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Abstract

Weakly-supervised Spatio-Temporal Video
Grounding(STVG) aims to localize target ob-
ject tube given a text query, without densely
annotated training data. Existing methods ex-
tract each candidate tube feature independently
by cropping objects from video frame feature,
discarding all contextual information such as
position change and inter-entity relationship.
In this paper, we propose Video-Text Prompt-
ing(VTP) to construct candidate feature. In-
stead of cropping tube region from feature map,
we draw visual markers(e.g. red circle) over
objects tubes as video prompts; correspond-
ing text prompt(e.g. in red circle) is also in-
serted after the subject word of query text to
highlight its presence. Nevertheless, each can-
didate feature may look similar without crop-
ping. To address this, we further propose Con-
trastive VTP(CVTP) by introducing negative
contrastive samples whose candidate object is
erased instead of being highlighted; by com-
paring the difference between VTP candidate
and the contrastive sample, the gap of matching
score between correct candidate and the rest is
enlarged. Extensive experiments and ablations
are conducted on several STVG datasets and
our results surpass existing weakly-supervised
methods by a great margin, demonstrating the
effectiveness of our proposed methods.

1 Introduction

The task of STVG is of high importance to real
world applications such as general artificial in-
telligence for video understanding, information
retrieval for surveillance systems and human-
machine interaction, etc. To relieve the reliance on
heavily annotated training data, weakly-supervised
STVG deserves more research attention. Regret-
tably, training under this setting is an extremely
challenging because only the pairing information
between video clips and their corresponding query
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Figure 1: Comparison between existing paradigms
(Chen et al., 2019b; Li et al., 2023) and the proposed
Video-Text Prompting(VTP). Given pre-extracted can-
didate tube boxes, (a) existing methods obtain candidate
feature by cropping from frame feature, resulting in
contextual information loss; (b) our proposed VTP con-
structs context-preserving candidates by adding visual
and textual prompts to the input.

texts is available during training and no bounding
box nor temporal annotation could be used.

It is common for weakly-supervised methods to
reformulate the grounding problem as a retrieval
task where candidate tube boxes are obtained with
pre-trained object detectors and trackers then later
ranked based on the query to find the best pick. Ex-
isting methods reason with the entity’s tube feature
cropped from the global frame feature given its
boxes obtained in pre-processing step, discarding
all contextual information such as the entity’s rela-
tionship with other entities, its moving trajectory
and so on(illustrated in Fig. 1 (a)). We note that
this is an inherent difficulty for existing methods
as their feature extraction is usually done together
with the pre-processing step.

To overcome this weakness, we propose Video-
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Text Prompting(VTP). In detail, by transforming
the tube boxes obtained in pre-processing into
video prompt(e.g. red circles) that are drawn as
markers on the input video frames, as shown in Fig.
1 (b); we are able to preserve all useful context
information for reasoning. Meanwhile we prompt
the query sentence correspondingly by inserting
text prompt(e.g. in red circle) after the subject
word. We refer to candidate instances created in
this way as Video Prompted(VP) candidates. No-
tably, this will create a visual discrepancy with the
prompted query if the visual prompt lands on an
incorrect candidate thus lowering its matching po-
tential. Nevertheless, this discrepancy can be subtle
as it may contradict with the prompted query par-
tially. For example, the VP candidate 2 in Fig. 2 is
an interference as it partially matches the prompted
query: An adult in red circle? (Yes), He is walking
a dog? (No).

To address this issue, we further propose Con-
trastive VTP(CVTP) where we construct a Con-
trastive Video Prompted(CVP) counterpart for each
VP candidate by erasing its presence rather than
highlighting it. Intuitively, the matching score of
the CVP counterpart will be decimated in case the
correct candidate is erased and meanwhile it is high
for those incorrect candidate who is irrelevant to
the query text. Thus by calculating the matching
score difference between VP candidates and its
CVP counterparts, we suppress the interference
candidates and enlarge the gap between the correct
candidate and the incorrect ones, as shown in Fig.
2.

