks. It is implemented as a transformer de-

—l—logs) V Q)

1884

Chart-to-Table
Generate underlying data table for the chart.

Chart-to-Text
Write a summary for the chart.

Large Language
Model

Market Reach Growth by Category

Chart Redrawing

Growth in Market Reach (%)

1
! a
| [TinyChart] ! [Output]
|
|
: : Direct Answer:
1 | 0.57
: | Program-of-Thought Answer:
| — - I # Get the value of Lamb, set to Y_1
patchfyl —1 Vision Transformer I Y1=1e3.7
Y, # Get the value of Corn, set to Y_2
3 — |
I Encoder I/ Y_2=103.13
| # Subtract Y_2 from Y_1, set to Subtract
I — Subtract=np.subtract(Y_1, Y_2)
: —> . . # Set Subtract to Answer
i Visual Token Merging Answer=Subtract
@ Suksvaue @ Namberof s © Vol ofshopng ke |
: v v v v v Entity | Sales | Orders | Shopping basket
| Toys | 34% | 13% | 18%
[Instruction] ! e — Baby | 10% | 13% | -3%
|
. . : ViSion'Language In March, online sales of children’s goods have increased
Question Answering | Connector compared to February. The most significant increase in
What is the difference between Lamb and Corn? | 7 sales occurred in the category of toy for which online
h sales increased by 34 percent ...
|
|
|
|
|
T
|
|
|
|
|
|

Redraw this chart with matplotlib

= £l
| I -
ik 1
I m
o .
o

Baby.

Category

Figure 2: Overview of TinyChart.

Vision Transformer Layer x N

Visual Token Merging

|
|
71 ())) ! 2
(5 I 6&7
£ < I
2 | 8
1417 EA 5 i
4 = 5 :
= = = o
o =] 2
2 = smy 5 =) S 3| b
K §' (_% : Step 1 Step 2 Step 3 Step 4
o9
3 6 9 7 2 | Divide tokens ~ Draw one edge Only keep the most ~ Merge the tokens
? : into two sets between the most similar r edge with edges.
|| | similar tokens (=2 in this case)
9 \— — -/ : _ across two sets J
|
(a) i ®)

Figure 3: (a) Vision transformer layer with Visual Token Merging. (b) Process of the Visual Token Merging.

coder (Vaswani et al., 2017) with a causal attention
mask. The training objective of the model is lan-
guage modeling. Assuming the visual features is
V, the language instruction is L, and the response
is R, then the loss function is defined as follows:

T
1
L= > LLM(Ri|V, L, R<;))

i=1

Where T is the number of tokens in R. Note that
we only calculate loss over response parts follow-
ing (Liu et al., 2023d).

3.2 Program-of-Thoughts Learning

Program-of-Thoughts (PoT) learning aims to en-
hance the learning efficiency of models for numer-
ical computation. In PoT learning, the model is
trained to generate Python codes, whose execute
results are answers of given questions. Compared

to short answers that only contain the calculated
values, the Python code includes comments and
multi-step reasoning processes, which is easy to
produce by large language models.

ChartQA-PoT Dataset To support PoT learn-
ing on chart understanding, we construct the
ChartQA-PoT dataset based on the training split of
ChartQA (Masry et al., 2022). ChartQA-PoT con-
tains 140,584 (question, PoT answer) pairs. Each
PoT answer consists of multiple lines of Python
code. We provide natural language comments for
almost all code lines to explain their behaviors. We
employ two approaches for constructing (question,
PoT answer) pairs: Template-based PoT, and GPT-
based PoT.

Template-based PoT Based on the chart images
in ChartQA, we construct template-based (ques-
tion, PoT answer) pairs. As illustrated in the up-
per half of Figure 4, the Template-based PoT is

1885

Human-written Templates

Template Question

What is the average value of <legend-label>?
Template PoT Answer

Get the values of all <legend-label>

Fill-in <placeholders>
<legend-label>: Bad
<legend-value>: [36,45, ...]

Template-based PoT

Question

What is the average value of Bad?
PoT Answer

Get the values of all Bad

Y = <legend-values>

Calculate average, set to Avg
Avg = np.mean(Y)

Set to Answer

Answer = Avg

» Y =36, 45, 35, 41, 67, 87]

Calculate average, set to Avg
Avg = np.mean(Y)

Set to Answer

Answer = Avg

Question
Which year has the most divergent opinions
about Brazil's economy?

—> @ gpt-3.5-turbo

Year | Bad | Good
B 2000 | 36 | 62 GPT-based PoT
2011 45 54
PoT Answer
data table 2012 35 65 # Get the values of 'Good' and 'Bad' assessments for
> 2013 " 59 each year, set to Good and Bad respectively
Good=[62, 54, 65, 59, 32, 13]
2014 67 32 Bad=(36, 45, 35, 41, 67, 87]
Calculate the absolute difference between Good and
2015 87 13 Bad for each year, set to Diff
0 Diff=np.abs(np.subtract(Good, Bad))
2010 2011 2012 2013 2014 2015

Find the index that maximizes Diff, set to MaxIndex
MaxIndex=np.argmax(Diff)

Get the year corresponding to MaxIndex, set to
Answer

Answer=2010+MaxIndex

Figure 4: The demonstration of constructing Template-based PoT (upper half) and GPT-based PoT (lower half) in

the ChartQA-PoT dataset.

constructed based on human-written templates con-
taining placeholders for both questions and code.
The template questions involve common numerical
operations such as calculating the sum, average,
minimal, and maximum values. We adopt the 40
template questions proposed by PlotQA (Methani
et al., 2020) and manually write their correspond-
ing template Python code to solve them. As shown
in the top-left part of Figure 4, the template code
consists of several variable assignment operations
with NumPy (van der Walt et al., 2011) functions
to perform calculations. The beginning steps usu-
ally involve extracting the relevant data from the
chart and assigning them to variables. The final
computed result is stored in a variable named "An-
swer". For each placeholder in the template, we
identify all possible values from the data table of
the chart and randomly select one to fill in the
placeholder. We then apply rule-based strategies
to remove non-executable PoT answers and unrea-
sonable fill-ins, and finally successfully construct
119,281 (question, PoT pairs) over 17,498 images
from ChartQA.

GPT-based PoT Although the template-based
method allows for the construction of a large num-
ber of question-answer pairs, the diversity of these
pairs is limited due to the fixed templates. To im-
prove the generalization ability of PoT learning, we
have additionally built GPT-generated PoT data by
leveraging the powerful command-following and
code-generation capabilities of large language mod-

els. Specifically, we prompt gpt-3.5-turbo (Ope-
nAl, 2023a) to generate PoT answers similar to
the template PoT format for questions annotated in
ChartQA using in-context examples. As shown
in Figure 4, since gpt-3.5-turbo does not ac-
cept image input, we also provide the data ta-
ble corresponding to the chart as text input to
gpt-3.5-turbo. We screen the quality of the gen-
erated PoT answers by running them through a
Python interpreter. If the annotated PoT answer
can not run on the Python interpreter, or if the an-
swer obtained is different from the annotated one
in ChartQA, then the corresponding PoT Answer is
deleted. In the end, we construct 21,303 (question,
PoT Answer) pairs on 15,521 chart images.

