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Abstract
Large Vision-Language Models (LVLMs) have
shown significant potential in assisting medical
diagnosis by leveraging extensive biomedical
datasets. However, the advancement of medical
image understanding and reasoning critically
depends on building high-quality visual instruc-
tion data, which is costly and labor-intensive
to obtain, particularly in the medical domain.
To mitigate this data-starving issue, we intro-
duce Self-Training Large Language and Vision
Assistant for Medicine (STLLaVA-Med). The
proposed method is designed to train a policy
model (an LVLM) capable of auto-generating
medical visual instruction data to improve data
efficiency, guided through Direct Preference
Optimization (DPO). Specifically, a more pow-
erful and larger LVLM (e.g., GPT-4o) is in-
volved as a biomedical expert to oversee the
DPO fine-tuning process on the auto-generated
data, encouraging the policy model to align ef-
ficiently with human preferences. We validate
the efficacy and data efficiency of STLLaVA-
Med across three major medical Visual Ques-
tion Answering (VQA) benchmarks, demon-
strating competitive zero-shot performance
with the utilization of only 9% of the medical
data. Our implementation is available at https:
//github.com/heliossun/STLLaVA-Med.

1 Introduction

Large Vision-Language Models (LVLMs) have
demonstrated impressive performance across a
wide range of medical challenges (Li et al., 2023;
Moor et al., 2023; Hu et al., 2024) by fine-tuning
through biomedical visual instruction data. Sim-
ilar to general LVLMs (Liu et al., 2023a; Chen
et al., 2023), existing methods tailored for biomedi-
cal tasks primarily focus on collecting high-quality
medical data to enhance task generalization and
visual understanding. However, collecting medical
data necessitates specialized expertise from physi-
cians and raises privacy concerns, making the pro-
cess both time-consuming and costly. To address
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Figure 1: Left: Comparison of total medical data us-
age between LLaVA-Med (530K) and STLLaVA-Med
(50k). Right: Comparison results on three medical VQA
datasets. STLLaVA-Med reports better/comparable per-
formance, using much less medical training data.

this data-starving issue, recent studies (Li et al.,
2023) have explored leveraging larger models/APIs
(e.g., GPT-4 (Achiam et al., 2023)) to generate med-
ical data. Nevertheless, this kind of method does
not fully resolve the high API costs (Deng et al.,
2024) associated with building instructional data
and still requires large-scale pre-training data to
align medical images and text (see Fig. 1 left).

To bridge the gap in medical data acquisition, we
propose Self-Training Large Language and Vision
Assistant for Medicine (STLLaVA-Med), a new
training pipeline that enables LVLMs to automati-
cally generate medical instruction data governed by
Direct Preference Optimization (DPO) (Rafailov
et al., 2023). Different from previous self-training
approaches (Wang et al., 2023; Deng et al., 2024),
which generate answers for fixed/pre-defined ques-
tions (e.g., summarization and report), this work au-
tomatically generates open-ended questions and an-
swers them, to enhance the diversity of self-training
data and further improve medical image reasoning.

Moreover, achieving precise control of the gen-
erated model response is also challenging due to
its unsupervised nature (Rafailov et al., 2023; Zhao
et al., 2023; Azar et al., 2023; Mehta et al., 2023).
Existing methods for gaining such steerability, such
as reinforcement learning (Ouyang et al., 2022) and
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Figure 2: Model architecture of STLLaVA-Med and self-training pipeline. Left: stage 1 aiming to optimize the
model πθ improving medical image reasoning and learning to question. Right: in stage 2, we first prompt πθ to
auto-generate preference data under the guidance of GPT-4o, then supervise πθ for DPO fine-tuning.

DPO (Rafailov et al., 2023) from human feedback,
mainly rely on collecting human labels to evaluate
the relative quality of model generations and fine-
tune the unsupervised LVLM to align with human
preferences, which still burdens data collection in
biomedical domains. To this end, the proposed
STLLaVA-Med implements DPO by leveraging a
larger LVLM with better general medical knowl-
edge to supervise the policy model.