Another challenge in weakly-supervised STVG
is the temporal reasoning required to refine the
selected candidate tube along the time axis. We ad-
dress this by implementing a light-weight encoder-
decoder transformer where the self-attention layers
in encoder models temporal interaction between
the prompted video frames and the cross-attention
layers in decoder models the multi-modal reason-
ing between visual and linguistic feature. We con-
duct extensive experiments on two commonly used
STVG datasets and our results surpasses existing
weakly-supervised counterparts by a notable mar-
gin, which demonstrates its effectiveness.

We list our contributions as follows:

* To our knowledge, we are the first to explore
video-text prompting, creating artificial local
emphasis without losing global contextual in-
formation; which is especially beneficial for

video related tasks with complex multi-entity
interaction.

* We propose a novel Contrastive Video-Text
Prompting method for weakly-supervised
STVG to create contrast between videos with
highlighted and erased candidate information,
enlarging the advantage of the correct candi-
date in ranking.

* Our method achieves SOTA performance by a
margin on widely used datasets and certain re-
sults even outperform some of the supervised
methods.

2 Related Works

Visual Prompting Originated for NLP commu-
nity, prompting methodology can be generalized
as adding fixed or trainable parameters to the raw
input. Most of the early prompting inspired works
for visual-related tasks (Radford et al., 2021; Zhou
et al., 2022; Ju et al., 2022) only prompt text or
class labels, there is also works explore visual
prompts by adding learnable pixels or tokens to
raw image input (Bahng et al., 2022; Wu et al.,
2022; Jia et al., 2022). The form of visual prompts
become diverse in recent years, such as bounding
boxes (Yao et al., 2021), masks (Li et al., 2024)
or even mouse clicks (Kirillov et al., 2023). Al-
though the different prompt types, these work treat
visual prompts as a visual prior or anchor to better
understand the prompted region. In contrast, we
use visual prompts as an local emphasis to contrast
with other entities. The most similar work to our
setup is (Shtedritski et al., 2023), which also uses
red circle as visual prompts to highlight the region
for fine-grained local perception. However, our
proposed CVTP not just employs visual prompts, it
further leverages corresponding prompted texts and
CVP counterpart to empower the contrast between
candidates.

Weakly Supervised Video Grounding Fully-
supervised STVG methods (Zhang et al., 2020b; Su
etal., 2021; Yang et al., 2022; Jin et al., 2022; Lin
et al., 2023) hold SOTA performance with a large
margin compared with weakly-supervised coun-
terparts; Nevertheless, the requirements of frame-
level bounding box annotation and temporal bound-
ary with second-level precision is impractical when
the model needs to be trained for a new application
with different data distributions. However, research
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Figure 2: Contrastive Video-Text Prompting(CVTP) framework. VTP constructs candidates by video-text prompting
and pick the highest ranked one while their CVP counterparts can also be ranked to pick the lowest ranked one.
Contrastively, The CVTP framework is able to magnify the ranking score difference between correct and incorrect

candidates.

for STVG under weakly-supervised setting is not
receiving enough attention. (Shi et al., 2019) calcu-
lates video-text similarity score by averaging frame-
level region-query scores without considering tem-
poral cues. (Chen et al., 2020) breaks down query
into object and activity to model a finer matching
behavior between region embeddings. (Chen et al.,
2019b) leverages LSTM (Hochreiter and Schmid-
huber, 1997) to model temporal interaction of an
extracted tube candidate. (Li et al., 2023) builds a
language decomposition tree with the query to per-
form hierachical video-text alignment. However,
all existing methods uses local feature for each can-
didate by cropping the entity region out from the
whole frame. In this process, all contextual infor-
mation is lost such as entity relative position and
their possible directional interactions. In contrast,
our VTP method keep the context intact.

3 Methodology

3.1 Preliminary

Spatial-temporal Video Grounding (STVG)
STVG aims to localize a spatial-temporal tube
P = {b:}=,. inanuntrimmed video V = {v;}]_,
with a given query sentence S = {s,,}2 _, where
b, is a bounding box for video frame ¢ spanning
from starting frame ¢4 to ending frame ¢, vy is the
frame-level input for video V, and s,,, is the token-
level notation query sentence S, respectively.

