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Abstract

Hate speech is a complex and subjective phe-
nomenon. In this paper, we present a dataset
(GAZE4HATE) that provides gaze data col-
lected in a hate speech annotation experiment.
We study whether the gaze of an annotator pro-
vides predictors of their subjective hatefulness
rating, and how gaze features can improve Hate
Speech Detection (HSD). We conduct experi-
ments on statistical modeling of subjective hate
ratings and gaze and analyze to what extent
rationales derived from hate speech models cor-
respond to human gaze and explanations in our
data. Finally, we introduce MEANION, a first
gaze-integrated HSD model. Our experiments
show that particular gaze features like dwell
time or fixation counts systematically corre-
late with annotators’ subjective hate rating, and
improve predictions of text-only hate speech
models.

1 Introduction

Hate speech is a real threat that harms individu-
als, groups, and societies in a profound way. Even
though research in NLP has developed many dif-
ferent datasets and models for HSD (Poletto et al.,
2021), the accurate modeling of hate speech is far
from being solved (Ocampo et al., 2023; Rottger
et al., 2021). One of the key challenges in this
area is that the definition and annotation of hate
speech are highly complex and subjective, depend-
ing on the topic and domain of hate as well as
on the individual annotators’ backgrounds and bi-
ases (Waseem and Hovy, 2016; Abercrombie et al.,
2023; ElSherief et al., 2018; Kovacs et al., 2021).
This combines with the fact that state-of-the-art
HSD models are typically designed as black-box
neural models that are well-known to pick up super-
ficial, dataset-dependent patterns rather than learn-
ing a generalizable model of the underlying task.
Therefore, it is still an open question of how to
handle subjective variation in human annotations
and detection of hate speech.
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Women can do nothing and are too stupid.

Figure 1: Heatmaps for a human rationale, gaze fea-
ture and model rationale for a hateful sentence from
GAZE4HATE

This paper contributes a new dataset
(GAZE4HATE) that provides gaze and anno-
tations from hate speech annotators, illustrated
in Figure 1. We recorded the eye movements
of annotators while they read statements, which
were carefully controlled and constructed. This
was followed by the annotation of hatefulness.
Annotators’ gaze provides us with an extremely
rich signal of the subjective cognitive processes
involved in human hate speech evaluation while
reading. In this paper, we explore whether
subjective hatefulness rating can be predicted by
the gaze of an annotator, and whether gaze features
can be used to evaluate and improve HSD models.

Generally, the NLP community has recently
started to leverage eye-tracking data as a means of
analyzing the internal mechanisms in transformer
language models as elaborated on in Section 2.1.
To the best of our knowledge, however, there is no
available dataset of human reading of hate speech.
Other work along these lines has adopted so-called
rationale annotations, where annotators mark text
spans that they consider indicative of their labeling
decisions (e.g. DeYoung et al. (2020); Mathew et al.
(2021)). These rationales can be used to measure
the plausibility and explainability of model deci-
sions, by testing whether model-internal weights
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and gradients correlate with or even predict these
human rationales (Atanasova et al., 2020). Yet, to
date, it is unclear how rational annotations com-
pare to gaze signals recorded during plain read-
ing for the task of hate speech classification. Our
GAZE4HATE data closes this gap, as our annotators
did not only rate texts for hatefulness but also anno-
tated token-level rationales for their ratings. Figure
1 shows an example that illustrates human gaze and
rationales aligned with a model’s rationale.

Our analyses and experiments center around the
following research questions:

RQ1 Do gaze features provide robust predictors
for subjective hate speech annotations?

RQ2 How do gaze features correlate with human
and model rationales?

RQ3 Are gaze features useful for enriching LMs
for HSD?

We address the first question by conducting sta-
tistical modeling on our collected eye-tracking and
annotation data (Section 4). To answer the second
question, we evaluate a range of existing HSD mod-
els on our data, comparing models’ and humans’
rationales to human gaze (Section 5). Section 6
presents the MEANION model, which integrates
text-based HSD with gaze features. In sum, our
experiments show that particular gaze features like
dwell time or fixation counts systematically differ
with respect to annotators’ subjective hate ratings.
Models’ rationales, however, correlate more with
explicit, annotated rationales than with annotator
gaze. Finally, in some settings, adding gaze fea-
tures improves predictions of text-only hate speech
models more than human rationales do.

2 Related Work

2.1 Eyetracking Data in NLP

In work on testing the cognitive plausibility of
attention-based transformer language models, hu-
man gaze is a very relevant indicator of readers’
cognitive processes and a valuable source of evalu-
ation data (Das et al., 2016; Malmaud et al., 2020;
Sood et al., 2020; Hollenstein and Beinborn, 2021;
Eberle et al., 2022; de Langis and Kang, 2023).
Unfortunately, the collection of eyetracking data is
costly and existing task-specific datasets are small
and scarce (de Langis and Kang, 2023). Our work
contributes to enriching the landscape of available
NLP-tailored eyetracking datasets.

Previous studies on using gaze to extend NLP
models usually focus on a few high-level gaze fea-
tures (Barrett et al., 2016; Long et al., 2019; Eberle
et al., 2022), with some exceptions (Mishra et al.,
2017; Hollenstein et al., 2019; Alacam et al., 2022).
As one of the most commonly used group of gaze
features in NLP, fixations measure the pause of the
eye movement on an area of the visual field, and
are strongly associated with visual intake (Rayner,
1998; Kowler, 2011; Skaramagkas et al., 2021).
However, reading hateful text also involves intense
emotions (e.g. feeling empathy, being the target
of the hate speech). Little NLP work has been
done on emotion-related eye movements such as
pupil dilation, which is associated with emotional
and cognitive arousal (Bradley et al., 2008). Our
work considers a range of gaze features and com-
pares their predictive power for subjective hate rat-
ings. Furthermore, gaze features are commonly
preprocessed in non-trivial ways, e.g. by aggregat-
ing all token-level features or arranging them in a
token-based discretized sequence as in the above-
mentioned studies. We adopt such a simple token-
based preprocessing for our MEANTION model, and
leave exploration of more advanced architectures
such as time series-based gaze transformers (Ala-
cam et al., 2022) for future work.

2.2 Explainability

To assess whether models attend to relevant parts of
an input, various explanation and rationale extrac-
tion methods have been developed, e.g., model sim-
plification methods (Ribeiro et al., 2016), gradient-
based techniques (Simonyan et al., 2014; Sun-
dararajan et al., 2017), perturbation-based meth-
ods (Zeiler and Fergus, 2013) and Shapley-based
methods (Shapley, 1953). The work of Atanasova
et al. (2020) evaluates different methods for text
classification models, concluding that “the gradient-
based explanations perform best across tasks and
model architectures”. Yet, the ‘best’ method highly
depends on the dataset/task, model, and diagnos-
tic property used for evaluation. In this study, we
evaluate a selection of explanation methods for hate
speech classification, which has not been attempted
before. We do so not only on human annotations of
salient tokens (as e.g. Atanasova et al. (2020) did)
but also on human gaze measurements.

2.3 Hate Speech and Subjectivity

Since the advent of research on hate speech detec-
tion (HSD), the reliable annotation of hate in texts
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has been recognized as a notorious issue (Waseem,
2016; Schmidt and Wiegand, 2017). Still, HSD is
often modeled with text classifiers, trained and fine-
tuned on ground-truth annotations and benchmarks
(Davidson et al., 2017; Basile et al., 2019; Zampieri
et al., 2019). Recent approaches and shared tasks,
though, shifted the focus to specific domains of
hate such as sexism (Kirk et al., 2023) as well as
explainable HSD (Mathew et al., 2021; Pavlopou-
los et al., 2022; ElSherief et al., 2021). Rottger et al.
(2021) present the HateCheck benchmark, which
is composed of linguistically controlled functional
tests designed to systematically assess language
understanding in hate speech models. Davani et al.
(2022) take some first steps in dealing with dis-
agreements between annotators in HSD and com-
pare the prediction of majority vote vs. individual
labels. Similarly, Wojatzki et al. (2018) compare
hate speech annotations of female and male anno-
tators on hateful statements about women.