3.3 Multitask Learning

We perform multitask learning to train the Tiny-
Chart model. We collect a chart understanding
dataset that contains 1.36M samples for supervised
fine-tuning. It covers various chart understanding
tasks including chart question answering, chart-to-
text generation, chart-to-table generation, and chart
instruction following. We mix data in each task to-
gether jointly for training and distinguish them with
task-specified instructions. Note that in ablation
studies, we train solely with benchmark datasets
due to limited computational resources. The bench-
mark datasets consist of basic chart understanding
evaluations including QA, summary, and chart-to-
table generation. We present the detailed composi-

1886

tion of our training data in Appendix A.3.

4 Experiment

4.1 Evaluation Benchmarks

ChartQA provides a short answer to each ques-
tion based on the chart content (Masry et al., 2022).
We report the relaxed accuracy that allows numeri-
cal error within 5% as the metric following Masry
et al. (2022); Han et al. (2023); Meng et al. (2024).
Note that TinyChart with PoT learning can perform
ChartQA in the following five settings:

1) Direct: model produces short answers directly.
2) PoT: model produces Python code and gets final
answers through a Python interpreter.

3) Combine: we let the model produce PoT an-
swers for calculative questions, and Direct answers
for others. Questions contain one of the keywords'
are considered calculative questions.

4) Auto: we train the model to automatically decide
whether to produce PoT answers or Direct answers
for each question.

5) Oracle: we let the model produce both Direct
and PoT answers for each question separately, and
always choose the correct one.

We evaluate TinyChart under the Combine setting
by default.

Chart-to-Text aims to generate a summary text
based on chart content. We evaluate the model with
the Pew dataset (Kantharaj et al., 2022b), and report
BLEU4 (Papineni et al., 2002) as the metric?.
Chart-to-Table aims to extract the underlying data
table presented by the chart. We evaluate the per-
formance of Chart-to-Table with the data table an-
notation provided by ChartQA (Masry et al., 2022)
following (Han et al., 2023; Meng et al., 2024). We
report RMS 1 (Liu et al., 2023a) as the metric.
OpenCQA Different from ChartQA, OpenCQA
evaluates the ability of models to generate free-
form answers to the chart-related questions (Kan-
tharaj et al., 2022a). We report BLEU4 as the met-
ric following (Masry et al., 2024).

ChartX is a chart comprehension benchmark that
contains more visual types (Xia et al., 2024). We
evaluate the ChartX cognition tasks since they are
more challenging. It covers Question Answering,
Chart Description, Chart Summary, and Chart Re-

'sum, mean, average, ratio, mode, divide, dividing, differ,
subtract, add, division, times, absolute, minus, exceed, below,
less, fewer, bigger, biggest, greater, higher, longer, tallest,
lowest, number, how many colors, what is the value

2We calculate BLEU4 with sacrebleu==2.4.1

drawing. We report the GPT-Acc for QA and GPT-
score for the remaining 3 tasks (Xia et al., 2024).

4.2 Main Results

Table 1 shows an extensive comparison between
TinyChart and existing models on 4 chart un-
derstanding benchmarks. Our TinyChart model
achieves state-of-the-art performance on ChartQA,
Chart-to-Text, Chart-to-Table, and OpenCQA,
while excelling in inference throughput. Specif-
ically, TinyChart@768 achieves an accuracy of
83.60% on ChartQA (Masry et al., 2022), surpass-
ing several closed-source models including GPT-
4V (OpenAl, 2023b), Gemini-Ultra (Team et al.,
2023), and Qwen-VL-Max (Bai et al., 2023). It
also outperforms the previous open-source SOTA
model ChartAst (Meng et al., 2024).

We find that previous models performed poorly
on the ChartQA-human compared to ChartQA-
Aug, with none of them achieving over 70%. This
is because the questions posed by human annota-
tors involve more computational problems (Masry
et al., 2022) and are more challenging. By leverag-
ing the PoT learning, TinyChart achieves 73.34%
on ChartQA-human, which is an improvement of
7.44% over ChartAst (Meng et al., 2024). This
demonstrates the effectiveness of the proposed
method based on the Program-of-Thoughts.

We observed that models with higher input res-
olutions generally perform better on chart under-
standing tasks. However, encoding high-resolution
charts leads to a decrease in inference speed. By
leveraging visual token merging, TinyChart can
accept higher-resolution inputs with a limited in-
crease in computing, thus achieving better perfor-
mance. Due to the smaller model size and the
efficient visual token merging, TinyChart achieves
significantly larger inference throughput compared
to previous models. It demonstrates that TinyChart
can achieve efficient chart understanding with en-
hanced performance and faster inference.
ChartQA performance in each setting. Table 2
shows the performance comparison under different
settings. Note that the performance of ChartAst un-
der the Combine setting is from Meng et al. (2024),
which leverages a combination of Direct answers
and executive JSON answers. The results indicate
that our TinyChart model could achieve SOTA per-
formance on the Direct answer. By combining with
PoT answers, TinyChart could make further im-
provements. In addition, since the combination
of Direct and PoT answers is straightforward, the

1887

Table 1: Chart understanding evaluation. Inference throughput is tested on ChartQA using a V100 32G GPU.

Model #Parameters Resolution TI;lferer}llce ChartQA Chart-to-Text Chart-to-Table OpenCQA
roughput Aye. Hum. Ave. BLEU4 RMS BLEU4
Close-source models
GPT-4V - - - - 78.50 - - -
Gemini-Ultra - - - - 80.80 - - -
Qwen-VL-Max - - - - 79.80 - - -
Deplot+Codex 1.3B+175B - - 91.00 67.60 79.30 - 87.22 -
Open-source models
Llaval.5 13B 336x336 1.94 it/s 7296 37.68 55.32 7.16 48.95 -
Qwen-VL 9.6B 448 <448 1.65 it/s 78.90 4430 61.60 - - -
UReader 7B 224x224(x20) 1.67 it/s 79.42 39.12 59.30 - - -
DocOwll.5 8B 448x448(x9) 1.56 it/s 91.38 49.62 70.50 - - -
ChartInstruct 7B - - 87.76 45.52 66.64 13.83 - 15.59
ChartLlama 13B 336x336 1.94 it/s 90.36 48.96 69.66 14.23 90.00 -
ChartAst 13B 448x448 1.47 it/s 93.90 65.90 79.90 15.50 91.60 15.50
TinyChart@512 3B 512x512 3.65 it/s 93.60 72.16 82.88 17.93 92.93 19.62
TinyChart@768 3B 768768 3.14 it/s 93.86 73.34 83.60 17.18 93.78 20.39

Table 2: ChartQA performance in different settings.