Overall, the proposed STLLaVA-Med realizes
self-training in two stages – 1) reasoning and learn-
ing to question and 2) preference revelation. In
Stage 1, to enhance the model’s reasoning and ques-
tioning skills, we incorporate questions within the
visual instructional data as an additional learning
objective following (Sun et al., 2024b). After the
first-stage training, STLLaVA-Med can generate
question-answer pairs automatically. In Stage 2,
we leverage GPT-4o (OpenAI, 2024) as a medical
expert to further supervise fine-tuning STLLaVA-
Med through DPO, ensuring it adheres to our de-
signed preferences (e.g., detail, relevance, and ac-
curacy) on the auto-generated data. We summarize
the contributions of this work as follows:

• We propose a novel self-training approach
for LVLMs that enhances medical reasoning
skills with less medical data. Our approach im-
proves the data efficiency of training LVLMs
for specific domains.

• The proposed STLLaVA-Med enables the au-
tomatic construction of medical instructional
data, supervised by a stronger and heavy
LVLM (i.e., GPT-4o) and governed through
DPO, which allows our LVLM to adhere to
preferences in a self-training way.

• Experiments on three major medical VQA
benchmarks demonstrate that our method

achieves highly competitive zero-shot perfor-
mance compared to existing methods yet uti-
lizing only 9% of the medical data.

2 STLLaVA-Med

In this section, we introduce STLLaVA-Med (see
Fig. 2) given by our proposed two-stage self-
training algorithm, which is designed to enhance
the data efficiency when training an LVLM for med-
ical tasks. Specifically, we optimize the LVLM –
a policy model – in two stages sequentially. The
policy model πθ parameterized by θ first learns to
automatically generate question-answer pairs for
self-training, then utilizes DPO to control the pre-
diction behavior precisely.
Stage1: Reasoning and learning to question.
The main part of self-training is automatic question
generation and answering. Specifically, we fol-
low (Sun et al., 2024b) by adding a special token
<vusr> and set the question-tokens to learnable, to
jointly fine-tune πθ for reasoning and questioning
on visual instructional data Dft.

Given the visual instruction data Dft =
{(Xv, Xc)}N1 , where the conversation Xc =

{X(j)
q , X

(j)
a }Mj=1 consists of M QA pairs, the text

Xc, and the image Xv are encoded to sequential
embeddings as Hc = {H(j)

q , H
(j)
a }Mj=1 and Hv by

word embedding and vision encoder. We minimize
the negative log-likelihood loss for the vq: visual
questioning and qa: answering as the following:

Lvq =
∑

v,c∈Dft

−logπθ(H
(j+1)
q | Hv, H

(1:j)
c ),

Lqa =
∑

v,c∈Dft

−logπθ(H
(j+1)
a | Hv, H

(1:j)
c , H(j+1)

q ),

where j ∈ {1, · · · ,M} indicates the index of
question or answer within the conversational data
Hc = {H(j)

q , H
(j)
a }Mj=1. To mitigate the heavy

computational overhead, we fine-tune LoRA (Hu
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et al., 2022) in both the vision encoder and LLM.
Thus, the learnable parameters θ of the policy
model πθ during fine-tuning represent a combi-
nation of all the parameters of LLM-LoRA, ViT-
LoRA, and the vision-to-language projector. In
addition, we skip the vision-language alignment
on medical image-text pairs for data efficiency by
loading the pre-trained weights (Sun et al., 2024b)
fine-tuned on general-purpose visual instructional
data. After training with these objective functions,
our model can raise and answer questions for a
medical image, enabling automatic QA generation
in the following stage.
Stage2: Preference revelation.
We apply DPO (Rafailov et al., 2023) to fine-tune
the unsupervised LVLM to align with pre-defined
preferences. Unlike previous works (Rafailov et al.,
2023; Zhao et al., 2023), we employ πθ to auto-
matically generate a preference dataset Dpref =
{(Xv, Xq, Xaw , Xal)}N1 . Specifically, we prompt
πθ to generate an image-related question Xq and
two different answers Xa, which are labeled as win
Xaw and loss Xal answers by GPT-4o. For all the
experiments, we first map Xq, Xaw , Xal , and Xv

to Hq, Haw , Hal , and Hv using the same word
embedding and vision encoder in stage 1, and fine-
tune πθ through DPO by minimizing the following
negative log-likelihood loss:

LDPO(πθ;πref ) = −Ev,q,aw,al∈Dpref [logσ(βlog

πθ(Haw | Hv, Hq)

πref (Haw | Hv, Hq)
)− βlog

πθ(Hal | Hv, Hq)

πref (Hal | Hv, Hq)
)],

(1)
where β is a parameter controlling the deviation
from the base reference policy πref , which pre-
vents the policy model from deviating too far
from the distribution of correct generation, as well
as maintaining the generation diversity and pre-
venting mode-collapse to single high-reward an-
swers (Rafailov et al., 2023). Notably, πθ and πref
are initialized from the same weights at beginning,
and only πθ is optimized during training. In this
way, we fit an implicit reward to precisely control
the model generation by the pre-defined preference
such as accuracy and detail.

3 Self-training Datasets

Medical LVLMs (Li et al., 2023; Zhang et al., 2023;
Moor et al., 2023) generally adopt pre-training on
massive medical data, to realize medical image-text
alignment. However, the proposed STLLaVA-Med
does not involve such a medical corpus pre-training,
providing new insights into data efficiency. To

Table 1: Statistics of medical training data.
Method #Images #QA-Pairs

LLaVA-Medpt 467710 467710
LLaVA-Medft 56708 164231

ours 37452 108545

fine-tune the LVLM for medical tasks, we utilize a
filtered open-source medical instructional dataset
Med-60k-IM (Li et al., 2023) as Dft due to image
unavailability. Table 1 provides the medical data
statistics for training LLaVA-Med and STLLaVA-
Med. We show how to employ the policy model
to auto-generate a preference dataset for DPO fine-
tuning in the following process:
Auto-generated Questions. We randomly sam-
ple 10k medical images from Med-60k-IM datasets
and prompt πθ to generate questions.
GPT-4o guided preference data collection. We
prompt πθ to predict two answers to each gener-
ated question. Specifically, to ensure the difference
between answers, we set the temperature scaling
to 1.2, TopK = 100, and TopP = 0.95, encour-
aging the model to generate more diverse and non-
repetitive output. In previous research (Rafailov
et al., 2023), the preference data were annotated by
human annotators. In contrast, this work utilizes
GPT-4o as a simulated expert since we observe
its excellent biomedical performance (Yue et al.,
2023) and the best downstream task performance
in Table 2. We prompt GPT-4o (see Appendix 4.2
for prompt design) with all the information to label
the answers with win or loss, treated as Xaw and
Xal within Dpref .

4 Experiments

4.1 Implementation

We follow (Sun et al., 2024b) to construct our
model architecture, including the visual encoder,
image projector, prototype extractor, and the
instructional LLM. Our proposed self-training
pipeline involves two stages. In stage 1, we con-
tinually fine-tune the policy model πθ, initialized
from (Sun et al., 2024b) on instructional data with
global batch size as 128. During training, we in-
sert LoRA(Hu et al., 2022) with rank = 128 and
α = 256 into the language model (LLM-LoRA)
and LoRA with rank = 32 and α = 64 into the vi-
sion encoder (ViT-LoRA). We optimize the model
using AdamW (Loshchilov and Hutter, 2019) op-
timizer for one epoch by setting the learning rate
to 2× 10−4 for LoRA, and 5× 10−5 for the other
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Table 2: Comparison with other methods on three benchmarks. Open questions are evaluated by Recall and F1
score, and closed questions are evaluated by accuracy. All models are using 7B LLM. STLLaVA-Med w/o DPO is
the ablated version of our final model. Notably, LLaVA-Med was trained on the original Med-60k-IM (Li et al.,
2023), which has 20k more samples than the Med-IM we used in this work due to image unavailability.