Furthermore, there is an emerging research that
explores the contribution of injecting annotators’
demographics and preferences along with the an-
notated text (Kanclerz et al., 2022; Fleisig et al.,
2023). The results of these studies indicate that
demographic information is a successful predictor
for annotators’ ratings on the sentence-level hate
speech. Furthermore, Hoeken et al. (2024) shows
that annotator’s demographics are also useful for
predicting subjective annotations at the lexical level
i.e. predicting hateful words in context.

Our collection of annotator gaze provides a new
direction for tackling the issues of explainability
and subjectivity in an integrated fashion.

3 GAZE4HATE Dataset

We collected a hate speech annotated dataset that
provides information from three different sources:
hatefulness ratings of text w.r.t. gender, eye move-
ments during plain readings of the statements, and
explicit rationales marked by annotators. In this
section, we explain the design of the dataset.

3.1 Data and Sentence Selection

To obtain a dataset for systematic analysis of hate
speech understanding in models, and of subjective
differences between annotators and their gaze, we
opted for a carefully controlled set of constructed
items, similar to Rottger et al. (2021). As is com-
mon in eyetracking studies in linguistics, we design
our items as minimal pairs: we first collect a set of

“seed” hateful statements. Within these statements,
we manipulate specific tokens that change the hate-
fulness of the statement and turn it into a neutral
or even positive statement. Furthermore, we con-
sider (1) items that express hate explicitly, through
direct lexical cues, and (ii) items where the expres-
sion of hate is implicit and results from the social
meaning of the sentence as a whole. These condi-
tions roughly correspond to the explicit vs. implicit
derogation category in Rottger et al. (2021)’s Hate-
Check taxonomy.

As an example, consider the hateful statement
Women can do nothing and are too stupid in Table
1. When women is replaced with minions, the state-
ment is neutral towards women. When changing
nothing and stupid the meaning of the statement
even turns positive. This example belongs to the
“explicit” condition in our design as it contains hate-
ful lexical cues (e.g. stupid). The statement Women
belong in the kitchen illustrates the “implicit” con-
dition, as none of its words is hateful on its own.
Analog to the “explicit” condition, minimal pairs
can be constructed, i.e., when changing women to
pots, the statement is not hateful anymore.

We conducted our in-lab experiments in Ger-
many and based the construction of our annota-
tion targets on the German FEMHATE (Wojatzki
et al., 2018) dataset that contains 400 statements
about women. We have selected 20 sentences from
FEMHATE with respect to two criteria; (i) be-
ing rated as hateful and (ii) allowing for minimal
pair manipulation (for comparable hateful-neutral-
positive triples). With minimal pair manipulations,
we have created 20 positive statements and 20 neu-
tral (w.r.t gender context) sentences. This subset
of 60 sentences constitutes our main manipulation
instances. To avoid participants becoming aware
of these manipulations, we have introduced con-
trol sentences (10 mean and 10 no-hate sentences
from the FEMHATE dataset, and 10 new sentences
that express hate against men, see Table 1). In
total, we have collected eye movements on 90
items, divided into 40 a priori hateful and 50 a
priori non-hateful sentences. The selection from
the FEMHATE dataset and controlled sentence cre-
ations were conducted by one of the authors and
the stimuli set was finalized after the validation by
two other NLP researchers. For the validation of
the a priori-level annotations, we used the defini-
tion inspired by Davidson et al. (2017) and the EU
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Table 1: GAZE4HATE provides annotated statements about women, divided into 3 conditions (explicit, implicit,
control). Explicit and implicit examples figure in minimal pairs where words (in pink and lime ) in (a priori)
hateful sentences are manipulated to obtain neutral and positive examples. Control examples are not manipulated.
n = number of items in this category, P = number of participants recorded.

Cond. Example Translation A priorilabel n P
Frauen konnen nichts und sind zuo dumm . Women can do nothing and are too stupid . hate 10 40
Explicit Minions konnen nichts und sind zu dumm. Minions can do nothing and are too stupid. neutral 10 40
Frauen konnen alles und sind sehr kreativ. Women can do everything and are very creative . positive 10 40
Frauen gehoren in die Kiiche . Women belong in the kitchen . hate 10 40
Implicit Tspfe gehoren in die Kiiche. Pots belong in the kitchen. neutral 10 40
Frauen gehoren in die Regierung . Women belong in the 'government . positive 10 40

Frauen konnen ohne Kinder gliicklich sein.
Control Spezielle Frauenquoten sind unnotig.
Alle Minner sind Machos.

Women can be happy without children.
Special quotas for women are unncessary.
All men are machos.

neutral (no hate) 10 40
hate(unclear/mean) 10 40
hate (men) 10 40

Code of Conduct' on hate speech formulated as
“any rude, hurtful, derogatory language that upsets
or embarrasses people or groups of people and the
extreme form of hate speech incites violence and
hatred”.

3.2 Experimental Procedure for Subjective
Hate Speech Annotation

Our study follows a within-subject design, i.e. all
subjects read and rate all items. Each trial consists
of two phases. In the first phase, we record annota-
tor’s eye movements while they read the statements.
In the second phase, we collect their explicit anno-
tations. We ask participants to rate the statement’s
hatefulness, to rate their confidence and to mark the
words in the statement that contribute to their rating
decision. The order of sentences was randomized
for each participant.

Participants. 43 university students (native
speakers of German) participated in the experiment
(32 female, 10 male, 1 non-binary, Mean age =
23.5, SD = 5.3). They were paid or given a course
credit to participate. The experiment took approxi-
mately 40 minutes for each participant.

Eyetracking Procedure. The stimuli were dis-
played on an SR Eyelink 1000 Plus eye tracker
integrated into a 27 monitor with a resolution of
2560 x 1440. We utilized a total of 94 sentences
(including 4 familiarization trials). Each trial be-
gan with a drift correction located to the left of the
sentence onset location. Then followed the reading
phase, in which the participants read the sentence

! https://commission.europa.eu/strategy-and-policy/
policies/justice-and-fundamental-rights/
combatting-discrimination/racism-and-xenophobia/
eu-code-conduct-countering-illegal-hate-speech-online_en

at their own pace. We set a time limit of 20 sec-
onds for the reading task, but the participants were
instructed to read as quickly as possible.

Annotation Procedure. The instruction given to
the participants is detailed in Appendix A.1. For
collecting subjective annotation, we intentionally
did not provide a strict hate speech definition to be
able to get annotators’ interpretation of the state-
ments closest to their personal stance.

First, participants rated the hatefulness of the
statement in 1-to-7 Likert Scale (1:very positive,
2:positive, 3:somehow positive, 4:neutral, 5:mean,
6:hateful, 7:extremely hateful). Next, they rated
their confidence regarding their rating on a 5-Likert
scale (1:not certain, 2:somewhat certain, 3:moder-
ate, 4:certain, 5:very certain). Finally, they an-
notated the rationale for the decision, by clicking
words in the statements that contributed most to
their rating. Figure 1 (top) illustrates the rationale
annotation.

3.3 Overview

GAZE4HATE provides gaze, hatefulness ratings
and rationales for 90 items and 43 participants each
summing up to 3870 unique instances of subjective
hate ratings. Our dataset is comparable in size to
existing eye-tracking datasets like, e.g. (de Langis
and Kang, 2023). Figure 2 shows the average sub-
jective hate ratings given by participants for a priori
categories. Some sentences were rated differently
than their a priori labels (especially a priori pos-
itive ones as neutral). The subjective ratings for
sentences in other a priori categories also exhibit
variations except for the very hateful statements

2
The data and code are publicly available to the research community under a CC-BY-NC
4.0 license at https://gitlab.ub.uni-bielefeld.de/clause/gaze4hate
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Figure 2: Subjective hate ratings in GAZE4HATE w.r.t.
annotators’ gender for the a priori labels

(Appendix B.3). These mismatches between the
a priori labels and our human ratings once again
underline the fact that subjectivity is one of the
major challenges in hate speech annotation. Yet,
for this study, variation in the annotator’s ratings
is a feature rather than a bug as it allows us to
study subjective hate speech annotations with the
help of gaze features, which are highly participant-
specific. For the following analysis, we group
sentence-based subjective hate ratings provided by
users into their hate speech labels (<=3:positive,
4:neutral, >=5:hate).