Table 4: Evaluation results on ChartX-Cognition.

Model ChartQA Settings

Direct PoT Combine Auto Oracle
ChartLlama 69.66 - - - -
ChartAst 75.10 79.90 - -
TinyChart@768 76.36 80.84 83.60 83.48 89.12

Table 3: ChartQA performance on Calculative (Cal.)
and Non-calculative (Non-cal.) questions.

Model Setting ‘ Cal. Non-cal. Total
TinyChart@768 Direct 56.64 8499 76.36
TinyChart@768 PoT 7898 81.66 80.84
TinyChart@768 Combine | 80.42 84.99 83.60
TinyChart@768 Auto 79.63 8516 83.48

performance under both the Combine setting and
Auto setting falls behind the Oracle setting a lot.
Further study can be conducted to combine the two
answers better.

Calculative and non-calculative questions. We
divide the questions in the ChartQA test into two
categories: calculative questions (761 of 2500) and
non-calculative questions (1739 of 2500) by check-
ing whether they contain any calculative keywords
mentioned above. From Table 3, we observe that
PoT significantly improves the performance on
calculative questions compared to Direct settings
(78.98 vs. 56.64) and thus it shows overall per-
formance gains (80.84 vs. 76.36). By combining
Direct and PoT answers, both Combine setting and
Auto setting make further improvements.
Evaluation on ChartX. To further assess the gen-

Model QA Summ. Desc. Redraw
General MLILM

Llaval.5 17.19 1.48 1.29 0.75

GPT-4V 33.04 3.17 3.12 2.63
Chart MLLM

ChartLlama 13.80 1.04 1.02 0.94

ChartAst 3099 0.33 1.03 0.82

TinyChart@768 33.35 1.53 1.64 1.89

eralizability of TinyChart, We evaluate TinyChart
on ChartX-Cognition (Xia et al., 2024) since it cov-
ers visually diverse chart types. Note that we do
not perform additional fine-tuning in this evalua-
tion. As shown in Table 4, benefiting from PoT
learning, TinyChart achieves a 33.35 GPT-Acc on
the QA task, even surpassing GPT-4V. Though it
falls behind GPT-4V in the other three tasks, Tiny-
Chart still outperforms Open-source Chart MLLMs
including ChartLlama and ChartAst. It indicates
that TinyChart has a strong capability to generalize
across various chart types.

4.3 Ablation Studies

We further conduct extensive ablation studies on
PoT learning and visual token merging in Table 5.
Ablation on PoT Learning. The upper block in
Table 5 shows the model performance with and
without training on the PoT data. Comparing Row
2 with 1, we observe that training with template-
based PoT improves the accuracy of direct answers
(71.12 vs. 70.72). It indicates that PoT learning

1888

Table 5: Ablation study. We train the models only using benchmark datasets in this experiment.

. GPT Temp. Token Visual Inference ChartQA Chart2Text Chart2Table
Row Resolution PoT PoT M Lenoth Th h
0 0 erge Leng roughput nyirect PoT Combine BLEU4 RMS gy

1 384x384 X X X 729 3.73it/s 70.72 - - 17.10 85.80
2 384384 X v X 729 3.73 it/s 71.12 5544 73.00 17.04 87.68
3 384384 v v X 729 3.73 it/s 7244 76.88 79.48 16.67 87.30
4 512x512 v v X 1,296 2.38 it/s 74.08 79.64 81.72 17.32 89.76
5 512x512 v v r=12 984 2.84 it/s 7324 7172 80.52 16.54 88.26
6 512x512 v v r=15 906 3.26it/s 72.52 78.60 80.04 16.96 88.01
7 512x512 v v r=20 776 3.65it/s 73.36 78.84 80.76 16.57 87.81
8 768 %768 v v X 2,916 OOM - - - - -

9 768 %768 v v r=84 732 3.14 it/s 7324 7172 81.04 16.43 88.90

enhances the model’s reasoning abilities. At this
point, the PoT answers produced by the model are
worse than direct answers (55.44 vs. 71.12), which
may be due to the inability of the templates to cover
all questions. However, when we produce PoT an-
swers for calculative questions and combine them
with direct answers, the result outperforms solely
direct answers (73.00 vs. 71.12), indicating the ad-
vantage of PoT in solving computational problems.
After incorporating GPT-based PoT into training,
the performance of PoT answering surpasses di-
rect answering (76.88 vs. 72.44), and both direct
(72.44 vs. 71.12) and combined answering (79.48
vs. 73.00) show further improvements. These re-
sults suggest that PoT learning not only strengthens
calculations but also enhances reasoning capability.

Ablation on Visual Token Merging. The middle
block in Table 5 compares the performance with
and without visual token merging under resolution
512512, and with different numbers of tokens
to merge in each layer. Comparing Row 4 and 3,
increasing resolution from 384 to 512 brings sig-
nificant improvements on all benchmarks, demon-
strating that high resolution is crucial for compre-
hending chart images. However, a direct increase
in resolution leads to a substantial drop in the in-
ference throughput (2.38 it/s vs. 3.73 it/s), since
lengthy visual features from standard ViT bring
considerable computational expenses for the LLM
to process. By adopting the visual token merging,
we can control the length of the visual feature by
regulating the number of tokens to merge at each
layer, thereby achieving efficient high-resolution
encoding. When setting r=20, we attain an infer-
ence throughput nearly equal to that with an input
resolution of 384, while providing the performance
benefits of higher resolutions.

Extending to Higher Resolution. To further high-

light the advantages of visual token merging, we
increase the input resolution to 768 in the bottom
block of Table 5. At this point, the length of the
visual feature sequence is 2,916, which could not
be trained using 32GB V100 due to insufficient
VRAM. However, after employing the visual to-
ken merging module with 7=84, the input sequence
length is reduced to 732 and we can perform train-
ing normally. In this setting, the model’s inference
throughput is 3.14 it/s, and demonstrates perfor-
mance benefits on ChartQA (81.04 vs. 80.76) and
Chart-to-Table (88.90 vs. 87.81). It illustrates that
by utilizing visual token merging, we can leverage
higher-resolution chart images under constrained
resources, thereby improving performance.

4.4 Visualization

Visual Token Merging. To investigate the effects
of visual token merging, we visualized the token
merging results at the final layer of the vision en-
coder. In Figure 5, we visualize the top 10 groups
with the largest numbers of tokens. Each group
is outlined with a different color. It reveals that
the merged groups typically correspond to blank or
colored areas. By compressing these areas down
to a single token, our visual token merging module
can thus reduce the length of the encoded sequence
without losing much information, thereby achiev-
ing efficient visual encoding.

Case Study. In Figure 6, we present a case study
on ChartQA. As shown in Figure 6(a), much key
information within the chart is provided by visually
situated texts within the image, which requires the
model to have the ability to process high-resolution
images. Since ChartL.lama only supports 336 reso-
lutions, it struggles to retrieve accurate information
in these charts. In contrast, our TinyChart can ac-
cept higher-resolution inputs and thus successfully

1889

g il =
= e T B B L

TinyChart PoT: 20.98

rl # Get the names of all food
items, set to X

X=["Mutton & Goat Meat (non-
organic)', 'Beef..]