Weakly Supervised STVG In this setting,
grounding is commonly handled as a retrieval
task where only video-sentence pair-wise corre-
spondence (), S) is available. Specifically in pre-
processing step, a set of candidate tube boxes
Py
at the same time {751}51"1 For one video clip V
there is only one out of NV, tubes that is considered
as the correct candidate. The core of the retrieval
objective is to train a scoring or similarity func-
tion ¢(-) to rank the candidates {P; } based on the
query S whose feature is S. The video-text simi-
larity score s(-) and best matching candidate index
1* is expressed as follows:

s(V,S5)
" = argmax &(Pi,S) (2)

are extracted and their feature are cropped

= max »(P;,S) (1)

the ranking function ¢(-) is usually learnt via a
contrastive loss between the positive sample pair
(V,8) and the negative sample pairs (V’,S) and
(V,8’), under a Multiple-Instance Learning(MIL)
paradigm (Karpathy and Fei-Fei, 2015).

3.2 Our approach

In general, the ranking function ¢(-) measures the
similarity between the tube candidate’s visual fea-
ture and the query sentence’s feature in the latent
space. Existing methods usually extract such fea-
ture via pre-trained uni-modality models such as
Faster RCNN (Ren et al., 2015) and BERT (Devlin
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et al., 2019). However, there are two shortcomings.
For one, the visual feature space and linguistic fea-
ture space is not aligned because the object-detector
and the language embedding model are trained sep-
arately with uni-modality data only. And most
importantly, extracting candidate’s feature with an
object-detector usually involves a cropping oper-
ation(e.g. Rol Pooling(Girshick, 2015) and Rol
Align(He et al., 2017)) on the frame-level feature
map: P; = Crop(V,P;) = {Crop(vs,bi)}e, .
As such, the visual feature for one candidate tube
can only carry its own information, neglecting all
other contextual information that could be impor-
tant for reasoning.

To address above weaknesses, we propose Video-
Text Prompting(VTP) as a baseline which is further
extended by our Contrastive Video-Text Prompt-
ing(CVTP) framework.

Video-Text Prompting Pre-trained large Vision-
Language foundation Models(VLMs) such as
CLIP(Radford et al., 2021) have proven to be
strong multi-modal feature extractors. The feature
gap issue can be addressed by employing VLMs as
backbones, however, they lack fine-grained focus
on local regions or objects. Inspired by (Shtedritski
et al., 2023) which creates local focus with visual
prompts; we use pre-extracted tube boxes as vi-
sual prompts to create candidate instances, rather
than cropping out the region feature from the entire
frame-level feature map.

Formally, we generalize video prompting as an
operation to augment the video frames {v;} with
pre-extracted tube boxes P; and the candidate in-
stance is denoted as the prompted video frames
P; = Ops(V, P;) = {Ops(vy, b) i;ts. The gen-
eralized video prompting Ops(-) can be drawing
bounding boxes / drawing circles / drawing arrows /
applying masks, cropping or even erasing. Notably,
overlaying various visual markers on the image
input is to create emphasis without loss of informa-
tion while cropping or erasing is to discard certain
information with a purpose. Since modifications
are on input frames, we need to augment the textual
input correspondingly to match the visual prompt-
ing. Specifically, textual prompt is inserted after
the referred subject entity with the following tem-
plate:

T(S) = {Ssubj} {Sprompt} {Scontext} 3)

{ssubj} is the subject entity and its attributive

tokens and {Scontext } is the rest of the query sen-
tence tokens, which can be obtained with off-
the-shelf language parsing tools such as (Gard-
ner et al., 2017). The text prompt {Sprompt} in-
serted should be in accordance with the corre-
sponding video prompt, for example, {Sprompt } =
in highlighted region for brightness contrast ad-
justment over the candidate region, {Sprompt} =
in red circle for a red circle, {Sprompt} =
pointed by red arrow for an arrow marker. Note
that operations such as cropping and erasing do
not have corresponding textual prompts. In this
paper, we experimented with several types of video
prompt forms. For the cropping and erasing op-
eration, we use the text query as is. Finally, we
calculate the similarity score between candidate
instance P; and the prompted query text T(S) to
determine which candidate is the best match:

it = arg max ¢(75i, T(S)) 4

Contrastive Video-Text Prompting (CVTP)
framework Intuitively, applying textual prompt
on subject word is equivalent to adding an ad-
ditional attributive clause to the referent. This
prompted text creates factual contradiction when
the corresponding video prompt is landed on the in-
correct candidate object tube, which encourages
a lower similarity score. On the contrary, the
prompted query fully aligns with the video frames
that is prompted with the correct candidate boxes,
thus encourages a high matching score. Further-
more, when erasing as a prompt is applied upon the
correct entity, the similarity score should be low;
but if we erase an entity that is irrelevant to the
query, we would have even higher similarity scores
simply because we removed some interference in-
formation.

Enlightened by above observation, we pro-
pose CVTP framework, as illustrated in Fig. 2.
Concretely, for each pre-extracted tube boxes
P;, we construct VP candidate instance 7SZ =
{Mark(vy, b}) }<,. and its CVP counterpart P; =
{Erase(v, b}:)}fﬁ:ts, where Mark(-) and Erase(+)
indicates applying Video Prompting by marking
and Contrastive Video Prompting by erasing, re-
spectively. As such, Eq. 4 is updated as:

i* = argmax (§(P:, T(S)) ~ #(P1,85)) )

Video-Text Prompting Interactor As an imple-
mentation of the ranking function ¢(-), we pro-
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pose a novel VTP Interactor to model the cross-
modal interaction, as well as temporal reasoning.
Specifically, given a prompted candidate instance
P e RT*HxWxX3 and a query text S; we ex-
tract their corresponding modal specific feature
V e RT%d gnd Q € RUHD*d with visual and
textual encoders of the pre-trained CLIP model,
respectively. T', H and W is the shape of the input
video tensor, [ is the number of text tokens and we
pre-pend one extra [C'LS] token to the query S for
a sentence-level representation. d is the dimension
of the latent feature. A light-weight transformer
encoder is designed to model the temporal interac-
tion between video frames with the self-attention
layers. Given the fact that not all frames from the
candidate tube are equally relevant to the query, we
need to predict a temporal mask to filter the frame
feature depending on the query. Before that, a trans-
former decoder is needed to model the cross-modal
reasoning and perform the feature fusion:

V=V+ FFN(V + SelfAttn(V, V)) ©6)

Q = Q +FFN(Q + CrossAttn(Q, V) ()

where FFN(-) is the Feed Forward Network,
SelfAttn(-) and CrossAttn(-) is the multi-head
self-attention and multi-head cross-attention layer,
respectively.

We take the representation vector h;s for the to-
ken [C'LS] from the decoder output Q. A temporal
mask generator is designed to perform the frame
filtering as well as temporal localization. Inspired
by (Zheng et al., 2022), we implement a simple
MLP to predict the center c and the width w of the
temporal span with the feature vector h.;s from Q:
¢, w = MLP(hs). A temporal mask m € [0, 1]
is constructed with the predicted ¢ and w, which is
used to weight and pool the temporally interacted
video feature V. Unlike (Zheng et al., 2022) where
the mask is set to be gaussian-like, our mask has a
steeper transition slope. Finally the similarity score
between the prompted candidate P and the query
S is calculated:

¢(75,5) = Sim (Angool(m o ‘7), Q) 3

where Sim(-) is a feature matching or similarity
function that can be implemented as an MLP, dot
product or other similarity metric. In this paper we
implement Sim(-) as cosine similarity.

VTP Interactor

Transformer |4

) ;
Encoder X Hoclie
‘V m | _/\__ &
- Q)
g, S
| Visual Temporal Mask e S
BeedEeine Generator
hclsI
Transformer
Decoder
s ]
Textual Q )

Backbone

Figure 3: Video-Text Prompt(VTP) Interactor. The
transformer encoder models interaction between video
frames. The decoder models cross-modal interaction for
the temporal mask generator to filter out the frames that
are irrelevant to the query.