Train-Test Splits. Sentences from each a priori
category were split into three groups (train, vali-
dation and test) with a 70:10:20 ratio using 5-fold
cross-validation. Each split has instances from each
participant, but not from the same sentence.

Preprocessing Gaze Features. Eye movements
often show participant-specific patterns and com-
paring raw gaze features can be misleading. We
normalized gaze features with min/max scaling for
each participant separately. The description of each
feature and pre-processing steps are given in the
Appendix A.3.

4 Analysis of Annotators’ Gaze

We start with testing whether the gaze parameters
show significant differences among the subjective
hate categories. We use Anova tests using the OLS
library in R on the continuous gaze features. On the
categorical gaze features, we utilized Chi-square
tests. Multiclass comparison is conducted among
hate, neutral and positively rated statements. The
binary classification (similar to many existing hate

speech classifiers) involves hate and non-hate cat-
egories. The non-hate category consists of both
neutral and positive statements. For each gaze fea-
ture, we checked whether there is a significant main
effect of subjective hate categories on the gaze fea-
tures. Table 2 presents F-scores and significance
levels of the above-mentioned statistical tests. The
first two columns in the table correspond to mea-
surements on all tokens in the dataset, the last two
columns on the right present the results conducted
only on the words selected as rationales.

Six out of 13 features consistently show sig-
nificant differences with high F-score values be-
tween the subjective hate ratings for multiclass
(hate, neutral, and positive) and for binary com-
parisons (hate and no hate): FIXATION-COUNT,
DWELL-TIME, MAX-FIX-PUPIL-SIZE, MIN-FIX-
PUPIL-SIZE, AVERAGE-FIX-PUPIL-SIZE and FIRST-
RUN-FIXATION-COUNT. Some features result in
low F-score values despite showing significant dif-
ferences in terms of subjective hate rating. In the
following, we remove features that yield low F-
scores or non-significant results.

All features that are significant in the multiclass
condition are also significant in the binary one,
but not the other way around. This indicates that
merging neutral and positive categories has a nega-
tive impact on the statistical difference. FIXATION-
COUNT, DWELL-TIME and FIRST-RUN-FIXATION-
COUNT are showing higher F-scores in the binary
comparison. Tukey’s tests for pairwise compar-
isons indicate that the differences in the fixation
and dwell time originate from the difference be-
tween the hate vs. neutral and hate vs. positive
conditions, while there is no difference between
neutral and positive conditions. On the other hand,
differences in the pupil size related parameters orig-
inate from difference in neutral conditions to hate
and positive conditions without showing a signif-
icant difference between the latter two. This also
confirms the theory of pupil size being more sensi-
tive to the magnitude of the emotion rather than its
polarity (Bradley et al., 2008).

5 HSD Models and rationales

In this Section, we evaluate several hate speech de-
tection (HSD) models on our GAZE4HATE dataset
to answer RQ2, which are described in Section 5.1.
We not only evaluate classification performance
(Section 5.2), but also measure the plausibility and
explainability of model decisions by looking into

191



Table 2: F and Chi-square scores (for continuous and
categorical features respectively) of multiclass and bi-
nary comparison of subjective hate ratings on (i) all
tokens and (ii) rationale tokens

Multiclass Binary Multiclass Binary

Gaze features (on area-of-interests) all tokens rationale tokens
FIXATION-COUNT 28.01%%  49.98%** | 14.86%*  28.51**
DWELL-TIME 25.20%%  4425%% | 13.38%% 24 48%*
MAX-FIX-PUPIL-SIZE 31.39%%  29.38%* | 14.11%* 16.30%*
MIN-FIX-PUPIL-SIZE 42.32%%  34.82%%|23.80%*  20.82%*
AVERAGE-FIX-PUPIL-SIZE 37.85%%  32.84%%]19.05%* 19.13%*
RUN-COUNT 0.61ns. 0.08ns. |6.30%** 6.87*
REG.-IN-COUNT 1.04ns. 2.07ns. |1.57ns. 0.03ns.
REG.-OUT-COUNT 0.32ns. 0.56ns. |0.33ns. 0.63ns.
FIRST-FIX.-DURATION 3.28* 0.19ns. |1.59ns. 0.27ns.
FIRST-RUN-FIXATION 41.49%%  54.19%% | 13.00%* 11.47%*
REG.-OUT 1.04ns. 2.07ns. |1.57ns. 0.03ns.
REG.-IN 1.61ns. 2.37ns. |3.48ns. 0.13ns.
SKIP 0.32%* 0.56ns. |0.33ns. 0.63ns.

Table 3: Overview of the off-the-shelf models for HSD
in German tested in this study.

pretrained fine-tuning
model dataset(s)

deepset G-BERT (Chan et al., 2020) GermEval 2018 (Wiegand et al., 2019)
ortiz  G-BERT HASOC 2019 (Mandl et al., 2019)
aluru  M-BERT Aluru et al. (2020)

Assenmacher et al. (2021), Demus et al. (2022),
Glasenbach (2022)

GermEval 2018 , GermEval 2021 (Risch et al., 2021),
Ross et al. (2017), Bretschneider and Peters (2017),
HASOC 2019

rott G-BERT

ml6 G-DistilBERT

the model rationales and compare them with the
human rationales and gaze features (Section 5.3).

5.1 Models

We tested five off-the-shelf models from Hugging-
Face, which we named for reference in the remain-
der of this paper deepset’, ortiz*, aluru’, rott¢
and ml6’, respectively. These models are either
German (G) or multilingual (M) BERT-based mod-
els finetuned on one or more HSD datasets. Rather
than aiming to outperform these models on general-
purpose hate speech classification, we selected
them as candidates to build upon our multimodal
models. A more detailed overview of the models is
given in Table 3 and in Appendix C.1.

Based on the performance results of the off-the-
shelf models on our dataset (Section 5.2), we took
the best-performing model for further finetuning.

rott-hc  We finetuned the rott model (see Table 3)
on the German HateCheck corpus® (Réttger et al.,

3 .
https://huggingface.co/deepset/
bert-base-german-cased-hatespeech-GermEvali18Coarse

4
https://huggingface.co/jorgeortizv/
BERT-hateSpeechRecognition-German

5
https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-german
6
https://huggingface.co/chrisrtt/gbert-multiclass-german-hate

7
https://huggingface.co/ml6team/
distilbert-base-german-cased-toxic-comments

8https ://huggingface.co/datasets/Paul/hatecheck-german

Table 4: Classification performance (F1-scores) of the
different models on the subjective hate ratings.

n deepset ortiz aluru rott ml6 rott-hc
HATE 1707 0.51 0.04 0.00 0.59 0.16 0.66
NO HATE 1909 0.70 0.70 0.69 0.62 0.71 0.70
macro avg 3616 0.60 035 035 0.60 0.44 0.68
weighted avg 3616 0.61 039 036 0.60 0.45 0.68

2021), which comprises 3645 crafted sentences,
of which 2550 hateful and 509 sentences (hateful
and non-hateful) are targeting women. Finetuning
details can be found in Appendix C.2.

5.2 Classification results

We evaluate all models regarding the subjective
hate ratings of all individual participants. Both
human and model output labels are converted to a
binary classification scheme (details in Table 8 in
Appendix C.3). It must be emphasized that our task
is not to detect a majority-class annotation label.
Instead, we aim to detect whether a sentence is
perceived as hate by an individual.