Get all the values of 'Land
use per 100 kilocalorie’
Y=[20.98, 13.55, 8.27, 3.01,..]
Get the index of 'Mutton &
Goat Meat (non-organic)’
Index=X.index('Mutton & Goat
" .. Meat (non-organic)’)

Get the value of Y at
position Index, set to Answer
Answer=Y[Index]

Question: What is land use per 100 kilocalories by
Mutton & Goat Meat production?
ChartLlama: 19.85 TinyChart Direct: 20.98

@

g TinyChart PoT: 51.045

. # Get the values of all
'Scheduled teaching time that
teachers are in the classroom
set to Y
Y=[93.45, 89.89, 58.09, 44]
Sort Y in ascending order
set to Y
Y=np.sort(Y)
Get the bottom two values
from Y, set to Y
e Y=Y[:2]
Calculate the mean of Y, set
to Answer
Answer=np.mean(Y)

- =1—>158.09%)

%)
6% a0%

Question: Find out the average of the bottom two
countries ?

ChartLlama: 49.5 TinyChart Direct: 51.95

(b)

Figure 6: Case studies on ChartQA. We compare TinyChart@768 with ChartLlama.

find clues related to the questions. Meanwhile,
ChartLlama suffers from numerical errors when
faced with calculative questions in Figure 6 (b),
and TinyChart can provide a PoT answer that ac-
curately solves the problem. More case analyses is
presented in Appendix C.

5 Conclusion

This paper introduces TinyChart, a chart under-
standing MLLM with 3 billion parameters. To
address the inefficiency of lengthy visual token se-
quences with high-resolution images, TinyChart in-
jects the visual token merging module that merges
similar vision tokens, thereby enabling efficient en-
coding of high-resolution images. To tackle the
challenges of learning numerical computations, we
propose a Program-of-Thoughts learning method
that trains the model to generate Python programs
to answer questions. TinyChart achieves SOTA per-
formance on multiple chart understanding bench-
marks with fewer parameters and larger inference
throughput. Extensive ablation studies confirm the
effectiveness of our methods.

6 Limitations

While TinyChart demonstrates notable perfor-
mance and efficiency, it is still susceptible to hal-
lucination issues in summary generation that are

commonly associated with MLLMs, and therefore
it may generate misleading information about chart
content. Further research can be conducted to miti-
gate this hallucination problem in chart understand-
ing. Meanwhile, we observed that TinyChart en-
counters challenges in estimating the value of a data
point without surrounding OCR words, even with
increased input resolution. Potential future work
could focus on developing methods to improve the
accuracy of these non-OCR estimations.

7 Acknowledgements

This work was partially supported by the Beijing
Natural Science Foundation (No. 1.233008) and
the National Natural Science Foundation of China
(No. 62072462).

References

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman.
2023. Token merging: Your vit but faster. In The
Eleventh International Conference on Learning Rep-
resentations.

1890

https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://openreview.net/forum?id=JroZRaRw7Eu

Jinyue Chen, Lingyu Kong, Haoran Wei, Chenglong
Liu, Zheng Ge, Liang Zhao, Jianjian Sun, Chunrui
Han, and Xiangyu Zhang. 2024a. Onechart: Purify
the chart structural extraction via one auxiliary token.
Preprint, arXiv:2404.09987.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiagi Wang, Xi-
aoyi Dong, Hang Yan, Hewei Guo, Conghui He,
Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang,
Xingjian Wei, Wei Li, Wenjian Zhang, Bo Zhang,
Pinlong Cai, Licheng Wen, Xiangchao Yan, Min
Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin,
Yu Qiao, Jifeng Dai, and Wenhai Wang. 2024b.
How far are we to gpt-4v? closing the gap to com-
mercial multimodal models with open-source suites.
Preprint, arXiv:2404.16821.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao,
Bin Wang, Linke Ouyang, Xilin Wei, Songyang
Zhang, Haodong Duan, Maosong Cao, et al
2024a. Internlm-xcomposer2: Mastering free-
form text-image composition and comprehension
in vision-language large model. arXiv preprint
arXiv:2401.16420.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang
Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, et al.
2024b. Internlm-xcomposer2-4khd: A pioneer-
ing large vision-language model handling resolu-
tions from 336 pixels to 4k hd. arXiv preprint
arXiv:2404.06512.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929.

Hao Feng, Qi Liu, Hao Liu, Wengang Zhou, Houqgiang
Li, and Can Huang. 2023. Docpedia: Unleashing the
power of large multimodal model in the frequency
domain for versatile document understanding. arXiv
preprint arXiv:2311.11810.

Jiayun Fu, Bin B Zhu, Haidong Zhang, Yayi Zou, Song
Ge, Weiwei Cui, Yun Wang, Dongmei Zhang, Xi-
aojing Ma, and Hai Jin. 2022. Chartstamp: Robust
chart embedding for real-world applications. In Pro-
ceedings of the 30th ACM International Conference
on Multimedia, pages 2786-2795.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal 1lm for

chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging non-
linearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914.

Anwen Hu, Shizhe Chen, and Qin Jin. 2021. Question-
controlled text-aware image captioning. In Proceed-
ings of the 29th ACM International Conference on
Multimedia, MM 21, page 3097-3105, New York,
NY, USA. Association for Computing Machinery.

Anwen Hu, Yaya Shi, Haiyang Xu, Jiabo Ye, Qinghao
Ye, Ming Yan, Chenliang Li, Qi Qian, Ji Zhang, and
Fei Huang. 2024a. mplug-paperowl: Scientific di-
agram analysis with the multimodal large language
model. Preprint, arXiv:2311.18248.

Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang
Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei
Huang, and Jingren Zhou. 2024b. mplug-docowl
1.5: Unified structure learning for ocr-free document
understanding. Preprint, arXiv:2403.12895.

Kung-Hsiang Huang, Hou Pong Chan, Yi R. Fung,
Haoyi Qiu, Mingyang Zhou, Shafiq Joty, Shih-Fu
Chang, and Heng Ji. 2024a. From pixels to in-
sights: A survey on automatic chart understanding
in the era of large foundation models. Preprint,
arXiv:2403.12027.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,
Conghui He, Jiagi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. 2024b. Opera: Alleviating
hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation.
Preprint, arXiv:2311.17911.

Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing
Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang,
Fei Huang, and Shikun Zhang. 2024. Hallucination
augmented contrastive learning for multimodal large
language model. Preprint, arXiv:2312.06968.

Kushal Kafle, Brian Price, Scott Cohen, and Christo-
pher Kanan. 2018. Dvqa: Understanding data visual-
izations via question answering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5648-5656.