Dataset Method
VQA-RAD SLAKE PVQA

Recall F1 Score Closed Recall F1 Score Closed Recall F1 Score Closed

GPT-4o (OpenAI, 2024) 51.60 9.23 63.97 59.06 8.90 71.63 24.14 3.29 75.97

w/o Med-IM
LLaVA-v1.5 (Liu et al., 2023a) 23.63 9.53 50.74 35.23 8.84 52.16 11.85 2.73 52.76
SQ-LLaVA (Sun et al., 2024b) 23.91 6.29 52.57 40.04 9.65 57.45 11.24 2.63 53.73
Med-Flamingo (Moor et al., 2023) 10.32 10.37 52.21 8.46 7.67 37.02 1.23 1.24 45.59
PMC-VQA (Zhang et al., 2023) 6.26 5.68 41.54 7.29 6.92 33.89 1.02 1.01 40.10

Med-IM
LLaVA-Med (Li et al., 2023) 32.68 8.65 59.56 40.84 8.21 46.88 12.03 2.47 55.23
STLLaVA-Med w/o DPO 33.81 10.37 59.16 40.13 10.97 55.53 10.38 2.68 52.05
STLLaVA-Med 37.12 10.83 60.35 46.69 11.46 57.69 11.92 2.72 52.90

layers. In stage 2, we fine-tune πθ on the auto-
generated preference dataset. Similar to stage 1,
we utilize LoRA for light-weight training. We op-
timize the model using AdamW (Loshchilov and
Hutter, 2019) optimizer for one epoch by setting the
learning rate to 5× 10−6 for LoRA, and 2× 10−5

for the other layers. We train the model on 4 A100s
for 10 hours.

4.2 Preference Data Generation

In previous research (Rafailov et al., 2023), pref-
erence data were annotated by human annotators.
In contrast, this work employs GPT-4o (OpenAI,
2024) as a simulated expert to classify the answers
generated by STLLaVA-Med. As shown in Fig. 3,
we provide the detailed prompt design for GPT-4o
to label the answers with either win or loss. Due to
its multi-modal understanding capabilities, GPT-4o
can directly take images as input. In Appendix B.2,
we provide qualitative results about the preference
data generated by STLLaVA-Med.

4.3 Datasets and Metrics

Datasets. We conduct experiments on the widely-
used medical VQA benchmark dataset VQA-
RAD (Lau et al., 2018), SLAKE (Liu et al.,
2021), and PVQA (He et al., 2020). Specifically,
VQA-RAD contains QA pairs generated by clin-
icians, where the images are evenly distributed
over the head, chest, and abdomen. Questions
are categorized into 11 categories: abnormality,
attribute, modality, organ system, color, counting,
etc. SLAKE is a Semantically-Labeled Knowledge-
Enhanced dataset for medical VQA. The original
dataset contains Chinese and English QA, but we
only consider the English subset in our study. Be-
sides, SLAKE includes richer modalities and cov-
ers more human body parts than the currently avail-
able dataset. PathVQA is a dataset of pathology

images. Each image has questions about multiple
aspects, such as location, shape, color, appearance,
etc. Overall, the medical questions are categorized
into two types: open-ended questions such as why,
what, how, where, etc., and closed-ended questions
with one-word answers (yes/no).
Evaluation Metrics. We report accuracy for closed
questions. For open-ended questions, we compute
recall as the proportion of correctly predicted words
out of the reference sentence, and F1 score as a
balance metric between recall and precision.

4.4 Overall Performance

The evaluation results in Table 2 are divided into
three sections based on rows. We compile all
the experiments locally with a single run. The
first row indicates the upper bound of zero-shot
medical performance; the next two rows and the
last three rows reflect the performance of LVLMs
trained without and with medical data. As shown
in Table 2, even without pre-training on medical
data, STLLaVA-Med achieves competitive perfor-
mance with LLaVA-Med only after fine-tuned in-
structional data Med-IM. After DPO training, we
observed a performance improvement over open-
ended questions, demonstrating the effectiveness of
supervised preference optimization. Also, in Fig. 4,
the answer of STLLaVA-Med has higher relevance,
more detail, and accuracy than STLLaVA-Med
w/o DPO, proving that self-training on the auto-
generated preference dataset controls the model fol-
lowing pre-defined preference. See Appendix B.1
for more results. Moreover, we have several obser-
vations based on the results in Table 2.