The F1-scores results are presented in Table 4.
rott shows the best performance on detecting
HATE sentences (F1 on HATE of 0.59), proba-
bly due to the fact that this model is the only one
that has deliberately been trained to detect sexist
hate speech. Fine-tuning this model further on the
HateCheck dataset, resulted in a significant perfor-
mance increase (the rott-hc model shows a macro
avg. F1 of 0.68).

5.3 Model rationales

Model rationales for the best performing model (i.e.
rott-hc) were generated using Captum (Kokhlikyan
et al., 2020), an open source library built on Py-
Torch. Based on Atanasova et al. (2020), we se-
lected three methods that showed the best results
for Transformer-based models on a sentiment clas-
sification task: (1) InputXGradient (¢2 aggregated),
(2) Saliency (¢2 aggregated) and (3) Shapley value
(sampling) °.

For each sentence, we extract model rationales
for both classes, i.e. a rationale for classifying a
sentence as HATE and a rationale for classifying
that same sentence as NO HATE. The extracted
rationales are then converted from sub-word level
(the output level that is inherent to BERT-based
models) to word level (aligning with the human
rationales), by averaging over multiple sub-word
values that constitute a single word.

9For the details of the algorithms, please visit Captum library: https://captum.ai/
docs/algorithms
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Figure 3: Mean correlation (Pearson’s r) between model
rationales, human rationales and gaze features.

For each sentence and annotator, we compare the
subjective hate rating (h), human rationale or a gaze
feature (f) with a model rationale (1) with respect
to class ¢, where ¢ = r. We aggregate correlation
values, each calculated as Pearson’s r correlation
metric between f and 7, over all sentences and
annotators by taking the mean.

Figure 3 reports mean correlation values of the
human rationales and gaze features with the model
rationales extracted with different methods (details
in Table 9 in Appendix C.4). The six gaze features
that showed a significant effect on subjective hate
ratings (Table 2) are selected for this analysis. For
all human rationales and gaze features, InputXGra-
dient and Saliency rationales show substantially
higher correlation than Shapley Value rationales.
Additionally, InputXGradient rationales, although
less substantial, consistently show higher agree-
ment than Saliency rationales. The variation in
agreement among the different gaze features and
human rationale show the same pattern for all three
rationale methods. Human rationales correlate the
highest with model rationales. Among the gaze fea-
tures, three features, i.e. DWELL-TIME FIXATION-
COUNT and FIRST-RUN-FIXATION-COUNT, show
a higher correlation (> 0.2) with InputXGradient
rationales, while the other three features AVERAGE-
FIX-PUPIL-SIZE, MAX-FIX-PUPIL-SIZE and MIN-
FIX-PUPIL-SIZE show small to no correlation (be-
tween -0.1 and 0.1).

6 MEANION - A Gaze-integrated
Baseline Model

In this section, we explore whether gaze features
improve pretrained and finetuned models on clas-
sifying hate speech (RQ 3). We introduce the first
member of our new family of gaze-integrated HSD
models (MEANIONS).

6.1 Multimodal Representation

Our MEANION model uses multimodal embeddings
that combine three types of embeddings: CLS-
token from (L)LMs, token-level gaze features, and

MEANION Model

Multimodal Sentence Representation ®
[[oo 0)[00 o) _Q_O__Q |
C I S Gaze thturc -1 Rmon"dc% 7’7‘41
embedding hate ot no-

hate

Figure 4: Multimodal sentence representation as input
to the MEANION model

rationales as bag-of-words (bow) vector (Figure 4).
We trained MLP classifiers using the scikit-learn
library'® on multimodal sentence representations
(see Appendix D.3 for the training details).

As changes in eye movement patterns are rather
local (e.g. fixation duration increases if the to-
ken is unexpected), gaze features for some tokens
might be more informative than others for the clas-
sification, and averaging over tokens might lose a
significant amount of signal. Therefore, we kept
the values of each feature for each token in the rep-
resentation. We first add text features. We use Ger-
man BERT-base (Chan et al., 2020) and (the fine-
tuned) rott-hc model, which is the best model from
the previous experiments.We also investigate two
larger decoder-only LLMs. We selected quantized
(legacy) models from the German EM family'!
namely em-LLaMA2!? and em-Mistral'®. The sen-
tence embeddings are extracted via the LLaMA.cpp
tool'4.

We give the sentence as input to an (L)LM and
extract the CLS token embeddings (dim=768 or
4096). Depending on the testing configuration, we
add either gaze features (G) or rationales (R) or
both, to the sentence embeddings (E). For each
gaze feature, we create a feature vector f; that con-
tains a series of token values for that feature as
shown in Figure 1 padded to the maximum token
length of the sentences in GAZE4HATE (t=14). The
rationales selected in each instance added as bag-
of-words vector calculated using the COUNTVEC-
TORIZER module from sklearn (N= 248, number of
unique words in the dataset). We have also exper-
imented with token-level rationale representation,
see Appendix D.1.

10
https://scikit-learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

1 https://huggingface.co/jphme/em_german_7b_vo1

12em_german_7b_v0l,QS_().gguf
TheBloke/em_german_leo_mistral.Q5_0.gguf

14 https://github.com/ggerganov/
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Table 5: Macro and F1 scores for each category of the MLP Classifier. E: word embeddings, G:individual gaze
feature, R:Rationale, GPlus: all 6 gaze features (underline : highest score in vertical orientation, bold: highest score
among the respective fl1-metric (macro, hate or nohate) (horizontal)

bert-base bert-ft (rott-hc) em-LLaMA2 em-Mistral
condition  macro_f1 hate_f1 nohate_fl\macro_fl hate_f1 nohate_fl\macro_fl hate_f1 nohate_fl\macro_fl hate_f1 nohate_f1
E 0.56 0.54 0.57 0.63 0.60 0.65 0.58 0.56 0.59 0.65 0.56 0.73
EG 0.59 0.57 0.61 0.69 0.68 0.70 0.60 0.56 0.63 0.68 0.62 0.75
ERpow 0.65 0.63 0.68 0.66 0.61 0.70 0.60 0.56 0.64 0.61 0.56 0.65
EGRpow 0.63 0.61 0.65 0.68 0.65 0.72 0.60 0.57 0.62 0.61 0.58 0.65
EGPlus 0.57 0.53 0.61 0.67 0.64 0.69 0.57 0.56 0.59 0.65 0.58 0.71
EGPlusRpow 0.63 0.62 0.64 0.62 0.54 0.71 0.58 0.54 0.61 0.61 0.58 0.64

6.2 Results

Table 5 summarizes the performance of various
feature combinations on predicting subjective hate
(binary classification as hate versus no-hate). We
report macro-F1 and F1-scores for both hate and
no-hate classes. The first row corresponds to the
performance of the model trained on only CLS
embeddings (E). CLS&Gaze (EG) row provides
the highest score obtained with the inclusion of a
gaze feature one at a time. The third row belongs to
the CLS&Rationale (ER) model (no gaze feature).
The next variation includes rationales added to the
EG Model (EGR). Finally, the last two variations
include all gaze features (Plus). The contribution of
each individual feature is presented in Appendix 7.

For the subjective HSD, the finetuned MEANION
models predominantly outperform other MEANION
models. The injection of gaze features increases
performance: .03 F1-score improvement using the
BERT-base, .06 using the rott-he, .02 with em-
LLaMAZ2, and .03 using em-Mistral. The rationales
contribute more to the BERT-base MEANION (.09),
slightly improve the performance of the MEANIONs
with the finetuned (.03) and em-LLaMA2 mod-
els (.02), and it drops the performance of the em-
Mistral (—.04). Except for the BERT-base model,
they even hurt the performance up to .07 when
combined with gaze features. It should also be
highlighted that integrating gaze and rationale fea-
tures to BERT-base MEANION brings the perfor-
mance closer to the text-only rott-hc MEANION.
The results highlight that gaze features provide sub-
stantial complementary information for subjective
HSD and produce similar effects to fine-tuning on
hate speech data.