Shankar Kantharaj, Xuan Long Do, Rixie Tiffany
Leong, Jia Qing Tan, Enamul Hoque, and Shafiq Joty.
2022a. OpenCQA: Open-ended question answering
with charts. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 11817-11837, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

1891

https://arxiv.org/abs/2404.09987
https://arxiv.org/abs/2404.09987
https://arxiv.org/abs/2404.16821
https://arxiv.org/abs/2404.16821
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1145/3474085.3475452
https://doi.org/10.1145/3474085.3475452
https://arxiv.org/abs/2311.18248
https://arxiv.org/abs/2311.18248
https://arxiv.org/abs/2311.18248
https://arxiv.org/abs/2403.12895
https://arxiv.org/abs/2403.12895
https://arxiv.org/abs/2403.12895
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2312.06968
https://doi.org/10.18653/v1/2022.emnlp-main.811
https://doi.org/10.18653/v1/2022.emnlp-main.811

Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin,
Ahmed Masry, Megh Thakkar, Enamul Hoque, and
Shafiq Joty. 2022b. Chart-to-text: A large-scale
benchmark for chart summarization. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4005-4023, Dublin, Ireland. Association for
Computational Linguistics.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin
Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
2023. Mitigating object hallucinations in large vision-
language models through visual contrastive decoding.
Preprint, arXiv:2311.16922.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Ren-
rui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, and
Chunyuan Li. 2024. Llava-next: Stronger llms super-
charge multimodal capabilities in the wild.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023a. Eval-
uating object hallucination in large vision-language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 292-305.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023b.
Textbooks are all you need ii: phi-1.5 technical report.
Preprint, arXiv:2309.05463.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian
Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqgi Shao,
Keqin Chen, Jiaming Han, Siyuan Huang, Yichi
Zhang, Xuming He, Hongsheng Li, and Yu Qiao.
2023. Sphinx: The joint mixing of weights, tasks,
and visual embeddings for multi-modal large lan-
guage models. Preprint, arXiv:2311.07575.

Fangyu Liu, Julian Eisenschlos, Francesco Piccinno,
Syrine Krichene, Chenxi Pang, Kenton Lee, Man-
dar Joshi, Wenhu Chen, Nigel Collier, and Yasemin
Altun. 2023a. DePlot: One-shot visual language rea-
soning by plot-to-table translation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 10381-10399, Toronto, Canada. Associ-
ation for Computational Linguistics.

Fangyu Liu, Francesco Piccinno, Syrine Krichene,
Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin
Altun, Nigel Collier, and Julian Eisenschlos. 2023b.
MatCha: Enhancing visual language pretraining with
math reasoning and chart derendering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1275612770, Toronto, Canada. Association
for Computational Linguistics.

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen,
Kaiqgiang Song, Sangwoo Cho, Yaser Yacoob, and
Dong Yu. 2023c. Mmc: Advancing multimodal
chart understanding with large-scale instruction tun-
ing. arXiv preprint arXiv:2311.10774.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023d. Improved baselines with visual instruc-
tion tuning. Preprint, arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024a. Visual instruction tuning. Advances in
neural information processing systems, 36.

Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li,
Xucheng Yin, Cheng lin Liu, Lianwen Jin, and Xiang
Bai. 2024b. On the hidden mystery of ocr in large
multimodal models. Preprint, arXiv:2305.07895.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2263—
2279.

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do,
Enamul Hoque, and Shafiq Joty. 2023. Unichart:
A universal vision-language pretrained model for
chart comprehension and reasoning. Preprint,
arXiv:2305.14761.

Ahmed Masry, Mehrad Shahmohammadi, Md Rizwan
Parvez, Enamul Hoque, and Shafiq Joty. 2024.
Chartinstruct: Instruction tuning for chart compre-
hension and reasoning. Preprint, arXiv:2403.09028.

Fanqing Meng, Wengqi Shao, Quanfeng Lu, Peng Gao,
Kaipeng Zhang, Yu Qiao, and Ping Luo. 2024. Char-
tassisstant: A universal chart multimodal language
model via chart-to-table pre-training and multitask
instruction tuning. arXiv preprint arXiv:2401.02384.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and
Pratyush Kumar. 2020. Plotga: Reasoning over sci-
entific plots. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 1527-1536.

Jason Obeid and Enamul Hoque. 2020. Chart-to-
text: Generating natural language descriptions for
charts by adapting the transformer model. CoRR,
abs/2010.09142.

OpenAl. 2023a. Gpt-3.5-turbo. https://platform.
openai.com/docs/models/gpt-3-5-turbo.

OpenAl. 2023b. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

OpenAl. 2024. Hello gpt-40. https://openai.com/
index/hello-gpt-4o/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

1892

https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://arxiv.org/abs/2311.16922
https://arxiv.org/abs/2311.16922
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2311.07575
https://arxiv.org/abs/2311.07575
https://arxiv.org/abs/2311.07575
https://doi.org/10.18653/v1/2023.findings-acl.660
https://doi.org/10.18653/v1/2023.findings-acl.660
https://doi.org/10.18653/v1/2023.acl-long.714
https://doi.org/10.18653/v1/2023.acl-long.714
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2305.07895
https://arxiv.org/abs/2305.07895
https://arxiv.org/abs/2305.14761
https://arxiv.org/abs/2305.14761
https://arxiv.org/abs/2305.14761
https://arxiv.org/abs/2403.09028
https://arxiv.org/abs/2403.09028
https://arxiv.org/abs/2401.02384
https://arxiv.org/abs/2401.02384
https://arxiv.org/abs/2401.02384
https://arxiv.org/abs/2401.02384
https://arxiv.org/abs/2010.09142
https://arxiv.org/abs/2010.09142
https://arxiv.org/abs/2010.09142
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Raian Rahman, Rizvi Hasan, Abdullah Al Farhad, Md.
Tahmid Rahman Laskar, Md. Hamjajul Ashmafee,
and Abu Raihan Mostofa Kamal. 2023. Chartsumm:
A Comprehensive Benchmark for Automatic Chart
Summarization of Long and Short Summaries. Pro-
ceedings of the Canadian Conference on Artificial In-
telligence. Https://caiac.pubpub.org/pub/ujhjycsw.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object hallu-
cination in image captioning. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4035-4045.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Benny Tang, Angie Boggust, and Arvind Satyanarayan.
2023. VisText: A benchmark for semantically rich
chart captioning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7268-7298,
Toronto, Canada. Association for Computational Lin-
guistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Stefan van der Walt, S. Chris Colbert, and Gael Varo-
quaux. 2011. The numpy array: A structure for effi-
cient numerical computation. Computing in Science
& Engineering, 13(2):22-30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang,
Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and Ji-
tao Sang. 2023a. An llm-free multi-dimensional
benchmark for mllms hallucination evaluation. arXiv
preprint arXiv:2311.07397.

Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng
Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming
Yan, Ji Zhang, Jihua Zhu, Jitao Sang, and Haoyu
Tang. 2023b. Evaluation and analysis of halluci-
nation in large vision-language models. Preprint,
arXiv:2308.15126.