1) Medical image-text alignment is unnecessary
for LVLM-Med. As we observed, fine-tuning a
pre-trained general-purpose LVLM (e.g., LLavA-
V1.5 (Liu et al., 2023a), SQ-LLaVA (Sun et al.,
2024b)) on a small set of medical instruction data
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messages = [ {"role": "User", "content": """ 
Text: { 
[Question]\nWhat is the condition of the wall of the mass?\n\n
[Answer 1]\nThe wall of the mass appears to be thickened, but it is …\n\n[End Answer 1]\n\n
[Answer 2]\nThe wall of the mass appears to be hypointense, which mean…\n\n[End Answer 2]\n\n
[System]\n We would like to request your feedback on the quality of two answers in response to the 
user question displayed above. The user asks the question on observing an image. For your 
reference, you will see an image. \nPlease rate the helpfulness, relevance, accuracy, level of details 
of the answers. Each answer receives an overall score on a scale of 1 to 10, where a higher score 
indicates better overall performance.\nPlease first output a single line containing only two values 
indicating the scores for Answer 1 and 2, respectively. The two scores are separated by a space. }
Image:{<image>}"""}]

Prompt GPT-4o to score each of the answers

Figure 3: Prompt for GPT-4o to grade the answers generated by STLLaVA-Med from stage 1. The answer with the
higher score will be designated as the winning response, while the other will be classified as rejected.

GT: Hypodense lesion

STLLaVA-Med

STLLaVA-Med w/o DPO
The spleen appears to be enlarged and 
has multiple hypodense lesions. These 
lesions are abnormal growths or fluid-
filled sacs within the spleen.

The spleen appears to be enlarged and has multiple 
hypodense lesions. Hypodense lesions are areas that appear 
darker on a computed tomography (CT) scan, indicating that 
they have a lower density compared to the surrounding tissue. 
This could be due to various reasons, such as infection, 
inflammation, or other pathological changes.

Question: What is abnormal about the spleen?

Figure 4: Qualitative evaluation of methods w and w/o
preference revelation.
achieves the same performance as fully training
on medical data (LLaVA-Med). This suggests
that general-purpose LVLM with strong vision-
language alignment can be easily adapted to medi-
cal tasks after light-weight fine-tuning.

2) High-quality medical instruction data can fur-
ther improve STLLaVA-Med, by enriching the
auto-generated data’s diversity, complexity, and
professionalism.

5 Conclusion

This work has proposed a self-training vision-
language assistant for medicine (STLLaVA-Med),
a novel training pipeline designed to enhance the
data efficiency of training LVLMs for medical tasks.
Our approach prompts the policy model to self-
generate instruction-answer pairs and label them by
a larger language model, such as GPT-4o, for pref-
erence optimization. This process aims to enhance
the medical reasoning capabilities of a smaller
vision-language model, reducing the reliance on
extensively annotated medical data and alleviating
human experts in the medical field. Experimen-
tal results on three benchmarks demonstrate that

STLLaVA-Med achieves exceptional medical rea-
soning capabilities using medical data at a mini-
mum level. We aspire for our work to inspire future
research aimed at enhancing the efficiency of train-
ing LVLMs in broad medical domains.

6 Limitations

Although the proposed approach improves medical
reasoning ability, the performance of self-training
is highly dependent on the quality and relevance of
the auto-generated medical instructional data. This
indicates that we still need the instructional data
from stage 1 training to cover a wider range of med-
ical tasks and professional expertise, which may
still be difficult to collect for some diseases or some
types of medical images. In addition, GPT4o may
become inevitable bias when annotating preference
data. To address this, we may use another SOTA
LMM, such as Gemini-pro (Team et al., 2023), or
include a medical expert in the loop to co-supervise
the preference data collection process.

7 Ethics Statements

We conducted experiments and analysis on pub-
lic datasets, PMC-15M, VQA-RAD, SLAKE, and
PVQA, where all medical images and texts were
de-identified, ensuring the privacy and confiden-
tiality of patients. While our method reduces the
need for extensive labeled datasets, its outputs are
still machine-generated, requiring critical human
oversight when used in clinical decision-making.
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A Related Work