For E-only models, MEANIONs with only the
em-LLaMA?2 and em-Mistral embeddings (without
fine-tuning) indicate higher performance compared
to the BERT-base MEANION. The contribution of
gaze and rationales to em-LLaMA?2 embeddings
seems to be at the similar level. Furthermore, em-

Mistral plus gaze embeddings are the best among
the em-Mistral variations, and these results are sig-
nificantly better than em-LLaMA?2 performances
and BERT-base models. The results demonstrate
that EG models outperform all other variations.
These also further confirm our conclusion that gaze
features provide complementary information for
subjective HSD, which is not represented in smaller
or large LLMs.

In conclusion, MEANION with the finetuned
BERT, especially the gaze-integrated one, outper-
forms all other variations. E-only em-LLaMA2
and BERT-base models perform on a similar
level. Among these variations, E-only em-Mistral
achieves higher macro-F1, yet the finetuned (rott-
hc) ones show better F1-score for the hate class.
The contribution of eye movements on (L)LM only
models is consistently observed and statistically
proven with our further pairwise model compar-
isons using the McNemar’s test (see Appendix Fig-
ure 11).

7 Discussion

Based on the above described experiments we re-
visit our research questions.

RQ 1: Do gaze features provide robust predic-
tors for subjective hate speech annotations? Yes.
According to the analysis of annotators’ gaze pat-
terns, 6 out of 13 gaze features differ with respect
to the subjective hate categories.

RQ 2: How do gaze features correlate with
human and model rationales? InputXGradient
method seems to be more aligned with the fixation-
based gaze and human rationales, which makes it
more suitable explanation method for subjective
hate ratings. But the pupil size related parameters
are not correlated with model rationales, this might
mean that the signal carried by pupil size might be
one of the missing components in the HSD models.
More systematic analysis on the individual token
level among the systematically manipulated con-
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ditions, which is beyond the scope of this paper,
might provide valuable insight for future directions.

RQ 3: Are gaze features useful for enriching
LMs for HSD? Yes. For a MEANION model all six
features as well as the human rationale improve per-
formance (compared to using embeddings alone).
A further question arises from this conclusion: Do
features that correlate badly with model rationales
(i.e. carrying complementary information) improve
the performance of a model enriched with these
features? Figure 5 plots the relationship between
subjective hate rating effects, correlation with In-
putXGradient rationales, and error reduction in
MEANION models. It shows that the features badly
correlating with the model rationales do not neces-
sarily improve the MEANION models (they do for
base (B) but not for the rott-hc model (F)).

Human rationale
1,00,

AVG-FIX-PUPIL DWELL-TIME

MAX-FIX-PUPIL FIX-COUNT

MIN-FIX-PUPIL

FIRST-FIX-COUNT

[] Effect of subjective hate rating
[ Error reduction MEANION (B) model

Correlation InputXGradient rationales
Error reduction MEANION (F) model

Figure 5: Effect of subjective hate rating, the correlation
with model rationales and the error reduction for both
the base and rott-hc MEANIONS, for six gaze features
and human rationale '°.

8 Conclusion

We introduce a rich dataset of human readings of
hate speech. Our GAZE4HATE dataset is enriched
with gaze features and subjective hatefulness rat-
ings collected from 43 participants on 90 sentences
(3870 unique subjective annotation instances). We
compare subjective human hate ratings, human
gaze and human rationales with hate speech mod-
els rationales. By doing so, we also experiment
with various model explanation methods and com-
pare their performance in aligning with human be-
haviour. The human attention values (represented
with a set of gaze features and rationales) are a
highly valuable source not only for evaluating the
models, but also for training them with cognitively
guided attention mechanisms (Ding et al., 2022;
Long et al., 2019; Hollenstein et al., 2019). In ad-

dition, we also introduce the first gaze-integrated
hate speech model (MEANION), which successfully
shows the contribution of gaze features on subjec-
tive hate speech classification.
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Limitations

To evaluate the individual effect of the human gaze
and rationale, we implement a basic solution with-
out complex training schemes or multimodal fusion
techniques. Our results encourage pursuing more
sophisticated implementation for modeling the hu-
man gaze for classifying subjective hate speech.
Because of space constraints, we could not elabo-
rate on the differences between linguistic manipula-
tions, which can help explain the relations between
human gaze, human rationales, and model ratio-
nales.

There are linguistic or even non-linguistic fac-
tors like (word length, word frequency, expecta-
tions etc.) in our experimental set-up that influence
cognitive processes. We attempt to minimize these
risks with the careful selection of minimal pairs,
the random ordering of the sentences, dealing with
null values etc.

It should be noted that the decoder-only models
are trained on different objectives than BERT-based
models. There is a significant amount of ongoing
research on how sentence or token embeddings
should be extracted or how they could be inter-
preted. In our paper, we do not aim to address
these issues.

Due to the controlled data collection procedure
to explore the statistical robustness of different
types of gaze features for subjective hate speech de-
tection, the experimental setup may not fully reflect
real-world scenarios of hate speech detection. We
know that the participant pool lacks diversity, pri-
marily consisting of university students. This might
raise concerns about ecological validity. Despite
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this limited diversity, our results indicate subjective
variation, especially concerning specific statements,
as could be seen in Figure 8 and Figure 9 in Ap-
pendix B.3. Even in the same apriori category, we
observe variation in terms of averaged hatefulness
score. Besides, the deviation for each sentence also
varies. To address this limitations, future work will
address extending the diversity in the participant
pool (different backgrounds, cultures, languages,
ages etc) and the target groups addressed in the
dataset.

Ethics Statement

All recordings have been made after the signed
consent of the annotators. Participants’ identities
are anonymized using pseudo-participant ID. The
shared data do not contain any cues to reveal their
identities. The dataset contains hateful statements
about women and men, which do not reflect the
opinion of any of the authors.

Hate speech is widespread in social media and
causes a lot of harm to individuals, groups, and
societies. Therefore, we consider social media as a
possible application area, where models fine-tuned
with gaze information can be used for individual-
ized content moderation. Yet, our research does
not imply that individual gaze information needs
to be shared with/evaluated by social media com-
panies. Eye-tracking technology, already part of
many virtual headsets (HTC VIVE!®, Apple Vi-
sion!’, etc.), seems to be entering our daily lives
through our phones and laptops (e.g., Rathnayake
et al. (2023); Brousseau et al. (2020)). From an ap-
plication point-of-view, incorporating users’ gaze
into phone applications via offline applications or
through federated learning (by deploying a trained
model) that can be integrated into social media or
messaging APIs might take the privacy concerns
into account.
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A Appendix

A.1 Instructions for the Annotators

The experimental instructions were given in writ-
ten format in German. After the instructions, the
participants completed 4 familiarization trials. Be-
fore starting with the main experiments, we make
sure that they do not have any further questions
regarding the task. The following text corresponds
to the translated instructions:

During this experimental session, you will be pre-
sented with 90 sentences. While some sentences
have highly positive sentiments, some of them are
hateful. There are also sentences that are neither
positive nor hateful. For the current study, we
define hate speech as expressions that carry a very
negative stance (in terms of their intent). Please
always keep this definition in mind and annotate
the sentences carefully. One trial consists of (i)
reading a sentence, (ii) evaluating its hatefulness,
(iii) evaluating your confidence in this decision,
and finally, (iv) highlighting the parts of the sen-
tence that contribute to its hateful meaning (if
any).

Step-1: Read the sentence freely and press a key
when you are done reading.

Step-2: You will be asked to evaluate the sentence
on a 1 to 7 Likert scale. Please think thoroughly.

Step-3: You will be asked to evaluate your cer-
tainty/confidence while giving this score.

Step-4: In this final step, each word in the sen-
tence is shown in a bounding box. Please click on
the words that contribute to your decision. You
can have multiple selections. The boxes will be
highlighted when you click them or hover them
with your mouse during a press. To unselect a box
or a series of boxes, you can click on them again.
Feel free to try the annotation tool out during the
familiarization period.