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan,
Qi Liu, Hongbin Zhou, Zijun Chen, Min Dou, Bo-
tian Shi, Junchi Yan, and Yu Qiao. 2024. Chartx
& chartvlm: A versatile benchmark and foundation
model for complicated chart reasoning. Preprint,
arXiv:2402.12185.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye,
Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, Qin Jin, Liang He, Xin Lin,
and Fei Huang. 2023a. Ureader: Universal ocr-free
visually-situated language understanding with multi-
modal large language model. In EMNLP (Findings),
pages 2841-2858. Association for Computational
Linguistics.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming
Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong
Xu, Hehong Chen, Junfeng Tian, Qi Qian, Ji Zhang,
Fei Huang, and Jingren Zhou. 2024. mplug-owl:
Modularization empowers large language models
with multimodality. Preprint, arXiv:2304.14178.

Qinghao Ye, Haiyang Xu, Ming Yan, Chenlin Zhao,
Junyang Wang, Xiaoshan Yang, Ji Zhang, Fei Huang,
Jitao Sang, and Changsheng Xu. 2023b. mplug-
octopus: The versatile assistant empowered by a
modularized end-to-end multimodal llm. In Proceed-
ings of the 31st ACM International Conference on
Multimedia, pages 9365-9367.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen
Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei Huang, and
Jingren Zhou. 2023c. mplug-owl2: Revolutioniz-
ing multi-modal large language model with modality
collaboration. Preprint, arXiv:2311.04257.

Zihao Yue, Liang Zhang, and Qin Jin. 2024. Less
is more: Mitigating multimodal hallucination from
an eos decision perspective. arXiv preprint
arXiv:2402.14545.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11975-11986.

Liang Zhang, Anwen Hu, Jing Zhang, Shuo Hu, and Qin
Jin. 2023a. Mpmgqa: multimodal question answering
on product manuals. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
13958-13966.

Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao
Xu, Linke Ouyang, Zhiyuan Zhao, Shuangrui Ding,
Songyang Zhang, Haodong Duan, Hang Yan, et al.
2023b. Internlm-xcomposer: A vision-language
large model for advanced text-image comprehension
and composition. arXiv preprint arXiv:2309.15112.

Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu,
Jing Lu, Liang Qiao, Yi Niu, and Fei Wu. 2020. Trie:
end-to-end text reading and information extraction
for document understanding. In Proceedings of the

1893

https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/2308.15126
https://arxiv.org/abs/2308.15126
https://arxiv.org/abs/2402.12185
https://arxiv.org/abs/2402.12185
https://arxiv.org/abs/2402.12185
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2311.04257
https://arxiv.org/abs/2311.04257
https://arxiv.org/abs/2311.04257

28th ACM International Conference on Multimedia,
pages 1413-1422.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo,
Xien Liu, Ji Wu, and Lei Huang. 2024. Tinyllava: A
framework of small-scale large multimodal models.
Preprint, arXiv:2402.14289.

A Implementation Details

A.1 ChartQA-PoT Statistic

We build ChartQA-PoT based on the images and
questions in the training split of ChartQA (Masry
et al., 2022). ChartQA-PoT consists of two sub-
sets: Template-based PoT and GPT-based PoT. We
present the statistics over ChartQA-PoT in Table 6.
We find that answers provided by gpt-3.5-turbo
are longer than template-based PoT, since they
cover more diverse scenarios.

Table 6: Statistic over ChartQA-PoT

Statistic Template GPT ChartQA
PoT PoT PoT
Num. of samples 119,281 21,303 140,584
Num. of images 17,498 15,521 18,133
Avg. answer characters 319.38 381.23 328.75
Avg. answer tokens 117.70 136.01 120.48

What

(a) Template PoT.

(b) GPT PoT.

Figure 7: First 2-gram of the questions in ChartQA-PoT
after removing stop words.

Table 7: ChartQA performance after further fine-tuning.

Model Training Data ‘ Direct PoT
TinyChart@768 - 76.36 80.84
TinyChart@768 GPT-40-PoT | 77.68 81.12

We further present the first 2-gram words of the
questions after removing stop words in Template-
based PoT and GPT-based PoT in Figure 7. It is
observed that GPT-PoT covers more diverse ques-
tions for ‘what’ type questions, and questions in

Template-based PoT are more evenly distributed
across all question types.

A.2 Instructions for GPT-based PoT

Figure 8 shows the instructions for constructing
GPT-based PoT answers. Note that we prompt
gpt-3.5-turbo to provide Python code consisting
of assignment statements and avoid using loops or
judgment statements. This can simplify the pro-
gram and reduce syntax errors. We also provide
meta information including the chart title, type,
and colors to gpt-3.5-turbo since some questions
rely on this information to answer.

A.3 Training details

TinyChart is initialized from TinyLlava (Zhou et al.,
2024), which utilizes the Sigl.IP (Zhai et al., 2023)
as the vision encoder and Phi-2 (Li et al., 2023b)
as the large language model. The origin input res-
olution of the vision encoder is 384 x384. We ex-
tend the input resolution to 512x512 and 768 x 768
and apply visual token merging with » = 20 and
r = 84 in each transformer layer respectively. We
train the entire model for 3 epochs with a batch size
of 512. The learning rate is set to le — 4, with a
warmup in the beginning 3% steps, and then decays
to O at the end of training. The total training pro-
cess costs 3 days on 32 Tesla V100 GPUs with 32
GB VRAMs. We present the detailed composition
of our training data and their license in Table 8.

B Further improve with GPT-40

We further apply the more recent MLLM GPT-
40 (OpenAl, 2024) to generate the PoT an-
swers. Instead of using data tables, we provide
the chart images directly to GPT-40. The con-
structed GPT-40-PoT dataset contains 23,437 QAs
over 16,474 charts after removing incorrect an-
swers, demonstrating higher accuracy than GPT-
3.5-Turbo, which resulted in 21,303 QAs over
15,521 charts. We finetune our TinyChart@768
on GPT40-PoT. The results in Table 7 show that
learning with GPT4o-generated PoT leads to fur-
ther improvements. This demonstrates that our PoT
learning strategy is compatible with stronger data
generators.