A.1 Large Vision-Language Model
As the field of Large Language Models (LLMs)
and instruction tuning undergoes rapid advance-
ments, the academic research community is in-
creasingly focusing on integrating visual infor-
mation into LLM frameworks to enhance vision-
language modeling (Radford et al., 2021; Li et al.,
2022; Sun et al., 2024a; Wang et al.; Xue et al.,
2024). This emerging research area has seen the
development of various methodologies, building
on the foundational work of CLIP (Radford et al.,
2021) and diverse LLM architectures such as Vi-
cuna (Zheng et al., 2023), Llama2 (Touvron et al.,
2023), and Qwen-VL (Bai et al., 2023). Notably,
LLaVA (Liu et al., 2023b) pioneered the integra-
tion of an LLM with a CLIP vision encoder to
create a vision-language model, demonstrating sig-
nificant capabilities in image-text dialogue tasks
through strategies of pre-training alignment and
targeted instruction tuning. Subsequent research
has focused on refining visual instruction tuning
by improving the quality and diversity of datasets
used during the pre-training and fine-tuning phases.
Building upon these advancements, recent stud-
ies, including LLaVA-v1.5 (Liu et al., 2023a) and
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GT: the histone subunits

STLLaVA-Med

STLLaVA-Med w/o DPO
In the context of the image, histones are 
positively charged, which means they 
have a positive charge at physiological 
pH. This positive charge allows them to 
interact with the negatively charged DNA, 
helping to compact and organize the DNA 
into a more compact structure.

In the context of the image, histones are positively charged, 
which means they have a positive charge at physiological pH.
This positive charge allows them to interact with the negatively 
charged DNA, helping to compact and organize the DNA into a 
more compact structure. Histones are essential components 
of chromatin, which is the complex of DNA and histones that 
makes up the nucleosome, a fundamental unit of chromosome 
organization.

Question: What are positively charged,  thus allowing 
the compaction of the negatively charged DNA?

GT: a circumferential bright 
pink area of necrosis

STLLaVA-Med

STLLaVA-Med w/o DPO
In the context of this image, the 
presence of protein deposition and 
inflammation in the arterial wall may 
indicate an underlying vascular 
condition or injury that requires further 
investigation and appropriate treatment.

In the histopathological image, the wall of the artery shows protein 
deposition and inflammation. Protein deposition refers to the 
accumulation of proteins in the arterial wall, which can be a sign of 
injury, inflammation, or other pathological processes. Inflammation 
is the body's response to injury or infection, and it can cause redness, 
swelling, and pain in the affected area. In the context of this image, 
the presence of protein deposition and inflammation in the arterial 
wall may indicate an underlying vascular condition or injury that 
requires further investigation and appropriate treatment.

Question: What does the wall of the artery show with 
protein deposition and inflammation?

Figure 5: Qualitative evaluation of methods w and w/o
preference revelation.

ShareGPT4V (Chen et al., 2023), have achieved
notable success in general vision-language compre-
hension, showcasing their ability to handle com-
plex question-answering tasks. This progression
underscores the importance of sophisticated data
handling and model-tuning strategies in developing
effective vision-language models.

Table 3: Medical data statistics of training.

Method #Images #QA-Pairs

Med-IM 56708 164231
VQA-RAD 313 3064
SLAKE 546 11934
PVQA 37452 26034

Alignment fine-tuning. Following supervised fine-
tuning (SFT), alignment fine-tuning has emerged as
a key method to further enhance the performance of
Large Language Models (LLMs) by aligning them
with human preferences (Ouyang et al., 2022). Ini-
tial approaches utilized on-policy reinforcement
learning (RL) methods, such as proximal policy op-

timization (PPO) (Schulman et al., 2017), to train a
reward model based on preference data (Bai et al.,
2022). The introduction of direct policy optimiza-
tion (DPO) (Rafailov et al., 2023; Dubois et al.,
2023; Azar et al., 2023; Mehta et al., 2023) has
marked a significant shift towards direct learning
from human preferences, bypassing the need for an
explicit reward model. Another effective strategy
is iterative preference fine-tuning, which repeat-
edly optimizes the model on newly generated pref-
erence pairs in successive iterations, thereby im-
proving performance. Despite extensive research
on alignment fine-tuning for LLMs, the applica-
tion of these techniques to Large Vision-Language
Models (LVLMs) has been comparatively limited.
Early attempts (Zhou et al., 2024; Deng et al., 2024)
have focused on constructing preference datasets
using human-labeled data or GPT-4 generations,
followed by fine-tuning with a DPO loss.