A.2 Data Availability

In addressing the reproducibility of our study as
well as the availability of software and datasets, we
provide the following link to our GitHub repository
under a CC-BY-NC 4.0 license: https://gitlab.
ub.uni-bielefeld.de/clause/gazedhate.

A.3 Appendix: SR Eyelink definitions of gaze
features

The description of row features which are di-
rectly taken from SR-Eyelink Dataviewer Export
(User Manual : Data Viewer 4.3.210 https://www.
sr-research.com/support/):

* FIXATION: Percentage of all fixations in a
trial falling in the current interest area.

* DWELL-TIME_%: Percentage of trial time
spent on the current interest area

* MAX-FIX-PUPIL-SIZE: Maximum pupil
size among all fixations falling within the in-
terest area

* MIN-FIX-PUPIL-SIZE: Minimum pupil size
among all fixations falling within the interest
area

* AVERAGE-FIX-PUPIL-SIZE: Pupil size of
the current sample averaged across the two
eyes.

e RUN_COUNT: Number of times the Interest
Area was entered and left (runs).

* REGRESSION_IN (categorical): Whether
the current interest area received at least one
regression from the later part of the sentence

* REGRESSION_IN_COUNT: Number of
times the current interest area was entered
from interest areas with higher IA_IDs.

* REGRESSION_OUT (categorical): Whether
regression(s) was made from the current inter-
est area to the earlier part of the sentence

e REGRESSION_OUT_COUNT: Number of
times the current interest area was exited to
a lower IA_ID before an interest area with a
higher IA_ID was fixated in the trial.
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Figure 6: Number of tokens per subjective hate cate-
gories

* SKIP (categorical): An interest area is con-
sidered skipped (i.e., SKIP = 1) if no fixation
occurred in first-pass reading.

In addition to the participant-specific gaze nor-
malization, the data needs to be preprocessed con-
cerning missing values, which are not uncommon
in gaze data. For example, if a participant skips
a word during reading or a blink is detected, the
respective data point is null. If all token values for
a gaze feature are null, the trial is removed from the
dataset, otherwise, null values are replaced with ei-
ther zero (if it is skipped) or the average (if a blink
is detected).

B Gaze4Haze Annotation Results

B.1 A Closer look at the manipulated tokens
and rationales

A Chi-square test has been conducted to see the
difference on rationale selections among subjective
hate categories. It revealed a significant main effect
(x%(1) = 110.49,p < .001).

Figure 6 shows the distribution of rationales,
manipulated words and other tokens in the entire
dataset. Since manipulated tokens occur only in the
minimal pair conditions (see 3), their frequency is
overall lower compared to rationales and other to-
kens. The ratio of rationales to all tokens is similar
among the subjective hate categories (hate: 32.9%),
neutral: 29.1%, positive: 33.49). On the other hand,
the ratio of the tokens that are both manipulated and
selected is higher in hate category (13.0%) com-
pared to neutral (8.13%) and positive categories
(8.33%). A detailed look on the interaction be-
tween these two token types are beyond the scope
of this paper, here we will provide a glimpse of a
bigger analysis.

Manipulated words (parts of minimal word pairs)
are the markers that change the hatefulness of the

statement. As an example, for the following sen-
tences, “Women belong in the kitchen” and “Pots
belong in the kitchen”, “women” and “pots” are
the minimal pairs, which are manipulated. For the
former case, this manipulated token is selected as

rationale, in the latter, not.

Since (i) the annotators consistently selected
more words in their rationales than only the word
we manipulated, and (ii) they select rationales for
the positive statements too, the selection of a word
for a rationale is not always an indication of hate,
but also of general importance for the annotation
decision.

We conducted further Anova tests to check
whether the gaze features differ on words being ma-
nipulated and /or selected for the rationale from the
minimal pair conditions. Table 6 shows statistical
significance levels of the Anova tests in multiclass
and binary comparisons. The gaze measurements
on the rationales differ among the subjective hate
categories. But when it comes to tokens which are
manipulated but not selected (e.g. pots as in the
example above), while fixation-based parameters
still show significance difference, only pupil size
related parameters do not differ, this might tell that
pupil size parameters might be more sensitive at
the token level while fixation-based parameters are
more in line with the overall sentence stance.

Regarding the restricted subset of both manip-
ulated and selected tokens, we also observe cases
where gaze measurements show no sensitivity in
terms of the hate category (e.g. DWELL-TIME,
RUN-COUNT, FIRST-RUN-FIXATION, which differs
highly significantly when we look at the all dataset.
This means that regardless of their hatefulness, they
exhibiting similar gaze patterns. Our manipula-
tions successfully provide fine-grained control con-
ditions, yet their evaluations are beyond the scope
of this paper.

R. M.& R. M. & ~R.
Multi (Binary) Multi (Binary) Multi (Binary)

FIXATION-COUNT ns. (0.05) ns. (ns.) 0.01 (0.01)
DWELL-TIME 0.01 (0.01) ns. (ns.) 0.01 (0.01)
MAX-FIX-PUPIL-SIZE 0.05 (0.01) 0.05 (0.05) ns. (ns.)
MIN-FIX-PUPIL-SIZE 0.01 (0.01) 0.01 (0.01) ns. (0.05)
AVERAGE-FIX-PUPIL-SIZE 0.01 (0.01) 0.01 (0.01) ns. (ns.)
RUN-COUNT 0.01 (0.01) ns. (ns.) 0.01 (0.01)
FIRST-RUN-FIXATION-COUNT | 0.01 (0.01) ns. (ns.) 0.05 (0.01)

Table 6: Significance levels of feature-wise comparison
of subjective hate ratings on manipulated conditions
w.r.t. whether the token is (i) manipulated or not (M)
and (ii) selected as rationale or not (R)
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B.2 Confidence Ratings

The average confidence score for the a priori cate-
gories is above 3.5 out of 5 indicating that the sen-
tences were rated with sufficient confidence rather
than random assignment.

35
30
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£
8 d as Rationale
5 20 - female
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15
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10
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00

positive neutral hate
Conditions

Figure 7: Average confidence scores on the a priori
labels (as hate, neutral, positive)

B.3 Subjective Hatefulness Ratings per
sentence and condition

The following Figure 8 illustrates the variation for
individual sentences with the a priori labels (x-axis)
and their average subjective hate ratings (y-axis),
with the confidence intervals representing the vari-
ation in the ratings.

We initially created minimal triples (hate, neu-
tral, positive apriori). These are aligned in Fig-
ure 8. For example, the first bars in each subfigure
are variations of the first hateful sentence (1:hate,
52:neutral, 73:positive), and the second bars in each
subfigure belong to the same minimal pair condi-
tions (2, 53, 74) and go like that. The error bars
indicate a general agreement between the annota-
tors.

These graphs show that there are several state-
ments which were rated differently and the range
of the confidence intervals vary substantially.

In “the high hate against women” (c1) condi-
tion (Figure 8a), they are all evaluated as hateful,
while the sentences [3: Frauen haben im statistis-
chen Mittel ein kleineres Allgemeinwissen.] and
[15:Eine klassische Rollenverteilung in der Ehe ist
zu bevorzugen.] are at the lower band.

In the neutral (in terms of offensiveness to-
wards gender) statements (Figure 8b), they are
overall around the middle band. The sentences
[59: Minions konnen nichts und sind zu dumm.]
and [61:Die #keinurlaub-Bewegung ist hyster-
isch.] are evaluated as hateful on average, while
[64: Wissenschaftler sind iiberwiegend angetrieben
durch Neugierde.]and [68: Gleichstellung der
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w S w
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-
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(a) High Hate against women (MC) (N=20)
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Figure 8: Subjective hate ratings per experimental con-
dition and stimulus (MC: Manipulated conditions)

Geschlechter findet zunehmend hdufiger statt.] as
positive.