Training We train the VTP interactor with a rank-
ing loss, which is commonly adopted in weakly-
supervised setting. Specifically, with a semanti-
cally matched video clip V and query &, unmatched
video clip V' and query S’ are randomly sampled
from the same batch. The similarity score and rank-
ing loss are calculated as follows:

$(V,8) = max (¢(Py, T(S)) - $(P:. ) ()
Lyank = max[s(V',8) — s(V,8) +4,0] (10)
+max[s(V,S") — s(V,8) +6,0] (11)

where ¢ is a hyper-parameter for score margin. Ad-
ditionally, to improve the effectiveness of the train-
ing process, we employ a candidates refinement
step with the pre-trained CLIP encoder to rule out
the candidates whose visual feature have a low sim-
ilarity between with the subject of the query. This
is to enforce the contrastive loss to focus only on
difficult cases where the candidates share the same
class.

4 Experiments

4.1 Datasets

VidSTG The dataset is proposed in (Zhang et al.,
2020b) containing 44, 808 video samples paired
with 99,943 sentence queries. The length of the
video clips range from 1 second to 2 minutes
and each video sample contains 4.5 tube candi-
dates on average. There are both humans and
common objects for the referent of the queries
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Declarative Sentences

Interrogative Sentences

Methods

m_vloU IoU@0.3 IoU@O.5 m_vloU IoU@0.3 IoU@O0.5
Fully-Supervised (End-to-End)
TubeDETR(Yang et al., 2022) 22.0 29.7 18.1 19.6 26.1 14.9
TubeDETR"(Yang et al., 2022) 30.4 42.5 28.2 25.7 35.7 23.2
CG-STVG(Gu et al., 2024) 34.0 47.7 33.1 29.0 40.5 27.5
Fully-Supervised (Two-Stage)
GroundeR_T(Rohrbach et al., 2016) 9.78 11.04 4.09 9.32 11.39 3.24
STPR_T(Yamaguchi et al., 2017) 10.40 12.38 4.27 9.98 11.74 4.36
WSSTG_L(Chen et al., 2019b) 14.45 18.00 7.89 13.36 17.39 7.06
STGRN(Zhang et al., 2020b) 19.75 25.77 14.60 1832  21.10 12.83
Weakly-Supervised
AWGU(Chen et al., 2020) 8.96 7.86 3.10 8.57 6.84 2.88
Vis-Ctx(Shi et al., 2019) 9.34 7.32 3.34 8.69 7.18 291
WINNER(Li et al., 2023) 11.61 14.12 7.40 10.23 11.96 5.46
Ours
VTP 16.12 19.39 13.28 11.13 12.2 8.0
CVTP 17.9 22.36 14.94 11.18 12.4 7.2

Table 1: Performance comparison on VidSTG(Zhang et al., 2020b). Notably, the end-to-end fully-supervised
methods hold the state-of-the-art performance on this dataset thanks to the supervised training on object bounding-
box regression. While the rest of the compared methods use cropped candidate feature obtained from pre-trained
detectors, regardless of their training paradigm in terms of supervision. * indicates trained with extra-data.

and the class label are in accordance with the ob-
ject detection dataset COCO (Lin et al., 2014).
The dataset is constructed based on a Video Ob-
ject Relation dataset(VidOR) (Shang et al., 2019)
where both the visual content and query contain
< subject, predicate, object > triplet element.
Additionally, the query could take the form of a
question, referred to as interrogative sentences.

HC-STVG Proposed by (Tang et al., 2022), the
dataset focuses on human activities and relation-
ships where the referent is human in all samples.
The dataset contains 5660 video-text sample pairs
collected from movie scenes with a uniform du-
ration of 20 seconds. On average, there are 5.3
candidate tubes in one video sample. Different
from VidSTG where there is only one action in
each query, samples in HC-STVG involves 2.3
actions on average.