C Case study

We conduct more case studies with TinyChart
when conducting chart question answering, chart-

1894

https://arxiv.org/abs/2402.14289
https://arxiv.org/abs/2402.14289

Instructions to gpt-3.5-turbo

Please generate a list of assignment statements in Python to answer the question of a chart. You
can only use the following operators in each statement: <function_list>“. Do not use any
circulation or if-branch. Do not include any unnecessary statement that is not used. The chart is
presented by a data table with color information. Note that the colors are estimated and may not
match the description in the question. You can choose the most possible data if necessary. You
must provide a one-line comment before each assignment statement. The last variable must be

Answer. Here are some examples:
Example Input #1:

Chart type: Horizontal bar chart
Chart table:

I: | !
| Lamb (color: steelblue) | 103.7 |

| Corn (color: sienna) | 103.13 |

| Barley (color: mediumvioletred) | 102.46 |

| Rye (color: tomato) | 87.37 |

| Beef (color: sienna) | 85.27 |

| Wheat (color: slategray) | 83.73 |

Answer: 309.29
Example Output #1:

Greater=np.greater(Y,100)

Indices=np.where(Greater)[0]
Get the values at position Indices, setto Y
Y=np.array(Y)[Indices]

Answer=np.sum(Y)
Input: <target_input>
Output:

s 9s

“function_list=["len’, ’all’, ’any’,

Chart title: Long-term price index in food commodities, 1850-2015, World, 1934

| Food | Long-term price index in food commodities, 1850-2015, World, 1934 |

Question: What is the sum of the price index that is greater than 100?

Get the values of all Long-term price index of each food’, setto Y
Y=[103.7, 103.13, 102.46, 87.37, 85.27, 83.73]
Check whether Y is greater than 100, set to Greater

Find the indices where Greater is True, set to Indices

Calculate the sum of all elements in Y, set to Answer

index’, 'np.sort’, 'np.abs’, 'np.add’, 'np.argmax’, ’np.argmin’, 'np.diff’,
‘np.divide’, np.greater’, 'np.greater_equal’, 'np.less’, 'np.max’, 'np.mean’, ’np.median’, 'np.min’, ’np.subtract’,
’np.sum’, ‘np.count_nonzero’, ‘np.where’, ’+’, -7, ¥ 7/ 7> 0 <’ =]

Figure 8: Instructions used for generating GPT-based PoT.

to-table, chart-to-text, and chart redrawing in Fig-
ure 9, 10, 11, and 12.

Chart Question Answering. In Figure 9, As
shown in Figure 9 (a-c), compared to ChartL-
lama, TinyChart captures visual details for prob-
lem solving due to higher input resolution. Also,
our Program-of-Thoughts learning strategy enables
TinyChart to produce Python codes for numerical
calculations and successfully avoids errors in com-
putation (Figure 9(d-e)). These examples further
illustrate the advantages of our methods.

Chart-to-Table. For chart-to-table extraction, we
find that our TinyChart model can successfully ex-
tractive values from several visually diverse charts
in Figure 10 (a-c), thanks to its excellent text recog-
nition ability with high-resolution input. However,
as shown in Figure 10 (d), the model struggles to
estimate the values of data points in the absence of
OCR words. It seems that the model could make
reasonable predictions based on surrounding points,
but hardly provide accurate values based on the co-
ordinate axis. This indicates that the model still

1895

Table 8: Datasets used for training TinyChart. The benchmark datasets consist of basic chart understanding
evaluations including QA, summary, and chart-to-table generation. Note that in ablation studies, we only use the
benchmark datasets for training due to limited computational resources.

Dataset License Benchmark Samples
Chart question answer

ChartQA (Masry et al., 2022) GPL-3.0 v 28,299
ChartQA-PoT - v 140,584
PlotQA (Methani et al., 2020) CC-BY-4.0 157,070
DVQA (Kafle et al., 2018) Tencent 200,000
OpenCQA (Kantharaj et al., 2022a) GPL-3.0 5,407
Chart-to-text generation

Pew (Kantharaj et al., 2022b) GPL-3.0 v 7,892
Statista (Kantharaj et al., 2022b) GPL-3.0 v 29,589
OpenCQA (Kantharaj et al., 2022a) GPL-3.0 5,407
Vistext (Tang et al., 2023) GPL-3.0 11,171
ChartSumm (Rahman et al., 2023) - 75,255
Chart2Text-8k (Obeid and Hoque, 2020) - 7,862
Chart-to-table generation

ChartQA (Masry et al., 2022) GPL-3.0 v 19,373
PlotQA (Methani et al., 2020) CC-BY-4.0 190,720
Chart2Text-8k (Obeid and Hoque, 2020) - 8,305
DVQA (Kafle et al., 2018) Tencent 300,000
Statista (Kantharaj et al., 2022b) GPL-3.0 29,589
Chart instruction following

ChartLlama (Han et al., 2023) MIT 148,398
Total 1,364,921

lacks the ability to understand spatial relationships
across large areas.

Chart-to-Text. From Figure 11, we observe that
the model can understand the data presented in
the chart and generate descriptions and summaries
in natural language. Though it can retrieve the
data values correctly, we find it sometimes pro-
duces contents that do match the chart as shown in
Figure 11 (c-d). This may be due to the inherent
limitations of hallucination in MLLMs (Rohrbach
et al., 2018; Li et al., 2023a; Wang et al., 2023b,a),
and may be alleviated by addressing hallucina-

tions (Leng et al., 2023; Huang et al., 2024b; Jiang
et al., 2024; Yue et al., 2024).

Chart redrawing. We present four cases of chart
redrawing in Figure 12. As shown in Figure 12 (a-
¢), our TinyChart model can generate Python code
to redraw visually diverse chart types including
lines, heatmaps, and rings. However, it can be
hard to draw unseen chart types such as 3D bar
charts (Figure 12 (d)). This may be mitigated by

improving the coverage of different chart types in
training data through automatic data construction

techniques (Han et al., 2023; Xia et al., 2024).

1896

https://www.gnu.org/licenses/gpl-3.0.en.html
https://creativecommons.org/licenses/by/4.0/legalcode.en
https://raw.githubusercontent.com/Tencent/DVQA/master/License.txt
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://creativecommons.org/licenses/by/4.0/legalcode.en
https://raw.githubusercontent.com/Tencent/DVQA/master/License.txt
https://www.gnu.org/licenses/gpl-3.0.en.html
https://raw.githubusercontent.com/tingxueronghua/ChartLlama-code/main/LICENSE

International tourism: Number of arrivals, 1995 to 2006

Median household disposable income, 2000

. _

1.4 milion Boisvana
1.2milion
Ngera
1 miion /
800,000
Fonduras
600,000

400000

200,000

[—— American Samoa|

. S

)
1995 1906 1990 2004 12008

55,000

s15.000
et 2016

50 520000

. Thevissn, o

Question: How many countries are represented
in the chart?

ChartLlama: 3 TinyChart Direct: 4

(@)

Question: What is the value of middle bar in the
graph?

(b)

$24,688.3 (2000)

ChartLlama: 19178.33 TinyChart Direct: 24688.3

52% of STEM-trained college graduates

are employed in the STEM workforce
orkerswho majoredinscence technobgy,

ingor math, % currenty employedin cachype

Soc
senices,egel
Socstion

Pewe

et

Question: Is the percentage value of "STEM"
segment 527
ChartLlama: No TinyChart Direct: Yes

©

s, 1966
0papuaion e e e
e s o e

Question: Is the median value of all the bars
greater than 30?