In the positive towards women condition (Fig-
ure 8c), the evaluation shows mixed, but generally
neutral or positive ratings with the exceptions [78:
Frauen sind Mdnnern im Erinnerungsvermdgen
tiberlegen.] [83: Frauen sollten nicht zu Hause
bleiben und sich um ihre Karriere kiimmern].

On the other hand, other conditions which are
included as control conditions also display interest-
ing tendencies. (Figure 9a) is directly taken from
the subset of FEMHATE dataset, namely "medium
hate against women". Our participants mostly con-
sider these statements in either mean or neutral

201



»

Intensity_rating
w

N

0

Hatefulness Ratings for hate_w_med per stimulus

(a) Offensive against women (N=10)

7

6
5I
0

a2

(b) Hate against men (N=10)

2
0
2:

Hatefulness Ratings for no_hate_w per stimulus

Intensity_rating
[PEREN

~

43 44 a5 46 47 48 49 50 51
Hatefulness Ratings for hate_m per stimulus

~

o

«

-

Intensity_rating
w

(c) No Hate (N=10)

Figure 9: Subjective hate ratings per experimental con-
dition and stimulus

conditions except the sentence [34: Frauenquote
muss iiberall sein.]

The statements in the "Hate against men" condi-
tion (Figure 9b) are evaluated as hate on average
except the sentence [49: Minner sind bei Stellen-
vergaben privilegiert.]

The statements in the "No Hate" condition (Fig-
ure 9c) are generally evaluated as positive state-
ments.

C HSD Models and Their Rationales
C.1 Details of Huggingface Models

Deepset Deepset Model is finetuned on Ger-
mEvall8 (coarse and fine) (Wiegand et al., 2019),
collected from Twitter data. GermEval18(Coarse)
requires a system to classify a tweet into one of
two classes: OF FENSE if the tweet contains some
form of offensive language , and OTHER if it does
not. For this dataset, similar to our study, the
target groups are not explicitly mentioned in the
hate speech definition. The author uses the follow-

ing definition: “In the case of PROFANITY, pro-
fane words are used. However, the tweet does not
want to insult anyone. In the case of INSULT, un-
like PROFANITY, the tweet clearly wants to offend
someone. In the case of ABUSE, the tweet does not
just insult a person but represents the stronger form
of abusive language ascribing a social identity to
a person that is judged negatively by a (perceived)
majority of society.” All these categories were
treated in one category in GermEvall8 (Coarse)
dataset. This model that makes binary classifica-
tion on broader terms of hate speech aligns with our
content as well, yet the inclusion/ratio of gender-
related hate in the training data is not known.

Ortiz The model Ortiz is a fine-tuned version of
bert-base-german-cased using the HASOC dataset
(Mandl et al., 2019) to detect hate speech, specifi-
cally in the German language. It has binary class as
hate versus no hate, which aligns with our binary
classification. Hate speech is defined as “Describ-
ing negative attributes or deficiencies to groups of
individuals because they are members of a group
(e.g. all poor people are stupid). Hateful comment
toward groups because of race, political opinion,
sexual orientation, gender,social status, health con-
dition or similar.” Although gender is not directly
mentioned as target group in the hate speech def-
inition, the definition itself looks inclusive. The
inclusion/ratio of gender-related hate in the train-
ing data is also not known.

ALURU Hate-Speech-CNERG (Aluru et al.,
2020), another well-known hate speech model, is
fine-tuned on the multilingual BERT model. They
use two labels, hate speech and normal, and dis-
card other labels like (offensive, profanity, abusive,
insult, etc.). For German, the model is trained on
(Ross et al., 2017; Bretschneider and Peters, 2017)
datasets. Both German datasets carry hate speech
against foreigners. As definition, Ross et al. (2017)
dataset uses the Twitter rule as ‘““You may not pro-
mote violence against or directly attack or threaten
other people on the basis of race,ethnicity, national
origin, sexual orientation, gender, gender identity,
religious affiliation, age, disability,or disease. We
also do not allow accounts whose primary purpose
is inciting harm towards others onthe basis of these
categories.” The Bretschneider and Peters (2017)
dataset contains sentences against the government
represented by political parties and politicians, the
press and media, other identifiable targets, and un-
known targets. Yet, gender-related hate speech is
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Table 7: Individual contribution of each gaze feature

finetuned

BGR

em-LLaMA2

BGR

BG

em-Mistral

BGR

BERT-base
BG BGR BG
feature macro_f1 hate_f1|macro_f1 hate_f1|macro_f1 hate_f1
AVERAGE_FIX_PUPIL_SIZE | 0578 0579 | 0.614 0583 | 0.689  0.679
DWELL_TIME_% 0.548 0530 | 0.616  0.585 | 0.671 0.647
FIRST_FIXATION_DURATION | 0.544 0.551 0.631 0.617 0.668 0.640
FIRST_RUN_FIXATION_% 0.540 0.507 0.631 0.611 0.687 0.666
FIXATION_% 0.542 0.515 0.616 0.591 0.642 0.605
MAX_FIX_PUPIL_SIZE 0536 0.554 | 0.613 0589 | 0.660  0.639
MIN_FIX_PUPIL_SIZE 0.567 0.530 0.605 0.577 0.685 0.669
REGRESSION_IN_COUNT 0.540 0.532 0.595 0.594 0.670 0.646
REGRESSION_OUT 0.519 0.514 0.605 0.585 0.674 0.653
Pupilsize_variation 0.531 0.534 0.629 0.597 0.675 0.647
Forward_reg_count 0.588 0.570 0.629 0.604 0.681 0.668

macro_f1 hate_f1

0.621
0.664
0.679
0.665
0.643
0.650
0.662
0.683
0.649
0.642
0.632

0.557
0.606

macro_f1 hate_f1

0.565
0.575

0.552
0.558

macro_f1 hate_f1

0.588
0.571

0.553
0.555

macro_f1 hate_f1

0.628
0.641

0.525
0.554

macro_f1 hate_f1

0.609
0.613
0.612
0.602
0615
0.597

0.577
0.576
0.580
0.563
0.579
0.555
0.564
0583
0.548
0.546
0.571

still part of the training data represented in other
languages. This dataset is different in terms of data
collection; they use seed words to scrap data from
Facebook; and the collected data has been anno-
tated by two experts as “slightly offensive to offen-
sive”, “explicit to substantial offensive statements
and “none of these” conditions. To conclude, this
model is trained on datasets with different annota-

tion styles and labels contributing to its diversity.

EX]

Rott : Itis a fine-tuned model on three datasets:
RP (Assenmacher et al., 2021) and DeTox (Demus
et al., 2022). The details of the third dataset, which
is the Twitter dataset (Glasenbach, 2022) are unfor-
tunately missing in the huggingface model card. It
performs a multi-class classification of hate speech.
The classes are No Hate Speech, Other Hate Speech
(Threat, Insult, Profanity), Political Hate Speech,
Racist Hate Speech and Sexist Hate Speech. For the
Assenmacher et al. (2021) dataset, the definitions
vary with respect to the type of hate/abusive speech
as follows: “(i) Attacks on people based on their
gender (identity), often with a focus on women,
(i) Attacks on people based on their origin, ethnic-
ity, nation , (iii) Announcements of the violation
of the physical integrity of the victim, (iv) Deni-
grating, insolvent, or contemptuous statements, (v)
Usage of sexually explicit and inappropriate lan-
guage, (vi) Organisational content, such as requests
on why specific posts have been blocked and finally
(vii) Comments advertising unrelated services or
products. ” This dataset does not always include
targets in their definition as well. On the other
hand, another dataset used in the finetuning of Rott,
DETOX has a stricter definition scheme. It distin-
guishes between toxic comments and hate speech.
“Toxicity indicates the potential of a comment to
“poison” a conversation. The more it encourages
aggressive responses or triggers other participants
to leave the conversation, the more toxic the com-
ment is. On the other hand, hate speech is defined

as any form of expression that attacks or dispar-
ages persons or groups by characteristics attributed
to the groups. Discriminatory statements can be
aimed at, for example, political attitudes, religious
affiliation, or sexual identity of the victims.” We
subsumed the predictions on our dataset into two
as no hate speech versus others (as hate).