4.2 Implementation

We extract and link frame-level object bounding
boxes with off-the-shelf object detectors. However,
different from previous works, we only use these
boxes coordinates to insert our visual prompts; in-
stead of directly extracting visual features from the
detectors. We adopt the pre-trained CLIP model
with ViT-L (Dosovitskiy et al., 2021) as our base

encoders which remain frozen during our training.
A two layer standard light-weight transformer en-
coder and decoder is designed with hidden dimen-
sion set to 256. An MLP is added to reduce the
CLIP feature dimension to 256. For training, the
margin J is set to 0.2 and we use a batch size of
16 with a total training epoch of 10. The initial
learning rate is set to le — 4.

4.3 Evaluation Metrics

We follow previous works (Su et al., 2021; Tang
et al., 2022) by using m_vIoU and vIoU@R for
evaluation. vIoU is a hybrid metric focusing on
spatial grounding precision which is weighted
by the overlapping time span between temporal
prediction and ground truth, defined as vloU =
ﬁ doies ToU(b, bt), where Sy and Sy is inter-
section and union between predicted and ground-
truth frame span, respectively. vioU@ R reflects
the percentage of test samples whose vloU is larger
than a threshold R, e.g. R = 0.3 and R = 0.5.
Lastly m_vIoU is the mean of vIoU over all test
set.

4.4 Performance Comparisons.

We compare our proposed prompting based meth-
ods VTP and CVTP with all existing weakly-
supervised methods on VidSTG dataset in Table.
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1. We also list some of the fully-supervised meth-
ods for a comprehensive study. The end-to-end
supervised methods are able to refine their spatial
grounding capability with the per-frame bounding-
box annotation and this is to show what the SOTA
performance is on this dataset. For a more mean-
ingful comparison, we chose the two-staged ones
because they all crop out candidate feature before
they begin the reasoning or modeling process, re-
gardless of their training paradigms. For super-
vised methods, GroundeR(Rohrbach et al., 2016),
STPR(Yamaguchi et al., 2017) are only capable
of grounding tubes spatially. Thus for the task of
STVG, they employ a two-stage strategy by trim-
ming the tube temporally with a trained tempo-
ral grounder such as L-Net(Chen et al., 2019a) or
TALL(Gao et al., 2017). We append "T" and "L"
to indicate the temporal grounding methods they
adopted. Specially, WSSTG(Chen et al., 2019b) is
trained under weak supervision for spatial ground-
ing in trimmed video, however, its temporal local-
ization part(L-Net) is an off-the-shelf model trained
with temporal annotation.

We can see in Table 1 for the declarative sen-
tences, our proposed prompt based VTP base-
line has surpassed the SOTA in weakly-supervised
methods by a tremendous margin on all metrics.
Our Contrastive Video-Text Prompting(CVTP)
method further expands this advantage. The
IoU@0.5 percentage has doubled compared with
the SOTA method WINNER(Li et al., 2023). No-
tably, our methods also surpasses those supervised
methods with a two-stage strategy(GroundeR_T,
STPR_T and WSSTG_L) by an impressive margin.
While for the Interrogative sentences, where the
subject word of the query is missing; which makes
our prompt-based method less effective(this will
be discussed in the Limitation section later). The
proposed CVTP method still beats existing weakly-
supervised methods on all metrics. Although
the fully-supervised method STGRN(Zhang et al.,
2020b) also conduct spatial and temporal ground-
ing simultaneously, the performance gap between
ours and STGRN is not as large as compared with
others. Our proposed CVTP method even achieves
a slightly higher retrieval percentage on loU@0.5
metric for declarative sentences.

Evaluation results on HC-STVG(Tang et al.,
2022) are shown in Table 2. The % symbol with
STGVT* and WSSTG* indicates the predicted
tube is not temporally trimmed to produce this re-
sult. WSSTG_2D denotes 2D-TAN(Zhang et al.,

Methods m_vloU IoU@0.3 IoU@0.5
Supervised
WSSTG_T 13.37 19.95 7.33
WSSTG_2D 15.43 19.83 6.81
STGVT* 16.93 21.29 6.64
Weakly
WSSTG* 12.96 16.23 4.35
AWGU 8.20 4.48 0.78
Vis-Ctx 9.76 6.81 1.03
WINNER 14.20 17.24 6.12
Ours
VTP 16.15 18.48 6.65
CVTP 16.43 18.74 8.25

Table 2: Performance comparison on HC-STVG(Tang
et al., 2022). Our proposed methods outperform all ex-
isting weakly-supervised methods. Some metrics even
surpass supervised algorithms.