B Experiments

B.1 Additional Results

In addition to evaluating zero-shot performance, we
conducted experiments involving fine-tuning the
model on downstream tasks. To maintain task gen-
eralizability and domain specificity, we compiled a
new medical instructional dataset, combining Med-
IM (Li et al., 2023) with QA pairs from the training
sets of VQA-RAD, SLAKE, and PVQA. Table 3
details the number of medical images and QA pairs
within each dataset. After fine-tuning the mod-
els on this visual instruction dataset, we observed
a clear improvement in downstream task perfor-
mance, as shown in Table 4. The performance gap
between the baseline model LLaVA-v1.5 and the
proposed STLLaVA-Med demonstrates the effec-
tiveness of the self-training pipeline.

Additionally, the improvement between
STLLaVA-Med without DPO and STLLaVA-Med
illustrates the effectiveness of preference alignment
within the self-training pipeline. However, we
found this improvement is not as significant as
the improvement over zero-shot scenario. One
explanation is the inconsistency between our de-
signed preference and the ground truth preference.
For VQA-RAD, SLAKE, and PVQA, the ground
truth are short phrases, but the preference we are
trying to optimize is detailed and relevance. This
gives us an insight that the human expert should be
involved in future medical tasks evaluation.

20059



Table 4: Comparison of fine-tuning performance on three benchmarks. Open questions are evaluated by Recall and
F1 score, and closed questions are evaluated by accuracy. All models are using 7B LLM. STLLaVA-Med w/o DPO
is the ablated version of our final model.

Dataset Method
VQA-RAD SLAKE PVQA

Recall F1 Score Closed Recall F1 Score Closed Recall F1 Score Closed

Med-IM+
VQA-RAD+
SLAKE+PVQA

LLaVA-v1.5 (Liu et al., 2023a) 43.44 36.41 70.59 52.76 46.98 64.18 35.91 35.47 91.15
STLLaVA-Med w/o DPO 52.07 45.38 75.74 56.10 50.77 67.31 38.05 37.76 92.13
STLLaVA-Med 52.60 45.92 76.10 57.37 50.84 67.31 38.30 38.00 92.13

Question: Is there any infiltration of the lesser curvature of the 
stomach or duodenum?

Answer 1: According to the axial abdominal CT scan, there is no 
infiltration of the lesser curvature of the stomach or duodenum.

Answer 2: No, the CT scan does not show any infiltration of the 
lesser curvature of the stomach or duodenum.

≻

Answer 1

Answer 2

Question: What kind of lesion is it?
Answer 1: The lesion appears to be a multilocular, cystic 
retroperitoneal tumor. It is a fluid-filled mass that is situated in the 
retroperitoneal space, which is the area behind the peritoneum, 
the membrane that lines the abdominal cavity. The lesion is 
divided into multiple septations, which are thin walls or partitions 
within the cystic structure.
Answer 2: The lesion appears to be a soft tissue heterogeneously 
enhancing lesion with a nodular appearance. It could be 
suggestive of a reactive lymph node or another type of lesion. 

≻

Answer 1

Answer 2

Question: What could be the possible cause of bilateral infiltrates?
Answer 1: Bilateral infiltrates on a chest X-ray can be caused by 
various conditions, including infections (such as pneumonia), 
inflammation, or other lung diseases. Some possible causes are 
bacterial, viral, or fungal infections, aspiration of foreign material, 
or autoimmune disorders. It is important to consider the patient's 
clinical history, symptoms, and additional diagnostic tests to 
determine the specific cause of the bilateral infiltrates and provide 
appropriate treatment.
Answer 2: Bilateral infiltrates on a chest X-ray can be caused by 
various factors, such as infections (like pneumonia), inflammation, 
heart failure, or lung diseases.

≻

Answer 1

Answer 2

Figure 6: Preference data visualization. The win and loss answer were classified by GPT-4o.

B.2 Qualitative Results
In Table 2, we have observed a clear improvement
of model performance after preference optimiza-
tion. In Fig. 5, we provide more qualitative results
of medical VQA. As can be seen, STLLaVA-Med
follows human preference by generating more de-
tailed and accurate answers than the model without
DPO fine-tuning. Fig. 6 provides example samples
of the preference data generated by STLLaVA-Med
and GPT-4o. From these three samples, we find
that the chosen answers contain more detail and
in-depth analysis, aligning with human preference.
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