ml6é : German DistilBERT model fine-tuned on
a combination of five German datasets containing
toxicity, profanity, offensive, or hate speech. All
labels were subsumed to either toxic or non-toxic.
(i) GermEvall8 (labels: abuse, profanity, toxic-
ity). (i) GermEval21 (Labels: toxic or not). The
toxic comments contain “Screaming - Implying
volume by using all-caps at least twice”, “Vulgar
language — Use of obscene, foul or boorish lan-
guage”, “Insults — Swear words and derogatory
statements”, “Sarcasm -Ruthless, biting mockery”
and “Discrimination — Disparaging remarks about
entire groups with sweeping condemnation”, “Dis-
crediting — Attempt to undermine the credibility
of persons, groups or ideas, or deny their trust-
worthiness” and finally “Accusation of lying In-
sinuation that ideas, plans,actions or policies are
dishonest, subterfuge and misleading”. The third
dataset is Ross et al. (2017) dataset as mentioned
above. The fourth one is Bretschneider and Pe-
ters (2017) as mentioned above. The final one is
the HASOC 2019 (listed above). This dataset also
aligns with our binary classification on a wide spec-
trum. Yet the inclusion/ratio of gender-related hate
in the training data is also not known.

To sum up, in the fine-tuning of these existing
huggingface models, their authors seem to embrace
a variety in hate speech definitions and class labels.
The wide range of the spectrum (offensive, abusive,
toxic, etc.) utilized in the selected datasets for fine-
tuning them also aligns with our wide spectrum.
Furthermore, Rott is explicitly fine-tuned on sex-
ism; this also explains its out-of-the-box best per-
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formance. Therefore, we continue with this model
for further fine-tuning on the HateCheck Dataset
and use the Hate-check further fine-tuned version
with multimodal integration. The base models are
integrated into our model in a plug-and-play fash-
ion, which makes the extension to include other
models straightforward.

C.2 Finetuning Details of rott-hc

We finetuned the rott model (see Table 3) on the
German HateCheck corpus'® (Rottger et al., 2021).
For finetuning, we used 80% for training and 20%
as development set (for evaluation over different
epochs). We finetuned the model for 3 epochs with
a batch size of 8, running just on a Macbook Pro’s
CPU. Other details: implementation with pytorch
and transformers libraries, AdamW optimizer for
training with learning rate of 5e-5 (and all other
default hyperfeatures), applying linear scheduler
with O warmup steps.

C.3 Label Alignment

Table 8 gives an overview of the label aligning of
the different model classes and the binary classi-
fication schedule that we used for evaluating the
different models.

Table 8: Label aligning of model classes and (human)
subjective hate ratings with binary classification sched-
ule for evaluation purposes. ("HS = Hate Speech)

Binary human deepset  ortiz aluru rott ml6 rott-he
Other HS*
HATE  hateful OFFENSE 1  HATE Political HS '\ e hateful
Racist HS
Sexist HS
neutral .
NO HATE .. OTHER 0 NON_HATE No HS non_toxic non-hateful
positive
C.4 Model rationales

Table 9 reports mean correlation values of the hu-
man rationales and six gaze features with the model
rationales extracted with the three different meth-
ods.

Table 9: Mean correlation (Pearson’s r) between model
and human rationales and features. (No correlation
values are included for constant feature arrays)

n  input_x_gradient saliency shapley_value

FIXATION-COUNT 3602 0,249 0,221 0,035
DWELL-TIME 3616 0,257 0,228 0,038
AVERAGE-FIX-PUPIL-SIZE 3504 -0,009 -0,004 -0,002
MAX-FIX-PUPIL-SIZE 3503 0,079 0,075 0,005
MIN-FIX-PUPIL-SIZE 3503 -0,089 -0,078 -0,01

FIRST_RUN_FIXATION-COUNT 2604 0,220 0,200 0,031

Human rationale 3128 0,335 0,298 0,077

1
8https ://huggingface.co/datasets/Paul/hatecheck-german

D MEANION model results

Table 7 shows the contribution of each gaze feature
separately for the base and the finetuned models.
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Figure 10: Accuracy scores for all model variations
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Figure 11: Pairwise Model Comparisons using McNe-
mar’s Statistics (only significant differences are visu-
alized, the color denotes the chi-squared value. The
darker value means higher Chi-squared value, meaning
a bigger significant difference.)

D.1 Position-based and BOW Rationale
Representation

Figure 12 illustrates the effect of different ratio-
nale representations combined with various LM
and gaze embeddings on the HSD classification.As
seen from the graph, for the BERT-based models,
adding rationales as bag-of-words representation
results in higher performance, while for LLMs,
we observe the opposite trend, this might indicate
that semantic information regarding those words se-
lected as rationales were already represented by the
CLS embedding, highlighting the position of the
rationales in combination with gaze information
bring forth more complementary information.

D.2 Implicit versus Explicit Hate Speech

Insights into performance values of the different
models with respect to implicitness (Table 10) show
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n  deepset ortiz aluru rott mlé rott-hc

explicit 944 053 0.08 0.00 0.61 0.21 0.68
implicit 763 0.48 0.00 0.00 0.57 0.10 0.65
NO HATE explicit 1031 0.68 0.69 0.69 0.61 0.71 0.63
implicit 878 0.71 0.70 0.70 0.62 0.71 0.76

HATE

Table 10: Model performance w.r.t. linguistic types.

that for the instances rated as hateful, the models
perform better on the sentences where hatefulness
is based on lexical cues (F1-score of 0.68 for rott-
hc) rather than on implicit knowledge (F1-score of
0.65 for rott-hc). For the instances rated as non-
hateful, it seems to be the other way around (F1-
score of 0.76 for implicit, 0.63 for explicit cues).
We further plotted the accuracy scores in Fig-
ure 13 (i) to understand the models’ capabilities
to detect explicit and implicit hate speech and (ii)
to explore the effect of gaze and rationales on this
distinction. Among the base models (BERT, em-
LLaMA?2 and em-Mistral), the performance dif-
ference between hate (red lines) and no-hate (blue
lines) classes with BERT and Mistral-based models
are pretty clear. Overall patterns indicates the im-
plicit no hate is the easier to classify, while implicit
hate is the most challenging case as expected.

D.3 Training Parameters of MLP Classifier

For each LLM model and feature configuration, we
conducted grid search using sklearn. Later, each
configuration is trained with its best hyperparame-
ters (Table 11.

parameter_space = {
hidden_layer_sizes ’: [(64, 32),
(128, 64),

(128, 64, 32),

(256, 100),

(256, 100, 32)],

activation ’: [’tanh’, ’relu’],
>solver ’: [’sgd’, ’adam’],
>alpha ’: [0.0001, 0.0005,
0.001, 0.005, 0.017, # ,
“learning_rate ’: [’constant ’,

>adaptive ],

btype = base btype = finetuned
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Figure 13: Accuracy Scores of all model variations on
Implicit versus Explicit Statements

Table 11: Best hyper-parameters after grid search for
each configuration

BERT-base and finetuned-BERT

| features  Ir  hidden layer sizes

B 0.001 (256, 100)
bow| BG  0.0001  (128,64,32)
BR  0.001 (128, 64,32)
BGR 0.0001 (128, 64,32)
B 0.001 (256, 100)
BG  0.0001 (128, 64,32)
POS | BR  0.0001 (128, 64, 32)
BGR  0.0001 (128, 64)
em-LLaMA?2 and em-Mistral
B 0.001 (256, 100)
bow| BG 0001 (256, 100)
BR  0.0001 (64, 32)
BGR  0.0001 (64, 32)
B 0.001 (128, 64)
BG  0.001 (256, 100)
POS | BR  0.0001 (64, 32)
BGR  0.0001 (64, 32)
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