2020a) is used for trimming. We note that although
the STGVT(Tang et al., 2022) method chosen here
leverages a transformer to model the temporal de-
pendency and trained in a fully-supervised manner,
its candidate tubes’ features are still extracted by
Rol pooling over local regions. Our methods are
able to outperform it on one of the metric.

To summarize, our proposed prompting based
methods are demonstrated to hold great advantage
over those only utilize cropped regional feature for
reasoning, this proves the importance of preserving
context when extracting the candidate feature and
this can be done via video-text prompting rather
than isolating them from the global context.

4.5 Ablation Study

Ablation on Usage of Prompts First we would
like to explore the effectiveness of different prompt
used, as shown in Table 3. "V" refers to video
prompting which is essential. "T" indicates text
prompt added corresponding to the video prompt-
ing. "C" refers to the constructed Contrastive Video
Prompted(CVP) counterpart used in our CVTP
framework. As a retrieval setting, one of the pre-
extract tube candidates is considered as the cor-
rect candidate during the testing stage who has the
highest average IoU score with the ground truth
tube. In this ablation, we additionally calculate
the recall rate of our methods. The first row in-
dicates randomly selecting a candidate from the
pre-extracted tubes per testing video sample. Note
that we do not randomly trim the tube hence this
ablation focuses on spatial tube selection capability.
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The performance gap between row 2 and row 4,
the gap between row 3 and row 5 both highlight
the importance of the text prompt: without the text
prompt, the meaning of the video prompt is not
explicitly specified hence resulting non-ideal per-
formance. Similarly, the gap between row 2 and
row 3 together with the gap between row 4 and row
5 highlight the effectiveness of the proposed con-
trastive ranking idea. Lastly, the proposed CVTP
method in row 5 is threefold better than random in
terms of recall accuracy.

Prompts Metrics

v T C m_vloU IoU@0.3 IoU@0.5 Recall
7.13 5.87 1.73 18.64

v 13.12  14.11 5.28 41.77

v v 14.02 1632 6.39 44.73

v v 16.15 18.48 6.65 53.45

v vV 7 1643 18.74 8.25 55.0

Table 3: Ablation on prompts used on HC-STVG
dataset.

Ablation on Video Prompt Types Another abla-
tion is conducted on the choice of video prompts,
as shown in Table 4. As mentioned in Section
3.2, cropping can also be considered as a form of
prompting operation. Here by "Highlight" prompt-
ing, we follow (Shtedritski et al., 2023) to adjust the
brightness inside and outside of the candidate re-
gion where region inside the tube is brighter and the
outside is darker. We also tested the video prompt
as an arrow instead of a circle. The color used for
both markers is red since it is both common and
prominent in real world images. The results show
that the arrow marker is slightly better than the cir-
cles (in this paper we stick to circles in all figures
for better visualization), and cropping is the worst
choice as it brings irreversible information loss.

Maetrics
Video Prompt
m_vloU IoU@0.3 IoU@0.5 Recall
Crop 11.74 1342 3.8 38.35
Highlight 14.8 17.01 648 47.58
Circle 1589 18.05 7.48 52.76
Arrow 16.43 18.74 8.25 55.0

Table 4: Ablation on video prompt types on HC-STVG
dataset.

A Feature Space View As mentioned in Sec-
tion 3.2, by prompting the video and text input,

fv w. Video Prompt
fo w. Text Prompt
fv w. Cropping

fo w/o Text Prompt

dim 2

v

dim1

Figure 4: t-SNE visualization of the learnt visual and
language feature for the retrieved candidates. Red and
green are video and language feature with our proposed
Video-Text Prompts; blue is cropped video feature and
purple is original textual feature.

we are creating emphasis over the prompted candi-
date. And this emphasis works positively towards
correct candidate and negatively towards incorrect
candidate. Here we provide a straight-forward il-
lustration by showing the distance between visual
and language feature prompted by different meth-
ods in Fig. 4. Specifically, for the candidates that
we successfully retrieved, we extract their visual
and language feature from our trained encoders
and project them to 2-d space with t-SNE(van der
Maaten and Hinton, 2008). The video and text
feature with our prompts are in red and green, re-
spectively. We also extract the candidates’ feature
by cropping in blue, and the original query feature
without prompts in purple. As revealed in Fig. 4,
with our proposed Video-Text Prompting, the aver-
age distance between video and language feature
is much smaller than the distance between cropped
visual feature and original query text.