ChartLlama: No TinyChart Direct: Yes

(d)

TinyChart PoT: Yes

Get the values of all
'Death rates through the
20th century', set to Y
vy=[371.7, 155.3, 104.7,
58.1, 32.5, 27.1, 17.7,
10.9, 3.9]

Calculate the median of Y,
set to Median
Median=np.median(Y)

Check if Median is
greater than 30, set to
Answer
Answer=np.greater(Median, 30)

PEW RESEARCH CENTER

College completion by
race and ethnicity

Question: What is the difference between
Asians and Whites degree distribution?
ChartLlama: 21 TinyChart Direct: 22

TinyChart PoT: 22

Get the values of all
'Values' in the chart, set
to Yy

v=[15, 22, 41, 63]

Get the difference
between the value of Asians
and Whites, set to Subtract
Subtract=np.subtract(Y[3],
v[2])

Calculate the absolute
value of Subtract, set to
Answer
Answer=np.abs(Subtract)

(e)

Figure 9: More cases on ChartQA. We compare TinyChart@768 with ChartLlama.

Input: Generate underlying data table for the chart.

® Morc than 10 times aday @ 2-10 imes aday © Onceaday @ Less often than daily

(a)

TinyChart:

Characteristic | More than 10 times a day |
2-10 times a day | Once a day | Less often
than daily

AB [19% | 42% | 14% | 25%
C1]24% [40% | 19% | 16%
C2(25% | 41% | 17% | 17%

DE | 34% | 38% | 14% | 14%

Input: Generate underlying data table for the chart.

o Male o Female

TinyChart:

Characteristic | Male | Female
September 2018 | 1.6% | 2.2%
August 2018 | 1.5% | 1.8%
July 2018 1.2% | 1.7%

June 2018 | 1.5% | 2.1%

May 2018 | 1.3% | 2.4%
April 2018 1.7% | 2.3%
March 2018 | 1.9% | 2.5%
February 2018 | 2.3% | 3.2%
January 2018 [2.6% | 3.6%
December 2017 | 1.9% | 2.8%
November 2017 | 1.4% | 2.3%
October 2017 | 1.4% | 2.1%

(b)

Input: Generate underlying data table for the chart.

Suiczeiand 3%

Ui Sanes 425

France 1%

(©

TinyChart:

Characteristic | Retail sales share
United States | 42%

Germany | 11%

France | 11%

China | 8%

Italy | 3%

Canada | 3%

United Kingdom | 3%
Switzerland | 3%

Other | 16% T s awas

o Adult total = Adult male

: Generate underlying data table for the chart.

TinyChart:
Characteristic | Adult total | Adult male | Adult female
2008 | 98.29% | 97.83% | 98.51%
2009 | 98.36% | 97.67% | 98.62%
2010 98.28% | 97.65% | 98.56%
2011 198.44% | 98.07% | 98.70%
2012 | 98.47% | 98.10% | 98.74%
2013198.43% | 98.06% | 98.70%
2014 | 98.49% | 98.03% | 98.81%
2015 98.54% | 98.08% | 98.87%
2016 |98.59% | 98.17% | 98.86%
2017 98.65% | 98.21% | 98.93%
2018 | 98.70% | 98.32% | 98.98%

= Adult female

(d)

Figure 10: Examples of chart-to-table extraction of TinyChart@768. Wrong values are marked red.

1897

<+ st
e s

)

Input: Create a brief summarization or extract key
insights based on the chart image.

TinyChart: The chart illustrates the sales trends for
online and store sales from 2018 to 2022. It shows
that online sales steadily increased from 500 in 2018
to 1200 in 2022, while store sales also experienced
an increase from 400 in 2018 to 1000 in 2022. The
data indi that while online sales growth has

been consistently positive, store sales growth has

Fopular sports nthe UsA n 2023 Input: Create a brief summarization or extract key
" e insights based on the chart image.

TinyChart: The chart presents the popularity of

e various sports in the United States in 2023. Football is
the most popular sport with a 30% popularity rating,
followed by Basketball at 2 Baseball and Hockey
have a 15% and 10% popularity respectively.
Meanwhile, Golf and Tennis have a 5% and 10%
popularity rating respectively. The least popular sport

Foatball

Hockey

been relatively slower. This could suggest a shift in Baseball is “Other” with a 5% rating.
consumer preference or a need for a more extensive Basketball
i s m £ @ retail network.
(a) (b)
omparison of Retail and E-commerce sales in four countries in : : s 6 of U m the following devices . .
Comparsen offetaland & : e n 2071 Input: Create a brief summarization or extract key . . Input: Write a summary for this chart.

fommerc sues insights based on the chart image. TinyChart: The share of Americans who

- TinyChart: The chart illustrates the retail and e- N . o own d esktop or laptop computers has
commerce sales figures in four major online . . .
gm markets: USA, UK, Germany, and France in 2021. ren?amed relatively stable in recent years,
! Retail sales dominated in the USA with a value of N /_//‘ while the share who own tablet computers
g 4500, followed by the UK with 4000. Germany and) y and e-readers has grown. Today, about
France saw 3500 and 3000 retail sales respectively, N three-quarters of U.S. adults (74%) own a
while e-commerce sales were the highest in France jﬁf_/\/ desktop or laptop computer, up from 70%

with 4000, and second highest in the USA with ' w wn o s ms in early 2014.

2500. —Eteader — Tabletcompuer— Deskoplaptop campter

©)

Figure 11: Cases of chart-to-text generation by TinyChart@768. Correct contents are shown in green and wrong
contents are marked red.

Input: Redraw the chart with Python code. TinyChart: Input: Redraw the chart with Python code. TinyChart:
e o s o 2081102088 Music Album Sales in the US from 2001 to 2005 - = “ 50
: 100 o Clssical music . Technology and Internet Tren
" fock sk s
W - Country music Social Media Usage : ‘
o 40
ol e . Mobile Internet Usage 35 40 Js .
9 T ")
in < » g Online Shopping E! 30
S g
. T = =
© S J— E-commerce Sales 3
T il v » 20
. © =< . Cybersecurity Spending
hd 15
. 20610 ziLs w20 26es 0 2625 B0 0045 FEE . 2018 2019 2020 2021 2022
= : . Years 10
(a) (b)
Input: Redraw the chart with Python code. TinyChart: Input: Redraw the chart with Python code. TinyChart:

Arts and Culture Landscape - 2023
Sports and Entertainment Industry Overview - 2019 t0 2023 Sports and i Industry Overview 2019 to 2023

Sports Event Attendance
Movie 8ox Offce Revenue
I - Concerts Ticket Sales,

Arts and Culture Landscape - 2023
Arts Funding

Artistic Expression

Education

Historic Preservation

Cultural Diversity

Artists, Museums, and Galleries

=i Exprssion centage I
= o Oversly
Historic Preservation N Movie Gox Office Revenue
Education 20 g A4
- Arts Funding e Concert Attendance (Millonst
© (d)

Figure 12: Examples of chart redrawing. We present the resulting image after executing the Python code produced
by the model. The bad case is with the red bounding box.

1898