5 Conclusion

In conclusion, the proposed Video-Text Prompting
(VTP) and Contrastive VTP (CVTP) effectively ad-
dress the limitations of existing weakly-supervised
STVG methods. By introducing video and text
prompts instead of cropping object features, VTP
preserves contextual information and enhances the
representation of candidate features. Furthermore,
CVTP leverages negative contrastive samples to
improve the distinctiveness of correct candidates.
Extensive experiments and ablations on multiple
STVG datasets demonstrate the superiority of our
approach, achieving significant performance im-
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Declarative
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Emphasize on referent

Q’: A child in black in red circle kicks a ball in the gym. A
Interrogative
Interference candidate Q’: Who in red circle kicks a ball in the gym? v

Declarative

Interrogative

Discrepancy on target

Q’: A child in black in red circle Kicks a ball in the gym. A

Q’: Who in red circle kicks a ball in the gym? \ 4

Figure 5: Illustration on the impact of different query forms to our methods.

provements over existing weakly-supervised meth-
ods. This highlights the potential of our methods
in advancing the field of STVG without the need
for densely annotated training data.

6 Limitations

6.1 Performance Upperbound

As mentioned in Section 3.1, in inference stage; we
are picking the best matching tube candidate P*
given a finite set of candidate proposals {Pi}?g’l
where N, is the number of pre-extracted candi-
dates. However, for all the metrics that are related
to spatial precision, there is a gap between the best
candidate P* and the ground truth tube Py;. Thus
in terms of numerical evaluation, the performance
of our methods are upper-bounded by the metrics
calculated between P* adn P,;. Notably, this lim-
itation applies to all weakly-supervised methods
that formulate grounding as a retrieval problem.

6.2 The Form of Sentence Query

Proposed in (Zhang et al., 2020b), the VidSTG
dataset includes declarative and interrogative sen-
tences as the query texts. The former is of normal
< subject, predicate, object > triplet form; but
in the latter one however, the subject word is miss-
ing and the purpose is to force the model to reason
like humans. From the results listed in Table 1 it
can be seen that all methods suffer a performance
drop with interrogative queries compared to those

with declarative queries. We observe that the degra-
dation with our model is notably higher than other
methods. Intuitively, Mentioned in Section 3.2, by
video prompting, our approach is essentially cre-
ating positive emphasis on correct candidate and
negative discrepancies on incorrect ones and lever-
ages the contrast between them. However with
interrogative sentences, such emphasis is diluted.
For example in Fig. 5, with a declarative sentence,
both the emphasis and discrepancy enforced by the
Video-Text Prompt method are strong; while for
the interrogative sentence referring to the same en-
tity, both the emphasis on correct candidate and the
discrepancy on interference candidate drop. As a
result, our proposed methods are more suitable for
grounding with a normal declarative query.

6.3 VLM Encoder Reliance

Since our methods do not use the cropped feature
from the object detectors, it’s crucial for our visual
and textual encoders to understand the prompts
properly. As validated by (Shtedritski et al., 2023),
VLMs trained on comprehensive web-scale vision-
language data pairs such as the CLIP model is best
suited for our model; for it can recognize and align
the artificial Video-Text Prompts with reasonable
confidence. However, we observe such capabil-
ity is non-existent with visual encoders trained for
specific tasks, such as object detection. Conse-
quently, such encoders are not suitable to be in-
corporated in our framework. Nevertheless, the
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trending paradigm for vision-language research is
to leverage the broad world knowledge captured in
foundation VLMs, we speculate such limitations
will be less significant in the future.
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